
12

Document Spanners: A Formal Approach to Information Extraction

RONALD FAGIN, BENNY KIMELFELD,and FREDERICK REISS, IBM Research – Almaden
STIJN VANSUMMEREN, Université Libre de Bruxelles (ULB)

An intrinsic part of information extraction is the creation and manipulation of relations extracted from text.
In this article, we develop a foundational framework where the central construct is what we call a document
spanner (or just spanner for short). A spanner maps an input string into a relation over the spans (intervals
specified by bounding indices) of the string. The focus of this article is on the representation of spanners.
Conceptually, there are two kinds of such representations. Spanners defined in a primitive representation
extract relations directly from the input string; those defined in an algebra apply algebraic operations to the
primitively represented spanners. This framework is driven by SystemT, an IBM commercial product for
text analysis, where the primitive representation is that of regular expressions with capture variables.

We define additional types of primitive spanner representations by means of two kinds of automata that
assign spans to variables. We prove that the first kind has the same expressive power as regular expressions
with capture variables; the second kind expresses precisely the algebra of the regular spanners—the closure
of the first kind under standard relational operators. The core spanners extend the regular ones by string-
equality selection (an extension used in SystemT). We give some fundamental results on the expressiveness
of regular and core spanners. As an example, we prove that regular spanners are closed under difference
(and complement), but core spanners are not. Finally, we establish connections with related notions in the
literature.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—Automata (e.g., finite, push-down, resource-bounded), relations between models; F.4.3 [Mathematical
Logic and Formal Languages]: Formal Languages—Algebraic language theory, classes defined by gram-
mars or automata (e.g., context-free languages, regular sets, recursive sets), operations on languages; H.2.1
[Database Management]: Logical Design—Data models; H.2.4 [Database Management]: Systems—
Textual databases, relational databases, rule-based databases; I.5.4 [Pattern Recognition]: Applications—
Text processing

General Terms: Theory

Additional Key Words and Phrases: Information extraction, document spanners, regular expressions, finite-
state automata

ACM Reference Format:
Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2015. Document spanners: A
formal approach to information extraction. J. ACM 62, 2, Article 12 (April 2015), 51 pages.
DOI: http://dx.doi.org/10.1145/2699442

An abridged version of this article has been published in Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS’13) [Fagin et al. 2013].
B. Kimelfeld is currently affiliated with Technion – Israel Institute of Technology.
Authors’ addresses: R. Fagin and F. Reiss, IBM Research – Almaden, 650 Harry Road, San Jose, CA 95120-
6099; email: {fagin, frreiss}@us.ibm.com; B. Kimelfeld, Technion – Israel Institute of Technology, Haifa,
Israel; email: bennyk@gmail.com; S. Vansummeren, Université Libre de Bruxelles, 50, Av. F. Roosevelt, CP
165/15, B-1050 Brussels; Belgium; email: stijn.vansummeren@ulb.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.
2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0004-5411/2015/04-ART12 $15.00
DOI: http://dx.doi.org/10.1145/2699442

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:2 R. Fagin et al.

1. INTRODUCTION

Automatically extracting structured information from text is a task that has been
pursued for decades. As a discipline, Information Extraction (IE) had its start with
the DARPA Message Understanding Conference in 1987 [Grishman and Sundheim
1996]. While early work in the area focused largely on military applications, recent
changes have made information extraction increasingly important to an increasingly
broad audience. Trends such as the rise of social media have produced huge amounts
of text data, while analytics platforms like Hadoop have at the same time made the
analysis of this data more accessible to a broad range of users. Since most analytics
over text involves the extraction of information items (at least as a first step), IE is
nowadays an important part of data analysis in the enterprise.

Broadly speaking, there are two main schools of thought on the realization of IE:
the statistical (machine-learning) methodology and the rule-based approach. The first
started with simple models such as AutoSlog [Riloff 1993], CRYSTAL [Soderland et al.
1995] and SRV [Freitag 1998], then progressed to approaches based on probabilistic
graph models [Leek 1997; McCallum et al. 2000; Lafferty et al. 2001]. Within the rule-
based approach, most of the solutions (e.g., GATE/JAPE [Cunningham 2002]) built
upon cascaded finite-state transducers [Appelt and Onyshkevych 1998]. Most systems
in both categories were built for academic settings, where most users are highly-trained
computational linguists, where workloads cover only a small number of very well-
defined tasks and data sets, and where extraction throughput is far less important
than the accuracy of results.

When IBM researchers, driven by the increasing importance of text data in the
enterprise, attempted to use these existing tools to solve customers’ analytics problems,
they encountered a number of practical challenges. Users needed to have an intuitive
understanding of machine learning or the ability to build and understand complex and
highly interdependent rules. Determining why an extractor produced a given incorrect
result was extremely difficult, which made impractical the reuse of extractors across
different data sets and applications. Moreover, high CPU and memory requirements
made extractors cost-prohibitive in deployment over large-scale data sets.

In 2005, researchers at the IBM Almaden Research Center began the design and
development of a new system, specifically geared for practical information extraction
in the enterprise. This effort led to SystemT, a rule-based IE system with an SQL-
like declarative language named AQL (Annotation Query Language) [Chiticariu et al.
2010; Krishnamurthy et al. 2008; Reiss et al. 2008]. The declarative nature of AQL
enables new kinds of tools for extractor development [Liu et al. 2010], and a cost-based
optimizer for performance [Reiss et al. 2008]. In 2010, SystemT was released as a
commercial IBM product.1 An intensive study by Chiticariu et al. [2010] shows the
value of SystemT, in particular the high extent to which it overcomes the difficulties
mentioned earlier.

Conceptually, AQL can be viewed as built upon two main operations that were sup-
ported already in the original research prototype of SystemT [Reiss et al. 2008]. The
first operation (expressed as “extract” statements) is the extraction of relations from
the underlying text through simple mechanisms. The most commonly used of these
mechanisms is that of regular expressions with capture variables. An important spe-
cial case of that mechanism is the extraction of dictionary (gazetteer) matches that
are distinguished from general regular expressions by their syntax and underlying
implementation. The second operation (expressed as “select” statements) is the manip-
ulation of the relations (from the first operation) through algebraic operators. There

1SystemT is included in IBM InfoSphere BigInsights.
http://www.ibm.com/software/data/infosphere/biginsights/.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:3

are three types of algebraic operators: standard relational operators (e.g., union, pro-
jection, join), text-centric operators (e.g., string equality and containment), and conflict
resolution (mainly, resolving cases of overlapping spans when those are undesired).
In the actual (productized) AQL syntax, these operators are expressed as clauses of
a Select-From-Where flavor.2 In time, SystemT evolved to support additional facili-
ties, like part-of-speech tagging, shallow parsing of XML tags, sorting and additional
aggregate functions.

In this article, we embark on an investigation of the principles underlying AQL.
Our ultimate goal is to establish a formal model that is robust enough to capture the
principal capabilities of systems featuring AQL’s principles, and yet, that is abstract
enough to yield useful insights, and solutions with provable guarantees. Towards that,
we develop here a framework that captures the core functionality of SystemT, and
establish some fundamental results on expressiveness and on the relationship with
existing literature. We believe that this work will be the basis of further investigation
of tools for text analytics. We further believe that this work and its followups will
shed light on the interplay between the textual and the relational querying models
(in contrast to their traditional separation as distinct steps). In the remainder of this
section, we give a more technical and detailed description of our framework and results.

A span of a string s (where s represents the text) represents the range of a substring
of s, and is given by two indices that specify where the range begins and ends within
s. For example, if s is ACM PODS 2013, then the span [5, 9〉 refers to the part of s from
the fifth to the eighth symbols inclusive, spanning the substring PODS. In this article
we introduce document spanners (or just spanners for short), the central concept in our
framework. Intuitively, a spanner extracts from a string s a relation over the spans of
s. It is formally defined as follows. An s-tuple is associated with a finite domain V of
span variables, and assigns a span of s to each variable in V . A span relation (over s)
is a set of s-tuples, all over the same domain V of span variables. That set is naturally
viewed as a relation, with the span variables playing the roles of the attribute names,
and the spans themselves used as attribute values. A spanner is a function that maps
each string s into a span relation over s.

For illustration, consider Figure 1, that is used for our running example in this
article. The figure shows two strings s and t, and considers two spanners P1 and P2.
The tables in the figure show the four span relations obtained by applying P1 and P2
to s and t. For instance, the top row in the table of P1(s) shows the s-tuple that assigns
the spans [1, 4〉, [5, 8〉 and [1, 8〉 to the variables x, y and z, respectively.

This article focuses on the representation of spanners. Conceptually, we distinguish
between two types of spanner representations. The first type is that of a primitive
representation, which is a mechanism that extracts the relation directly from the
input string s. An example is a regular expression with span variables embedded as
capture variables, as in AQL; here, we call such an expression a regex formula. The
second type of a spanner representation is that of an algebra, which is the closure of
primitive representations (of some specific class) under some algebraic operators.

Aside from regex formulas, we define two additional primitive spanner representa-
tions that are based on two corresponding types of automata. An automaton of each
type is an ordinary nondeterministic finite automaton (NFA), except that it is associ-
ated with a finite set V of variables, and along a run on a string it can decide to open
(i.e., begin the assigned span for) or close (i.e., end the assigned span for) a variable. In
an accepting run, each variable in V must be opened and closed exactly once. The dif-
ference between the two types is in the data structures that maintain the variables. In
a variable-stack automaton (vstk-automaton for short), that data structure is a stack,

2See http://publib.boulder.ibm.com/infocenter/bigins/v2r0/ for the complete reference of the AQL syntax.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:4 R. Fagin et al.

Fig. 1. Running example: strings s and t, and the string relations obtained by applying two spanners P1
and P2.

and hence, the closed variable is always the most recently opened one. In a variable-set
automaton (vset-automaton for short), that data structure is a set, and the automaton
specifies the specific (previously opened) variable to close.

We begin by showing that regex formulas, vstk-automata and vset-automata are
tightly related to each other. In particular, regex formulas and vstk-automata have
the same expressive power. The vset-automata can express spanners that are not
expressible by vstk-automata, since a spanner representable by the latter is necessarily
hierarchical—the spans of every output s-tuple are nested like balanced parentheses.
We prove that the spanners expressible by regex formulas are precisely the spanners
that are both hierarchical and representable by vset-automata. Moreover, we prove
that the expressive power of vset-automata is precisely that of the algebra that closes
regex formulas under union, projection and natural join on spans. Finally, we prove
that these algebraic operators do not increase the expressive power of vset-automata.
We call the spanners expressible by vset-automata regular spanners. The name arises
from the fact that, in the Boolean case, the languages recognizable by vset-automata
are the regular ones.

An algebraic operator of AQL that was not mentioned in the previous paragraph is
string-equality selection, which selects the s-tuples such that the spans for two specified
variables x and y correspond to equal substrings of s (although x and y need not be the
same span). The core spanners, which we view as capturing the core of AQL, are the
ones expressible by regex formulas along with the operators union, projection, natural
join on spans, and string-equality selection. In this language, one can also simulate
selection operators for other common string relationships such as containment, prefix
and suffix. Standard inexpressiveness results for regular expressions easily imply that
core spanners are more expressive than regular spanners. We prove a key lemma for
core spanners, the “core-simplification lemma,” which states that every core spanner
can be represented as a single vset-automaton, followed by string selections and then by
a projection. This lemma is a crucial ingredient for our later proofs of inexpressiveness
results.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:5

Focusing on regular and core spanners, we also look at the ability to simulate selection
operators based on string relations (relations whose entries are strings, not spans).
More formally, for a string relation R, the corresponding selection operator selects all
the s-tuples such that the substrings corresponding to a specified sequence of variables
(of the same arity as R) is in R. We say that R is selectable by a class of spanners
(e.g., the regular or core spanners) if that class is closed under the selection operator
for R. Like Barceló et al. [2012a], we look at three classes of string relations: the
recognizable relations [Berstel 1979; Elgot and Mezei 1965], which are contained in
the regular relations [Benedikt et al. 2003; Elgot and Mezei 1965], which are contained
in the rational relations [Berstel 1979; Nivat 1968]. We show that every recognizable
relation is selectable by the core spanners. We also show the existence of a regular
(hence rational) relation that is not selectable by the core spanners, and the existence
of a relation that is selectable by the core spanners but is not rational (hence not
regular). As for regular spanners, it turns out that their selectable string relations are
precisely the recognizable ones.

In Section 5, we investigate the incorporation of the difference operator in our set-
ting. We prove that core spanners are not closed under difference. By analogy to the
relational model, this may sound straightforward because all the other operators are
monotonic. But this argument is invalid here, because regex formulas have the ability to
simulate non-monotonic functionality. As evidence, it turns out that regular spanners
are closed under difference. Moreover, as further evidence, some relations of a non-
monotonic flavor are selectable by the core spanners, like inequality, nonprefix and
nonsuffix. In contrast, we prove with the core-simplification lemma that non-substring
is not selectable by the core spanners; with that, nonclosure under difference is a simple
corollary.

Related Work. There is a large body of work on designing query languages for string
databases (i.e., databases in which the atomic data values are strings) [Bonner and
Mecca 1998; Benedikt et al. 2003; Grahne et al. 1999; Ginsburg and Wang 1998].
There are two important differences between that line of work and our work. First
and foremost, the atomic data values within relations in a string database are strings,
whereas the atomic data values within span relations are spans. This distinction is
important because it yields a different semantics for natural join: in a string database,
two tuples will join if they contain the same string in the shared attributes, whereas
in span relations two tuples will join if they contain the same span. As we show in
Section 5, it is exactly the capability of testing for equality on strings that causes
loss of closure under difference. A second important difference is that query languages
for string databases not only support pattern-matching for the purpose of extracting
relevant information from strings, but also support powerful operations for the purpose
of transforming strings. Typically, these transformation operations even make the
query language Turing-complete in the class of string-to-string functions that can be
expressed. In contrast, we focus on pattern matching, which has low complexity.

A database query language that is closely related to regular spanners is the lan-
guage of Conjunctive Regular Path Queries (CRPQs) [Consens and Mendelzon 1990;
Calvanese et al. 2000a, 2000b; Deutsch and Tannen 2001; Florescu et al. 1998]. We
analyze in depth the relationship between CRPQs and our spanners in Section 6.

There is also a large body of work in extending finite state automata (or regular
expressions) with mechanisms such as variables or registers. For example, Grumberg
et al. [2010] study variable automata. These are simple extensions to finite state au-
tomata in which the finite alphabet consists not only of letters, but also of variables that
range over an infinite additional alphabet in order to be able to accept strings formed
over an infinite alphabet. In contrast, the automata we consider accept only strings

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:6 R. Fagin et al.

over a finite alphabet, and assign to each variable a span. Neven and Schwentick [2002]
study the expressive power of query automata on strings and trees. These automata
define mappings from input strings or trees to sets (i.e., unary relations) of positions
in the input. Spanners, in contrast, define mappings from input strings to relations of
arbitrary arity over the spans of the input. Barceló et al. [2013] study the extension
of regular expressions with variables. In this extension, a variable can be substituted
for a single alphabet letter only. In contrast, our variables bind to spans. A differ-
ent extension of regular expressions with variables is given by the so called extended
regular expressions [Aho 1990; Câmpeanu et al. 2003; Carle and Narendran 2009;
Freydenberger 2011; Friedl 2006]. Here, variables can not only bind to a substring
during matching, but can also be used to repeat a previously matched substring. We
analyze in depth the relationship between extended regular expressions and spanners
in Section 6.

Classic rule-based information extraction systems build upon the Common Pattern
Specification Language (or CPSL) [Appelt and Onyshkevych 1998], where information
extraction rules are specified based on cascaded finite-state transducers. The idea be-
hind these transducers is similar to the notion of attribute grammars [Knuth 1968,
1971]: rules are used to parse (parts of) the input, and each rule can be assigned an ac-
tion defining the values of attributes to be associated to the matched part of the input.
(These attributes are considered to be the “extracted information”.) While Neven and
Van den Bussche [2002] have investigated the expressive power of attribute grammars
in querying derivation trees generated by a fixed context-free grammar, we are not
aware of any formal investigation of the expressive power of the cascaded finite-state
string transducers employed by CPSL. This is probably due to the fact that CPSL
does not have a formal semantics. Instead, it explicitly leaves important details to the
discretion of the implementation system designer. In addition, CPSL provides many
extensions to standard finite state transducers, most notably a complex disambigua-
tion policy and the ability to write rule actions in a Turing complete language through
calls to arbitrary user-defined functions. For these reasons, we do not directly compare
our framework against CPSL.

