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ABSTRACT A theoretical justification is given to the empirical observation that in some computing
systems with a paged, 2-level storage hierarchy, long-term miss ratio is roughly independent of page
size Let MISS be the expected working-set miss ratio in the independent reference model, with ex-
pected working set size CAP pages Now form blocks, by combining the B pages with the highest
probabilities of reference mnto one block, the B pages with the next-highest probabilities of reference
into a second block, and so on Let MISS* be the expected working-set miss ratio when all data are
moved 1n blocks and when the expected working set size is again CAP pages, that is, CAP/B = C
blocks. It 1s proved that | MISS — MISS* | < (2/C) + (33/C?). Thus, if the expected working-set
size (in blocks) is sufficiently large, then the miss ratios in the blocked and unblocked cases are ap-
proximately equal This result 1s used to argue the approximate independence of miss ratio on page
size in more realistic models of page references.
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1. Introduction

An important parameter in the design of a paged computing system is the page size,
that is, the number of bytes of information transferred from one level of a storage hier-
archy to another in case of a page fault. Among the factors which influence the choice
of page size are the page fault rate (or “miss ratio”), the fragmentation of memory,
and the access and transfer times of secondary memory devices (see Gelenbe et al. [12]
for a more detailed discussion).

The research for this paper was sparked by an empirical observation of Bennett [3],
who examined a page reference trace’ from the IBM Advanced Administrative System
(A.A.8.) {22}, a large internal IBM data management system. Bennett found no con-
sistent relationship between miss ratio and page size—for some main (first-level) memory
sizes, the miss ratio was slightly larger for the larger page size, and for other main mem-
ory sizes, slightly smaller. In all cases the size of main memory had a vastly greater
effect on miss ratio than did page size, if the page size was sufficiently large (at least
1500 bytes). The cache multiprogramming trace of Kaplan and Winder {17] and the
(main memory) program address traces of Lewis and Shedler [18] and of Anacker and
Wang ([16], [2]) give similar results. In the examples cited, different but similar page
replacement algorithms were employed, including the working-set memory management
policy 5] and the closely-related LRU (“least recently used”) memory management
policy ([19], {1]).

At first glance, some published data seem to contradict this insensitivity of miss ratio
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to page size. A dramatic example is found in Chu and Opderbeck’s paper [4], in which
LRU miss ratio seems to depend very heavily on page size. Their miss ratio curves
asymptotically approach a value which is simply the number of mitial loading misses
(which is the same as the number of pages in the program, if main memory is large
enough to hold the entire program) divided by the length of the observed page reference
string. Of course, in general, there are approximately twice as many mitial loading misses
when the page size is half as large, and so the asymptotic value of their miss ratio curve
18 approximately twice as big when the page size is half as large. By contrast, in this
paper we distinguish between initial loading misses on the one hand, and the *‘transient-
free,” or “long-term,” miss ratio on the other hand (cf. [9]). In the case of LRU, “tran-
sient-free” means that the miss ratio is measured starting at a time after main memory
has filled; in the working-set case, ‘‘transient-free” means that the miss ratio is measured
starting at a time greater than 7', where T is the window size. In many cases, it is possi-
ble to analyze the performance of a storage hierarchy more aceurately by considering the
effects of initial loading misses and of the transient-free miss ratio separately. From here
on in this paper, “‘miss ratio” refers to the transient-free, or long-term, miss ratio

The main result of this paper 1s 2 bound on the effect of page size on the expected
working-set miss ratio, in the independent reference model (in which page 1 is referenced
at time ¢ with probability p,, independent of past history). Specifically, let MISS be
the expected working-set miss ratio in this model, where the window size is chosen so
that the expected working-set size is CAP pages. Now form blocks, by combining the
B pages with the highest probabilities of reference into one block, the B pages with the
next-highest probabilities of reference into a second block, and so on. Let MISS8* be
the expected working-set miss ratio when all data are moved in blocks, and when the
window size is chosen so that the expected working-set size is again CAP pages, that is,
CAP/B = C blocks. It is proven that

| MI8S — MISS*| < 2/C + 33/C" (1)

Thus, if € is sufficiently large, then MISS* =~ MISS, that is, the expected miss ratios
in the blocked and unblocked cases are approximately equal

In Section 2 we will show that (1) implies the approximate independence of miss
ratio on page size in certain more realistic models of page references than the independent
reference model. This tells us that in some cases, transient-free miss ratio is not a key
factor in the selection of page size. Of course, the effect of initial loading misses, which can
be considered separately, is an important factor.

2. More Realistic Models

In this section, we will show that our result about the insensitivity of miss ratio to page
size in the independent reference model implies that this insensttivity holds in some
more realistic models of page reference patterns. For convenience in exposition, we will
deal in this section with LRU miss ratio, rather than with working-set miss ratio. In-
deed, we will show later that our main result (1) can be interpreted as saying that LRU
miss ratio is insensitive to page size in the independent reference model, if the capacity
(size of main memory) in, say, bytes, is held fixed (and if, as before, pages are blocked
together in order of their probabilities).

The independent reference model is, in general, inadequate. Various authors, includ-
ing Lewis and Shedler [18), Denning, Savage, and Spirn [6], and Easton |7] have pre-
sented models of page reference patterns (or related quantities) in which page references
are the result of two components, where the first is, roughly speaking, an “independent”
or “random” component, and the second is a local component, such as a “locality of
reference” or “sequential”’ component. We will first show that approximate independence
of expected LRU miss ratio holds in one such model (Easton’s), and then we will gen-
eralize the argument to cover other such models.



130 R. FAGIN AND M.C. EASTON

We briefly describe Easton’s model. If there are n pages, then there are n -+ 1 param-
eters, 7, p1, -+, Pn, all between 0 and 1. Assume that page ¢ was referenced at time ¢
At time { + 1, a coin 1s flipped, which comes up heads with probability =, and tails
with probability 1 — r. If heads comes up, then page 2 is rereferenced, and we say that
the reference to page 7 (at time ¢ 4+ 1) was generated during “rereference” or ‘‘sequen-
tial” mode. If tails comes up, page 7 is then referenced with probability p, , for1 <3 < n
(including the case ) = 1), and we say that the reference to page j was generated during
“random’ mode. Thus, if @,, is the probability that page ) is referenced at time ¢ 4 1,
given that page » was referenced at time ¢, then

Q ={r+(1—r)p,, =71
v = n)p,, J#E

Easton found |7] that with appropriate choice of parameters, his model gives a good fit
to the LRU miss ratio curve of A.A.S., which we referred to in the Introduction. In-
tuitively, this model “works” because if the page size 1s large cnough, then “locality”
can be approximately captured by rereferences to the same page.

