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AnsTRXCT A theoretical justification is given to the empirmal observation that in some computing 
systems with a paged, 2-level storage hierarchy, long-term miss ratio is roughly independent of page 
size Let M I S S  be the expected working+set miss ratio in the independent reference model, with ex- 
pected working set size C A P  pages Now form blocks, by combining the B pages with the highest 
probabllitms of reference into one block, the B pages with the next-highest probabilities of reference 
into a second block, and so on Let MISS*  be the expected working-set miss ratio when all data are 
moved m blocks and when the expected working set size is again C A P  pages, that is, C A P / B  = C 
blocks. It ~s proved that I M I S S  -- MISS*  I < (2/C) .-}- (33/C2). Thus, ff the expected working-set 
size (in blocks) is sufficiently large, then the miss ratios in the blocked and unblocked cases are ap- 
proximately equal This result m used to argue the approximate independence of miss ratio on page 
size in more realistic models of page references. 
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1. Introductw~+ 

An important  parameter in the design of a paged computing system is the page size, 
that  is, the number of bytes of information transferred from one level of a storage hier- 
archy to another in case of a page fault. Among the factors which influence the choice 
of page size are the page fault rate (or "miss rat io") ,  the fragmentation of memory, 
and the access and transfer times of secondary memory devices (see Gelenbe et al. [12] 
for a more detailed discussion). 

The research for this paper was sparked by an empirical observation of Bennett  [3], 
who examined a page reference trace 1 from the IBM Advanced Administrative System 
(A.A.S.) [22], a large internal IBM data management system. Bennett  found no con- 
sistent relationship between miss ratio and page size--for some main (first-level) memory 
sizes, the miss ratio was slightly laIger for the larger page size, and for other main mem- 
ory sizes, slightly smaller. In all cases the size of main memory had a vastly greater 
effect on miss ratio than did page size, if the page size was sufficiently large (at least 
1500 bytes). The cache multiprogramming trace of Kaplan and Winder [17] and the 
(main memory) program address traces of Lewis and Shedler [18] and of Anacker and 
Wang ([16], [2]) give similar results. In the examples cited, different but  similar page 
replacement algorithms were employed, including the working-set memory management 
policy [5] and the closely-related LRU ("least recently used") memory management 
policy ([19], [1]). 

At first glance, some published data seem to contradict this insensitivity of miss ratio 
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to page size. A dramatic example is found in Chu and Opderbeck's paper [4], in which 
LRU miss ratio seems to depend very heavily on page size. Their miss ratio curves 
asymptotically approach a value which is simply the number of initial loading misses 
(which is the same as the number of pages in the program, if main memory is large 
enough to hold the entire program) divided by the length of the observed page reference 
string. Of course, in general, there are approximately twice as many initial loading misses 
when the page size is half as large, and so the asymptotic value of their miss ratio curve 
is approximately twice as big when the page size is half as large. By contrast, in this 
paper we distinguish between initial loading misses on the one hand, and the "transient- 
free," or "long-term," miss ratio on the other hand (cf. [9]). In the case of LRU, "tran- 
sient-free" means that  the miss ratio is measured starting at a time after main memory 
has filled; in the working-set ease, "transient-free" means that the miss ratio is measured 
starting at a time greater than T, where T is the window size. In many cases, it is possi- 
ble to anMyze the performance of a storage hierarchy more accurately by considering the 
effects of initial loading misses and of the transient-free miss ratio separately. From here 
on in this paper, "miss ratio" refers to the transient-free, or long-term, miss ratio 

The main result of this paper ~s a bound on the effect of page size on the expected 
working-set miss ratio, in the independent reference model (in whmh page ~ is referenced 
at time t with probability p , ,  independent of past history). Specifically, let M I S S  be 
the expected working-set miss ratio in this model, where the window size is chosen so 
that the expected working-set size is CAP pages. Now form blocks, by combining the 
B pages with the highest probabilitms of reference into one block, the B pages with the 
next-highest probabilities of reference into a second block, and so on. Let MISS* be 
the expected working-set miss ratio when all data are moved in blocks, and when the 
window size is chosen so that the expected working-set size is again CAP pages, that  is, 
CAP/B = C blocks. I t  is proven that 

I M I S S  -- MISS*I  < 2/C + 33/C ~. (1) 

Thus, if C is sufficiently large, then MISS* ~ MISS,  that  is, the expected miss ratios 
in the blocked and unblocked eases are approximately equal 

In Section 2 we will show that  (1) implies the approximate independence of miss 
ratio on page size in certain more realistic models of page references than the independent 
reference model. This tells us that in some eases, transient-free miss ratio is not  a key 
factor in the selection of page size. Of course, the effect of initial loading misses, which can 
be considered separately, is an important factor. 

2. More Reahst~c Models 

In this section, we will show that our result about the insensitivity of miss ratio to page 
size in the independent reference model implies that this insensitivity holds in some 
more reahstic models of page reference patterns. For convenience in exposition, we will 
deal in this section with LRU miss ratio, rather than with working-set miss ratio. In- 
deed, we will show later that  our main result (1) can be interpreted as saying that  LRU 
miss ratio is insensitive to page size in the independent reference model, if the capacity 
(size of main memory) in, say, bytes, is held fixed (and if, as before, pages are blocked 
together in order of their probabilities). 

The independent reference model is, in general, inadequate. Various authors, includ- 
ing Lewis and Shedler [18], Denning, Savage, and Spirn [6], and Easton 17] have pre- 
sented models of page reference patterns (or related quantities) in which page references 
are the result of two components, where the first is, roughly speaking, an "independent" 
or "random" component, and the second is a local component, such as a "locality of 
reference" or "sequential" component. We will first show that approximate independence 
of expected LRU miss ratio holds in one such model (Easton's), and then we will gem 
eralize the argument to cover other such models. 
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We brmfly describe Easton's  model. If  there are n pages, then there are n + 1 param- 
eters, r, p t ,  • . .  , p , ,  all between 0 and 1. Assume that  page i was referenced at  t ime t 
At  t ime t --t- 1, a coin is flipped, which comes up heads with probabihty  r, and tails 
with probabil i ty 1 - r. If heads comes up, then page z is rereferenced, and we say tha t  
the reference to page i (a t  t ime t ~ 1) was generated during "rereference" or "sequen- 
t ia l"  mode. If tails comes up, page3 is then referenced with probabil i ty  p~, for 1 _< 3 <- 
(including the case 3 = ~), and we say tha t  the reference to page j was generated during 
" random" mode. Thus, if Q,j is the probabil i ty  tha t  page 3 is referenced at  t ime t ~ 1, 
given tha t  page ~ was referenced at  t ime t, then 

j r  + (1 - r ) p , ,  J = z, 
Q" = ( ( 1  - r)p~, j ~ 

Easton found [7] tha t  with appropriate  choice of parameters,  his model gives a good fit 
to the LRU miss ratio curve of A.A.S., which we referred to in the Introduction.  In- 
tuit ively,  this model "works" because if the page size is large enough, then "local i ty" 
can be approximately captured by rereferences to the same page. 

We will now show tha t  in this model, LRU miss ratio is insensitive to page size. Let  
S := R1 • - Rm be a finite-length page reference string generated by  this model. Thus, 
each R, is the name of a page. Assume that  the string S is long enough that  the effect of 
initial loading misses is neghgible. For  each ~, let R~* be the name of the block which 
contains page R , .  Then S* = R:* . . .  R,,* is the corresponding block reference string. 
We will show that  the LRU miss ratio (where pages are the unit  of transfer) over page 
reference string S and with capacity CAP pages is approximately the same as the LRU 
miss ratio (where blocks are now the unit  of transfer) over block reference string S* 
and with capacity CAP/B blocks (i.e. CAP pages),  when there are B pages per block. 