Finally, there is a body of research rooted in Allen’s seminal paper on interval alge-
bra [Allen 1983]. In particular, while spans can be viewed as intervals, and spanners
can hence be viewed as defining relations over intervals, Allen’s interval algebra fo-
cuses on reasoning over relationships between intervals, but is not concerned with
strings or string matching.

2. DOCUMENT SPANNERS

At its core, our focus system (SystemT) implements a textual query language (AQL)
that translates the input string into a collection of relations; in turn, those relations
are manipulated in a relational-database manner [Chiticariu et al. 2010]. The values
in those relations are spans of the input string. Here we model the creation of those
relations by the notion of a document spanner, which we formally define in this section.
In the following section, we discuss the representation of document spanners, as well
as extensions by relational operators. We begin with some preliminary concepts and
terminology.

2.1. String Basics

Strings and Spans. We fix a finite alphabet � of symbols. We denote by �∗ the set of
all finite strings over �, and by �+ the set of all finite strings of length at least one
over �. We denote by ε the empty string. A language over � is a subset of �∗. Let
s = σ1 · · · σn be a string with σ1, . . . , σn ∈ �. The length n of s is denoted by |s|. A span
identifies a substring of s by specifying its bounding indices. Formally, a span of s has

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:7

the form [i, j〉, where 1 ≤ i ≤ j ≤ n + 1. If [i, j〉 is a span of s, then s[i, j〉 denotes the
substring σi · · · σ j−1. Note that s[i,i〉 is the empty string, and that s[1,n+1〉 is s. We note
that the more standard notation would be [i, j), but we use [i, j〉 to distinguish spans
from intervals. For example, [1, 1) and [2, 2) are both the empty interval, hence equal,
but in the case of spans we have [i, j〉 = [i′, j ′〉 if and only if i = i′ and j = j ′ (and
in particular, [1, 1〉 �= [2, 2〉). We denote by Spans(s) the set of all the spans of s. Two
spans [i, j〉 and [i′, j ′〉 of s overlap if i ≤ i′ < j or i′ ≤ i < j ′, and are disjoint otherwise.
Finally, [i, j〉 contains [i′, j ′〉 if i ≤ i′ ≤ j ′ ≤ j.

Example 2.1. In a running example that we will use throughout the paper, we fix the
alphabet � = {A, a, B, b, } where we think of as representing a space between words.
Figure 1 shows two strings s and t in �∗. Later we discuss the tables in this figure. To
clarify the meaning of the spans we mention, we write the index under each character
of the strings. The span [22, 26〉 is a span of s (but not of t, since 22 > |t| + 1 = 12) and
we have s[22,26〉 = Abaa. Also, s[1,4〉 and t[1,4〉 are both Aaa.

Regular Expressions. Regular expressions over � are defined by the language

γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ ∗

where ∅ is the empty set, ε is the empty string, and σ ∈ �. Note that “∨” is the disjunc-
tion operator, “·” is the concatenation operator, and “∗” is the Kleene-star operator. We
use γ + as an abbreviation of γ · γ ∗. Moreover, by abuse of notation, if � = {σ1, . . . , σk},
then we use � itself as an abbreviation of the regular expression σ1 ∨ · · · ∨ σk. The
language recognized by a regular expression γ (i.e., the set of strings s ∈ �∗ that γ
matches) is denoted by L(γ). A language L over � is regular if L = L(γ) for some regular
expression γ .

String Relations. An n-ary string relation is a (possibly infinite) subset of (�∗)n. We
will refer to the following well-known classes of string relations: recognizable relations,
regular relations (sometimes also called synchronized relations), and rational relations.
Here, a k-ary string relation R is called recognizable if it is a finite union of Cartesian
products L1 × · · · × Lk, where each Li is a regular language over �. A regular string
relation is, informally, a relation that is recognized by an automaton with a head on
each string in the tuple of question, such that the heads advance in a synchronized
manner. A rational string relation is similarly defined, except that the heads can
advance in an asynchronous manner. We refer the reader to Barceló et al. [2012a] for
formal definitions of these classes, as well as a discussion on the relationships between
these classes. We denote by REC the class of all recognizable string relations, and by
RECk the class of all recognizable relations of arity k. Similarly, we denote by REG
(REGk) the class of all (k-ary) regular relations, and by RAT (RATk) the class of all
(k-ary) rational relations. It is known that REC1 = REG1 = RAT1 (they all give the
regular languages), and that RECk � REGk � RATk for all k > 1.

Span Relations. We fix an infinite set SVars of span variables, which may be assigned
spans. The sets �∗ and SVars are disjoint. For a finite set V ⊆ SVars of variables and
a string s ∈ �∗, a (V, s)-tuple is a mapping μ : V → Spans(s) that assigns a span of s
to each variable in V . If V is clear from the context, or V is irrelevant, we may write
just “s-tuple” instead of “(V, s)-tuple.” A set of (V, s)-tuples is called a (V, s)-relation. A
(V, s)-relation is also called a span relation (over s). Note that a span relation is always
finite, since there are only finitely many (V, s)-tuples (given that V and s are both
finite).

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:8 R. Fagin et al.

2.2. Document Spanners

A document spanner (or just spanner for short) is an operator that transforms a given
string into a span relation over that string. More formally, a spanner P is a function
that is associated with a finite set V of variables, and that maps every string s to a
(V, s)-relation P(s). We denote the set V by SVars(P). We say that a spanner P is n-ary
if |SVars(P)| = n.

Example 2.2. In our running example (started in Example 2.1), we use two span-
ners: a ternary spanner P1 and a binary spanner P2. Later, we will specify what exactly
each spanner extracts from a given string. For now, the span relations (tables) in Fig-
ure 1 show the results of applying the two spanners to the strings s and t (also in the
figure).

Following are some special types of spanners that we use throughout this article.

Boolean Spanners. A spanner P is Boolean if SVars(P) = ∅. In that case, P(s) = true
means that P(s) consists of the empty s-tuple, and P(s) = false means that P(s) = ∅.
If P is Boolean, then we say that P recognizes the language of strings that evaluate to
true.

Hierarchical Spanners. Let P be a spanner. Let s ∈ �∗ be a string, and let μ ∈ P(s)
be an s-tuple. We say that μ is hierarchical if for all variables x, y ∈ SVars(P) one of the
following holds: (1) the span μ(x) contains μ(y), (2) the span μ(y) contains μ(x), or (3)
the spans μ(x) and μ(y) are disjoint. As an example, the reader can verify that all the
tuples in Figure 1 are hierarchical. We say that P is hierarchical if μ is hierarchical
for all s ∈ �∗ and μ ∈ P(s). Observe that for two variables x and y of a hierarchical
spanner, it may be the case that, over the same string, one tuple maps x to a subspan
of y, another tuple maps y to a subspan of x, and a third tuple maps x and y to disjoint
spans. We denote by HS the class of all hierarchical spanners.

Universal Spanners. Let P be a spanner. We say that P is total on s if P(s) consists
of all the s-tuples over SVars(P). (Note that over a finite set of variables, there are only
finitely many s-tuples.) We say that P is hierarchically total on s if P(s) consists of
all the hierarchical s-tuples. Let Y ⊆ SVars be a finite set of variables. The universal
spanner over Y , denoted ϒY , is the unique spanner P such that SVars(P) = Y and P
is total on every s ∈ �∗. The universal hierarchical spanner over Y , denoted ϒH

Y , is
the unique spanner P such that SVars(P) = Y and P is hierarchically total on every
s ∈ �∗.

3. SPANNER REPRESENTATION

In our system of focus (SystemT), querying an input string s entails two steps (con-
ceptually) [Chiticariu et al. 2010]. In the first step, span relations over s are extracted
by standard string-oriented tools like regular expressions with capture variables or
dictionary matchers. In the second step, the final result is obtained by applying al-
gebraic operators to the relations of the first step. We model these two steps by two
corresponding types of representations for spanners. The first type is that of primitive
spanner representations. The second type extends the first type by including operators
of a relational algebra.

3.1. Primitive Spanner Representations

We introduce here three types of primitive spanner representations. The first is that
of regular-expression formulas that extend regular expressions by including variables.
The second and third are special automata that we call variable-stack and variable-set
automata.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:9

3.1.1. Regex Formulas. A regular expression with capture variables, or just variable
regex for short, is an expression in the following syntax that extends that of regular
expressions:

γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ ∗ | x{γ }. (1)

The added alternative is x{γ }, where x ∈ SVars. The abbreviations γ + and � that we
introduced for regular expressions naturally carry over to regex formulas. We denote by
SVars(γ) the set of variables that occur in γ . Before we formally define how a variable
regex represents a spanner, we give an example.

Example 3.1. We continue with our running example. Consider the variable regex
γ1 that is defined by

(�∗ ·)∗ · z{x{γ1stCap} · · y{γ1stCap}} · (· �∗)∗ (2)

where γ1stCap is the regular expression (A ∨ B) · (a ∨ b)∗. After we define the spanner
represented by γ1, it will turn out that γ1 has the result of P1 in Figure 1 on the strings
s and t. Note that SVars(γ1) = {x, y, z}.

We now formally define when a variable regex represents a spanner, and which
spanner is represented in that case. The definition is based on the notion of a parse
tree. In general, a tree is associated with an alphabet � of labels, and is recursively
defined as follows: if t1, . . . , tn are trees (where n ≥ 0) and λ ∈ �, then λ(t1 · · · tn) is a
tree.

Let � be the alphabet � ∪ SVars ∪ {ε,∨, ·, ∗}. Let γ be a variable regex, and let s be
a string. We use the following inductive definition. A tree t over the alphabet � is a
γ -parse for s if one of the following holds.

—γ = ε, s = ε, and t = ε().
—γ = σ ∈ �, s = σ , and t = σ ().
—γ = γ1 ∨ γ2, and t = ∨(t′) where t′ is either a γ1-parse or a γ2-parse for s.
—γ = γ1 · γ2, and t = ·(t1t2) where ti is a γi-parse for si (i = 1, 2) for some strings s1 and

s2 such that s = s1s2.
—γ = δ∗ and there are strings s1, . . . , sn (n ≥ 0) such that s = s1 · · · sn, t = ∗(t1 · · · tn),

and each ti is a δ-parse for si (i = 1, . . . , n).
—γ = x{δ} and t = x(tδ) where tδ is δ-parse for s.

Example 3.2. We continue with our running example. Figure 2(a) shows a γ1-parse
for t for the variable regex γ1 of Example 3.1 and the string t of Figure 1. As we did
with Figure 1, we write the index under each character.

Note that there is no parse tree for the variable regex ∅. Clearly, a string s matches
the regex γ , when variables are ignored, if and only if there exists a γ -parse for s.
In principle, a γ -parse t for s should determine one assignment for SVars(γ), as we
later define. But for that, we need t to have exactly one occurrence of each variable in
SVars(γ). So we restrict our variable regex to those that guarantee such a behavior of
t, a property we call functional.

Definition 3.3. A variable regex γ is functional if for every string s ∈ �∗ and γ -parse
t for s, each variable in SVars(γ) has precisely one occurrence in t.

Note that a variable regex can be functional even though it contains multiple occur-
rences of a variable. An example is the regex formula γ given by x{a} ∨ x{b}, which
has two occurrences of the variable x, although each γ -parse has only one occurrence
of x.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:10 R. Fagin et al.

Fig. 2. (a) A γ1-parse for t for the regex formula γ1 of (2) (Example 3.1) and the string t of Figure 1 (b) A
vstk-automaton A with �A� = ϒH

Y (top) and a vset-automaton B with �B� = ϒY (bottom) for Y = {y1, . . . , ym}.

Example 3.4. Consider again the variable regex γ1 of Example 3.1. Recall that
SVars(γ1) = {x, y, z}. Observe that in the γ1-parse of Figure 2(a), each variable in
SVars(γ1) has indeed exactly one occurrence. In fact, it can be easily verified that this
is the case for every γ1-parse. Consequently, γ1 is functional.

Although Definition 3.3 is nonconstructive, functionality is a property that can be
tested in polynomial time.

PROPOSITION 3.5. Whether a given variable regex is functional can be tested in poly-
nomial time.

PROOF. We introduce the following inductive definition. Let γ be a regex formula, and
let Y ⊆ SVars be a finite set of variables. We say that γ is syntactically Y -functional if
(at least) one of the following holds.

—γ = ∅.
—γ is ε or σ for some σ ∈ �, and Y = ∅.
—γ = γ1 ∨ γ2, where γ1 and γ2 are regex formulas that are both syntactically Y -

functional.
—γ = γ1 ·γ2, where γ1 and γ2 are regex formulas, and there is a subset Y1 of Y such that

γ1 is syntactically Y1-functional, and γ2 is syntactically Y2-functional for Y2 = Y \Y1.
—γ = δ∗, where δ is a regex formula without variables, and Y = ∅.
—γ = x{δ}, where x ∈ Y and δ is a regex formula that is syntactically (Y \{x})-functional.

A straightforward induction on the structure of γ shows that γ is functional if and
only if it is syntactically SVars(γ)-functional. Moreover, syntactic Y -functionality can
be tested in polynomial time, given γ and Y . Consequently, whether γ is functional can
be tested in polynomial time.

The variable regexes that represent spanners are those that are functional, and we
call those regex formulas.

Definition 3.6. A regex formula is a functional variable regex.

Let γ be a regex formula, and let p be a γ -parse for a string s. If v is a node of p, then
the subtree that is rooted at v naturally maps to a span pv of s. By μp we denote the

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:11

Fig. 3. A vstk-automaton A with �A� = �γ1� for the regex formula γ1 of (2) (Example 3.1).

assignment that maps each variable x to the span μp(x) = pv, where v is the unique
node of t that is labeled by x.

Example 3.7. Let p be the γ1-parse of t depicted in Figure 2(a), where γ1 is defined
in Example 3.1 and t is shown in Figure 1. The subtree of p rooted at the node labeled
x is shaded grey. We have μp(x) = [1, 4〉, μp(y) = [5, 8〉, and μp(z) = [1, 8〉. Hence, μp is
the t-tuple μ5 of Figure 1.

The spanner �γ � that is represented by the regex formula γ is the one where
SVars(�γ �) is the set SVars(γ) and where �γ �(s) is the span relation {μp |
p is a γ -parse for s}.

Example 3.8. Consider again the regex formula γ1 of Example 3.1, the strings s and
t of Figure 1, and the spanner P1 mentioned in that figure. The reader can verify that
�γ1�(s) = P1(s) and that �γ1�(t) = P1(t).

3.1.2. Variable-Stack Automata. In this section, we define an automaton representation of
a spanner. We call this automaton a variable-stack automaton, or just vstk-automaton
for short. Later, we will show that vstk-automata capture precisely the expressive
power of regex formulas (i.e., the two classes of spanner representations can express
the same set of spanners).

Formally, a vstk-automaton is a tuple (Q, q0, qf , δ), where: Q is a finite set of states,
q0 ∈ Q is an initial state, qf ∈ Q is an accepting state, and δ is a finite transition
relation consisting of triples, each having one of the forms (q, σ, q′), (q, ε, q′), (q, x �, q′)
or (q,�, q′), where q, q′ ∈ Q, σ ∈ �, x ∈ SVars, � is a special push symbol, and � is a
special pop symbol.

Example 3.9. Figure 3 is a representation of a vstk-automaton A. Each circle rep-
resents a state, the double circle represents an accepting state, and a label a on an edge
from q to q′ represents the transition (q, a, q′). Conventionally, as a shorthand notation,
we write the sequence a1, . . . , ak of labels on the edge from q to q′ instead of the k edges
(q, a1, q′), . . . , (q, ak, q′). Moreover, if � = {σ1, . . . , σm}, then we write the label � instead
of σ1, . . . , σm. Later, we will link the vstk-automaton A to our running example.