We will now show that in this model, LRU miss ratio is insensitive to page size. Let
S = Ry - - R, be a finite-length page reference string generated by this model. Thus,
each R, is the name of a page. Assume that the string S is long enough that the effect of
initial loading misses s negligible. For each 2, let R,* be the name of the block which
contains page B.. Then $* = R,* ... R, is the corresponding block reference string.
We will show that the LRU miss ratio (where pages are the unit of transfer) over page
reference string § and with capacity (AP pages is approximately the same as the LRU
miss ratio (where blocks are now the unit of transfer) over block reference string s*
and with capacity CAP/B blocks (i.e. CAP pages), when there are B pages per block.

Let R.,, ---, R, (where 4y < 22 < -+ < u) be those page references which were
generated after “tails” was flipped; thus, these are the page references which were gen-
erated during “random’” mode. 80 Syma = R,, -- R, is the substring of S which con-
tains only the page references generated during random mode, and Sna = R.,* - -+ R..*
is the corresponding substring of S*. Let z be the number of misses 1f we apply the LRU
page replacement algorithm to string Sa.a, with capacity CAP pages. Each reference
which was generated during sequential mode is automatically a “hit”’; hence, the number
of LRU misses (with capacity CAP pages) over page reference string S is also z. Now
Slna can be looked at as a block reference string generated under the assumption of
independent block references, where each block has reference probability equal to the
sum of the reference probabilities of the pages which compose it. As we have said, our
main result can be interpreted as saying that under the assumption of independent refer-
ences, the LRU miss ratio 1s approximately the same in the blocked and unblocked
cases. So z is also approximately the number of misses if we apply LRU block replace-
ment to the block reference string Sjnq with capacity CAP/B blocks. Again, there are
exactly the same number of misses over the string S* as over Shad . So the miss ratios
in the blocked and unblocked cases are approximately the same, as claimed.

This result can be generalized to some other models with an ‘“independent” compo-
nent and a “locality of reference” component. The argument we will now outline will,
of course, have to be tailored to fit each particular model. Assume that the page size
is large enough that almost all “locality” references are hits. Then the miss ratio is es-
sentially determmed by the independent component. So once again, the insensitivity of
miss ratio to page size under the assumption of independent references implies this in-
sensitivity under more realistic assumptions. We remark that for models other than the
independent reference model, the difference in miss ratio between the blocked and un-
blocked cases will not necessarily be bounded by the right-hand side of inequality (1).

In our result about the independent reference model, we have assumed that pages
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are blocked together in order of likelihood of reference. Of course, the real situation is
much more complicated. However, we can justify this assumption on several grounds.

1. In the case of certain large-data base systems, such as A A8, groups of sequentially
stored records tend to have similar access properties. So in forming blocks in the usual
way of grouping together sequentially stored records, those pages which are blocked
together have approximately the same probabilities of being referenced; that is, pages
are blocked together approximately in order of probability of reference.

2. Of all possible ways of blocking pages together with B pages to a block, Yue and
Wong [23) proved that in various storage applications and under various criteria of
optimality, the blocking we have considered (in which pages are blocked together in
order of probability of reference) is optimal. Hence, the use of this particular blocking
is a natural assumption to make when one is discussing the performanece of a storage
hierarchy. We remark that the first author has found a counterexample to the con-
jecture that expected LRU miss ratio is minimized in the independent reference model
by this blocking [10]; however, this blocking seems to be near-optimal in the independent
reference model.

3. Formal Statement of Main Result

Let {p1, -+, pa} be a probability distribution (that 1s, D_p, = 1 and each p, > 0).
Assume that at each discrete time ¢, page 2 is referenced with probability p,, inde-
pendent of past history. (This is the independent reference model.) The expected working-
set miss ratio (with window size T') [5] is the probability that the page referenced at time ¢
was not one of the pages referenced over the course of the previous 7 (not nccessarily
distinct) references. Under the independent, time-invariant assumption of the independ-
ent reference model, it is clear that this expected working-set miss ratio is independent
of t, for t > T. Let CAP be the expected working-set size, that is, the expected number
of distinet pages to appear over the course of 7 references. Define MISS(CAP) to be
the corresponding expected working-set miss ratio. Thus, MISS(CAP) is the expected
working-set miss ratio with window size T, where the expected working-set size with
window size T' is CAP pages. Later on, we will discuss the close relationship between
MISS(CAP) and the expected LRU miss ratio with capacity CAP pages.

We will now describe the blocked case. Let B (the “block size’’) be a positive integer
which, for convenience, we assume divides n. Assume that p; > p2 > -+ > p. 2 0,
and let

M

U = Pa—1ya+) 1 <1< n/B.

b

7=

Thus, uy = p1 + -+ + P, U2 = Psa + - + P25, ete. This corresponds to combin-
ing the B pages with the highest probabilities of reference into a block, the B pages
with the next-highest probabilities of reference into a second block, and so on. The
blocked case corresponds to the independent reference model with block probabil-
ities {uy, -+, Un/n}. Define MISS*(CAP) to be the expected working-set miss
ratio (over the probability distribution {uy, --- , u./s}), when all data are moved in
blocks, and when the window size is chosen so that the expected working-set size is
CAP/B blocks (CAP/B blocks contain the same number of bytes as CAP pages, and
this is the quantity we hold fixed in comparing the blocked and unblocked cases. )*

Let C = CAP/B, and write MISS and MISS* for MISS(CAP) and MISS*(CAP).
The main result of this paper is

| MISS — MISS*| < 2/C + 33/C" (2)

? It may well happen that there is no integer 7* such that the expected working-set size with window
size T* is CAP/B blocks. If so, then we 1nterpolate, as we will see
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We can think of 2/C as the first-order error term, and 33/C” as the second-order error
term. We will actually prove a slightly stronger statement than (2).