Let R~ , . . -  , R,~ (where i~ < ~2 < " "  ~ zk) be those page references which were 
generated after " tai ls"  was flipped; thus, these are the page references which were gen- 
erated during " random" mode. So S~,d = R,~ .- R~ is the substring of S which con- 

Srand . . . .  R,k rains only the page references generated during random mode, and * R~* * 
is the corresponding substring of S*. Let z be the number of misses if we apply the LRU 
page replacement algorithm to string S~,.d, with capacity CAP pages. Each reference 
which was generated during sequential mode is automatical ly a "h i t" ;  hence, the number 
of LRU misses (with capacity CAP pages) over page reference string S is also z. Now 
S~,,d can be looked at  as a block reference string generated under the assumption of 
independent block references, where each block has reference probabil i ty  equal to the 
sum of the reference probabilities of the pages which compose it. As we have said, our 
main result can be interpreted as saying that  under the assumption of independent refer- 
ences, the LRU miss ratio is approximately the same in the blocked and unblocked 
cases. So z is also approximately the number of misses if we apply LRU block replace- 

S~,,d with capacity CAP/B blocks. Again, there are ment  to the block reference string * 
exactly the same number of misses over the string S* as over S~,~d. So the miss ratios 
in the blocked and unblocked cases are approximately the same, as claimed. 

This result can be generalized to some other models with an " independent"  compo- 
nent and a "locality of reference" component. The argument we will now outline will, 
of course, have to be tailored to fit each part icular  model. Assume tha t  the page size 
is large enough tha t  almost all " local i ty" references are hits. Then the miss ratio is es- 
sentially determined by  the independent component. So once again, the insensit ivity of 
miss ratio to page size under the assumption of independent references implies this in- 
sensitivity under more realistic assumptions. We remark tha t  for models other than  the 
independent reference model, the difference in miss ratio between the blocked and un- 
blocked cases will not  necessarily be bounded by  the right-hand side of inequali ty (1). 

In  our result about the independent reference model, we have assumed tha t  pages 
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are blocked together in order of likelihood of reference. Of course, the real situation is 
much more complicated. However, we can justify this assumption on several grounds. 

1. In  the case of certain large-data base systems, such as A.A.S., groups of sequentiMly 
stored records tend to have similar access properties. So in forming blocks in the usual 
way of grouping together sequentially stored records, those pages which are blocked 
together have approximately the same probabilities of being referenced; tha t  is, pages 
are blocked together approximately in order of probabil i ty of reference. 

2. Of all possible ways of blocking pages together with B pages to a block, Yue and 
Wong [23] proved that  in various storage applications and under various criteria of 
optimality,  the blocking we have considered (in which pages are blocked together in 
order of probabil i ty of reference) is optimal. Hence, the use of this part icular blocking 
is a natural  assumption to make when one is discussing the performance of a storage 
hierarchy. We remark that  the first author has found a counterexample to thc con- 
jecture that  expected LRU miss ratio is minimized in the independent reference model 
by this blocking [10]; however, this blocking seems to be near-optimal in the independent 
reference model. 

3. Formal ~Stateme~t of Mai~t Result 

Let {pl, " "  , p,} be a probabil i ty distribution ( that  is, ~ p ,  = 1 and each p, _> 0). 
Assume tha t  at  each discrete time t, page z is referenced with probabili ty p,,  inde- 
pendent  of past  history. (This is the independent reference model.) The expected workzng- 
set ntiss ratw (wzth window size T) [5] is the probabil i ty that  the page referenced at  time t 
was not one of the pages referenced over the course of the previous T (not  necessarily 
distinct) references. Under the independent,  t ime-invariant  assumption of the independ- 
ent reference model, it  is clear tha t  this expected working-set miss ratio is independent 
of t, for t > T. Let CAP be the expected working-set size, tha t  is, the expected number 
of distinct pages to appear over the course of T references. Define M I S S ( C A P )  to be 
the corresponding expected working-set miss ratio. Thus, M I S S ( C A P )  is the expected 
working-set miss ratio with window size T, where the expected working-set size with 
window size T is CAP pages. Later  on, we will discuss the close relationship between 
M I S S ( C A P )  and the expected LRU miss ratio with capacity CAP pages. 

We will now describe the blocked case. Let  B (the "block size") be a positive integer 
which, for convenience, we assume divides n. Assume tha t  p~ > p2 >_ ' - '  _> p,  ~ 0, 
and let 

B 

u, = ~ p(,-~)B+~, 1 _< i < n/B. 

Thus, ul = Pl + " '"  + Pn,  u2 = PB*~ + " '" + P:B, etc. This corresponds to combin- 
ing the B pages with the highest probabilities of reference into a block, the B pages 
with the next-highest probabflitms of reference into a second block, and so on. The 
blocked case corresponds to the independent reference model with block probabil- 
ities { u ~ , - . . ,  u~/BI. Define MISS*(CAP)  to be the expected working-set miss 
ratio (over the probabil i ty distribution [u l ,  - • - , u~j,I ), when all da ta  are moved in 
blocks, and when the window size is chosen so tha t  the expected working-set size is 
CAP/B blocks (CAP/B blocks contain the same number of bytes  as CAP pages, and 
this is the quant i ty  we hold fixed in comparing the blocked and unblocked cases.)2 

Let C = CAP~B, and write M I S S  and MISS* for M I S S ( C A P )  and MISS*(CAP).  
The main result of this paper is 

I M I S S -  MISS*I  < 2/C + 33/C 2. (2) 

2 [t may well happen that there is no integer T* such that the expected working-set stze wLth window 
size T* is CAP/B blocks. If so, then we interpolate, as we will see 
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We can think of 2/C as the first-order error term, and 33/C ~ as the second-order error 
term. We will actually prove a slightly stronger statement than (2). 

Note that  statement (2) is a distribution-free result: that  is, the error terms do not 
depend on the values of the p, (or even on n, the number of pages). 

4. Detads Abaut Main Result 

We. begin this section by giving an expression [5] for M I S S ( C A P ) ,  the expected working- 
set miss ratio when the expected working-set size is CAP pages. The expected working- 
set size, that  is, the expected number of distinct pages which will be referenced over the 
course of T references, is S ( T )  = ~,~1 (1 - (1 - p,)r) ,  because the probability that 
page z is referenced is 1 - (1 - p,)r. The expected working-set miss ratio with window 
size T is M ( T )  = ~ p ,  (1 - p,)r, because p,(1 - -  p,)T is the probability that  page i 
is the next page referenced and that  page z did not appear in the last T references. Thus, 
if S ( T )  = CAP, then M I S S ( C A P )  is by definition M ( T )  = M(S-~ (CAP) ) .  Note 
that M ( S - ~ ( x ) )  is well-defined for each real number x between 0 and ~, even if the 
intermediate parameter T = S-~(x) is not an integer. By this procedure, which amounts 
to an interpolation, we can define M I S S ( x )  = M ( S - I ( x ) )  for each x with 0 < x < , 

Similarly, in the blocked case, we define M I S S * ( x )  = M*(S*-~(x/B)  ), for 0 < x < n, 
where 

n /B  

S * ( T )  = ~ (1 - (1 - u,)~),  0 _ <  T < ~ ,  

n/B  

M * ( T )  = ~ u,(1 -- u,) ~, 0 _< T < ~ .  