Let A be a vstk-automaton. We denote by SVars(A) the set of variables that occur in
the transitions of A. A configuration of a vstk-automaton A is a tuple c = (q, �v, Y, i),
where q ∈ Q is the current state, �v is a finite sequence of variables called the current
variable stack, Y ⊆ SVars(A) is the set of available variables, and i is an index in
{1, . . . , n + 1} (pointing to the next character to be read from s).

Let s = σ1 · · · σn be a string and let A be a vstk-automaton. A run ρ of A on
s is a sequence c0, . . . , cm of configurations, such that c0 = (q0, ε, SVars(A), 1), and

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:12 R. Fagin et al.

for all j = 0, . . . , m − 1 one of the following holds for c j = (qj, �v j, Yj, i j) and
c j+1 = (qj+1, �v j+1, Yj+1, i j+1).

(1) �v j+1 = �v j , Yj+1 = Yj , and either
(a) i j+1 = i j + 1 and (qj, sij , qj+1) ∈ δ (ordinary transition), or
(b) i j+1 = i j and (qj, ε, qj+1) ∈ δ (epsilon transition).

(2) i j+1 = i j , and for some x ∈ SVars(A), either
(a) �v j+1 = �v j · x, x ∈ Yj , Yj+1 = Yj \ {x} and (qj, x �, qj+1) ∈ δ (variable push), or
(b) �v j = �v j+1 · x, Yj+1 = Yj and (qj,�, qj+1) ∈ δ (variable pop).

An easy observation is that every configuration (q, �v, Y, i) in a run is such that �v and
Y do not share any common variable.

The run ρ = c0, . . . , cm is accepting if cm = (qf , ε,∅, n + 1). We let ARuns(A, s) denote
the set of all accepting runs of A on s. If ρ ∈ ARuns(A, s), then for each x ∈ SVars(A)
the run ρ has a unique configuration cb = (qb, �vb, Yb, ib) where x occurs in the current
version of �v (i.e., �vb) for the first time; and later than that ρ has a unique configuration
ce = (qe, �ve, Ye, ie) where x is occurs in the current version of �v (i.e., �ve) for the last
time; the span [ib, ie〉 is denoted by ρ(x). By μρ , we denote the s-tuple that maps each
variable x ∈ SVars(A) to the span ρ(x). The spanner �A� that is represented by A is
the one where SVars(�A�) is the set SVars(A), and where �A�(s) is the span relation
{μρ | ρ ∈ ARuns(A, s)}.

Example 3.10. Consider the vstk-automaton A of Figure 3, described in Exam-
ple 3.9. Observe that SVars(A) = {x, y, z}. Note that in a run ρ, when reaching the
final transition (q,�, q′) (the leftmost occurrence of � in the bottom row), there is only
one variable that is open, namely z. Hence, that transition can take place at most
once. Moreover, if ρ is accepting, then ρ must take that transition exactly once, since
otherwise z would not be closed.

Continuing with our running example, now consider again the regex-formula γ1
of (2), introduced in Example 3.1. The reader can verify that A and γ1 define the same
spanner, that is, �γ1� = �A�.

Example 3.11. The top part of Figure 2(b) depicts a single-state vstk-automaton A
where we have SVars(A) = Y , with Y = {y1, . . . , ym}. The reader can verify that �A�
is the universal hierarchical spanner ϒH

Y . In particular, this example shows that the
universal hierarchical spanners are expressible by vstk-automata.

3.1.3. Variable-Set Automata. A variable-set automaton (or vset-automaton) is defined to
be a tuple (Q, q0, qf , δ) like a vstk-automaton, except δ does not have triples (q,�, q′);
instead, δ has triples (q,� x, q′) where x ∈ SVars. We denote by SVars(A) the set of
variables that occur in the transitions of A.

The difference between the two types of automata is also in the definition of a
configuration and a run. In a vset-automaton, a set of variables is used rather than a
stack. More precisely, a configuration of a vset-automaton A is a tuple c = (q, V, Y, i),
where q ∈ Q is the current state, V ⊆ SVars(A) is the active variable set, Y ⊆ SVars(A)
is the set of available variables, and i is an index in {1, . . . , n + 1}.

For a string s = s1, . . . , sn, a run ρ of A on s is a sequence c0, . . . , cm of configurations,
where c0 = (q0,∅, SVars(A), 1), and for j = 0, . . . , m− 1 one of the following holds for
c j = (qj, Vj, Yj, i j) and c j+1 = (qj+1, Vj+1, Yj+1, i j+1).

(1) Vj+1 = Vj , Yj+1 = Yj , and either
(a) i j+1 = i j + 1 and (qj, sij , qj+1) ∈ δ (ordinary transition), or
(b) i j+1 = i j and (qj, ε, qj+1) ∈ δ (epsilon transition).

(2) i j+1 = i j and for some x ∈ SVars(A), either

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:13

(a) x ∈ Yj , Vj+1 = Vj ∪ {x}, Yj+1 = Yj \ {x}, and (qj, x �, qj+1) ∈ δ (variable insert),
or

(b) x ∈ Vj , Vj+1 = Vj \ {x}, Yj+1 = Yj and (qj,� x, qj+1) ∈ δ (variable remove).

Note that in a run, each configuration (q, V, Y, i) is such that V and Y are disjoint.
The run ρ = c0, . . . , cm is accepting if cm = (qf ,∅,∅, n+1). The definitions of ARuns(A, s)
and �A� are similar to those for a vstk-automaton (except that we replace the stack �v
with the set V).

Example 3.12. Consider again Figure 2(b). The bottom part depicts a single-state
vset-automaton B with SVars(B) = Y , where Y = {y1, . . . , ym}. The reader can verify
that �B� = ϒY . In particular, this example shows that the universal spanners are ex-
pressible by vset-automata. This example also shows that vset-automata can express
spanners that regex formulas and vstk-automata cannot. In particular, an easy obser-
vation (that we later state formally in Proposition 3.14) is that the spanner defined by
a regex formula, or a vstk-automaton, is necessarily hierarchical. But �B� is certainly
not hierarchical.

3.1.4. Primitive Spanner Representations. We have defined three types of spanner rep-
resentations. By RGX we denote the class of regex formulas, by VAstk we denote the
class of vstk-automata, and by VAset we denote the class of vset-automata. We will
refer to these three as our primitive spanner representations (to contrast with algebraic
extensions of these representations).

If SR is any class spanner representations, like the primitive classes RGX, VAstk, or
VAset, then �SR� represents the set of all the spanners representable by SR; that is,
�SR� = {�r� | r ∈ SR}. For example, �RGX� is the set of all the spanners �γ �, where γ is
a regex formula.

As mentioned in Example 3.12, every spanner defined by a regex formula or vstk-
automaton is hierarchical. In our terminology, it is stated as �RGX� ⊆ HS and �VAstk� ⊆
HS. In Example 3.12, we also mentioned that �VAset� �⊆ HS. Later, we will show that
�RGX� = �VAstk�. In fact, we will show that the class of spanners definable by a vstk-
automaton is precisely the class of hierarchical spanners definable by a vset-automaton,
or in our notation, �VAstk� = �VAset� ∩ HS.

3.2. Spanner Algebras

Consider a class SR of spanner representations (e.g., one of our primitive representa-
tions). We extend SR with algebraic operator symbols to form a spanner algebra. More
formally, each operator symbol corresponds to a spanner operator, which is a function
that takes as input a fixed-length sequence of spanners (usually one or two, depending
on whether the operator is unary or binary), and outputs a single spanner. We now
define the spanner operators we focus on in this article. Let P, P1 and P2 be spanners,
and let s be a string.

—Union. The union P1 ∪ P2 is defined when P1 and P2 are union compatible, that is,
SVars(P1) = SVars(P2). In that case, SVars(P1 ∪ P2) = SVars(P1) and (P1 ∪ P2)(s) =
P1(s) ∪ P2(s).

—Projection. If Y ⊆ SVars(P), then πY P is the spanner with SVars(πY P) = Y , where
πY P(s) is obtained from P(s) by restricting the domain of each s-tuple to Y .

—Natural Join. The spanner P1 � P2 is defined as follows. We have SVars(P1 � P2) =
SVars(P1) ∪ SVars(P2), and (P1 � P2)(s) consists of all s-tuples μ that agree with
some μ1 ∈ P1(s) and μ2 ∈ P2(s); note that the existence of μ implies that μ1 and
μ2 agree on the common variables of P1 and P2, that is, μ1(x) = μ2(x) for all x ∈
SVars(P1) ∩ SVars(P2).

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:14 R. Fagin et al.

—String selection. Let R be a k-ary string relation. The string-selection operator ς R

is parameterized by k variables x1, . . . , xk in SVars(P), and may then be written as
ς R

x1,...,xk
. If P ′ is ς R

x1,...,xk
P, then the span relation P ′(s) is taken to be the restriction of

P(s) to those s-tuples μ such that (sμ(x1), . . . , sμ(xk)) ∈ R.

Regarding the natural join, observe that here pairs of tuples are joined based on
having equal spans in shared variables. This is distinct from the natural join in query
languages for string databases [Bonner and Mecca 1998; Benedikt et al. 2003; Grahne
et al. 1999; Ginsburg and Wang 1998], where tuples are joined if they have the equal
substrings in shared attributes. Also observe that in the special case where P1 and P2
are union compatible, the spanner P1 � P2 produces the intersection P1(s)∩ P2(s) for the
given string s; in that case, we denote P1 � P2 also as P1 ∩ P2. As another special case,
if SVars(P1) and SVars(P2) are disjoint, then P1 � P2 produces the Cartesian product of
P1(s) and P2(s); in that case, we denote P1 � P2 also as P1 × P2.

In this work, we focus mainly on one particular string-selection operator, namely
the binary ς=. As defined previously, ς=

x,y P(s) restricts P(s) to those s-tuples μ with
sμ(x) = sμ(y). Later, we also consider other string selections (featuring other binary
string relations). We do not include the difference operator yet, but rather dedicate to
it a separate discussion in Section 5.

For clarity of presentation, we will abuse notation by using the operator symbol itself
to represent the spanner operator. As an example, if γ1 and γ2 are regex formulas, then
the expression γ1�γ2 is well formed, and it represents the spanner �γ1���γ2�. Similarly,
if A1 and A2 are vstk-automata then A1∪A2 is well formed assuming union compatibility,
that is, SVars(A1) = SVars(A2). Similarly, if A is a vset-automaton, then πY A is well
formed assuming Y ⊆ SVars(A), and similarly ς=

x,y A is well formed assuming x, y ∈
SVars(A).

Example 3.13. We continue with our running example. Let γ12 be the regex formula
that captures all spans x1 and x2 such that x1 ends before x2 begins, that is

γ12(x1, x2) def= �∗ · x1{�∗} · �∗ · x2{�∗} · �∗

The following algebraic expression is denoted as γ2.

πx1,x2

(
ς=

y1,y2

(
γ1(x1, y1, z1) � γ1(x2, y2, z2) � γ12(x1, x2)

))
,

where we use γ1(xi, yi, zi) as the regex-formula that is obtained from γ1 of (2)
(Example 3.1) by replacing x, y and z with xi, yi and zi, respectively. Observe that
γ2 selects all the spans x1 and x2 that occur in tuples of γ1, such that the corresponding
y1 and y2 span the same substrings (though y1 and y2 themselves are not required to
be equal as spans), and moreover, x1 ends before x2 begins. Consider the strings s and
t in Figure 1. The reader can verify that �γ2� has the output of P2 (also shown in the
figure) for these two strings.

A spanner algebra is a finite set of spanner operators. If SR is a class of spanner
representations and O is a spanner algebra, then SRO denotes the class of all the
spanner representations defined by applying (compositions of) the operators in O to
the representations in SR. In other words, SO is the closure of SR under O (when O is
taken as a set of operator symbols); consequently, �SRO� is the closure of �SR� under O
(when O is now taken as a set of spanner operators). For example, one of the algebras
we later explore is VA{∪,π,�,ς=}

set . As another example, the expression γ2 of Example 3.13
is in RGX{π,�,ς=}.

We conclude this section with the following proposition, which relates the notion of
hierarchical spanners to some of the definitions we gave here.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:15

PROPOSITION 3.14. Let SR be a class of spanner representations.

(1) If SR is RGX or VAstk, then every spanner represented in SR is hierarchical (i.e.,
�SR� ⊆ HS). On the other hand, VAset contains nonhierarchical spanners.

(2) The operators union, projection and string selection preserve the property of being
hierarchical; that is, if �SR� ⊆ HS, then �SR{∪,π,ς R}� ⊆ HS. On the other hand, the
natural join does not preserve the property of being hierarchical; that is, there are
hierarchical spanners P1 and P2, such that P1 � P2 is nonhierarchical.

PROOF. We begin with Part 1. The fact that �SR� ⊆ HS, when SR is one of RGX and
VAstk, follows straightforwardly from the way a spanner is defined in these representa-
tions. An example of a vset-automaton that represents a non-hierarchical spanner was
given in Example 3.12.

For Part 2, the fact that union, projection and string selection preserve the property
of being hierarchical follows straightforwardly from the definitions of these operators.
Finally, a simple example of hierarchical spanners P1 and P2, such that P1 � P2 is
non-hierarchical is P1 = ϒH

X and P2 = ϒH
Y , where X and Y are nonempty, disjoint sets

of variables (hence, P1 � P2 is a Cartesian product).

4. REGULAR AND CORE SPANNERS

In this section, we define the classes of regular and core spanners, and study their
relative expressive power.

4.1. Regular Spanners

We call a spanner regular if it is definable by a vset-automaton. In this section, we
explore expressiveness aspects of the class of regular spanners, and of its restriction to
the hierarchical spanners.

Observe that vstk-automata, vset-automata and NFAs are basically the same objects
in the Boolean case. In particular, a language L ⊆ �∗ is recognized by some Boolean
vstk-automaton if and only if it is recognized by some Boolean vset-automaton if and
only if L is regular. Hence, the results of this section are of interest only in the non-
Boolean case.

Key constructs that we later utilize for establishing our results here are those of
a transition graph and the special case of a path union, both introduced in the next
section.

4.1.1. Transition Graphs and Path Unions. We define two types of transition graphs, which
function similarly to vstk-automata and vset-automata, respectively, except that in a
single transition a whole substring (matching a specified regular expression) can be
read, and moreover, every transition to a non-accepting state involves a single operation
of opening or closing a variable. Those graphs are similar to the extended automata
obtained by the known state-removal technique, that is used to convert an automaton
into a regular expression [Linz 2001]. Recall that, throughout this article we fix the
alphabet � for the input string language.

A variable-stack transition graph, or vstk-graph for short, is a tuple G = (Q, q0, qf , δ)
defined similarly to a vstk-automaton, except that now δ consists of edges of three forms:
(q, γ, x �, q′), (q, γ,�, q′) and (q, γ, qf); here, q, q′ ∈ Q \ {qf }, γ is a regular expression
over �, and x ∈ SVars. Note that the accepting state qf has only incoming transitions,
and none of these transitions involve a variable. For example, the middle and bottom
graphs in Figure 6 are vstk-graphs.

As usual, SVars(G) denotes the set of variables that occur in G. A configuration
c = (q, �v, Y, i) is defined exactly as in the case of a vstk-automaton, but the definition
of a run changes: a run ρ of G on a string s is a sequence c0, . . . , cm of configurations,

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:16 R. Fagin et al.

Fig. 4. An illustration of a vstk-path union or a vset-path union.

such that for all j = 0, . . . , m − 1, the configurations c j = (qj, �v j, Yj, i j) and c j+1 =
(qj+1, �v j+1, Yj+1, i j+1) satisfy the following. First, i j ≤ i j+1. Second, one of the following
holds.

—δ contains a tuple (q, γ, x �, q′), such that q = qj , the string s[i j ,i j+1〉 is in L(γ), and
q′ = qj+1; moreover, x ∈ Yj , �v j+1 = �v j ·x and Yj+1 = Yj \{x}. Semantically, the variable
x opens right after i j+1.