Note that statement (2) is a distribution-free result: that is, the error terms do not
depend on the values of the p, (or even on n, the number of pages).

4. Detarls About Main Result

We begin this section by giving an expression {5] for MISS(CAP), the expected working-
set miss ratio when the expected working-set size is CAP pages. The expected working-
set size, that is, the expected number of distinct pages which will be referenced over the
course of T' references, is S(T) = Y 1=1 (1 — (1 — p.)"), because the probability that
page 2 is referenced is 1 — (1 — p.)". The expected working-set miss ratio with window
size Tis M(T) = >.p, (1 — p.)7, because p,(1 — p.)” is the probability that page 7
is the next page referenced and that page @ did not appear in the last T references. Thus,
if S(T) = CAP, then MISS(CAP) is by definition M(T) = M(S'(CAP)). Note
that M(87'(z)) is well-defined for each real number r between 0 and », even if the
intermediate parameter I’ = S™'(z) is not an integer. By this procedure, which amounts
to an interpolation, we can define MISS(s) = M(S87'(x)) for cach r with 0 < » < n

Similarly, in the blocked case, we define MISS*(x) = M*(8* " (&/B)),for0 < r < n,
where

n/B

SNT) = 3 1 -1 -w)'), 0L7T< «,
=1
n{B .

MYT) = 3> w(l — w), 0< 7T < =

=1

Thus, if the expected working-set size is CAP pages (i.e. CAP/B blocks), then
MISS*(CAP) is the expected working-set miss ratio in the blocked case.

We will now briefly discuss the relationship between MISS(CAP) on the one hand, and
the expected LRU miss ratio MR(CAP) with capacity CAP on the other hand. Denning
and Schwartz [5] make the intuitive observation that MISS(CAP) =~ MR(CAP). In
various simulations of the independent reference model, we found that MISS differs
from MR by around .01, when the number n of pages is several hundred. Indeed, the
first author has recently proven {11] that in a certain precise sense, MISS converges
asymptotically to MR as the number n of pages gets large, mn the independent reference
model. So (2) imphes that in the independent reference model, the expected LRU miss
ratio is approximately independent of page size, if the size of main memory is held fixed
and if pages are blocked together in order of their probabilities. (Of course, we are assum-
ing that C is large enough that the right-hand side of inequality (2) is small, and that n is
large enough that MISS(CAP) =~ MR(CAP).)

5. Proof of Main Result

We will prove the following theorem.

TuecoreEm. Let MISS be the expected working-set miss ratio in the independent reference
model, with expected working-set size CAP pages. Let MISS* be the expected working-set
mass ratro after blocking, where B old pages form each new block, where pages are blocked
together 1 order of their reference probabilities, and where the expected working-set size 18
again CAP pages (z.e. C = CAP/B blocks). Assume that the original number of pages 1s
duwnsible by B. Then | MISS — MISS*| < 2/C + 33/C%.

Proor. The theorem is trivial if CAP < 2B or CAP > n; hence, we will assume that
2B < CAP < n.

We will actually prove
—~1.92(B — 1)/CAP — 6(B/CAP)* < MISS — MISS*

< 1.01(B ~ 1)/CAP + 33(B/CAP)* (3)
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Of course, (3) imphes | MISS — MISS*| < 2B/CAP + 33(B/CAP)?, which is the re-
sult of the theorem.
There will be stx main steps in the proof.

Step0. S(T) LT, if T>21
Stepl. 0 < Z,=1(1~—p) -BYMP 1 —u/BY'<B-—-1, i T>0.
Step2. 0<BYMP (1 —w/B)Y —B M1 —u)"” <184 (B ~ 1) + 6BYT,

if T > 2B.
Step 3. —T36(B — 1)/T < Sotet pull — p2) — SrEu (1 — u/B) < 736(B — 1)/T,
if T>0.
Step4. 0 < >t u,(1 —u/B)" — 2ol w1 —u)"? < 271(B — 1)/T + 33BY/T°,
if T > 2B.

Step 5. H(T)/H(@) < S(T)/S(t), if T >1t>1, where H{z) =1 — M(2).

Step 0 follows immediately from the development in [5], provided 7 1s an integer
(which will not always be the case for us—hence, we must prove 1t directly ).

Step 5 says that if the expected working-set size 15 increased, then the proportional in-
crease in expected working-set hit ratio is bounded by the proportional increase in ex-
pected working-set size. Thus, if the expected working-set size is doubled, then the
expected hit ratio is at most doubled. We will now show that these six steps imply state-
ment (3).

Instead of using the functions S* and M™ of Section 2, it will be convenient to define

closely related functions Sz and A/ 5, as follows.
n/B n/B

Se(Ty =B Y, (1 — (1 —u)"), Mi(T) = Z‘imﬂ — u,)"E
=1 1=

It is easy to see that M (S5 (CAP)) = M*(S* ' (CAP/B)) = MISS*(CAP), the
expected working-set miss ratio under blocking.
Two other functions we will find convenient to use are given by

H(T) =1 - M(T), Hs(T)=1— Mx(T).

It is easy to see that S and S are each monotone, and each map onto the half-closed,
half-open interval [0, n). So we can find T, and T such that S(Ty) = CAP = Su(T5).
Now Ty > 1, since S(1) = 1 < CAP = S(Ty), and since S is monotone increasing. So

we can apply step 0, to obtain Ty > S(T1) = CAP > 2B. Hence
T, > 2B. (4)

Now S(T) = n — 2.1y (1 — p)7, and Ss(T) = n — B o2 (1 — u)"”. So if
we add together the inequalities of steps 1 and 2, with T substituted for T, we find that

0 < Ss(Ty) — 8(Ty) <@, (5)
where
Q = 1184 (B ~ 1) + 6 (B/T). (6)
Since S(T:) = CAP, statement (5) says
0 < 8x(T,) — CAP < Q. )
So Sx(Ty) > CAP = Ss(Ts). Since S, is monotone increasing,
T, > Ts. (8)

The functions Hz and Sz/B have the same form as H and S, with u, substituted for
P, , with n/B substituted for », and with T/B substituted for 7. So it follows from step 5
that if (T/B) > (¢/B) > 1, thatis,if T > t > B, then