Thus, ff the expected working-set size is CAP pages (i.e. C A P / B  blocks), then 
M I S S * ( C A P )  is the expected working-set miss ratio in the blocked case. 

We will now briefly discuss the relationship between M I S S ( C A P )  on the one hand, and 
the expected LRU miss ratio M R ( C A P )  with capacity CAP on the other hand. Denning 
and Schwartz [5] make the intuitive observation that  M I S S ( C A P )  ~ M R ( C A P ) .  In 
w~rious simulations of the independent reference model, we found that M I S S  differs 
from M R  by around .01, when the number n of pages is several hundred. Indeed, the 
first author has recently proven [11] that  in a certain precise sense, M I S S  converges 
asymptotically to M R  as the number n of pages gets large, m the independent reference 
model. So (2) imphes that  in the independent reference model, the expected LRU miss 
ratio is approximately independent of page size, if the size of main memory is held fixed 
aad if pages are blocked together in order of their probabilities. (Of course, we are assum- 
ing that  C is large enough that  the right-hand side of inequality (2) is small, and that  n is 
large enough that  M I S S ( C A P )  ~ M R ( C A P ) . )  

5. Proof of Main Result 

We will prove the following theorem. 
THEOREM. Let M I S S  be the expected working-set muss ratw in the independent reference 

model, with expected working-set szze CAP pages. Let M I S S *  be the expected workzng-set 
~zss ratw after blocking, where B old pages form each new block, where pages are blocked 
together ~n order of their reference probab~ht~es, and where the expected working-set size zs 
again CAP pages (z.e. C = C A P / B  blocks). Assume that the original number of pages zs 
dwzsible by B. Then I M I S S  - M I S S *  I < 2/C + 33/C 2. 

PROOF. The theorem is trivial if CAP < 2B or CAP > n; hence, we will assume that  
2B < CAP < n. 

We will actually prove 

- 1 . 9 2 ( B  - 1)~CAP - 6 ( B / C A P )  2 < M I S S  - M I S S *  
< 1.01(B - 1)~CAP + 3 3 ( B / C A P )  2 (3) 
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Of course, (3) lmphes { M I S S  - M I S S *  < 2 B / C A P  + 3 3 ( B / C A P )  ~, which is the re- 
sult of the theorem. 

There will be six main steps in the proof. 

S tep0 .  S ( T )  < T, if T >_ 1 

S t c p l .  0 < ~ , ~ 1 ( 1 -  p,)7 _ B ~ = / ~ ( 1  - u , / B )  r < B -  1, if T > 0. 
~ n / B  __ U z ) F / B  Step 2. 0 < B ~ $ ! ~ ( 1  - u , / B )  r - B z.~=l (I  < . 1 8 4 ( B -  1) + 6B2/T, 

if T ~_ 28.  

Step 3. - . 736(B  - 1) /T  < ~ = 1  p,(1 - p,)r  _ ~ = / ~  u,(1 - u , / 8 )  r < .736(B - 1)IT,  
if T k 0 .  

n[B Step 4. 0 _< ~ = 1  u,(1 - u , / 8 )  r - ~ / ~  u,(1 - u,) 7'/8 < .271(8 - 1 ) / T  + 33B2/T 2, 
if T > 2 8 .  

Step 5. H ( T ) / H ( t )  < S ( T ) / S ( t ) ,  if T > t > 1, where H ( x )  = 1 - M ( x ) .  

Step 0 folh)ws immediately from the development m [5], provided T is an integer 
(which will not ahvays be the case for us--hence,  we must prove It directly).  

Step 5 says that  if the expected working-set size is increased, then the proport ional  in- 
crease in expected working-set hit  ratio is bounded by the proportional increase in ex- 
pected working-set size. Thus, if the expected working-set size is doubled, then the 
expected hit ratio is at  most doubled. We will now show that  these six steps imply state- 
ment (3). 

Instead of using the fuactions S* and 111" of Section 2, it will be convenient to define 
closely related functions S .  and MA,  as follows. 

n / B  n / B  
S~(T)  = B ~ ( 1  - (1 - us)T/B), M B ( T )  = ~ u , ( 1  - u J  T/B. 

It is easy to see that MB(S~(CAP)) = M*(S*-~(CAP/B)) = MISS*(CAP), the 
expected working-set miss ratio under blocking. 

Two other functions we will find convenient to use are given by 

H ( T )  = 1 -- M ( T ) ,  HB(T)  = 1 - MB(T) .  

I t  is easy to see tha t  S and SB are each monotone, and each map onto the  half-closed, 
half-open interval [0, n). So we can find Tt and TB such that  S ( T O  = C A P  = S R ( T , ) .  
Now T1 >_ 1, since S(1)  = 1 < CAP = S(T1),  and since S is monotone increasing. So 
we can apply step 0, to obtain T~ > S(T1) = CAP > 2B. Hence 

T, > 2B. (4) 
TI B Now S ( T )  = n - ~ = ~ ( 1  - p , ) r ,  and S , ( T )  = n - B ~ ! ~ ( 1  -- u~) . So if 

we add together the inequalities of steps 1 and 2, with T, subst i tuted for T, we find tha t  

0 < SB(T,)  -- S(T~) < Q, (5) 
where 

Q = 1.184 (B - 1) + 6 (B~/T,) .  (6) 

Since S(T1) = CAP,  statement  (5) says 

0 < SB(T,) - CAP < Q. (7) 

So So(T1) > CAP = Ss (TB) .  Since S~ is monotone increasing, 

Tx > T~. (8) 

The functions H s  and SB/B have the same form as H and S, with u, substi tuted for 
p , ,  with n /B  substi tuted for n, and with T / B  substi tuted for T. So i t  follows from step 5 
tha t  if ( T / B )  > ( t /B)  > 1, that  is, if T > t > B, then 

H ~ ( T ) / H B ( t )  < ( S ~ ( T ) / B ) / ( S a ( t ) / B )  = SB (T ) /SB ( t ) .  (9) 
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Now T~ > T ,  ~ B : f i r s t ,  Ti ~" T B b y  (8),  and S , ( T , )  = CAP > B = S , ( B ) , s o  
since S ,  is monotone increasing, this implies that  T ,  > B. Therefore, we can substi tute 
Ti for T and T ,  for I in (9) ; then 

H , ( T 1 ) / H , ( T ~ )  < S ~ ( T i ) / S , ( T , )  = S , (T~) /CAP.  
So 

HB(T~) _~ H ~ ( T B ) ( S , ( T ~ ) / C A P )  
= H ~ ( T , ) ( 1  --[- ((SB(T~) -- C A P ) / C A P ) )  
_< g s ( T ~ ) ( 1  + (Q/CAP) )  by (7) 
< H~(T~) -k (Q/CAP) ,  since H~(T~)  _~ 1 

We have lust  shown that  

H~(T~) < H , ( T ~ )  + (Q/CAP) .  

I t  is easy to see tha t  HB is monotone increasing. So, from (8), 

II~(T~) _> H ~ ( T , ) .  