—δ contains a tuple (q, γ,�, q′), such that q = qj , the string s[i j ,i j+1〉 is in L(γ), and
q′ = qj+1; moreover, �v j = �v j+1 · x and Yj+1 = Yj for some variable x. Semantically,
the variable x closes right after i j+1.

—δ contains a tuple (q, γ, qf), such that q = qj , the string s[i j ,i j+1〉 is in L(γ), and
qf = qj+1; moreover, �v j = �v j+1 and Yj+1 = Yj .

The definition of an accepting configuration is similar to that for vstk-automata. More-
over, the definitions of ARuns(G, s) and �G� are similar to those of ARuns(A, s) and �A�
in the case of a vstk-automaton A.

A vstk-graph G = (Q, q0, qf , δ) is a vstk-path if we can write Q as {q0, q1, . . . , qk = qf }
where δ contains exactly k edges: from q0 to q1, from q1 to q2, and so on, until qk. A
vstk-path is consistent if the variables open and close in a balanced manner (which we
define in the natural way like grammatical parentheses). We say that G is a vstk-path
union if G is the union of consistent vstk-paths, such that: (1) every two vstk-paths
have the same set of variables, namely SVars(G), and (2) every two vstk-paths share
precisely the states q0 and qf , as illustrated in Figure 4 (where we omit the opening
and closing of variables). For example, the bottom graph of Figure 6 is a vstk-path
union.

Similarly to the vstk case, we define a vset-graph to be a variation of a vset-
automaton. In particular, ARuns(G, s) and �G� are now defined when G is a vset-graph.
Also similarly we define a vset-path, a consistent vset-path (where parenthetical bal-
ance is not required, but every variable needs to be opened and later closed exactly
once), and a vset-path union.

By VGstk and VGset we denote the set of all vstk-graphs and vset-graphs, respectively,
and by PUstk and PUset we denote the class of vstk-path unions and the class of vset-path
unions, respectively.

4.1.2. Relative Expressive Power. We can now give some results on the (relative) expres-
sive power of the regular spanners. A key lemma is the following.

LEMMA 4.1. The following hold.

(1) Every vstk-automaton can be translated into a vstk-graph and vice-versa; that is:

�VAstk� = �VGstk�.

(2) Every vset-automaton can be translated into a vset-graph and vice-versa; that is,

�VAset� = �VGset�.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:17

Fig. 5. Contraction of an automaton state q.

PROOF. We prove only Part 1, since the proof of Part 2 is similar. We first prove
that every vstk-automaton can be translated into a vstk-graph. Let A = (Q, q0, qf , δ)
be a vstk-automaton. We will transform A into a vstk-graph G. By using extra empty
transitions (ε-transitions), we can assume that Q is the disjoint union of two sets Qs
and Qv, such that:

—every triple (q, τ, q′) ∈ δ, where τ is either ε or a symbol in �, satisfies q′ ∈ Qs;
—every triple (q, x �, q′) ∈ δ with x ∈ SVars, as well as every triple (q,�, q′), satisfies

q′ ∈ Qv.

So, we make that assumption. By a similar argument, we further assume that q0 has
no incoming edges (i.e., triples with q0 as the third element), that qf has no outgoing
edges (i.e., triples with qf as the first element), and that q0 and qf are both in Qs.

Next, we make use of a slight modification of the well-known state-removal proce-
dure [Linz 2001] for translating an automaton into a regular expression. Before giving
our modification, we briefly describe the original procedure. Throughout the execution
of this procedure, we allow the automaton to have regular expressions on edges, and
we repeatedly contract (remove) states, leaving only q0 and qf in the end. When a state
q is contracted, we consider every edge e from an incoming neighbor p of q to an outgo-
ing neighbor r of q (we assume that such an edge e always exists, since its expression
could be ∅); we then update the regular expression on that edge to accommodate the
contraction of v. For illustration, see Figure 5, and for more details see Linz [2001].

Here, when A in a vstk-automaton, we apply the very same procedure with one
exception: we contract all the states in Qs except for qs and qf , and none of the states
in Qv. Clearly, in the end, the result is a vstk-graph.

For illustration, the top box of Figure 6 depicts an example of the vstk-automaton A,
and the middle box depicts the resulting vstk-graph. The states of Qv are colored grey.

The other direction, that every vstk-graph can be translated into a vstk-automaton, is
straightforward. Assume that G = (Q, q0, qf , δ) is a vstk-graph. Then, we simply replace
every regular expression γ with a collection of vstk-automaton triples by injecting an
ordinary automaton (with a fresh set of states) that corresponds to the expression γ .

LEMMA 4.2. The following holds:

(1) Every vstk-graph can be translated into a vstk-path unions, that is,
�VGstk� = �PUstk�.

(2) Every vset-graph can be translated into a vset-path unions, that is,
�VGset� = �PUset�.

PROOF. Again, we will prove only Part 1, since the proof of Part 2 is similar. We need
to prove that every vstk-graph G can be translated into a vstk-path union G′. So, let
G = (Q, q0, qf , δ) be a vstk-graph. Let P(G) be the set of all the paths from q0 to qf in
G. Even though G is finite, it could happen that P(G) is infinite, because of the possible
presence of cycles in G. We view P(G) as a collection of vstk-paths. Let Pc(G) be the

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:18 R. Fagin et al.

Fig. 6. Translating a vstk-automaton into a vstk-graph and then into a vstk-path union.

subset of P(G) that consists of all the vstk-paths P, such that: (1) SVars(P) = SVars(G),
and (2) P is consistent. The following are easy observations.

(1) Pc(G) is finite (since every path in Pc(G) has precisely 2k + 1 edges, where k is the
number of variables in G).

(2) �G� = ⋃
P∈Pc(G)�P�. Indeed, obviously, �G� ⊇ ⋃

P∈Pc(G)�P�. Moreover, since, by def-
inition of run of a vstk-automaton, every variable must be opened and closed in a
run of G and since this must happen in a hierarchical manner, every run of G must
also be a run of some P ∈ Pc. Therefore, �G� ⊆ ⋃

P∈Pc(G)�P�.

So, we construct the vstk-path union G′ by simply merging the first state of every
path into the single initial state q0, and merging the last state of every path into the
single accepting state qf , while treating each path as if its set of states is disjoint
from that of any other path, except for the first and last states (namely q0 and qf). For
illustration, the bottom box of Figure 6 depicts an example of the vstk-path union G′,
when starting with the vstk-graph G from the middle box. Due to Observation 1, the
resulting G′ is indeed a (finite) vstk-path union, and due to Observation 2, we have
that �G� = �G′�. This completes the proof.

By combining Lemmas 4.1 and 4.2, we get the following.

LEMMA 4.3. The following hold.

(1) Every spanner definable by a vstk-automaton is definable by a vstk-path union and
vice-versa; that is, �VAstk� = �PUstk�.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:19

(2) Every spanner definable by a vset-automaton is definable by a vset-path union and
vice-versa; that is, �VAset� = �PUset�.

Our first theorem states that regex formulas and vstk-automata have the same
expressive power.

THEOREM 4.4. A spanner is definable by a vstk-automaton if and only if it is definable
by a regex formula; that is, �VAstk� = �RGX�.

PROOF. We first prove that �VAstk� ⊆ �RGX�. Let A be a vstk-automaton. Part 1 of
Lemma 4.2 implies that A can be translated into a vstk-path union. Converting a
consistent vstk-path into an equivalent regex formula is straightforward—every state
with an incoming x � becomes “·x{” and every state with an incoming � becomes “}·.”
Hence, translating a vstk-path union into a regex formula is also straightforward using
the disjunction operator.

Next, we prove that �RGX� ⊆ �VAstk�. This is done by a straightforward adaptation
of the standard construction by Thompson (see, e.g., Linz [2001]), namely, incremental
construction of an automaton from a regular expression through a bottom-up traversal
of the parse of a regular expression.

Next, we prove that the spanners definable by vstk-automata are precisely the span-
ners that are both regular and hierarchical. We do so by combining Lemma 4.3 with
the following lemma.

LEMMA 4.5. If P is a vset-path such that �P� is hierarchical, then there is a vstk-path
P ′ such that �P ′� = �P�.

PROOF. Let P be a vset-path such that �P� is hierarchical. We denote P as follows:

qs[γ0] → v1q1[γ1] → · · · → vkqk[γk] → vk+1qk+1[γk+1] → qf .

where qs, qf and the qi are the states, each γi is the regular expression on the edge
between its preceding and following states, and each vi is either x � or � x for some
variable x ∈ SVars(P). We say that.

—vi precedes v j if i < j;
—vi weakly precedes v j if either i ≤ j or each of the regular expressions γl after v j and

before vi is equivalent to ε;
—vi strongly precedes v j if vi precedes v j and v j does not weakly precede vi (i.e., some

regular expression γl after vi and before v j is not equivalent to ε).

We now define two relations, � and �, over SVars(P). Let x and y be variables in
SVars(P). We define.

—x � y if x � weakly precedes y � and � y weakly precedes � x;
—x � y if x and y are incomparable by � (i.e., neither x � y nor y � x holds) and x �

precedes y �.

Intuitively, x � y says that it is possible to reorder the operations of opening and
closing the variables x and y so that y opens and closes inside the span where x opens
and closes. Observe the following. First, every x and y are comparable by exactly one
of � and �. Second, if x � y, then x � strongly precedes y � and � x strongly precedes
� y. Consequently, from the fact that P is hierarchical we conclude that � x weakly
precedes y �; otherwise, we can construct a counterexample (i.e., a string s and an
output s-tuple that is not hierarchical) by replacing each regular expression γl with a
string that is nonempty whenever possible. Another observation is that � is a partial
order (regardless of P being hierarchical); we fix a linear extension � of �.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:20 R. Fagin et al.

Fig. 7. A vset-automaton A illustrating the problem with naively eliminating variables.

We define the order � over the operations vi as follows. For all variables x and y, we
have.

—if x � y, then (x �) � (� x) � (y �) � (� y).
—if x � y, then (x �) � (y �) � (� y) � (� x).

From these observations, we conclude that � is a linear order over the operations vi.
Let P ′ be obtained from P by reordering the operations vi according to �. Observe that
to obtain P ′, we switched between operations only when all the regular expressions in
between are equivalent to ε. Consequently, we have not changed the semantics (i.e.,
the spanner defined by) P, or in other words, �P ′� = �P�. Moreover, the operations in
P ′ are balanced in a hierarchical manner, and consequently, by replacing each � x with
� we get an equivalent vstk-path.

We then get the following theorem.

THEOREM 4.6. A spanner is definable by a vstk-automaton if and only if it is both
regular and hierarchical; that is, �VAstk� = �VAset� ∩ HS.

Next, we prove that union, projection and natural-join operators do not increase
the expressive power of vset-automata. We begin with the union operator, which is
straightforward to handle due to the fact that a vset-automaton is allowed to have
ε-transitions. Therefore, we omit the proof of the following lemma.

LEMMA 4.7. �VA{∪}
set� = �VAset�.

Next, we consider the projection operator.

LEMMA 4.8. �VA{π}
set � = �VAset�.

PROOF. Let A be a vset-automaton, and let Y be a subset of SVars(A). We need to
construct an automaton A′ such that �A′� = �πY A�. One would be tempted to believe
that the construction of A is straightforward: simply ignore the variables that are not in
Y by replacing the transitions that involve them with empty transitions. However, this
operation may result in a vset-automaton A′′ such that �A′′� is actually a strict superset
of �πY A�, since the need to assign spans to all the variables in SVars(A) restricts the
set of accepting paths. We illustrate this issue next.

Consider the vset-automaton Aof Figure 7, and suppose that Y = {x}. This automaton
maps only ab and ba to nonempty sets of assignments (where in each x is assigned the
span of a and y is assigned the span of b). In particular, �A� maps the string a to the
empty set of assignments, and so does �πY A�. But if we replaced y � with ε and � y with
ε, then the resulting automaton A′′ would be such that �A′′� maps a to a nonempty set
of assignments, namely the singleton mapping x to [1, 2〉.

Nevertheless, it is easy to verify that this simplistic approach (i.e., simulating pro-
jection by removing variables in a straightforward manner) would work correctly on
a vset-path union; the only difference would be that some obvious node contractions
would need to take place to eliminate the new states that involve no opening or closing

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:21

Fig. 8. Two vset-automata with equal spanners.

of variables. Consequently, we get the following procedure to push πY into A. First,
translate A into a vset-path union G with �A� = �G�, which we can do according to
Lemma 4.3. Second, apply the projection to G and get the graph G′ with �G′� = πY �G�.
Finally, translate G′ into a vset-automaton A′ with �A′� = �G′�, which we can do, again
by Lemma 4.3. We then get the vset-automaton A′ with �A′� = �πY A�, as required.

The final operator we consider is the natural join. This proof involves a subtlety. The
expected approach is similar to intersecting two NFAs: a vset-automaton for A1 � A2
runs on A1 and A2 in parallel. Moreover, when a variable x is common to both automata,
the two parallel runs must open and close x together (after all, x must be the same
span in both runs in taking the join). This approach, however, fails, for a subtle reason.
As an example, A1 and A2 of Figure 8 are such that �A1� = �A2� = �A1 � A2�. However,
our construction for A1 and A2 will result in the empty spanner, since A1 requires x to
open before y (with an epsilon transition in between), and A2 requires x to open after y.
We solve this problem by converting A1 and A2 into a normalized form where common
tuples necessarily correspond to “similar” runs (and we will again use Lemma 4.3 for
that). More precisely, we use the notion of a lexicographic vset-automaton, which we
define next.

Let s ∈ �∗ be a string, and let μ be a (V, s)-tuple for some finite set V of variables. A
V -operation is an expression of the form x � or � x, where x ∈ V . If μ(x) = [i, j〉, then
we define pos(x �) = i and pos(� x) = j. A storyline of μ is a sequence λ = 〈o1, . . . , om〉
such that

—o1, . . . , om consists of all the V -operations, without repetition;
—For all x ∈ V , the operation x � occurs before � x;
—For all V -operations o and o′, if pos(o) < pos(o′), then o occurs before o′ in λ.

Observe that whenever pos(o) = pos(o′) and o and o′ involve different variables, we can
switch between o and o′ and still get a storyline. In particular, an assignment can have
multiple storylines.

As an example, suppose that V = {x, y, z} and that μ(x) = [1, 5〉, μ(y) = [1, 3〉 and
μ(z) = [3, 5〉. Following are some of the storylines for s.

—λ1 = 〈x �, y �,� y, z�,� z,� x〉.
—λ2 = 〈y �, x �,� y, z�,� z,� x〉.
—λ3 = 〈y �, x �, z�,� y,� z,� x〉.
—λ4 = 〈x �, y �,� y, z�,� x,� z〉.

We denote by SL(μ) the set of all storylines for μ. Let A be a vset-automaton with
SVars(A) = V . For a run ρ ∈ ARuns(A, s), we denote by sl(ρ) the sequence of V -
operations of ρ, in their chronological order.

We fix a linear order � on the set of all operations x � and � x, such that for every
variable y we have y � � � y. We extend � to the set of all storylines, lexicographically. A
story line λ is said to be �-minimal for μ if λ � λ′ for all λ′ ∈ SL(μ). As an example, sup-
pose that x � � � x � y � � � y � z� � � z. Then storyline λ4 from our previous example

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:22 R. Fagin et al.

Fig. 9. An example of the transformation of a vset-path P into a lexicographic vset-path union G.

is �-minimal for μ. Since � is a linear order over the storylines, every s-tuple μ has a
unique �-minimal storyline; so we refer to this storyline as the minimal storyline of μ.

Let Abe a vset-automaton. We say that A is lexicographic if for all strings s ∈ �∗ and
s-tuples μ ∈ A(s), the set ARuns(A, s) contains a run ρ such that sl(ρ) is the minimal
storyline of μ.

LEMMA 4.9. If A is a vset-automaton, then there is a lexicographic vset-automaton
A′ such that �A� = �A′�.