Hy(T)/Hp(t) < (82(T)/B)/(8s(t)/B) = 8a(T)/Ss(t). (9)
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Now Ty > Ty > B: first, Ty > Ts by (8), and Sg(Ts) = CAP > B = S(B), so

since Sp is monotone ncreasing, this implies that T3 > B. Therefore, we can substitute
Ty for T and T’ for ¢ in (9); then

Hy(T\)/Hp(Ts) < Sa(Th)/Ss(Ts) = Ss(Th)/CAP.
So
Hy(T\) £ Hp(T3)(8s(T1)/CAP)
Hy(Ts)(1 4+ ((8S(Th) — CAP)/CAP))

< Ho(Ts)(1 + (Q/CAP)) by (7)
< Hy(T5) + (Q/CAP), since Hy(T5) <1
We have just shown that
Hx(T)) < Hp(Ts) + (Q/CAP). (10)
it is easy to see that H p is monotone increasing. So, from (8),
H4(Ty) 2 Hu(Ts). (11)

From (10) and (11), it immediately follows that

0 < Hp(Th) — Hy(T5) < Q/CAP,
and hence
~Q/CAP < My(Ty) — Mp(T's) £0. (12)

Adding together the inequalities of steps 3 and 4, with T substituted for 7' (which is
all right by (4)), we find that

~736 (B — 1)/T1 < M(Ty) — My(Ty) < 101 (B — 1)/T: + 33 (BYTS). (13)
Since T; 2> CAP by step 0, statement (13) implies

—.736 (B — 1)/CAP < M(T,) — My(Ty)
< 1.01 (B — 1)/CAP + 33 (B/CAP)". (14)

Also, Ty > CAP imphies (from statement (6)) that
Q <1184 (B — 1) + 6 (B*/CAP). (15)

1f we add together the inequalities in statements (12) and (14), and substitute for @
the right-hand side of (15), we get

—1.92 (B — 1)/CAP — 6 (B/CAP)* < M(T:) — Ms(Ts)
< 1.01 (B — 1)/CAP + 33 (B/CAP)".

Since as we observed, M(T;) = MISS(CAP) and M(Ts) = MISS*(CAP), this
gives us statement (3), as desired.
It remains to prove steps 0-5.

6. Prelvminaries

One of our basic techniques will be the use of Schur functions ({21}]; see also [20]). Assume
for convenience throughout that all functions considered are infinitely differentiable

Definttion. Assume that « = (a1, -+, an), Where ay > a3 > --- 2 an, and that
8=(B, - ,Bn),wherep > B, 2 -+ > Bn. Wesay a« > §if Zlfsux. 2 Zf'lﬁn
1<k<mand Y ima, = 3 maB,.

Defination. A real-valued function f of m real variables z;, - - - , £ is a Schur function
if for each pair 7 # 3, (x. — z,) (8/0z.)f — (8/dx,)f = O.

TueoreEM (Schur). Let f be defined for 21 2 -+ > Tm. Then flar, +--, am) =
f(Br, -+, Bm) whenever @ > B, «ff f is a Schur function.

Special Case 1 [13, p. 89]. Let ¢ be a real convex function of one real variable, that is,

o((z + y)/2) < §(6(2) + ¢(y)). (16)
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Then the function (x1, -+ |, Zm) — Z’[Ll ¢(z,) is a Schur function. Hence, if « > §,
then 3T g(a) > 2T1g(B).
Special Case 2. Let ¢ be continuous and concave, that is, the inequality sign in (16)
is reversed. Then —¢ is convex. Hence, 1f @ > 8, then ) 1w ¢(a,) < 2y 3(8,).
An infinite sum .= a, of real numbers q, is alternating if
1.a,20 1fa,1<0,1< 1< w.

2. |a,| 2 |an|, 1 £1< o,

3.a,—0 as 11— .
An alternating sum is always convergent, and its value lies between any two successive
partial sums (Letbnite’s test [15, p. 68]).

7. Proof of Step 0
We will prove that S(T) < T,if T > 1.

Let ¢ be the function £ — 1 — (1 — )7, with domain the closed interval [0, 1). It
18 easy to see that ¢ is concave. Clearly (p1, -+, pn) > (1/n, -+ , 1/n). So by special
case 2 of Section 6,

S(T) = 36(p) < il«»(l/m = np(1/n).

Hence, we need only show that n¢(1/n) < T. This is equivalent to
1-=1/m)">1—-"T/n (17)

If T > n, then the right-hand side of (17) is negative, and (17) follows immediately.
If T < n, then the binomial expansion of (1 — 1/n)" is an alternating sum, and (17)
again follows.

8. Proof of Step 1
We will show that

niB

0<(/B) 2 (1 —p)" = 2 (1 —u/B)" < (B—1)/B, (18)
=1 1=1
if T > 0.
Let ¢ be the function + — (1 — r)’, with domain the closed interval [0, 1]. It is easy
to see that ¢ is convex and monotone decreasing with range [0, 1]. Since ¢ is convex, it
follows [13, p. 72| that

¢((r+ - - + r3)/B) < (¢(1) + - - + ¢(s3))/B. (19)

If we substitute &1 = po-nss1, 2 = Po—nsiz, 5, s = P.pinto (19), forl1 <2 <
n/B, we find that

(1 —u/B)" < (1/B)((1 = pacysrr)’ + -+ + (1 = pun)”). (20)

Adding together the inequalities (20), for 1 < ¢ < n/B, we obtain

n/B

S —wBT<WB) L=,

=1

which proves the first inequality in (18).