From (10) and (11), it  ~mmednttely follows tha t  

0 < H , ( T i )  -- H , ( T ~ )  ~ Q/CAP, 
and hence 

(lO) 

(11) 

- Q / C A P  ~ Ms(T1)  -- M~(TB) ~ O. (12) 

Adding together the inequalities of steps 3 and 4, with T~ substi tuted for T (which is 
all r ight by  (4)) ,  we find tha t  

--.736 (B - 1)/T1 < M(T1) - MB(T1) < 1.01 (B - 1)/T~ W 33 (B~/Ti'). (13) 

Since Ti > CAP by step 0, s ta tement  (13) implies 

- . 7 3 6  (B - 1 ) / C A P  < M(T1) - MB(T1) 
< 1.01 (B - 1 ) l e A P  + 33 ( B / C A P )  ~. (14) 

Also, T1 ~_ CAP imphes (from statement  (6))  tha t  

Q _~ 1.184 (B - 1) + 6 (B~/CAP).  (15) 

If  we add together the inequalities in s tatements (12) and (14), and substi tute for Q 
the r ight-hand side of (15), we get 

--1.92 (B - I ) / C A P  - 6 ( B / C A P )  2 < M ( T i )  - MB(TB) 
< 1.Ol ( B  - 1 ) ~ C A P  + 33 ( B / C A P )  ~. 

Since as we observed, M(T1) = M I S S ( C A P )  and MB(TB) = M I S S * ( C A P ) ,  this 
gives us s ta tement  (3),  as desired. 

I t  remains to prove steps 0-5. 

6. Prehm~narzes 

One of our basic techniques will be the use of Schur functions ([21]; see also [20]). Assume 
for convenience throughout tha t  all functions considered are infinitely differentiable 

Definitwn. Assume tha t  u = ( a l ,  . - .  , a,~), where al  >_ a~ ~_ . . -  ~_ am, and tha t  
= (31, ' "  , 3~), where fll >_ g2 ~ "-" ~_ tim- We say ~ > ~ if ~ - 1 c ~ .  >_ ~ - l f l , ,  

1 < k < re, and ~ - 1 ~ ,  = ~ - 1 3 ~ .  
Definztion. A real-valued function f of m real variables x l ,  • • • , x~ is a Schur ]u~ctzon 

if for each pair i ~ 3, (x, - x,) (O/Ox,)f - (O/Ox,)f ~ O. 
THEOaEM (Schur).  Let f be defined for x, > . . .  > x,~. Then f ( a , ,  . . .  , am) _> 

f(31,  "'" , 3m) whenever ¢l > ~, ~ff f is a Schur functzon. 
Speczal Case 1 [13, p. 89]. Let  ~ be a real convex function of one real variable, tha t  is. 

~b((x "-b y ) /2 )  ~ ½(4~(x) --t- ~(y)).  (16) 
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Then  the function (x~, . .  , Xm) ---~ ~ 1 ¢ ( X , )  is a Schur function. Hence, if a )- ~, 

Spec m l  Case 2. Let ~ be cont inuous and  concave, t ha t  is, the  inequal i ty  sign in  (16) 
is reversed. Then  - ~  is convex. Hence, ff a > ~, then  ~ - ~  ¢ (a , )  < ~,2.~ ¢(fl,). 

An infinite sum ~ : ~  a~ of real numbers  a, is alternating if 
1. a, ~ 0 ~ f f a , + l ~  0, 1 _~ ~ < ~¢. 

~. l a ,  I _> la~÷ll, 1 < ~  < ~ .  

3. a , - - ~ 0  as t--~. ~ .  
An al ternat ing sum is always convergent,  and its value lies between any  two successive 
part ial  sums (Le ibn i t z ' s  test [15, p. 68]). 

7. Proo f  of  S tep 0 

We will prove tha t  S ( T )  ~ T, if T > 1. 
Let ~b be the functmn x --~ 1 - (1 - x) v, with domain  the closed interval  [0, 1]. I t  

is easy to see tha t  ¢ is concave. Clearly (pl  , " " • , p~) ~ ( 1 / n ,  . • , l / n ) .  So by  specml 
case 2 of Section 6, 

± o 
S ( T )  = ¢(p , )  < ~ O ( 1 / n )  = ,~¢(1/n).  

Hence, we need only show tha t  n ¢ ( 1 / n )  ~ T.  This  is equivalent  to 

(1 - l / n ) 7  ~_ 1 - T / , .  (17) 

If T ~ ~, then the r ight-hand side of (17) is negative, and  (17) follows lmmedmtely.  
If T ~ n, then the binomial  expansion of (1 - 1 / n )  r is an a l ternat ing sum, and (17) 
again follows. 

8. Proo f  of  S tep 1 

We will show tha t  
n/B 

0 < ( l / B )  ~ (1 - p , ) r  _ ~ (1 - u J B )  r < ( B  - 1 ) / B ,  (18) 

ifT~ 0. 
Let ¢ he the function x ~ (I - x) ~, with domain the closed interval [0, I]. It is easy 

to see that ¢ is convex and monotone decreasing with range [0, 1]. Since 4~ is convex, it 
follows [13, p. 72] that 

¢ (  (xl  zc • • q- x B ) / B )  < (q~(xl) + • • -k ¢ ( x , )  ) / B .  (19) 

If we subs t i tu te  xl = p(z-1)B+l , J ' 2  = p ( ~ - - I ) B + 2  , " ' "  , X .  = PuB into (19), for 1 < ~ < 
n / B ,  we find tha t  

( 1  - -  u , / B )  r ~ ( l / B ) ( ( 1  -- p(,_~)B+,) r + . . .  + (1 -- p , , ) r ) .  (20) 

Adding together the inequalit ies (20), for 1 < ~ < n / B ,  we obtain  
n / ~  

(1 -- u , / B )  r ~ ( l / B )  (1 -- p,)V, 
~I ~I 

which proves the first inequal i ty  in (18). 
If  1 ~ x~ > . . .  ~ xB > 0, then  since 4~ is monotone  decreasing, 

4~(xl) -~ " . . -b - -  ~ ( x~ zc " " " + 

< (B - 1)~b(x,) + 4~(x,) _ 4~(x,) - B - 1 (4~(x~) - 4~(x,)). (21) 
- B B 
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Substi tut ing x~ = p<,-x)~+~, x~ = p(,-~)B+2 , • "" , x~ = p,s into (21), for 1 _< i _< n / B ,  
we obtain 

(1/B)(ch(p<,-~)s+~) + . .  + O(P,B)) 
-4~(u,/B) _~ ( ( B  - 1 ) /B) (o (p~a)  -4~(P(~-a)B+0). (22) 

Now ¢'(p(,--1)B+I) _> ¢(P<,--1)B), SO we obtain from (22) 

(1/B)(~k(p(,-~)s+1) + " "  + ¢#(p,.) ) 
--¢(u,/B) _< ( ( B -  l)/B)(¢(p,,) --¢(p(,_~),)). ( 2 3 )  

Adding together inequali ty (22) for ~ = 1 to inequalities (23) for 1 < z < 7~/B, the 
right-hand side telescopes to give 

( l I B )  ~ + ( p , )  - ~ + ( u , I B )  

< ( ( B  -- 1) /B)(q~(p . )  - ¢ ~ ( p x ) )  _< (B  - I ) / B .  (24) 

This is the right-hand inequality of (18). 