PROOF. We naturally extend the definition of sl(ρ) to the case where ρ is a run of a
vset-graph. We also define a vset-graph to be lexicographic similarly to the case of a
vset-automaton. Let P be a vset-path. We will prove that there exists a lexicographic
vset-path union G, such that �P� = �G�. This is enough, for the following reason.
Lemma 4.3 states that a vset-automaton A can be translated into a path-union U . We
show here that every path P of U can be translated into a lexicographic vset-path
union G, and consequently, we can translate U into a lexicographic vset-path union U ′.
Finally, it is an easy observation that U ′ (just like any vset-graph) can be translated
into a vset-automaton in a storyline-preserving manner.

Recall that the edges of the vset-path P contain regular expressions γ . Let G′ be the
vset-path union that consists of all the paths P ′ that are obtained from P by replacing
each γ with γ ′ where;

—γ ′ = γ if ε /∈ L(γ),
—γ ′ is either γ ′′ or ε if ε ∈ L(γ), where γ ′′ is a regular expression such that L(γ ′′) =

L(γ) \ {ε}. Note that γ ′′ can be avoided if L(γ) = {ε} (since then γ ′′ is empty).

(In the second case, G′ gets two paths, one with γ ′ as γ ′′, and one with γ ′ as ε.) Notice
that, even though G′ can be exponentially larger than P, we still have �G′� = �P�.

Next, we obtain G from G′ by applying the following operation to G′ until we can no
longer change it. Find an edge e of G′ that emanates from an operation o to an operation
o′, such that o′ � o, and the regular expression on e is ε; then switch between o and o′.

For illustration, Figure 9 shows an example of the vset-path P (top box), and the
resulting vset-path union G (bottom box). In this example we assume that x � � � x �
y � � � y. Note that the top path in G is obtained from P by replacing b∗ with ε, and
switching between y � and x �. The bottom path in G is obtained from P by replacing
b∗ with b+, and no switching took place. Also note that we never switched between � y
and � x, since the regular expression between them (namely b) does not accept ε.

Easy observations are that this switching process terminates, and that the result-
ing G satisfies �G� = �G′�. To complete the proof, we need to show that G is indeed

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:23

lexicographic. So, let ρ be a run of G, and let λ be sl(ρ). Then, ρ is a run over one of the
vset-paths that comprise G, say P. Suppose that o and o′ are two consecutive operations
in λ that we can switch between and still retain a storyline for μρ . This means that o
and o′ involve different variables, and pos(o) = pos(o′). To prove that G is lexicographic,
we need to show that o � o′. The fact that pos(o) = pos(o′) means that the span between
o to o′ is empty. So, it must be the case that the regular expression in the P, between o
and o′, is ε, since no other regular expression in G accepts ε. Consequently, o � o′ must
hold, or otherwise o′ � o, and we can still switch between o and o′ (in contradiction to
the fact that our switching operation is applied until no change is possible).

LEMMA 4.10. Let A1 and A2 be two lexicographic vset-automata. There is a vset-
automaton A, such that �A� = �A1 � A2�.

PROOF. Let A1 = (Q1, q0
1 , q f

1 , δ1) and A2 = (Q2, q0
2 , q f

2 , δ2) be two vset-automata. We
will construct a vset-automaton A such that �A� = �A1� � �A2�. Let Y1 = SVars(A1) and
Y2 = SVars(A2). The construction is similar to the construction of the intersection of
two NFAs: we run on both automata in parallel, making only steps that are allowed by
both automata. The difference is in handling the variables. When A1 wants to open or
close a variable in Y1 \ Y2, we allow it to do so without a state change for A2. Similarly,
when A2 wants to open or close a variable in Y2 \Y1, we allow it to do so without a state
change for A1. However, a variable in Y1∩Y2 must be opened and closed simultaneously
by both automata. Next, we give a more formal construction of A.

We define A = (Q, q0, q f , δ) where

—Q = Q1 × Q2;
—q0 = 〈q0

1 , q0
2 〉; and

—q f = 〈q f
1 , q f

2 〉.
—δ has the following transitions.

(i) (〈q1, q2〉, σ, 〈q′
1, q′

2〉) whenever σ ∈ �, (q1, σ, q′
1) ∈ δ1 and (q2, σ, q′

2) ∈ δ2.
(ii) (〈q1, q2〉, ε, 〈q′

1, q′
2〉) whenever (1) (q1, ε, q′

1) ∈ δ1 and q2 = q′
2, or (2) q1 = q′

1 and
(q2, ε, q′

2) ∈ δ2.
(iii) (〈q1, q2〉, x �, 〈q′

1, q′
2〉) whenever one of the following holds:

(1) x ∈ Y1 \ Y2, (q1, x �, q′
1) ∈ δ1 and q2 = q′

2;
(2) x ∈ Y2 \ Y1, q1 = q′

1 and (q2, x �, q′
2) ∈ δ2.

(iv) (〈q1, q2〉,� x, 〈q′
1, q′

2〉) whenever one of the following holds:
(1) x ∈ Y1 \ Y2, (q1,� x, q′

1) ∈ δ1 and q2 = q′
2;

(2) x ∈ Y2 \ Y1, q1 = q′
1 and (q2,� x, q′

2) ∈ δ2.
(v) (〈q1, q2〉, x �, 〈q′

1, q′
2〉) whenever we have x ∈ Y1 ∩ Y2 and (qi, x �, q′

i) ∈ δi for
i = 1, 2.

(vi) (〈q1, q2〉,� x, 〈q′
1, q′

2〉) whenever we have x ∈ Y1 ∩ Y2 and (qi,� x, q′
i) ∈ δi for

i = 1, 2.

The proof that �A� = �A1� � �A2� has two directions. To show that �A� ⊆ �A1� � �A2�, we
split a run of A on a string s into two consistent runs of A1 and A2. This is straightfor-
ward, and omitted.

To show that �A1� � �A2� ⊆ �A�, let s ∈ �∗ be a string, and let μ1 ∈ A1(s) and
μ2 ∈ A2(s) be two s-tuples that agree on the common variables. Let μ be the s-tuple
that produces all the assignments of both μ1 and μ2. We need to show the existence of
a run ρ ∈ ARuns(A, s) that produces μ. Let ρ1 ∈ ARuns(A1, s) and ρ2 ∈ ARuns(A2, s) be
runs for μ1 and μ2, respectively. It is easy to construct the desired run ρ by a simple
combination of ρ1 and ρ2, if we assume that sl(ρ1) and sl(ρ2) are consistent with each
other: if an operation o occurs before o′ in ρ1 and both o and o′ are in ρ2, then o should
occur before o′ in ρ2 as well. We omit the obvious details of this construction in this

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:24 R. Fagin et al.

case. But generally, sl(ρ1) and sl(ρ2) need not be consistent with each other. So here,
we use the assumption that A1 and A2 are both lexicographic, and select ρ1 and ρ2 as
these with the minimal storylines; so now, sl(ρ1) and sl(ρ2) are indeed consistent.

By combining Lemmas 4.9, and 4.10, we get the following lemma.

LEMMA 4.11. �VA{�}
set � = �VAset�.

By combining Lemmas 4.7, 4.8, and 4.11, we get the following theorem.

THEOREM 4.12. The class of regular spanners is closed under union, projection and
natural join; that is, �VA{∪,π,�}

set � = �VAset�.

Finally, we prove that to express all regular spanners, it suffices to enrich the vstk-
automata with union, projection and join. We use the following lemma.

LEMMA 4.13. �VAset� ⊆ �VA{∪,π,�}
stk �.

PROOF. We will prove the following. Let P be a consistent vset-path. Then there is
an expression E in RGX{π,�}, such that �P� = �E�. That suffices for proving the lemma,
since Lemma 4.3 states that every vset-automaton can be converted into a union of
consistent vset-paths, and Theorem 4.4 states that regex formulas and vstk-automata
are equivalent in terms of expressive power.

We denote P in the following natural way:

qs[γ0] → v1q1[γ1] → · · · → vkqk[γk] → vk+1qk+1[γk+1] → qf ,

where qs, qf and the qi are the states, each γi is the regular expression on the edge
between its preceding and following states, and each vi is the operation in {x �,� x} for
some variable x, that takes place when entering qi.

We first construct a regex formula γ . The spanner �γ � is not equivalent to �P� (and
in fact has different variables), but later we will join �γ � with other regex-defined
spanners (and apply needed projection) to get a spanner that is indeed equivalent to
�P�.

The variables of γ have the form yC
O, where O and C are (disjoint) subsets of SVars(P).

In a run of P, the set O represents the set of variables of P that are open (i.e., have
been opened and not closed yet), and C represents the set of variables of P that are
closed (i.e., have been opened and later closed). The regex-formula γ is the following:

yC0
O0

{γ0} · yC1
O1

{γ1} · yC2
O2

{γ2} · · · yCk
Ok

{γk} · yCk+1
Ok+1

{γk+1},
The Oi and Ci are inductively defined as follows.

—O0 and C0 are both ∅.
—For 1 ≤ i ≤ k + 1, we consider two cases:

—If vi is x �, then Oi = Oi−1 ∪ {x} and Ci = Ci−1.
—If vi is � x, then Oi = Oi−1 \ {x} and Ci = Ci−1 ∪ {x}.

As an example, suppose that P is the following vset-path:

qs[γ0] → x � q1[γ1] → z� q2[γ2] →� x q3[γ3] →� z q4[γ4] → qf . (3)

Then γ will be the following regex formula.

y∅
∅{γ0} · y∅

{x}{γ1} · y∅
{x,z}{γ2} · y{x}

{z} {γ3} · y{x,z}
∅ {γ4}. (4)

An important observation about our construction of γ is that for every variable
x ∈ SVars(P), there are indices i and j with i ≤ j, such that the variables yC

O with
x ∈ O form the sequence yCi

Oi
, . . . , yC j

Oj
.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:25

Let x be a variable in SVars(P). Let yCi
Oi

, . . . , yC j

Oj
be the sequence of yC

O with x ∈ O.
We now construct a new regex-formula γx that expresses the spanner �γx� with the
following two properties:

—SVars(�γx�) = {x, yCi
Oi

, . . . , yC j

Oj
};

—the spanner �γx� produces every assignment where the spans assigned to every yCl
Ol

and yCl+1
Ol+1

are consecutive and adjacent, for l ∈ {i, . . . , j − 1}, and moreover, x is the

span that contains all the yCl
Ol

for l ∈ {i, . . . , j}.
More formally, γx can be defined by the following regex-expression.

�∗ · x
{
yCi

Oi
{�∗} · · · yC j

Oj
{�∗}} · �∗.

For example, consider again the vset-path P of (3) and the resulting γ of (4). For the
variable z, the regex formula γz is the following:

�∗ · z
{
y∅
{x,z}{�∗} · y{x}

{z} {�∗}} · �∗.

Let SVars(P) = {x1, . . . , xn}. We construct a spanner F in �RGX{π,�}�, equivalent to
�P�, by the following expression:

F def= πSVars(P)
(
�γ � � �γx1� � · · · � �γxn�

)
.

By following our construction, one can verify that, indeed, we have F = �P�.

We then obtain the following theorem.

THEOREM 4.14. �VA{∪,π,�}
stk � = �VA{∪,π,�}

set � = �VAset�.

PROOF. The proof is by the following argument.

�VA{∪,π,�}
stk � ⊆ �VA{∪,π,�}

set � = �VAset� ⊆ �VA{∪,π,�}
stk �.

The first containment is due to Theorem 4.6, the equality is due to Theorem 4.12, and
the second containment is due to Lemma 4.13.

4.1.3. Simulation of String Relations. Let R be a k-ary string relation, and let C be a class
of spanners. We say that R is selectable by C if for every spanner P ∈ C and sequence
�x = x1, . . . , xk of variables in SVars(P), the spanner ς R

�x P is also in C. Let �x = x1, . . . , xk
be a sequence of span variables, and let X = {x1, . . . , xk}. The R-restricted universal
spanner over �x, denoted ϒ R

�x , is the spanner ς R
�x ϒX. (Recall that ϒX is the universal

spanner over X.) The following (straightforward) proposition states that under some
assumptions (that hold in all the spanner classes of our interest), selectability of R is
equivalent to the ability to define the R-restricted universal spanners. We will later
use this proposition as a tool to decide whether or not a relation R is selectable by a
class of spanners at hand. The proof is straightforward, hence omitted.

PROPOSITION 4.15. Let R be a string relation, and let C be a class of spanners. Assume
that C contains all the universal spanners, and that C is closed under natural join. The
relation R is selectable by C if and only if ϒ R

�x ∈ C for all �x ∈ SVarsk.

Let RECk be as defined in Section 2.1. Thus, a k-ary string relation R is in RECk
if and only if it is a finite union of Cartesian products L1 × · · · × Lk, where each Li
is a regular language over �. Proposition 4.15 easily implies that every recognizable
relation is selectable by the regular spanners. Interestingly, the other direction is also
true.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:26 R. Fagin et al.

THEOREM 4.16. A string relation is selectable by the regular spanners if and only
if it is recognizable. That is, REC is precisely the class of string relations selectable by
�VAset�.

PROOF.
The “If” Direction. Let R be a string relation in RECk. Let �x = x1, . . . , xk be a sequence

of k variables. By Proposition 4.15, it suffices to show that ϒ R
�x is a regular spanner.

And due to Theorems 4.4 and 4.14, it suffices to show that ϒ R
�x is definable in the

representation language RGX{∪,π,�}. By definition, R can be represented as

R =
m⋃

i=1

Li
1 × · · · × Li

k ,

where each Li
j is a regular language. Note that each of the Cartesian products is of the

same number k of elements, where k is the number of variables in �x. For each Li
j , we

select a regular expression γ i
j with L(γ i

j) = Li
j . Then, ϒ R

�x is defined by the following
spanner.

m⋃
i=1

(
�∗ · x1

{
γ i

1

} · �∗) × · · · × (
�∗ · xk

{
γ i

k

} · �∗).

The “Only If” Direction. Suppose that R is a k-ary string relation that is selectable
by the regular spanners. We need to show that R ∈ RECk. Let x1, . . . , xk be k distinct
variables. Let P be the spanner defined by the following expression in RGX{∪,π,�}.

x1{�∗} · x2{�∗} · · · xk{�∗}. (5)

That is, given a string s, the spanner P breaks s into k consecutive spans and assigns
the jth span to xj . Since R is selectable by the regular spanners, the spanner P R =
ς R

x1,...,xk
(P) is also regular. And due to Theorems 4.14 and 4.4 and Lemma 4.3, there is a

vset-path union U , such that �U � = P R. We fix such a vset-path union U .
To prove that R ∈ RECk, we will show that R can be represented as a union

⋃m
i=1 Li

1 ×
· · · × Li

k, where each Li
j is a regular language. To do so, in the remainder of the proof

we will show that this union can be obtain directly from U , where each path in U
corresponds to a product Li

1 × · · · × Li
k, and each Li

j is the language defined by the
regular expression between xj � and � xj .

Let p1, . . . , pm be the paths of U . Fix an i in {1, . . . , m}. Let x and x′ be two distinct
variables in {x1, . . . , xk}, and suppose that γ is a regular expression in the intersection
of the scopes of x and x′ inside pi. Due to the definition of P R, the expression γ matches
only the empty string; otherwise, we can easily construct a string s and an s-tuple μ,
such that μ ∈ �pi�(s), and μ(x) and μ(x′) overlap, so consequently, by the special form
of (5), we have μ /∈ P R(s). For a similar reason, we can assume that the edge emanating
from the start state q0 is labeled with the regular expression ε, as is the edge entering
the final state qf . As a result, we can reorder the nodes of pi so that it has the form
of each of the paths of the vset-path union in Figure 10. Consequently, we can assume
that U is actually the vset-path union in that figure.

We refer to the regular expressions γ i
j in Figure 10. Consider the following string

relation R′.

R′ def=
m⋃

i=1

L
(
γ i

1

) × · · · × L
(
γ i

k

)
.

Clearly, R′ ∈ RECk. To complete our proof, we will show that R′ = R.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:27

Fig. 10. The vset-path union U in the proof of Theorem 4.16.