If1 >z > .-+ > zz > 0, then since ¢ is monotone decreasing,
¢(z) + - + o(zs) _¢(x1+ -+ x;;)
B B
< B Do) +0@) ) = B (ga) — gla)). (21

B B
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Substituting Iy = P~DB+1y T2 = Pa—1)B42s "' " y LB = s into (21), for 1 < 7 S n/B,
we obtain

(1/B)(¢(pi-vyst1) + + - + ¢(p.5))
— ¢(u./B) < ((B = 1)/B)(¢(p:s) — ¢(Pinypsa)). (22)

Now ¢(pa-ns+1) 2 ¢{Pau—ys), S0 we obtain from (22)

(1/BY(@¢(pa-nsn) + -+ + ¢(p.s))
—¢(u,/B) < ((B = 1)/B)(¢(p.n)} — ¢(pe-ns)). (23)

Adding together inequality (22) for » = 1 to inequalitics (23) for 1 < ¢« < n/B, the
right-hand side telescopes to give

n/B

(1/B) 2 ¢(p) — 2 o(u/B)
< ((B = 1)/B)(o(pa) — ¢(p)) < (B =~ 1)/B. (24)
This is the right-hand inequality of (18).

9. Proof of Step 2
We will show that

n/B nlB

0<B ; (1 —u/B) — B ; (1 — w)™® < 184(B — 1) + 6(BYT), (25)

" T\;ez “illlg‘ﬁrst demonstrate the first inequality. We need only show that for each o,
(1 - w/B) > (1 —w)" (26)
This is equivalent to showing that
(1 = u/B)" > (1 — w,). (2N

It 1s straightforward to check that the binomial expansion of the left-hand side of (27)
is an alternating sum. So (27) follows

We will now prove the second inequality of (25). For each u, 0 < u» < 1, and each
nonnegative number 6, define

as(u) = (1 — u/B)®’, bo(u) = (1 —u)®, elu) = as — by. (28)

If 4 < w <1, then e(u) < as(u) < (1 — 1/2B)%.
In particular, if 8 = T/B, then

erp(u) < (1 — 1/2B)". (29)

Assume from here on that 0 < u < 3. We will write ¢ for e(u), etc Let r and y be

nonnegative real numbers. Then inequality (26), with Br substituted for 7 and u sub-
stituted for u, , gives a, > b, . Hence

a, + b, < 2a,. (30)
Multiplying together mequality (30) and the equality a, — b, = ¢, we obtain
a0y + ab, — ab, — bb, < 2a,¢,. (31)
Clearly,
Axly = Qziy, bby = boyy . (32)

Substituting into (31) using (32), and replacing a,+, — b,4+, by &4, and rearranging
terms, we cbtain

vy < 2a.¢, + aby, — ayb, . (33)
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Substituting a. — e for b, and a, — ¢, for b, in (33), we find

€ty S €ay + €yl . (34)
We now claim that if 7 is a positive integer, then
& < jaai” (35)

This is obvious if j = 1. Assume inductively that it is true for y = N Then from (34),

evi1 < evoy + oy < Neaa® + aay by inductive assumption
= NelalN + e;alN = (N + 1)61(111\.

Hence (35) holds, by induction, for every positive integer J.
Write T/B = j 4+ », j a positive integer and 0 < r < 1. Then

€rip = €44
< ga, + ea, by (34)
< jaal ‘e, + ea, by (35)
= j60]7 + ea) since a = @ and a, = a)
< 6@l 4+ qalt™ since a; < land 7 <1 (36)

< AT/BYad{"™™ + a7
(T/BYe(1 — u/BY"™® + &(1 — u/BY""

How big is €.? As we observed, the binomial expansion of (1 — u/B)” is an alternating
sum. Hence

(1 —w/BY <1 —u+ (B—1)0/2B (37)
So
&=a —b = (1 —u/B)" — (1 ~u)
(1 —u+ (B - 1)4/2B) — (1 —u)" by (37)
(1 —w) (1 + (B~ 1)u/2B(1 — u))" — 1). (38)
Letz = (B — 1)u’/2B(1 — u).

Bince 0 < u < 4, it is easy to see that 0 < 2z < 1. Now the binomial expansion of
(1 + 2)" — 113 an alternating sum if 0 < z < 1 and 0 < r < 1 (that is, there is an
alternating sum 1if we consider only the second, third, - - - terms of the binomial expan-
sion of (1 + 2)7). Putting this together with (38), we obtain

& < (1 — wr(B — Du/2B(1 — u)) = r(B — 1)u*/2B(1 — u)"™
<r(B - 1Du'/2B since (1 —u)>1%
< .54 ((B — 1)u'/B),
since we find by elementary calculus that the maximum of /2", 0 < » < 1, is 1/(e
log 2) < .54. So

VAN

& < .54(B — 1)u’/B < .54 . (39)
How big is ¢ ? From (37), we find immediately that
a < (B ~ 1)u/2B. (40)
1f we substitute into the last line of (36) using (39) and (40), we obtain
errs < u'(1 — u/B)"((T(B — 1)/2B) + .54). (41)

We are interested in obtaining an upper bound for B ZI‘_/f er;a{u,). At most one u, ,
namely u; , can be greater than }. So from (29) and (41),
n/B

B E_; ersa(u) < B(1 — 1/2B)7

n/B
+ ((T{B — 1)/2B) + .54B) Z_luf(l — u,/B)"E. (42)
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O P%X Pmex P** 8
Fia.1

How big can 3_off u,°(1 — u,/B)" ™" be? Let ¢ be the function « — (1 — r/B)"™*,
with domain [0, B]. By using elementary calculus, we find that ¢ has 1ts maximum at
Pra = 2B/(T 4+ 2 — B), and two points of inflection; the first such point of inflection,
P*, lies strictly between 0 and P ., , and the second point of inflection, P**, is bigger
than P .y . The second derivative of ¢ is positive between 0 and P*; negative, between
P* and P**; and positive, between P** and B. So the shape of ¢ is roughly as in Figure 1.

Let VEC, = {(z1, ---, ) :m a positive integer, Z','Ll < landl 2> o1 2 2 2>

- 2z > 0}. Note that the length of a tuple in VEC, is arbitrary (but finite). It is not
important that the r,’s are in descending order, but it will make the exposition simpler,
Say we can find an upper bound M for | 3 ¢(,) :x € VEC,}, where x is an abbreviation
for {4y, -+, &m). Then 2.2y’ (1 — u,/B)"" < M.

Let VEC2 = {x:22 < L and Ppex > & 2 2 = -+ > 2n > 0}. Then
sup{Zcﬁ(r,) :x € VEC,} = supf Zq&(zt) :x € VECy}, since if x € VEC, and y, =
min(x, , Punax) for each ¢, theny € VEC,.