9. Proof of Step 2 

We will show that  
n /B  n/IB 

0 < B ~ ( 1  - u , / B )  r -  B ~ ( 1  - u,) r/~ < . 1 8 4 ( B -  1) + 6(Be~T) ,  (25) 

if T > 2B. 
We will first demonstrate  the tirst inequality. We need only show tha t  for each ~, 

(I  - u , / B )  ~ > (1 - u,) T:~. (26) 

This is equivalent to showing tha t  

(1  - u , / B )  B > (1 - u,).  (27) 

I t  is straightforward to check that  the binomial expansion of the left-hand side of (27) 
is an al ternating sum. So (27) follows 

We will now prove the second inequMity of (25). For  each u, 0 _< u < 1, and each 
nonnegative number 0, define 

ao(u) = (1 - u / B )  zs°, bo(u) = (1 - u)  °, co(u) = ae - bo. (28) 

If  ½ < u < 1, then egu)  _< ao(u) _< (1 - 1/2B) Bo. 
In particular,  if 0 = T / B ,  then 

er/n(u) _< (1 - 1/2B) r. (29) 

Assume from here on tha t  0 < u < ½. We will write e0 for to(u), etc Let x and y be 
nonnegative real numbers. Then inequali ty (26), with Bx  substi tuted for T and u sub- 
s t i tuted fol u , ,  gives a~ > b, .  Hence 

a~ + b~ < 2a~. (30) 

Mult iplying together inequali ty (30) and the equali ty a~ --  b~ = ~, we obtain 

a~ay + %b~ - a~bu -- b~b~ < 2a=%. (31) 

Clearly, 

a=a~ = a=+~, b=b, = b=+~. (32) 

Subst i tut ing into (31) using (32), and replacing a,+~ - b=+u by  ~,+u and rearranging 
terms, we obtain 

~=+u --< 2 a ~  + a~bu -- aub~. (33) 
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Subs t i tu t ing  a. -- ~. for b. and  a~ -- e~ for b~ in (33), we find 

~+~ _< ~.a~ + ~a~. (34) 

We now claim tha t  if 3 is a positive integer, then 

% < j~,a~ -~ (35)  

This  is obvious if :/ = 1. Assume induct ively tha t  i t  is t rue for.7 = N Then  from (34), 

eN+~ < e~a~ -4- ,~a~ < Ne~a~ ~ -4- ~a~  by induct ive  assumption 
= N ~ a ~  ~v -4- e l a l  N = (N -4- 1)e,a~ ~'. 

Hence (35) holds, by  induction,  for every positive integer 3. 
Wri te  T / B  = j -4- r, j a positive integer and 0 < r < 1. Then 

_< eja, + e~aj by  (34) 

_< .l~la~- lat -4- ~,aj by (35) 

= 3*~a~ +~-~ -4- ~a~ J since ar = a~ ~ and a~ = a~ ~ 

3e~a~ +r-I + era~ +r-t since al < 1 and r < 1 

~T/B 

How big is E~? As 
sum. Hence 

So 

< ( T / B ) ~ l a ~ T / ' ) - I - -  t- era~ T/B)-I 

= ( T / B ) e ~ ( 1  - -  u / B )  T-B -4-4- e.(1 - u / B )  T-È 

w e  

(36) 

observed, the binomial  expansion of (1 - u / B )  B is an  a l ternat ing 

(1 - u / B )  A < 1 - u -4- ( B  - -  1 )u~ /2B .  (37) 

er = a t - -  b, = (1 -- u / B )  Br - -  (1 -- u )  ~ 
_< (1 - -  u + ( B - -  1 ) u 2 / 2 B )  r -  (1 - u)  r by  (37) 
= (1 - u ) ' [ (1  + ( B  - -  1 ) u ~ / 2 B ( 1  - u ) )  ~ - -  1]. (38) 

Let z = ( B  - -  1 ) u ~ / 2 B ( 1  - -  u ) .  

Since 0 < u < ½, it  is easy to see tha t  0 < z < 1. Now the binomial  expansion of 
(1 -4- z) r - 1 is an a l ternat ing sum i f 0  < z < 1 a n d 0  < r < 1 ( tha t  is, there is an 
a l te rnat ing  sum if we consider only the  second, third,  . . .  terms of the binomiM expan- 
sion of (1 -4- z)~). Pu t t i ng  this together with (38), we obta in  

er _< (1 - u ) ' [ r ( B  - -  1 ) u 2 / 2 B ( 1  - u)] = r ( B  - 1 ) u ~ / 2 B ( 1  - u )  ~-~ 

_< r ( B -  1 )u~ /2"B  since (1 - u )  > ½ 
< .54 ( (B  -- 1 ) u 2 / B ) ,  

since we find by  elementary calculus tha t  the max imum of r / 2  ~, 0 < r ~ 1, is 1/(e 
log 2) < .54. So 

er _< .54(B - 1 ) u 2 / B  < .54 u ~. (39) 

How big is ~1 ? F rom (37), we find immediate ly  tha t  

~ _< ( B  - 1 ) u 2 / 2 B .  (40) 

If we subst i tu te  into the last  line of (36) using (39) and  (40), we obta in  

~r/B _< u2(1 - u / B ) T - n ( ( T ( B  - -  1 ) / 2 B  ~) -4- .54). (41) 

We are interested in obta in ing an upper  bound  for B ~ ~T/B(U,). At  most  one u , ,  
namely  u~, can be greater than  ½. So from (29) and  (41), 

n/B 

B ~ ~r/a(u,) < B(1 - 1 /2B)  r 
n/B 

+ ( ( T ( B  - -  1) /2B)  -4- .54B) ~ u , 2 ( 1  -- u , / B )  r -~ .  (42) 
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0 PW Pmox I ~ 'e  B 

Fro. 1 

How big can z..,~-I u~ (1 - us~B) ~-" be? Let  ~ be the function x --, J:2(1 - x / B )  r-~, 
with domain [0, B]. By using elementary calculus, we find that  ~ has its maximum at 
Pm~, = 2 B / ( T  + 2 - B ) ,  and two points of inflection; the first such point of inflection, 
P*, lies strictly between 0 and P . . . .  and the second point of inflection, P**, is bigger 
than P . . . .  The second derivative of ¢ is positive between 0 and P*; negative, between 
P* and P**; and positive, between P** and B. So the shape of ¢ is roughly as in Figure I. 

Let  VEC1 = {(xl ,  - . .  , xm) :m a positive integer, ~,"21 x~ < 1, and 1 ~ xz ~_ x2 >_ 
• • > x ~  > 0}. Note tha t  the length of a tuple in VEC1 is arbi t rary  (but  finite). I t  is not 

important  tha t  the x~'s are in descending order, but  it  will make the exposition simpler. 
Say we can find an upper bound M for { ~ ~#(x~) : x E VECz}, where x is an abbreviation ,K.-,~/s 
for (x l ,  . ' .  , x~). Then z_,,-1 u~2(1 - u , / B )  r-~ _~ M.  

Let VEC2 = { x : ~ x ~  < I, and Pm~ >__ xl ~_ x2 ~_ . . -  > x ,  ~ 0}. Then 
sup~4~(x~)  :x  E VEC~} = s u p l ~ ( x ~ ) : x  E VEC2}, since if x E VEC~ and y, = 
ra in(x , ,  Pm~) for each i, then y E VEC2.  