We begin by showing R′ ⊆ R. Let t = (s1, . . . , sk) be a member of R′. We need to prove
that t ∈ R. Suppose that t belongs to L(γ i

1) × · · · × L(γ i
k). Let s be the string s1 · · · sk.

Clearly, pi (hence, U) has an accepting run ρ on s that produces the s-tuple μρ , such
that each xj is assigned the span that corresponds to s j . In particular, �U � = P R implies
that μρ ∈ P R(s). But then, the definition of P R implies that t is in R, as claimed.

We now prove that R ⊆ R′. Let t = (s1, . . . , sk) be a member of R. We need to
prove that t ∈ R′. Let s be the string s1 · · · sk. By the definition of P R, the set P R(s)
contains the s-tuple μ such that each xj is assigned the span that corresponds to s j .
Consequently, since �U � = P R, there is an accepting run ρ of U on s, such that μρ = μ.
Moreover, because U is a vset-path union, ρ is actually a run of one of the paths, say
pi, on s. Therefore, it must be the case that each s j belongs to L(γ i

j). We conclude that
t ∈ L(γ i

1) × · · · × L(γ i
k), and hence, t ∈ R′, as claimed.

4.2. Core Spanners

As the core of AQL we identify the algebra RGX{∪,π,�,ς=}. Henceforth, we call a spanner
in �RGX{∪,π,�,ς=}� a core spanner. A consequence of Theorems 4.4 and 4.14 is that the
algebra RGX{∪,π,�,ς=} has the same expressive power as VA{∪,π,�,ς=}

stk and VA{∪,π,�,ς=}
set .

Therefore, the core spanners are obtained from the regular spanners by extending the
algebra with the selection operator ς=.

To reason about the expressiveness of core spanners, we will use the following se-
quence of lemmas.

LEMMA 4.17. Let F1 and F2 be two union-compatible spanners in �VA{ς=}
set �. The span-

ner F1 ∪ F2 is expressible in �VA{π,ς=}
set �.

PROOF. We denote each Fi as Si(Ai), where Si is a sequence of string-equality selec-
tions and Ai ∈ VAset.

Let ς=
x,y be one of the string-equality selections in S1. Let z be a fresh variable (that

is not in the Ai). We construct from A1 and A2 two vset-automata A′
1 and A′

2, with
SVars(A′

1) = SVars(A′
2) = SVars(A1) ∪ {z}, as follows.

—A′
1 is the same as A1, with z taking exactly the span of y (i.e., z opens and closes

exactly when y does).
—A′

2 is the same as A2, with z taking exactly the span of x.

Consider the string-equality selection ς=
x,z. When applied to A′

1, it is equivalent to
ς=

x,y. But ς=
x,z is always true in A′

2, since there x and z are always assigned the same
span. Let S′

1 be obtained from S1 by removing ς=
x,y. Then, F1 ∪ F2 is equal to the spanner

πY ς=
x,z

(
S′

1(A′
1) ∪ S2(A′

2)
)
,

where Y is the set of variables in F1 (and hence in F2 since F1 and F2 are union-
compatible). In particular, we managed to pull out one string-equality selection from

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:28 R. Fagin et al.

S1. We continue doing so until we completely eliminate S1. Note that we do not need
to add the projection πY in the elimination of the remaining string-equality selections.
We also eliminate S2 in an analogous manner. Consequently, in the end, we get an
expression of the form πY S(B1 ∪ B2), where S is a sequence of string-equality selections
and the Bi are vset-automata. We then use Theorem 4.12 to replace B1 ∪ B2 with a
single vset-automaton B, and consequently get the expression πY S(B) ∈ �VA{π,ς=}

set �, as
required.

LEMMA 4.18. �VA{∪,π,�,ς=}
set � = �VA{π,ς=}

set �.

PROOF. We first make the following observation. Suppose that F is a spanner in
�VA{π,ς=}

set �. By definition, F is equal to some Q(A) where Q is a sequence of projection and
string-equality selections. Note that we can push all the projections to the beginning of
Q. Furthermore, we can assume that Qcontains exactly one projection, namely πSVars(F),
in the beginning. Consequently, we can assume that F has the form πSVars(F)S(A) where
S is a sequence of string-equality selections and A ∈ VAset.

We associate with each spanner F in �VA{∪,π,�,ς=}
set � a fixed algebraic expression that

defines F. Now, let F be a spanner in �VA{∪,π,�,ς=}
set �. We need to prove that F is in

�VA{π,ς=}
set �. The proof is by induction on the number of algebraic operators used for

defining F. The (trivially true) basis of the induction is where F = �A� for some
A ∈ VAset. For the inductive step, we consider several cases.

Case 1. F = F1 ∪ F2. We denote SVars(F) by Y . Note that F1 and F2 are union
compatible, that is, SVars(F1) = SVars(F2) = Y . By the induction hypothesis (and
this observation), each Fi is equal to some πY Si(Ai), where Si is a sequence of string-
equality selections and Ai ∈ VAset. Let Y1 = SVars(A1) and Y2 = SVars(A2). Without
loss of generality, we can assume that Y1 ∩ Y2 = Y ; this is true since we can rename
the variables of A2 that are not in Y . Consequently, we get the following. (Recall that
ϒV is the universal spanner over the variable set V .)

F = πY ((S1(A1) � ϒY2\Y) ∪ (S2(A2) � ϒY1\Y))
= πY ((S1(A1 � ϒY2\Y)) ∪ (S2(A2 � ϒY1\Y)).

Recall from Example 3.12 that every universal spanner ϒV is in �VAset�. Consequently,
using Theorem 4.12 we conclude that each of S1(A1 � ϒY2\Y) and S2(A2 � ϒY1\Y) is in
�VA{ς=}

set �. Therefore, we get the stated claim as a consequence of Lemma 4.17.

Case 2. F = πY (F ′). By the induction hypothesis F ′ is equal to some πY ′ S′(A′), where
S′ is a sequence of string-equality selections and A′ ∈ VAset. We assume that F = πY (F ′)
is well defined, which in particular implies that Y ⊆ SVars(F ′) = Y ′. We then get that
F is equal to πY S′(A′).

Case 3. F = F1 � F2. By the induction hypothesis, each Fi is equal to some πY Si(Ai),
where Si is a sequence of string-equality selections and Ai ∈ VAset. We have the
following:

F = S1(A1) � S2(A2) = S1S2(A1 � A2).

Case 4. F = ς=
x,y(F ′). By the induction hypothesis F ′ is equal to some πY ′ S′(A′), where

S′ is a sequence of string-equality selections and A′ ∈ VAset. An easy observation is that
we can apply the string equality only after the projection πY ′ (note that both x and y
are in Y ′). Hence, we get that F = πY ′ S(A′), where S is obtained from S′ by adding the
operator ς=

x,y.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:29

The following lemma is a key tool for reasoning about the expressiveness of core
spanners. This lemma, which we call the core-simplification lemma, states that every
core spanner can be defined by a very simple expression: a single vset-automaton, on
top of which we apply string-equality selections, and finally a single projection. The
proofs of the inexpressibility results we later give for core spanners are inherently
based on this result.

LEMMA 4.19 (CORE-SIMPLIFICATION LEMMA). Every core spanner is definable by an
expression of the form πV SA, where A is a vset-automaton, V ⊆ SVars(A), and S is a
sequence of selections ς=

x,y for x, y ∈ SVars(A).

PROOF. Lemma 4.18 is not quite enough to prove this lemma, since an expression
in VA{π,ς=}

set is not necessarily of the form πV SA, but rather OA, where O is a sequence
of projection and string-equality operators. To obtain the special form πV SA, we use
the easy observation that in the case of OA, only one projection is needed, and that
projection can be applied at the very end.

Next, we discuss selectable relations. Observe that string equality, which is obviously
selectable by the core spanners, is not selectable by the regular spanners, because string
equality is not in REC (and because of Theorem 4.16). Another way of seeing that is
as follows: if string equality were selectable by the regular spanners, then a Boolean
regular spanner (which can be represented as an NFA) could recognize the nonregular
language {s · s | s ∈ �∗} by π∅ ς=

x,y(x{�∗} · y{�∗}).
Let s and t be two strings. By s � t, we denote that s is a (consecutive) substring

of t (i.e., s is equal to some t[i, j〉). By s �prf t, we denote that s is a prefix of t (i.e., s is
equal to some t[1, j〉). By s �sfx t, we denote that s is a suffix of t (i.e., s is equal to some
t[i,|t|+1〉).

Next, we will use Proposition 4.15 to show that the binary substring relation � is
selectable by the core spanners. Due to Proposition 4.15, it suffices to show that the
spanner ϒ�

x,y is definable in �RGX{∪,π,�,ς=}�. Let γ (x′, y) be the spanner that captures
the property that x′ is a subspan of y. We can define γ (x′, y) by �∗ · y{�∗ ·x′{�∗} ·�∗} ·�∗.
Then, ϒ�

x,y is defined by

π{x,y} ς=
x,x′

(
ϒ{x,x′,y} � γ (x′, y)

)
.

Similar constructions show that the relations �prf and �sfx are also selectable by the
core spanners. We record this as a proposition, for later use. We also include in the
proposition the fact that every relation in REC is also selectable by the core spanners;
the proof is by the same argument that precedes Theorem 4.16.

PROPOSITION 4.20. Every string relation in REC, as well as each of the string relations
�, �prf, and �sfx, is selectable by the core spanners.

The next theorem will be used for showing that the classes of regular and rational
relations are incomparable with the class of relations selectable by the core spanners.
Informally, a regular string relation is a relation that is recognized by an automaton
with a head on each string in the tuple of question, such that the heads advance in
a synchronized manner. A rational string relation is similarly defined, except that
the heads can advance in an asynchronous manner. We refer the reader to Barceló
et al. [2012a] for more formal definitions of these classes.

THEOREM 4.21. The language {0m1m | m ∈ N} is not recognizable by any Boolean core
spanner.

PROOF. Let L = {0m1m | m ∈ N}. Assume, by way of contradiction, that L is rec-
ognizable by a core spanner. Due to the core-simplification lemma, we can assume

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:30 R. Fagin et al.

that this core spanner is π∅SA, where A is a vset-automaton and S is a sequence of
string selections ς=

x,y for x, y ∈ SVars(A). Associate with each string s = 0m1m a run
ρs ∈ ARuns(A, s) such that the string selections hold for the s-tuple defined by ρs.

If (q, V, Y, i) is a configuration, let us refer to (q, V, Y) as a semiconfiguration. If
s ∈ L, and (q, V, Y, i) is the configuration in the run ρs where i is the location of the
first 1 in s, then call (q, V, Y, i) the middle configuration, and (q, V, Y) the middle
semiconfiguration. Since there are only finitely many semiconfigurations, it follows
that there is some infinite set L′ ⊂ L such that every member of L′ has the same middle
semiconfiguration. Let s1 = 0m1m and s2 = 0n1n be two distinct members of L′. Let
s = 0m1n. Then, s �∈ L.

It is easy to see that there is a run of A that accepts s: this run (a) starts out with
the configurations of the run ρs1 up to and including its middle configuration, and
(b) continues with that portion of ρs2 that starts just after its middle configuration but
which has the index values i′ in its configurations (q′, V ′, Y ′, i′) suitably modified. Let ρ
be such a run. Although ρ accepts s, there is still the question of whether the selections
ς=

x,y continue to hold; we shall show that this is the case. This gives us a contradiction,
since then our Boolean spanner accepts a string not in L.

Let ρ1 and ρ2 be the runs ρs1 and ρs2 , respectively. Take one of the selections ς=
x,y. We

need only show that ς=
x,y holds in ρ. We now consider several possibilities. Assume first

that x opens in 0m in ρ1 and closes in 1m in ρ1. In particular, the value of x contains
both 0’s and 1’s. Since ς=

x,y holds in ρ1, necessarily y must open in the same position as
x in ρ1, in order for the values of x and y to have the same number of 0’s. Since (a) ρ1
and ρ are the same up to the middle configuration of ρ1, and (b) x and y open in the
same position in 0m in s1, it follows that they also open in the same position in 0m in
ρ. Since ρ1 and ρ2 have the same middle semi-configuration, and since x opens in 0m

in ρ1 and closes in 1m in ρ1, it follows that x opens in 0n in ρ2 and closes in 1n in ρ2.
Since ς=

x,y holds in ρ2, necessarily y must close in the same position as x in ρ2, in order
for the values of x and y to have the same number of 1’s. So by considering ρ2 and ρ,
which have the same run (with the index values suitably modified) starting with the
middle configuration of ρ2, it follows that x and y close in the same position in 1n in ρ.
So x and y open in the same position in ρ and close in the same position in ρ; hence,
ς=

x,y holds in ρ, as desired. By reversing the roles of x and y, we see that ς=
x,y holds in ρ

if y opens in 0m in ρ1 and closes in 1m in ρ1.
So we can now assume that x opens in 0m in ρ1 and closes in 0m in ρ1, or else x opens

in 1m in ρ1 and closes in 1m in ρ1, and similarly for y. Let us say that x and y are split
in ρ1 if one of them opens and closes in 0m in ρ1 and the other opens and closes in 1m in
ρ1. If x and y are not split, then assume without loss of generality, that they each open
and close in 0m in ρ1. Since ς=

x,y holds in ρ1, it also holds in ρ.
Finally, assume that x and y are split in ρ1. Assume without loss of generality, that

x opens and closes in 0m in ρ1, and y opens and closes in 1m in ρ1. Since ρ1 and ρ2 have
the same middle semiconfiguration, and this semiconfiguration reflects opening and
closing of variables, also x opens and closes in 0n in ρ2, and y opens and closes in 1n

in ρ2. Since (a) ς=
x,y holds in ρ1, (b) the value of x is of the form 0i for some i ≥ 0, and

(c) the value of y is of the form 1 j for some j ≥ 0, it follows that the values of x and
y are both the empty string. Similarly, the values of x and y in ρ2 are both the empty
string. Now the value of x in ρ is the same as the value of x in ρ1, namely the empty
string. Further, the value of y in ρ is the same as the value of y in ρ2, namely the empty
string. Therefore, ς=

x,y holds in ρ, as desired.

The existence of a regular relation that is not selectable by the core spanners is due
to the following theorem.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:31

THEOREM 4.22. Assume that the alphabet � contains at least two symbols. The string
relation {(s, t) | |s| = |t|} is not selectable by the core spanners.

PROOF. Without loss of generality, we assume that � contains the symbols 0 and 1
(and, possibly, additional symbols). Let R be the relation {(s, t) | |s| = |t|}, and suppose,
by way of contradiction, that R is selectable by the core spanners. So the following
expression defines a core spanner:

π∅ ς R
x,y

(
x{0∗} · y{1∗}).

Then again, the spanner defined by this expression is precisely the Boolean spanner
that recognizes {0m1m | m ∈ N}, contradicting Theorem 4.21.

THEOREM 4.23. There is a string relation that is selectable by the core spanners
but is nonrational (and hence nonregular), and there is a regular (and hence rational)
relation that is not selectable by the core spanners.

PROOF. To show that there is a nonrational string relation that is selectable by
the core spanners, we use the observation that every rational relation possesses the
following property: the projection on each component gives a regular language. Using
string equality, we can construct a relation (e.g., {(ss, ss) | s ∈ �∗}) selectable by the
core spanners, such that this property is violated. As for the other direction, we use
Theorem 4.22 and the obvious fact that the same-length relation, {(s, t) | |s| = |t|}, is
regular.

5. DIFFERENCE

In this section, we discuss the difference operator. Let P1 and P2 be spanners that are
union compatible (that is, SVars(P1) = SVars(P2)). The difference P1 \ P2 is defined as
follows. First, SVars(P1 \ P2) = SVars(P1). Second, if s is a string, then (P1 \ P2)(s) =
P1(s) \ P2(s).