Let v be a tuple in VEC,; then v can be written as the concatenation ¥z of a tuple y
(with all entries between P* and Puax) and a tuple z (with all entries between 0 and
P*); if any entry of x is exactly P*, we place that entry in z. Assume that ) 2, = a.
Let I be the unique nonnegative integer and & the unique real number, 0 < § < P¥
such that a = IP* + 3. Let a be the vector (P*, - - | P* 4,0, --- , 0) with length the
same as that of z, and with [ occurrences of P*, one occurrence of 8, and the rest 0’s.
Clearly, « > z. Now ¢”(2) > 0 for each z in [0, P*]; hence [13, p. 76) ¢ is convex in
[0, P*). Applying special case 1 of Section 5, we find that X rm ¢(a,) > 2 em1 ¢(2.).
We have shown that if v = {r-i is an arbitrary tuple in VEC,, then there is a tuple

—~~
=y (P* ., P* 5)such that ) ¢(v.) < > ¢(w,). In other words: let
VECS= {XIE?J;SI,meZMZIzZ me—lzp*vpmﬂx?_xmzoy
where m is the length of x}. Then sup{ 2 ¢(z.) :x € VECs} = sup{ ) ¢(z,) :x € VECy}.

Now let v be an arbitrary tuple in VEC;. Write v = ﬁ, where each entry of y lies
between P* and Poax, and where z is a tuple of length 1, whose entry lies between O
and Pp.x . Assume that y is of length k, and that Z 4, = a. Let a be the tuple (a/k, -- -,

a/k) of length k. Then y > o« Now ¢” (z) < 0 for each z in [P*, Pnax); hence, ¢ is
concave in [P*, Pp.). Applying special case 2 of Section 5, we find that Y ¢(y,) <

Zda(a,). In other words: let VEC, = {x : Z r, < 1,2 = -+ = Zn,, wherem is the
length of x}. Then sup{ ) ¢(z.) :x € VECs} = sup{D_ ¢(z.) :x € VEC4.
Letv = {8,8, -- - , 8,8 be an arbitrary tuple in VEC, . Then

2 o(m) < (1/8)19(8)1 + ¢(8) < ($(8)/8) + ¢(8)
< (max ¢(z)/z) + (max ¢(z)). (43)
0251 0<z<1
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Now ¢(z)/z = x(1 — 2/B)"® Let k be arbitrary for the moment, and let ¢ be the
function z — (1 — z/B)""%. We are interested in finding maxec,a ¥ for £ = 1 and
k = 2 (and, in proving step 4, we will be interested in the case £ = 3). By elementary
calculus, we find that ¢ has 1ts maximum at kB/(T 4+ k — B), with maximum value

(kB/(T + k — B))* (1 — k/(T +k — B))"™" (44)

We will now estimate (1 — k/(T + k — B))" ™%,

Tt is well known that (1 — 1/z)" — 1/e as r — » Also, the function z — (1 — 1/x)’
is a monotone, strictly increasing function of « for z > 1, fot, the derivative of this
function, evaluated at £ > 1, is easily found to be

(-0~ ue(s-9 41

by using the Taylor expansion of log(1 — 1/x)

(-3
(- 0D G (-]

1 1 ‘“_( 1 >< 1 )_( 1V =z
E>(1_x+1> U537/ )T 1—x+1>x+1' (45)

If we multiply (45) through by (r + 1}/, we find that

1}V _lz+1
So
’C T—B 1 zk
(1—m> =(1—m> , wherez = (T — B)/k
k
<(22E1Y oy e
e z
(T + k- B)"
So the maximum value of ¥, which we found to be expression (44), is bounded by
(from( 47))
( kB >"<T+k—B>"_< kB >k (48)
T+k—-B o(T—B)y) \e(T-B)/"
So from (43),
B 4B

<
2600 < oyt ar =gy
Tracing back what we have demonstrated, this means that
n({B T—B 2
2 U, B 4B
1 - < .
(1 B) ST —B) T AT =By 9
We will now estimate the subexpression (1 — 1/2B)" of (42). It will be convenient

for work later on to find a more general estimate than we need now. We will show that
if s > 1and ¢ > 0, then

(1 — 1/s) < m!s"/t™ for each integer m > 0. (50)

First,
(1 _ 1/8)‘ - (1 _ 1/8)3(”3) < e~t/a, (51)
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since as we showed, (1 — 1/x)" A 1/e. Now if z > 0, then ¢ > 2”/m! for each integer
m 2> 0, since 2" /m! is one term of the Taylor expansion of ¢". Hence ¢* < m!/z". Apply-
ing this to the right-hand term of (51), (1 ~ 1/s)" < ¢™* < m!s™/¢™, as desired.
Hence
(1 —1/2B)" < 2B/T, (52)
where we let m = 1 in (50).
Substituting into (42) using (49) and (52), we obtain

e 2B (7%3-1) B 4B
B; era(u.) < a + —SF + .543) (e(T =B + T = B)z)
_ (B~ 1T 548’ 2BT(B ~ 1) 2.16B°
’T+%@~m+4T-m+&w—By+ﬂT-w
2B* B-—-1 T 54B B
Syt 7t . T-B
2B T B 216B B B

Yo T-BT-BT ¢ T-BT-8
We will find simple upper bounds for 7/(T ~ B) and B/(T — B), given that 7 > 2B,
B B B 2B .
T B 2B
Substituting into (53) using (54) and (55), we obtain
n/B 2
2B 2B 2.16B (2B\ (2B
T (1 + T><T>+ ra (“T‘)(T)
2 3
<5——+B@+ +18 4 >+B(4@ﬁ) (56)
2e T2
-1B, B

where we have expanded out and replaced the term B

y o7
1f we replace B*/T” on the right-hand side of (56) by B?/T, and numerically evaluate,

we hnd
n/B

B Y ers(u) < 184 (B — 1) + 5.56 (BY/T),
21==]
which implies the second inequality of (25).