Let v be a tuple in VEC2; then v can be writ ten as the concatenation ~ of a tuple y 
(with all entries between P* and P ~ )  and a tuple z (with all entries between 0 and 
P*);  if any entry  of x is exactly P*, we place that  ent ry  in z. Assume that  ~ z ,  = a. 
Let 1 be the unique nonnegative integer and 6 the unique real number, 0 < 6 < P*, 
such tha t  a = lP* + ~. Let a be the vector (P*, • • , P*, 6, 0 , . - .  , 0) with length the  
same as that  of z, and with 1 occurrences of P*, oDe occurrence of ~, and the rest O's. 
Clearly, a > z. Now ~b"(x) > 0 for each x in [0, P*]; hence [13, p. 76] ~ is convex in 
[0, P*]. Applying special case 1 of Section 5, we find tha t  ~ - ~  ~b(a~) > ~ _ ~  ~b(z,). 
We have shown that  if v = y~"~ is an arbi t rary  tuple in VEC~, then there is a tuple 

w = y (P*, , P*, ~) such tha t  ~ b ( v ~ )  < ~ b ( w , ) .  In  other words: let 

VECa = {x : ~ x, < 1, Pm,~ ~ zz >_ x2 ~_ " '"  >_ x,,-1 >_ P*, P ~ x  >_ xm >_ 0, 

where m is the length of x}. Then sup l ~ b ( x , )  : x ~ VEC3} = sup{ ~ ~b(x,) : x 5 VEC~}. 

Now let v be an arbi t rary  tuple in VECs .  Write  v = y~'~, where each entry  of y lies 
between P* and Pm~x, and where z is a tuple of length 1, whose entry lies between 0 
and P ~ .  Assume tha t  y is of length k, and tha t  ~ y~ = a. Let  a be the tuple (a /k ,  • • • , 
a / k )  of length k. Then y >- ~. Now ~ (x) ~ 0 for each x in [P*, Pmax[; hence, 4~ is 
concave in [P*, P ~ ] .  Applying special case 2 of Section 5, we find tha t  ~ 4~(Y,) _~ 

~b(a,). In  other words: let VEC4 = Ix : ~ x, < 1, xz . . . . .  xm-~ , where nm is the 
length of x}. Then sup{~q , (x , )  :x  ~ VEC~} = s u p { ~ ¢ ( x , )  :x  ~ VEC~}. 

Let v = {¢, ¢, • • • , ~, ~} be an arbi t rary  tuple in V E C 4 .  Then 

~ ( v , )  _< (1 /~) l~(~) l  + ~(~) -< ( ~ ( ~ ) / ~ ) +  ~(~) 
_< (max ~(x)/x) + (m~ ~(~)). (~3) 

O~x~l O~z~l 



The Independence of Miss  Ra tw  on Page Size 130 

Now ¢ ( x ) / x  = x(1 - x / B )  r-"  Let k be arbitrary for the moment, and let ~ be the 
function x --, xk(1 - x / B )  T-B. We are interested in finding max0~<l ~b for k = 1 and 
k = 2 (and, in proving step 4, we will be interested in the case k = 3). By elementary 
calculus, we find that  ~b has its maximum at k B / ( T  + k - B), with maximum value 

( k B / ( T  + k - B ) )  k (1 - k / ( T  + k -- B))  r-B. (44) 

We will now estimate (1 - k / ( T  + k - B ) )  7-B. 
I t i s  well known that  (1 - l /x )  ~ ~ 1/e as x -~ o~ Also, the function x --> (1 - 1/x ) '  

is a monotone, strictly increasing function of x for x > 1, fol, the derivative of this 
function, evaluated at z > 1, is easily found to be 

= 1 - -  1 . . . . . . . . . .  
2X 2 3x ~ 4x ~ 

So 

> 0  

by using the Taylor expansion of log(1 - l /x )  

1 -- 1 )2 x (45)  
x + l  x + l '  

(46) 

( T + k  B - 

B 4B ~ < + 
e ( T  -- B)  e2(T -- B)  2" 

Tracing back what we have demonstrated, this means that 

~/B ( 1 - -  u~_}\r-" _< B + 4B ~ (49) 

We will now estimate the subexpression (1 - 1/2B) T of (42). I t  will be convenient 
for work later on to find a more general estimate than we need now. We will show that  
i f s  > l a n d t  > 0, then 

(1 -- l / s )  t < m!s'~/t  '~ for each integer m ~ 0. (50) 

First, 
(1 - -  l / s )  t = (1 - -  l / s )  "('/') < e -'/', (51)  

So from (43), 

( from(47) ) 

1>(1 1) 
e x + l  = 1 1 = - x + l  x ~ - I  

If we multiply (45) through by (x + 1)/x, weflnd that 

(1  1 )" l x + l  
x + l  < - - - e  x 

So 

1 T - t - k - -  B = 1 - - x + l  ' wherex = ( T -  B ) / k  

< " 7 by (46) 

So the maximum value of ~b, which we found to be expression (44), is bounded by 
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since as we showed, ( I  -- I / x )  ~ P I/e. Now if z > 0, then e" > z'~/m! for each integer 
nn > 0, since z'~/m ! is one term of the Taylor expansion of e ~. Hence e -~ < m !/z m. Apply- 
ing this to the right-hand term of (51), (1 -- 1/s) t < e -~/" < m! s~/t  '~, as desired. 

Hence 
(1 - 1/2B) r < 2B /T ,  

where we let n~ = 1 in (50). 
Substituting into (42) using (49) and (52), we obtain 

~ / "  2 B  2 / T ( B - -  1) ~ (  B .... 4 i f ,  
B~,_a,TjB(u,) < - T -  + \ 2 B  -t- . 5 4 B ] \ e ( T -  B) + e ~ ( T -  B) 2J 

2B ~ (B - 1)T .54ff  2 B T ( B  - 1) 2.16ff - + + + + 
T 2e(T -- B) e(T -- B) e2(T - B) ~ e~(T - B) 2 

2B 2 B - 1 T .54B B 
-< -'T- + 2--'~-- T -  B + e T -  B 

2B T B 2.16B B B 
+ e - ' T T - B T - B  -b e ~ T - B T - B "  

(52) 

(53) 

We will find simple upper bounds for T / ( T  - B)  and B / (  T - B), given that  T > 2B. 

T -  B -  ' r  1 + -< T s i n c e B / ( T - B )  < 1, (54) 

T - 1 +  B < l + 2 B  
T -- B T----~-- ~ _ T by (54). (55) 

Substituting into (53) using (54) and (55), we obtain 

"/" 2B ~ B - l (  _~_) .54B 2B 
B ' ~  ~T/~(u,) < + 1 + + - -  - -  

< B - ] ] + + + + , (56) 
2 - - ~ - - + - ~  2 + ~  e ~ ~ ~ e ~ ] 

where we have expanded out and replaced the term B__y__ ~ by ~ . -  1 B B 2 

If we replace BaIT 2 on the right-hand side of (56) by B~/T, and numerically evaluate, 
we find 

n]B 

B ~ ~T/B(U,) < .lS4 (B -- 1) + 5.56 (B2/T) ,  

which implies the second inequality of (25). 