The result with the most involved proof in this section states that core spanners
are not closed under difference. Recall that the core spanners are those spanners
that are expressible in RGX{∪,π,�,ς=}. One may be tempted to think that nonclosure
of core spanners under difference should be trivial to prove due to some monotonicity
properties, as in the case of ordinary relational algebra. But this is not the case, because
our algebra does not involve ordinary relations, but rather spanners; and the primitive
representation of spanners (e.g., regex formulas or vset-automata) can simulate non-
monotonic behavior (e.g., regular expressions are closed under complement). In fact, we
later show that core spanners can simulate string relations of a nonmonotonic flavor.
Moreover, regular (but not core) spanners are actually closed under difference.

THEOREM 5.1. Regular spanners are closed under difference; that is, �VA{\}
set� =

�VAset�.

PROOF. Recall from Example 3.12 that the universal spanner ϒY is regular. Let P
be a spanner. The complement of P, denoted P, is the spanner ϒSVars(P) \ P. Clearly, if
P and Q are union-compatible spanners, then P \ Q = P ∩ Q. Consequently, it suffices
to prove that regular spanners are closed under complement, that is, if A is a vset-
automaton A, then there is a vset-automaton A′ such that �A′� = �A�. So, let A be a
vset-automaton.

Let G be a vset-path union that such that �G� = �A�. Recall that G exists due to
Lemma 4.3. By definition, G is the union of some finite set P of consistent vset-paths,

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:32 R. Fagin et al.

that is,

�G� =
⋃
P∈P

�P� .

Consequently, we get the following.

�A� = �G� =
⋂
P∈P

�P� .

Hence, due to Theorem 4.12 (and the fact that ∩ is a special case of �), it suffices to
show that if P is a consistent vset-path, then there exists a vset-automaton B such that
�B� = �P�.

So, let P = (Q, q0, qf , δ) be a consistent vset-path. Suppose that δ consists of the
edges (qi−1, γi, oi, qi), for i = 1, . . . , k, and the final edge (qk, γk+1, qf), where each oi is
an operation of the form x � or � x for some variable x ∈ SVars(P). By considering cases,
it is not hard to verify that the disjunction of the following four conditions is exactly
what is needed to produce the spanner �P�.

(1) The operation oi+1 occurs strictly prior to oi (i.e., at least one character exists after
oi+1 and before oi; note that other operations o j can take place between between
oi+1 and oi).

(2) The operation oi occurs prior to (or at the same time as) oi+1 and the span in between
the two is in the complement of the regular expression γi+1.

(3) The prefix before o1 is in the complement of the regular expression γ1.
(4) The suffix after ok is in the complement of the regular expression γk+1.

Now, it is easy to show that for each individual property among the above, there exists
a vset-automaton B′ such that SVars(B′) = SVars(P) and, moreover, for each string s,
we have that the tuples in the relation �B′�(s) give exactly those spans that correspond
to that property. Hence, due to Theorem 4.12, we conclude that the union of those
vset-automata B′ is expressible by a vset-automaton B, which is the vset-automaton
we desire.

In an attempt to prove that core spanners are not closed under difference (or, equiva-
lently, complement), we tried to prove that the language {s#t | s �= t}, where s and t are
over the alphabet {0, 1}, and # is a new symbol, is not recognizable by any Boolean core
spanner. After multiple failing attempts, we were surprised to discover that our can-
didate language L is a wrong candidate, since it actually is recognizable by a Boolean
core spanner, for the following reason.

PROPOSITION 5.2. The binary string relation �= is selectable by the core spanners.

PROOF. Building on Proposition 4.15, it suffices to show a definition of the spanner
ϒ

�=
x,y in the language RGX{∪,π,�,ς=}. We use the following definition.

γ1(x, y) ∪ γ1(y, x) ∪
⋃
σ �=τ

γσ,τ (x, y).

Here, γ1(x′, y′) defines the spanner that produces all the spans x′ and y′ such that the
string spanned by y′ is a proper prefix of the one spanned by x′, and can be given as
follows.

πx′,y′ ς=
y′,z((�

∗ · x′{z{�∗} · �+} · �∗) × (�∗ · y′{�∗} · �∗)).

(Recall that × is used for � when there are no variables in common.) The expression
γσ,τ (x, y) defines the spanner that finds all the spans x and y such that immediately

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:33

after a common prefix, the string of x has σ and that of y has τ . The expression γσ,τ can
be the following:

πx,y ς=
zx,zy

((�∗ · x{zx{�∗} · σ · �∗} · �∗) × (�∗ · y{zy{�∗} · τ · �∗} · �∗)).

We remark that a proof similar to that of Proposition 5.2 shows that the string
relations ��prf and ��sfx are also selectable by the core spanners. Eventually, we were
able to prove nonclosure of the core spanners under difference through the (complement
of) the substring relation.

THEOREM 5.3. Assume that the alphabet � contains at least two symbols. The string
relation �� is not selectable by the core spanners.

We will prove Theorem 5.3 in the next section.
Recall from Proposition 4.20 that the string relation � is selectable by the core

spanners. Theorem 5.3, on the other hand, states that �� is not selectable by the core
spanners. By combining, these two, we get the following.

THEOREM 5.4. Assume that the alphabet � contains at least two symbols. Core
spanners are not closed under difference; that is, �RGX{∪,π,�,ς=}� � �RGX{∪,π,�,ς=,\}�.

PROOF. Propositions 4.15 and 4.20 imply that ϒ�
x,y is a core spanner. But then, if core

spanners are closed under difference, then P ′ = ϒx,y \ ϒ�
x,y is also a core spanner. How-

ever, P ′ is equal to ϒ
��
x,y, and by Proposition 4.15, �� would be selectable, contradicting

Theorem 5.3.

Theorems 5.1 and 5.4 show an interesting contrast between regular and core span-
ners with respect to difference.

5.1. Proof of Theorem 5.3

Our alphabet is � = {0, 1}. Let s be a string in �. A 0-chunk of s is a maximal span of s
that consists of only “0” symbols. Here, maximality is with respect to span containment.
We similarly define a 1-chunk of s. As an example, the string s = 111011000100 has
three 0-chunks, namely [4, 5〉, [7, 10〉 and [11, 13〉, and three 1-chunks, namely [1, 4〉,
[5, 7〉 and [10, 11〉. We define P to be the Boolean spanner (i.e., SVars(P) = ∅) such that
P(s) = true if and only if s ends with a 0-chunk that is strictly longer than all the
other 0-chunks. As an example, P accepts 00111000 and 001101000 but neither 00110
nor 0001101000.

Observe that P is in �VA{π,ς ��}
set �, since we can define P as follows.

π∅ ς ��
x,y(y{(0 ∨ 1)∗} · x{0+}).

So, if �� were selectable by the core spanners, then P would be a core spanner.
So suppose, by way of contradiction, that P is indeed a core spanner. By our core-
simplification lemma, we can assume that P is represented by π∅SA, where A is a
vset-automaton and S is a sequence of string selections ς=

x,y for x, y ∈ SVars(A). A
variable that occurs in S is called an S-variable. Let Mv be the number of variables of
A, and let Nq be the number of states of A. We take M and N to be sufficiently large,
where M depends only on Mv, and where N depends only on Mv and Nq. Later, we shall
see what “sufficiently large” means.

For a number i ∈ {1, . . . , N}, we define si ∈ �∗ to be the following string:

si def= 0i110i120i · · · 0i1M0i+1.

Observe that, for each si we have P(si) = true. For all i = 1, . . . , N, we fix an accepting
path ρi of A over si, such that all the string equalities of S are satisfied (i.e., for each

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:34 R. Fagin et al.

ς=
x,y in S the strings si

ρ(x) and si
ρ(y) are equal). Note that there is such an accepting path

ρi by the assumption that P(si) = true.
For i ∈ {1, . . . , N}, we define the following.

—A variable x i-overlaps with a span [b, e〉 if the spans ρi(x) and [b, e〉 are not disjoint.
—A variable x i-wraps a span [b, e〉 if ρi(x) = [b′, e′〉 where b′ < b and e′ > e.
—An S-variable x is i-trivial if for every string-equality selection ς=

x,y or ς=
y,x in S it is

the case that ρi(x) is actually the same span (and not just spans the same string) as
ρi(y); otherwise, x is i-nontrivial.

—For j = 1, . . . , M, the index bi
j is that where the chunk 1 j begins in si.

LEMMA 5.5. Assume i ∈ {1, . . . , N}, and let x be an S-variable. If x i-wraps a 1-chunk,
then x is i-trivial.

PROOF. Consider a string-equality selection ς=
x,y or ς=

y,x in S. We need to show that
ρi(x) = ρi(y). Since si

ρi (x) = si
ρi (y), both si

ρi (x) and si
ρi (y) contain a 1-chunk, say 1 j , preceded

and followed by zeros. But si contains exactly one 1-chunk of length j, and hence, that
common 1 j of si

ρi (x) and si
ρi (y) must be of the same span. Therefore, ρi(x) and ρi(y) must

be the same span.

As an immediate consequence of Lemma 5.5, we get the following lemma.

LEMMA 5.6. Assume i ∈ {1, . . . , N}, and let x be an S-variable. If x is i-nontrivial,
then x i-overlaps at most two 1-chunks.

Assume i ∈ {1, . . . , N}. We say that a span [b, e〉 of si is i-safe if no i-nontrivial S-
variable i-overlaps with [b, e〉. By using Lemma 5.6, we see that if M is sufficiently
large, then we get the following.

LEMMA 5.7. Assume i ∈ {1, . . . , N}. There are j, k with 1 ≤ j < k ≤ M, such that the
span [bi

j, bi
k〉 is i-safe.

Building on Lemma 5.7, we fix for each i ∈ {1, . . . , N} a span [bi
ji , bi

ki
〉 that is i-safe.

Let (qi
1, V i

1 , Y i
1, li

1) be the configuration of ρi right before bi
ji is read, and let (qi

2, V i
2 , Y i

2, li
2)

be the configuration of ρi right before bi
ki

is read. We define Ti = 〈qi
1, V i

1 , Y i
1, qi

2, V i
2 , Y i

2〉.
If N is sufficiently large, then we get the following lemma.

LEMMA 5.8. There are i and l with 1 ≤ i < l ≤ N such that Ti = Tl.

Fix some i and l as in Lemma 5.8. Let s be the string that is obtained from si by
replacing the span [bi

ji , bi
ki
〉 with the substring of sl in the span [bl

jl , bl
kl
〉. From the fact

that i < l we conclude that P(s) = false (i.e., the last 0-chunk of s, having length
i + 1, is at most as long as one of the other 0-chunks, having length l). We then get a
contradiction using the following lemma.

LEMMA 5.9. �π∅S(A)�(s) = true.

PROOF. From the fact that Ti = Tl, we can build an accepting run of A on s by
replacing in ρi the sub-run that corresponds to ρi with the sub-run of ρl that corresponds
to Tl. Let ρ be the resulting run. We need to show that each ς=

x,y in S holds for ρ. So,
consider such a ς=

x,y. If both x and y are i-nontrivial then ς=
x,y holds because [bi

ji , bi
ki
〉

is i-safe, which implies that x and y opened and closed outside the replaced sub-run.
Otherwise, assume (without loss of generulity) that x is i-trivial. Then, ρi(x) and ρi(y)
are the same span.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:35

If ρi(x) does not i-overlap with [bi
ji , bi

ki
〉, then, again, x and y are opened and closed

outside the replaced sub-run. Otherwise, from the fact that Ti = Tl we conclude that x
and y l-overlap with [bl

jl , bl
kl
〉, and consequently (due to l-safety), x and y are l-trivial.

This means that wherever x and y are opened or closed (i.e., either in an original
sub-run or the replaced sub-run), they open and close at the same time, and then ς=

x,y
holds.

6. SPANNERS VS. OTHER FORMALISMS

We now discuss the relationship between (core and regular) spanners and two related
formalisms in the literature.

6.1. Extended Regular Expressions

We first relate core spanners to extended regular expressions (xregex for short) [Aho
1990; Câmpeanu et al. 2003; Carle and Narendran 2009; Freydenberger 2011], which
extend the variable regular expressions with backreferences (a.k.a. variable references)
that specify repetitions of a previously matched substring. Their expressive power
goes strictly beyond the class of regular languages and, due to their usefulness in
practice, most modern regular expression matching engines actually support extended
regular expressions [Friedl 2006]. From a theoretical perspective, the extended regu-
lar expressions were formalized by Aho [1990], and investigated with respect to the
complexity of their membership problem [Aho 1990], their expressiveness and closure
properties [Câmpeanu et al. 2003; Câmpeanu and Santean 2009; Carle and Narendran
2009], and their conciseness and decidability [Freydenberger 2011], among other
properties.

Syntactically, an xregex can be viewed as a (not necessarily functional) variable
regex that, in addition to the variable-binding expressions x{γ } also allows variable
backreferences of the form &x. For example, if δ1 is x{(0 ∨ 1)∗} · &x, and δ2 is x{(0 ∨ 1)∗} ·
&x · x{(0 ∨ 1)∗} · &x, then δ1 and δ2 are xregexes. To determine if an input string s is
accepted by an xregex, the xregex is interpreted from left to right on s in a manner we
now describe (cf., e.g., Câmpeanu et al. [2003] and Freydenberger [2011]). For normal
variable regexes (see Section 3.1.1), a binding subexpression x{γ } matches a substring
if γ matches the substring. In this case, x is bound to the corresponding span. A
backreference &x matches a substring s′ if s′ = s[i, j〉 with [i, j〉 the span previously
bound to x. If x has been bound multiple times, then the last binding prior to the
backreference is taken when matching &x; and if x has not been bound before, &x
matches the empty string. As an example, the above xregex δ1 matches precisely the
strings ss with s ∈ {0, 1}∗, and δ2 matches precisely the strings sss′s′ with s, s′ ∈ {0, 1}∗.
Observe that neither of these languages is regular.

The evaluation of an xregex over a string is not (naturally) mapped to an s-tuple,
since a variable can be assigned multiple spans. Therefore, we restrict our discussion
to the comparison of xregexes with Boolean core spanners (where all of the variables
are projected out). An important part of the expressive power of xregexes stems from
the fact that both variable binders and backreferences can occur under the scope of a
Kleene star (or plus). For example, (x{(0 ∨ 1)∗} · &x)+ matches all strings s1s1 · · · snsn
with n ≥ 1 and every si ∈ {0, 1}∗. Moreover,

1+ · x{0∗} · (1+ · &x)∗ · 1+

matches all strings s1ts2t · · · sn−1tsn, where t ∈ 0∗ and every si is in 1+. In other words,
it accepts the language of strings over {0, 1}∗ that start and end with 1, and where all
maximal chunks of consecutive 0’s are of equal length. We refer to this language as the

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:36 R. Fagin et al.

uniform-0-chunk language. As the following theorem states, this language is beyond
the expressive power of core spanners.

THEOREM 6.1. The uniform-0-chunk language is recognizable by an xregex but is not
recognizable by any Boolean core spanner.

PROOF. We already showed an xregex that recognizes the uniform-0-chunk language.
It remains to prove that this language is not recognizable by any Boolean core spanner.
Recall the proof of Theorem 5.3. There, we considered the language L of all strings
s ∈ {0, 1}∗, such that s ends with a 0-chunk that is longer than all the other 0-chunks.
We showed that L is not recognized by any Boolean core spanner. The proof that the
uniform-0-chunk language is not recognized by any Boolean core spanner is almost
identical to that for L. The only difference is the following. Recall that for a number
i ∈ {1, . . . , N}, we defined si ∈ �∗ as follows:

si def= 0i110i120i · · · 0i1M0i+1.

So now, we define si slightly differently:

si def= 110i120i · · · 0i1M.

Except for that, the proof remains the same.

It is currently still open whether every language recognized by a Boolean core span-
ner can also be recognized by an xregex. We do note the following. Consider a core
spanner represented by πY SA, as in the core-simplification lemma (Lemma 4.19). If
the variables of the vset-automaton A cover disjoint spans, then it is easy to prove
that such a simulating xregex must exist. To illustrate, consider the regex formula
γ := x {γ1} ·γ2 · y{γ3}, where x and y are variables, and γ1, γ2, and γ3 are regular expres-
sions. Then, the core spanner π∅ς=

x,y(γ) is specified by the xregex x{δ} · γ2 · &x, where δ

is the regular expression that recognizes the intersection of the regular expressions γ1
and γ3. The problem in finding an xregex that corresponds to a Boolean core spanner
arises when the variables in the core spanner have overlapping spans.