10. Proof of Step 3
We will show that

Zpa(l - p)" Zu,(l —u < J736(B - 1)/T, (I57)

7 >0
Let ¢ be the function & — z(1 — z)7, with domain {0, 1]. We find by elementary
calculus that ¢ has its maximum at g = 1/(7 + 1), with maximum value

MAX = -+ (1— ! )T
= TFI T+1
1
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Further, ¢ is monotone increasing between 0 and g, and monotone decreasing between
uand 1.

Ifl 2 > - 2 xp 2 u, then since ¥ is monotone decreasing between u and 1,
we find as in (21) of the proof of step 1 that

(W) + -+ +¥(xp))/B) — ¥((ns+ -+ + 25)/B)
< ((B=1)/B) ($(zs) — ¢(a)).  (59)
And,

Wz + -+ +2a)/B) — (Y(&)) + -+ + ¢(25))/B

¥(rs) — ((B— 1)¥(n) + ¥(r2))/B

((B — 1)/B)(¥(zs) — ¥(m)). (60)
Putting together (59) and (60), we obtain

[ (@) + - +9(ea))/B — ¥((nn+ - + z3)/B) |
< (B = 1)/B)(y(xs) — ¥(m)). (61)

Let & be the maximal integer such that pys > p. Then 1 2 p1 2 pa 2> -+ 2 pus 2 &
By using (61) in an analogous way to our use of (21) in the proof of step 1, we obtain,
as in (24) of step 1, that

A

kB k
(1/B)| 9w ~ BY y(u/B) \ < (B = 1)/B)(4(prs) — ¥(p)

< ((B = 1)/B)(pss). (62)
We know that pu41s < p. There are now two cases to consider.
Case 1. prp1 < . Assumethat u > oy > 2 > --- > zp 2> 0. Since ¢ is monotone

increasing between 0 and g, we find, by a similar argument to that used to prove (61)
and (62), that

| (W(@) + - +¥(28))/B — ¥((m1 + -+ + 25)/B) |
< ((B—-1/B)(¥(m) — ¥(zs)).  (63)
n k
WB)| 35 ¥w) = BEUw/B)| S (B~ D/BW ) (68

Hence, from (62) and (64),

n n/B

g ¥(p.) — B ; ¥(u./B) | £ ((B — 1)/BY(¥(pes) + ¥(Pran))
(2(B — 1)/B)MAX

2(B — 1)/eBT by (58).

(1/B)

INIA

Since 2/e < .736, this gives us (57).
Case 2. prp+1 > u. We will show that

| ($(prssa) + -+ + ¥ (pasne))/B — ¥ (urs/B) |
< ((B — 1)/B)(MAX — ¢ (prss))
+ ((B — 1)/B)(MAX — y(pains)). (65)

We will first show that this is sufficient to prove (57).
As in the proof of (64) of case 1,

n n/B
W/B)| 2. ¥(p) =B 2 v(w/B)| S (B = 1)/BW(parwsn).  (66)

Since pray1 > 1, and since Y is monotone decreasing between u and 1, it follows that
¥(prs) < ¥(prs1). So from (62),

kB k
(1/B) ; ¥(p,) — B ; ¥(u./B) 1 < ((B = 1)/BWApran)- (67)
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Since pesns < g, and since ¥ 1s monotone increasing between 0 and g, it follows that
Y{Prsns) = ¥(Parnsn). So (65) gives

(1/B) | ¥(prse) + -+ + ¥(pasys) — B¥(ws/B) |
< ((B = 1)/BY(MAX — Y(piss1))

+ ((B ~ 1)/B)(MAX — ¢(patns+)- (68)
If we add together (66), (67), and {68), and use the triangle inequality, we obtain

n/B

(1/B) Zup(m - BZuAu /B)| £ (2(B — 1)/B) MAX,

and as in the conclusion of case 1, this gives us (57).
It remains to prove (65). Assume that 1 > 2, > --- 2 1 > 0. To prove (65),
we must show

F((ay) + - -+ d(ee))/B] — (e + -+ + 25)/B) |
< (B = 1)/B)(MAX — ¢(n))
+ ((B — 1)/B)(MAX — ¢(xx)). (69)

Assume that ¢(rg) > ¢(x1). The proof 1s similar if ¥(x;) = ¥(zs). Since Y(xz) >
(1), clearly y(x.) > ¢(21),2=1,---,B

(W) + - +(za))/B — ({21 + -+ + £8)/B)

(B~ 1)MAX + ¢ (21))/B ~ ¢ (z1)

(B ~1)/B) (MAX — ¢(z))

((B ~ 1)/B) (MAX — ¢ (z1))

+ ((B = 1)/B) (MAX — y(zs)). (70)

IA KA

And,

v((m + -+ 22)/B) — (W) + -+ + ¥(2s))/B

MAX — ((B — L)¥(&n1) + ¥(x5))/B
MAX — ((B — D¥(m) + ¥(z5))/B
+ ((B — 2)/B) (MAX — ¥(z5))
((B ~ 1)/B) (MAX — y(z1))

+ ((B — 1)/B) (MAX - ¥(zs)). (71)

Putting together (70) and (71), we obtain (69).

Remark The result of step 3 can be improved (reducing the right-hand side of
(57) by less than a factor of 2), by taking advantage of more properties of ¢ than that
it is monotone increasing and then monotone decreasing.

INIA

i

11. Proof of Step 4
We will prove

n/B n B

0< > u (1 —u/B) — Z; (1 —w)"? < .271 (B —1)/T + 33 (B/T)* (12)

=] [

if T > 2B.
Statement (26) of the proof of step 2 says (1 — w%,/B)" > (1 — w.,)"'®. Hence
u, (1 — u,/B) > u, (1 — u,)"'®, and the first inequahty of (72) follows.
If we adopt the notation of the proof of step 2, then we are concerned with finding
2_,1..1 u,er/5(u,). As before, if £ < u, £ 1, then< = 1 and
wera(uw,) < (1 — 1/2B)" < 8 (B/T)°, by (50) withm = 2. (73)
If 0 < u, < 3, then from (41) of step 2,

werp(us) < w' (1 — u/B)7% ((T(B — 1)/2B") + .54). (74)
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So from (73) and 74),
w/B n/B
L: tern(w) <8 (B/T)' + 2, w’(1 — w/B)"™" ((T(B — 1)/2B%) + 54). (75)
o= 1=}