10. Proof of Step 3 

We will show that  

i ,,l~ u , / B )  T p,(1 - p , ) r  _ ~ u,(1 - < .736(B - 1 ) / T ,  (57) 

if T >  0. 
Let ¢ be the function x -+ x( l  - x) r, with domain [0, 1]. We find by elementary 

calculus tha t  ~k has its maximum at p = 1 / ( T  + 1), with maximum value 

1(, 
MAX = T +------i T + 1 

1 
< ~ by (46). (58) 
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Further,  ~ is monotone increasing between 0 and t~, and monotone decreasing between 
and 1. 
If 1 > Xl >_ . . . >  x~ ~ ~, then since ~ is monotone decreasing between /, and 1, 

we find as in (21) of the proof of step l that  

( ( ¢ ( x l )  + . . .  + ~(~ , )  ) /B )  - ¢~( ( ~  + . . .  + x , ) / B )  
_< ( (B  -- 1 ) /B)  (~(xB) -- ~b(xl)). (59) 

And, 

(~b(xl "-k "" -Jr x , ) / B )  -- (~k(xl) + " "  -b ¢ z ( x , ) ) / B  
_< ¢~(~.~) - ( (B  - 1)¢~(zi) + ~ ( x , ) ) / B  
= ( ( B  - 1)/B)(~b(x~) -- ~b(xl)). (60) 

Putt ing together (59) and (60), we obtain 

I ( ~ ( x l )  + " ' "  + ~ ( x ~ ) ) / B  - ~ ( (x l  + ..  + x ~ ) / B )  I 
< ( ( B  - 1 ) / B ) ( ¢ ( x B )  -- ~ (x , ) ) .  (61) 

Let k be the maximal integer such that  pks ~ u. T h e n l  >_ px > p: >_ • • > pk, >_ u. 
By using (61) in an analogous way to our use of (21) in the proof of step 1, we obtain, 
as in (24) of step 1, that  

i kB k 
( l / B )  ~ b ( p , )  - B , ~ l ~ ( u ' / B )  <_ ( ( B  - 1)/B)(~b(p~8) - ~b(p,)) 

_< ( ( B -  1)/B)~b(pkB). (62) 

We know tha t  p(~+~)e < u. There are now two cases to consider. 
Case 1. PkB+I__< tz- Assume t h a t ~  > xl _> x2 _> . . -  _~ xs ~ 0. Since ~/, is monotone 

increasing between 0 and u, we find, by a similar argument to that  used to prove (61) 
and (62), tha t  

] (~b(xl) + . . .  + ~ , (xB)) /B  -- ~k((xx + . .  + XB)/B)  I 
_< ( ( B -  1 ) / B ) ( ¢ ( x ~ )  - ~b(x,)). (63) 

(1 /B)  ~ ~,(p,) - B ~2 ~(u, /B)  < ( ( B  - 1)/B)~,(pk~+~). (64) 

Hence, from (62) and (64), 

( l / B )  ~,(p~) -- B ~ ~,(u, /B)  _< ( ( B  -- 1)/B)(g,(p~B) + ~(P~.+i)) 

(2(B -- 1)/B)MA_X 
< 2(B - 1 ) / e B T  by (58). 

Since 2/e < .736, this gives us (57). 
Case 2. p,~+l > u. We ~411 show tha t  

[ (&(pEn+,) + . . .  + ~b(p(~+,)~))/B -- ~b (u~+ffB)[ 
_< ( (B  -- 1 ) / B ) ( M A X  -- ~ (p,8+~)) 

+ ( ( B -  1 ) / B ) ( M A X  - ~k(p(~+~)a)). (65) 

We will first show tha t  this is sufficient to prove (57). 
As in the proof of (64) of case 1, 

n n / B  

( l / B )  ~ ~b(p,) - B  ~ ~b(u,/B) ~_ ( ( B  -- 1)/B)~b(p(~+~)n+~). (66) 

Since p~,+~ > ~, and since ~b is monotone decreasing between u and 1, i t  follows tha t  
¢,(pk~) _~ ~h(pka+l). So from (62), 

~ ~(u , /B)  ( l / B )  , - ,  ~k(p,) - B ,-1 ~ < ( ( B  -- 1)/B)~k(p~+~). (67) 
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Since p(k+~)B < V, and since 6 is monotone increasing between 0 and v, it follows that  
~b(p,k+l)B) >_ .¢(p(k+l)B+l). So (65) gives 

( 1 / B )  I ¢ d p ~ + l )  + . . .  + ¢(p~+~) - B ¢ , (u~+, /B)  I 
< ((B -- 1 ) / B ) ( M A X  - q~(pkB+~)) 

+ ((B -- 1 ) / B ) ( M A X  - ¢,(p(~+~)B+i). (68) 

If we add together (66), (67), and (68), and use the triangle inequality, we obtain 

( I / B )  ~(p,) - B ~ ¢ ( u , / B )  _< (2(B - 1) /B)  MAX, 

and as in the conclusion of ease 1, this gives us (57). 
I t  remains to prove (65). Assume that  1 > xl >_ . - .  ~_ xB > 0. To prove (65), 

we must show 

] ( ( i V ( x , )  + • • + ~ k ( x , ) ) / B I  - ~k((xl + . . .  + x B ) / B )  I 
< ((B - 1 ) / B ) ( M A X  - ~ b ( x , ) )  

+ ( (B -- 1 ) / B ) ( M A X  - ¢ ( x . ) ) .  (69) 

Assume that  ~ (x , )  ~_ .~(x~). The proof ~s sinular if ~b(x~) > ~k(x~). Since ~(x . )  > 
~b(x~), clearly ~b(x,) > ~(Xl), ~ = 1, . . .  , B 

(~(x~)  + . .  + ~ ( z ~ ) ) / B  - ~ ( ( X l  + . . .  + x D / B )  

And, 

< ((B - 1) MAX + ~ ( x , ) ) / B  - ¢ (x,) 
= ((B - 1) /B)  ( M A X -  ~(x,))  
_< ((B - 1) /B)  (MAX -- ~ (x,)) 

+ ( (B -- I ) / B )  (MAX - ¢(xB)). (70) 

~((xl  + . . .  + x~) /B)  - (~(xl) + . . .  + ~b(x~))/B 
_< MAX - ((B -- 1)~(xl) + qJ(xs))/B 
< MAX -- ( (B - 1)~(x~) + ~b(xB))/B 

+ ((B - 2 ) /B)  (MAX - ~(xs) )  
= ( (B -- 1) /B)  (MAX -- ¢(x~)) 

+ ((B -- 1 ) / B ) ( M A X  - ¢dxa)). (71) 

Putt ing together (70) and (71), we obtain (69). 
Remark The result of step 3 can be improved (reducing the right-hand side of 

(57) by less than a factor of 2), by taking advantage of more properties of ~ than that  
it is monotone increasing and then monotone decreasing. 

11. Proof of Step 4 

We will prove 
n/B ~B 

0 < ~ u , ( 1  -- u, /B)  r -  (1 -- u,) T'B < . 2 7 1 ( B - -  1 ) / T  + 33 ( B / T )  2 (72) 
tml tml 

if T > 2B. 
Statement (26) of the proof of step 2 says (1 -- u , /B)  r > (1 - u,) r/B. Hence 

u ,  (1  - u J B )  ~ > u ,  (1 - T/,  • -- u,) , and the first mequMlty of (72) follows. 
If we adopt the notation of the proof of step 2, then we are concerned with finding 
.,,-1 u,e~/B(u,). As before, if ½ < u~ < 1, then i = 1 and 

u,er/s(u,) _< (1 -- 1/2B) T < 8 ( B / T )  2, by (50) with m = 2. (73) 

If 0 < u, < ½, then from (41) of step 2, 

u,~r/~(u,) < u, s (1 -- u, /B)  r-B ( ( T ( B  -- 1)/2B 2) "4- .54). (74) 
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So from (73) and 74), 
n / B  n]B 

u:r /~(u , )  < 8 ( R / T )  2 -q- ~ u,3(1 -- u~/B) r-B ( ( T ( B  -- 1)/2B 2) + .54). (75) 
~--1 z - - I  

By exactly the same method as in step 2, where we now let ~ be the function x 
13(1 - x /B)  T-',  we find that  

~ u , 3 ( 1  - u , /B)  r-" _< (max ( ¢ ( x ) / x ) )  + (max ~(x))  (76) 
0_~<i o_o_<I 