By exactly the same method as in step 2, where we now let ¢ be the function z —
(1 — r/B)"™%, we find that
2 ul(l = w/B)™ < (max (¢(2)/2)) + (max ¢(z)) (76)

0<z<1 0<2<1
< 4B*/X(T — B)* + 27B*/&(T — B)*,

since (48) gives the maxima.
If we substitute into (75) using (76), we obtain

e B\’ 4B’ 278 T(B — 1)
Z_} Uerip(u,) < 8 <7,) 4+ <62(T — By 4 (T = B)3>< o5 “+ .54>

BY |, 2(B—-1) T V27 B>2 T
58(T>+ T (T—B>+2T;3(T—B T8

216/ B \', 1458/ B \
+T;2“<T—B>+ @ <T—B> )

where we expanded out and made one substitution of B for B — 1.
If we now use (54) and (55) to substitute 2B/T for B/(T — B) and (1 + 2B/T)
for T/(T — B) in (77), we obtain

n/B 2 2 2
B\ , 2(B-1) 2B 27 (23 < 23)
Swenatw) <3 (7) + 2570 (14 ) 4 2 T)(+7
2 3
oo () 4 14222
2
SM+(§) [s+f—z+2—‘f+s.64]

eT T
B\'[8 |, 108 , 116.64
+ (—1—,) [e_? + & + pe ], (78)

where we expanded and occasionally substituted B for B — 1.
If we replace (B/T)’ on the right-hand side of (71) by (B/T)* and numerically evalu-
ate, we obtain

n/{B
2 wers(u,) < .271 (B — 1)/T + 32.68 (B/T)?
1

2=

which implies the second inequality of (72).

12, Proof of Step 5
We will prove that
H(T)/H(¢) < 8(T)/8(¢) (79)

T >t> 1
We will show that H(T)/S(T) < H(t)/S(t), that is,

(1-Ena- p)7)/ S a-a-p
< (1 - Y na- p))/g (1= (1=p)). (80)

Assume for convenience that each p, is nonzero.
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Leta, =1~ (1 —p) B =1—(1—p),1 <4< n Then (80) is equivalent
to

gptﬁl/;ﬂl < ;p.a./;a,. (81)

Let o' = a/Y jmea,, B = B/2)18,,1 < i< n Then Lo/ =38 =1
Statement (81) is equivalent to

Z p1ﬁtl < Z PzOH/- (82)

Now the function f, given by x — 2 1w p.2., with domain n-tuples (21, --+, Z.)
with 2y > 2, 2 --- 2 &y, i1s a Schur function, since (8/9z,)f = p,, 1 < ¢ < n,and
hence (8/0z.)f > (8/3x,)f ¢f p. > p, iff ¢ > 7 iff x. > x,. So, to prove (82), we need
only show

o« > 8. (83)

To prove (83), we need the following lemma.
Lemma. If0 < n < rnp < 1, then

(1 - 7‘1l)/(1 - 7“2{) z (1- 7’11‘)/(1 - 7’27)- (84)

Proor. It is easy to see that (84) holds if r; = 0; hence, assume r; > 0. Let f be the
function r — (1 — »)/(1 — "), with domain [1, ). We need only show that f; is
monotone decreasing, that is, that fi < 0. A simple caleulation shows that f* < 0 iff

e log /(1 — ') 2 ' log /(1 — 1)) foreachz > 1. (85)
If we multiply both sides of (85) by r, and let g1 = n", ¢2 = 75, We obtain
grlog g1/(1 — 1) 2> golog g2/ (1 — go). (86)

30 we need only show that (86) holds whenever 0 < ¢, < o < 1. Let sy = 1 — ¢y,
s, = 1 — ¢,. Then (86) becomes

(1 — splog(l — s1)/s1 2 (1 — sy)log(l — s2)/se. (87)

We need only show that (87) holds whenever 0 < &, < 8 < 1. Let f, be the function
r = (1 — r)log(l — x)/x, with domain (0, 1). We must show that j; is monotone
increasing. If we replace log(1 — 2) by its Taylor expansion, then

= (emfot ot ) /s

x2 1;3
*(1—-%)(1‘*‘—"*'—3—'*‘74—‘\" )

1 1 1\ ., (1 1\ s,
””(“5)”(5‘5)”(5‘1)” !

which 1s clearly monotone increasing. The lemma is now proved.
To prove (83), we must show

k

k
o' > 28, 1<k <n (88)
=] 7=}
(We have already noted that Y ima) = 2w B = 1.)
We will first prove ay” > 8. In the lemma, if welet rn = 1 — p,, 12 = 1 — paa,
then we get

a'/a1+l Z ﬂz/B1+ly 1 S 1 < n (89)
We will now show that (89) implies

!

&, 2 :Bl/- (90)
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For, find oy, -+ ,0p1and 7, -+, 7ppsuch that oy = 0wy, By = 7.8, 1 <7< n.
Then (89) implies
>, 1 <1< (91)
Now
a = af(a+ -+ o)
= ay/a)(1 + a1 + 010y + o10903 + -+ -)
= 1/(1 + dy + o109 + 010903 + v ) (92)
Similarly
B = 1/(1 + 1 + m7e + mimems + o). (93)

Then (91), (92), and (93) imply (90).
We will close by showing that oy’ + o’ > 8 + 8. The other mequalities of (88)
are proved very stmilarly.

Let & = (o + g, a3, g, -~ , @) and G = (B + B, Bsy B, - ,Bn)- We will
hrst prove that

Gufdr 2 Bo/Bim (94)
for each 1. This follows for + > 2 by (89). If ¢ = 1, then (94) says
(on + aa)/as 2 (B + B2)/Bs . (95)

But (95) holds, since ay/a; > $1/8s and as/as > B2/B:, each by an application of the
lemma, just as in the proof of (89).
Let & be the normalization of &, that is, &, = &/ Z;‘., &, . Similarly, define §'.
(94) implies
ah > B4, (96)
just as (89) implies (90).
But (96) is equivalent to o+ >6 + 82, which was to be shown.

13.  Summary

We have shown that the working-set miss ratio is insensitive to page size, in the inde-
pendent (page) reference model. We argue that this implies that the insensitivity also
holds in more realistic models.
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