_< 4B2/e2(T - B) 2 -F 27B2/e3(T - B) 3 , 

since (48) gives the maxima. 
If  we substitute into (75) using (76), we obtain 

"/'u,~,/,(u,) < 8 (~)~ "F ( --4B2 "F 27B3 "~ (T(B - I) -'I- .54) 
o-, \e2(T -- B)2 e3(T - B) 3] \ 2B 2 

B 2 T 

2 .16(  B ) '  14.58(  B ) '  +-~- ~ +--~- ~ (77) 

where we expanded out and made one substitution of B for B - 1. 
If we now use (54) and (55) to substitute 2 B / T  for B / ( T  -- B) and (1 + 2 B / T )  

for T / ( T  - B) in (77), we obtain 

./~ 2 2 ( B -  1) 1- t -  - I - ~  1- t -  

+ 2.16 + 

_ e~ T + 8 + ~ + ~ + 8 . 6 4  

+ ~ + ~ +  d J (78) 

where we expanded and occasionally substituted B for B -- 1. 
If we replace ( B / T )  3 on the right-hand side of (71) by ( B / T )  ~ and numerically evalu- 

ate, we obtain 
n /B  

u:r/B(u,)  < .271 (B -- 1 ) / T  + 32.68 ( B / T )  2, 

which implies the second inequality of (72). 

12. Proof of Step 5 

We will prove that  

H ( T ) / H ( t )  < S ( T ) / S ( t )  (79) 

i f T > t >  1. 
We will show tha t  H ( T ) / S ( T )  _< H ( t ) / S ( t ) ,  tha t  is, 

( - 1 -- ~ p , (1  -- p , ) r  (1 -- (1 -- p , ) r )  

_< ( 1 - - ~ p , ( 1  - - p , ) t ) / ~ ( 1 - -  (1 ,-,  (80) 

Assume for convenience that  each p, is nonzero. 
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Let  a, = I - (1 - p , ) '  B, = 1 - (1 - p,)T, 1 < i < n. Then  (80) is equ iva len t  
to 

p ~  f~, < p, oq ~, .  (81) 

' / 5 : °  / Z  5:  ' L e t a ,  = a, ~ - l a j ,  = B, ~ - 1 ~ ,  1 _< i _< ~. Then  a, = = 1. 
S t a t e m e n t  (81) is equiva len t  to 

5: p,~/ < 5: p,~,'. (82) 
N o w  the  funct ion f ,  g iven by x --~ 5:~-1 p ,x , ,  with domain ~-tuples (x l ,  . . . ,  x , )  
with x~ > x2 _> . - .  >_ x~, is a Schur  function,  since (O/Ox,)f  = p , ,  1 < i < n, and 
hence (d /Ox , ) f  > (O/Ox,) f  i f f  p, > p~ iff  ~ > .~ i f f  x, > xj . So, to prove (82), we need 
only show 

a' > ~'. (83) 

To prove  (83), we need the  following lemma.  
I,EM~A. I f  0 < r~ < ~'~ < 1, the,  

( 1  - -  r , t ) / ( 1  - -  r~ t) > ( 1  - -  r , ~ ' ) / ( 1  - -  r ~ ) .  ( 8 4 )  

PROOF. I t  is easy to see tha t  (84) holds if r~ = 0; hence, assume rl > 0. Let  f~ be the  
function x --~ (1 - r l~) / (1  - r2~), wi th  domain  [1, ~ ). We need only show tha t  f~ is 
monotone  decreasing, tha t  is, tha t  f~' < 0. A simple calculat ion shows tha t  f '  _< 0 iff 

rl ~ l o g r ~ / ( 1  - rl ~) > r2 ~ log r2/ (1 - r~ x) for e a c h x  > 1. (85) 

If  we mul t ip ly  bo th  sides of (85) by  x, and let  gl = r~ ", g2 = r ( ,  we obtain 

g~ log g~/(1 - g~) ~ g2 log g2/(1 - g~). (86) 

So we need only show tha t  (86) holds whenever  0 g g~ _~ g2 < 1. Let  sl = 1 - g~, 
s~ = 1 - g~. Then  (86) becomes 

( 1  - Sl)log(1 -- s~)/s~ ~_ (1 -- s2)log(1 -- s~)/s2. (87) 

We need only show tha t  (87) holds whenever  0 < s~ .~ Sl ( 1. Let  f2 be the function 
x ~ (1 - x) log(1 - x ) / x ,  with domain (0, 1). We must  show tha t  f~ is monotone  
increasing. If  we replace log(1 - x) by its Tay lor  expansion, then  

( )/ f ( z ) = ( 1 - ~ )  - z - y - - 5 - ¥  . . . .  

= - - ( l - - x ) (  l + x  x2 x '  ) ~ + ~ + ¥ +  . . .  

which ~s clearly monotone  increasing. The  l emma is now proved. 
To prove (83), we must  show 

k k 

5 : ~ , '  >_ ~ , ' ,  i < ~ < ~. (88) 

(We  have  already noted  tha t  ~ ," -~  a , '  = ~ - ~ / ~ '  = 1.) 
f 

We will first p r o v e a ~  ~_ /~1'. In  t h e l e m m a ,  i f w e l e t r ~  = 1 - p , ,  r~ = 1 -- p,+~, 
then  we get  

~,/a,+~ _> ~ J ~ , + , ,  1 _< ~ < n. (89) 

We will now show tha t  (89) implies 

~,' > ~,'. (9o) 
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For, find o-i, - • • , 0"n--1 and "rl, 
Then  (89) implies 

ow 
# 

Ogl 

Similarly 

• . , T , - l s u c h  tha t  a~+l = a , a , ,  B,+l = v,O,, 1 ~ i < n. 

1 < ~ < ~. ( 9 1 )  

= , ~ U ( ~ I  + ' "  + '~,,) 
= a l / a l ( 1  -k- aa 4- ala2 "4- o'ia:aa q'- . ' .  ) 
= 1 / ( 1  + ol  + o'1o2 + o'1o2o3 --P . .  ) .  (92) 

(93) 8a' = 1/(1 + T1 "4- TiT2 • T1T2T3 -~ " ' "  ). 

Then  (91), (92), and (93) imply (90). 
We will close by  showing tha t  a l '  -4- c~2' >_ ¢~1' "4- ~ ' .  The  other inequali t ies of (88) 

are proved very similarly. 
Let ~ = (al  q- a~, ~3, a4 ,  . - .  , a , )  and ~ = (/31-1- t3~,/~,134, . . .  , B , ) . W e w i l l  

first prove tha t  

a,/&,+l  7> D,/D,+i (94) 

for each/ .  This  follows for ~ _> 2 by  (89). If i = l ,  then (94) says 

(al --k a 2 ) / a 3  _> (~1 + ~ ) / ~ 3 .  ( 9 5 )  

But  (95) holds, since al/a~ _> Ol/f~ and  a~/a~ ~_ t8~/~33 , each by  an applicat ion of the 
lemma, just  as in the proof of (89). 

Let ~ be the normalizat ion of ~, tha t  is, ~ ,  = a , / ~ - i  ~, • Similarly, define ~'. 
(94) implies 

~'1 _> ~'1, (96) 
jus t  as (89) implies (90). 

Bu t  (96) is equivalent  to al '  -4- a~' _> /~l' + B~', which was to be  shown. 

13. Summary  

We have shown tha t  the working-set miss rat io is insensit ive to page size, in the  inde- 
pendent  (page) reference model. We argue tha t  this implies tha t  the insensi t ivi ty  also 
holds in more realistic models. 
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