6.2. CRPQs on Marked Paths

Regular expressions have been extensively used and studied in database theory as a
means to express reachability queries in semistructured and graph databases since the
late 1980s. Arguably, the simplest form of such queries is the regular path query (RPQ
for short) on directed graphs with labeled edges [Consens and Mendelzon 1990; Cruz
et al. 1987]. RPQs search for the existence of a path, such that the word formed by the
edge labels belongs to a specified regular language. A conjunctive regular path query
(CRPQ for short) applies conjunction and existential quantification (over nodes) to
RPQs; this concept has been the subject of much investigation [Calvanese et al. 2000a,
2000b; Consens and Mendelzon 1990; Deutsch and Tannen 2001; Florescu et al. 1998].

Let � be a finite alphabet. A �-labeled graph is a pair G = (V, E) where V is a finite
set of nodes, and E ⊆ V × � × V is a set of labeled edges. A path from u to v in G is a
sequence

�e = (v0, σ0, v1), (v1, σ1, σ2), . . . , (vm−1, σm−1, vm)

of edges from E, with v0 = u, and vm = v. The word σ0 · · · σm−1 ∈ �∗ is called the string
formed by �e, and is denoted by str(�e).

Fix an infinite set NVars of node variables, pairwise disjoint from SVars and �. A
regular path query (RPQ) over � is a triple of the form (x, L, y) with x, y ∈ NVars
and L ⊆ �∗ a regular language. A conjunctive regular path query (CRPQ) over � is a

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:37

formula ϕ of the form

∃�z
m∧

i=1

(xi, Li, yi),

where the (xi, Li, yi) are RPQs and �z is a sequence of node variables. We denote by
NVars(ϕ) the set of all node variables occurring in ϕ; by free(ϕ) the set NVars(ϕ) \ �z of
free node variables of ϕ; and by body(ϕ) the set {(xi, Li, yi) | 1 ≤ i ≤ n} of all RPQs of ϕ.
We refer to the elements of body(ϕ) also as the atoms of ϕ.

Semantically, ϕ evaluates to a set of mappings free(ϕ) → V when evaluated on a
�-labeled graph G = (V, E). To formally define this semantics of CRPQs, let ν be
a mapping from NVars(ϕ) to the set of nodes of a �-labeled graph G. We define the
relationship (G, ν) |= ϕ to hold if for each atom (xi, Li, yi) of ϕ there is a path �e in G from
ν(xi) to ν(yi) such that str(�e) ∈ Li. Let ν|free(ϕ) denote the restriction of ν to free(ϕ). The
semantics ϕ(G) of ϕ on G is then the set of all mappings ν|free(ϕ) such that (G, ν) |= ϕ, for
some ν.

Example 6.2. Consider the CRPQ ϕ(x, y) and graph G.

ϕ(x, y) := ∃u (u, a+, x) ∧ (x, b∗, y)

G = 1
a−→ 2

b−→ 3
b−→ 4.

Then, ϕ(G) = {ν1, ν2, ν3} with

ν1 : x �→ 2, y �→ 2
ν2 : x �→ 2, y �→ 3
ν3 : x �→ 2, y �→ 4.

A union of CRPQs (UCRPQ) is a formula ϕ of the form ϕ1 ∨ · · · ∨ ϕk where every ϕi
is a CRPQ, and free(ϕ1) = · · · = free(ϕk). We define ϕ(G) to be ϕ1(G) ∪ · · · ∪ ϕk(G).

6.3. Evaluating UCRPQs on strings

A string s = σ1 · · · σk can be viewed as a special case of a graph, namely as the following
simple path p(s) over the nodes {1, . . . , k + 1}:

1
σ1−→ 2

σ2−→ · · · σk−1−→ k
σk−→ k + 1.

Under this representation of strings as graphs, however, UCRPQs cannot detect which
node marks the start of the input string, nor which node marks the end of the input
string. UCRPQs are therefore not able to verify that they have “processed” their entire
input, as formalized by the following proposition.

If μ is a mapping from a set of variables to the integers and k is an integer, then we
denote by μ+k the mapping such that μ+k(x) = μ(x) + k, for every x.

PROPOSITION 6.3 (UCRPQ MONOTONICITY ON SIMPLE PATHS). Let ϕ be a UCRPQ and
let s and t be strings such that s � t, that is, t = s1ss2 for some strings s1 and s2. If
μ ∈ ϕ(p(s)), then μ+|s1| ∈ ϕ(p(t)).

The proof is straightforward.
Viewed on the Boolean level, Proposition 6.3 says that if a UCRPQ ϕ accepts string

s (in the sense that ϕ(s) �= ∅), it must also accept all extensions t with s � t. As
such the language {s | ϕ(s) �= ∅} recognized by ϕ is closed under string extensions.
Since the regular spanners can recognize all regular languages, and since obviously
not all regular languages are closed under string extensions, it immediately follows

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:38 R. Fagin et al.

that with this representation of strings as graphs, an exact correspondence between
regular spanners and UCRPQs cannot be obtained.

We will therefore represent strings by means of marked paths, where the nodes that
represent the beginning and end of the string are marked with a loop labeled with a
special symbol. Formally, if s = σ1 · · · σk then the marked path Gs is the graph over
nodes {1, . . . , k + 1} defined as

That is, s is represented as a chain where the first node carries a �-loop to denote the
beginning of s, and the last node carries a �-loop to denote the end of s. Here, we assume
that � and � are two special symbols not in �. Note that, under this representation
of strings as graphs, one can find the start node by means of the RPQ (x,�, x) and the
end node by (y,�, y). Also note that UCRPQs are not monotonic on marked paths. For
example, if we let s = aa and t = aab and

ϕ = (x,�, x) ∧ (x, aa, y) ∧ (y,�, y),

then s � t, but ϕ(Gs) �= ∅ while ϕ(Gt) = ∅.

6.4. Correspondence

We will establish two correspondences between regular spanners and UCRPQs. The
first correspondence is in terms of the set of spanners definable by UCRPQs, while the
second is in terms of the set of node assignments definable by regular spanners. In
this section, we formally state these correspondences; they are proved in Section 6.5
and 6.6, respectively.

Fix, for every span variable x, two node variables x� and x�. If V is a set of span
variables, we denote by Ṽ the set {x�, x� | x ∈ V }. Furthermore if μ : V → Spans(s) is
a (V, s)-tuple, then we denote by μ̃ the unique node assignment μ̃ : Ṽ → {1, . . . , |s| + 1}
on Gs such that μ(x) = [μ̃(x�), μ̃(x�)〉.

Definition 6.4. A CRPQ or UCRPQ ϕ is said to define the spanner P over a set V of
span variables if ϕ is a CRPQ or UCRPQ over alphabet � ∪{�,�} such that Ṽ = free(ϕ)
and {μ̃ | μ ∈ P(s)} = ϕ(Gs)}, for every s ∈ �∗.

The following theorem now establishes our first correspondence (to be proved in
Section 6.5).

THEOREM 6.5. �UCRPQ� = �VAset�.

Before moving to the second correspondence, we want to comment on the re-
lationship between �UCRPQ� and �CRPQ�. In particular, while it is obvious that
�CRPQ� ⊆ �UCRPQ�, it is not a priori, obvious that this inclusion is strict. Indeed,
CRPQs actually allow certain forms of disjunction. For example, the UCRPQ ϕ1 ∨ ϕ2
with

ϕ1 := ∃u, z ((u,�b∗, x) ∧ (x, a, y) ∧ (y, b∗ �, z)),
ϕ2 := ∃u, z ((u,�a∗, x), (x, b, y), (y, a∗ �, z)),

can be equivalently expressed on marked paths by the CRPQ

∃u, z ((u, (�a∗ba∗ �) ∨ (�b∗ab∗ �), z) ∧ (x, (a ∨ b), y
) ∧ (

u, (�a∗b ∨ �b∗a), y)).

The question of whether �CRPQ� is strictly contained in �UCRPQ� is tightly linked
to the question whether UCRPQs strictly extend the power of CRPQs. We can show

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:39

that UCRPQs are strictly more expressive than CRPQs,3 although it is beyond the
scope of this paper to include the proof. This immediately yields that �CRPQ� is strictly
contained in �UCRPQ�.

For the other correspondence, let �x = x1, . . . , xn be a sequence of node variables, and
let �y = y1, . . . , yn be a sequence of span variables of the same arity. We say that a
node assignment ν over {x1, . . . , xn} on Gs is (�x, �y)-compatible with a ({y1, . . . , yn}, s)-
tuple μ if ν(xi) is the first component of the span μ(yi), for every 1 ≤ i ≤ n. (That is,
μ(yi) = [ν(xi), ji〉 for some ji ≥ ν(xi).) We write ν ∼(�x,�y) μ to denote that ν is (�x, �y)-
compatible with μ. Since (�x, �y) compatibility of ν with μ essentially states that we get
exactly ν by looking only at the first component of each span in μ, the relationship ∼(�x,�y)
defines an encoding of node assignments on Gs as s-tuples.

The following proposition now establishes our second correspondence (to be proved
in Section 6.6). It states that each node assignment definable by a UCRPQ can also be
defined by a regular spanner, modulo this encoding of node assignments as tuples.

PROPOSITION 6.6. Let ϕ be a UCRPQ with free variables �x = x1, . . . , xn. Let �y be a
sequence of span variables of the same arity as �x. There exists a regular spanner P with
SVars(P) = �y such that for all s ∈ �∗ we have

P(s) = {μ | ∃ν ∈ ϕ(Gs) such that ν ∼(�x,�y) μ}.
The proof appears in Section 6.6.

6.5. Proof of Theorem 6.5

We prove Theorem 6.5 in two steps. First we show in Proposition 6.7 that �VAset� ⊆
�UCRPQ�. Then, we show in Proposition 6.19 that �UCRPQ� ⊆ �VAset�.

PROPOSITION 6.7. �VAset� ⊆ �UCRPQ�

PROOF. Let A be a vset-automaton. By Lemma 4.3, there exist consistent vset-paths
P1, . . . , Pn such that �A� = �P1� ∪ · · · ∪ �Pn�.We will prove that every �Pi� is definable by
a CRPQ ϕi, for 1 ≤ i ≤ n. As such, �A� is defined by the UCRPQ ϕ1 ∨ · · · ∨ ϕn.

Fix i such that 1 ≤ i ≤ n. By definition, vset-path Pi is of the form

qs[e0] → v1q1[e1] → · · · → vkqk[ek] → vk+1qk+1[ek+1] → qf ,

where qs, qf and the qj are the states, each e j is the regular expression on the edge
between its preceding and following states, and each v j is the operation in {x �,� x},
that takes place when entering qj .

Let V = SVars(Pi). Define, for every j with 1 ≤ j ≤ k + 1, the node variable ṽ j ∈ Ṽ
by

ṽ j =
{

x� if v j = x � for some x
x� if v j = � x for some x.

Let y, z be node variables not in Ṽ . Then, define the CRPQ ϕi by

∃y, z (y,� · e0, ṽ1) ∧
k∧

j=1

(ṽ j, e j, ṽ j+1) ∧ (ṽk+1, ek+1· �, z).

It is now straightforward to verify that {μ̃ | μ ∈ �Pi�(s)} = ϕi(Gs), for every s ∈ �∗.

To complete the proof of Theorem 6.5, it remains to prove that �UCRPQ� ⊆ �VAset�.
Observe that, since �VAset� is closed under union by Theorem 4.12, this immediately

3This result was obtained jointly with Pablo Barceló.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:40 R. Fagin et al.

follows if we succeed in proving that �CRPQ� ⊆ �VAset�. We devote the rest of this
section to this proof, which proceeds in three steps.

(1) First, we show that the set of all pairs (s, ν) with s ∈ �∗ such that ν ∈ ϕ(Gs) can be
encoded as a regular language of free(ϕ)-linear strings (Proposition 6.13). A free(ϕ)-
linear string (which we define formally later) is intuitively a string in which it is
recorded to which positions node variables of ϕ are mapped by ν.

(2) We then show that it is possible to transform this regular language into a regular
language of parses. Intuitively, a parse is a string in which it is recorded where
span variables should start to match, and where they should stop matching. Parse
languages naturally define spanners, and we show, denoting by RParses the class
of all regular parse languages, that �VAset� = �RParses� (Corollary 6.17).

(3) From this, we finally obtain �CRPQ� ⊆ �RParses� = �VAset� (Proposition 6.18).

First, however, we recall some basic facts about regular languages. Let � and � be
two finite alphabets. A morphism is a function f : �∗ → �∗ such that f (st) = f (s) f (t),
for all s, t ∈ �∗. Note that every morphism is uniquely determined by the values f (σ)
for σ ∈ � since f (σ1 · · · σn) = f (σ1) · · · f (σn). Also note that every morphism has f (ε) = ε
since otherwise f (ε) = f (εε) = f (ε) f (ε) cannot hold. It is well-known [Yu 1997] that
the class of regular languages is closed under morphisms and inverse morphisms: if
K ⊆ �∗ is regular, then so is f (K) = { f (s) | s ∈ K} and if L ⊆ �∗ is regular, then so is
f −1(L) = {s ∈ �∗ | f (s) ∈ L}.

Let � and � be two disjoint alphabets. We denote by

del�,� : (� ∪ �)∗ → �∗

the morphism that deletes all �-elements from its input, defined by

del�,�(a) =
{

a if a �∈ �, and
ε otherwise.

We simply write del� for del�,� when � is clear from the context.
If L and K are two languages over alphabet �, then the right quotient of L by K,

denoted L/K, is the language {s ∈ �∗ | ∃t ∈ K such that st ∈ L}. The left quotient of L
by K, denoted L% K, is the language {t ∈ �∗ | ∃s ∈ K such that st ∈ L}. It is well-known
that the class of regular languages is closed under both left and right quotients [Yu
1997].

In what follows, we write KL for the concatenation of languages K and L. Also, if
L = {s} then we simply write s for L. We write L+ for L∗ − {ε}.

6.5.1. Linear Strings. Let � be a finite alphabet, disjoint from �. A string w is called
�-linear if w ∈ (� ∪ �)∗ and every element of � occurs exactly once in w. Let w be
a �-linear string. Then we can write w as an alternation w1v1w2v2 · · · wnvnwn+1 of
strings wi ∈ �∗ for 1 ≤ i ≤ n + 1 and strings v j ∈ �∗ for 1 ≤ i ≤ n. Define ŵ to be
w1 · · · wn = del�,�(w). To w, we associate the function [w] : � → {1, . . . , |ŵ| + 1} such
that, for all x ∈ �,

[w](x) = 1 +
k∑

i=1

|wi|,

where k is the unique element of {1, . . . , n} such that x ∈ � occurs in vk.

Example 6.8. To illustrate, let � = {a, b, c} and � = {x, y}. Then w = abbxcby is
�-linear, ŵ = abbcb and [w] maps x �→ 4 and y �→ 6. Note that y �→ 6 and not y �→ 7
because y is the sixth element of the string abbcby where x has been removed.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:41

Let Lin(�) denote the set of all �-linear strings. Since � is finite, it is not difficult to
check by means of a finite state automaton that a given input w ∈ (� ∪ �)∗ is �-linear.
Hence, we have the following lemma.

LEMMA 6.9. Lin(�) is regular, for all finite alphabets �.

Note that for every s ∈ �∗ and every node assignment ν : V → {1, . . . , |s| + 1} on
set V of node variables we can always find a V -linear string w such that ŵ = s and
[w] = ν. We say that w encodes the pair (s, ν) in this case.

Example 6.10. Let ϕ = (x, cb, y). Then w = abbxcby from Example 6.8 encodes the
unique node assignment ν on Gabbcb with ν ∈ ϕ(Gabbcb) in the sense that ŵ = abbcb and
[w] = ν .

Let ϕ be a CRPQ. We define linenc(ϕ) to be the language of all linear strings that
encode pairs (s, ν) with ν ∈ ϕ(Gs):

linenc(ϕ) = {w ∈ Lin(free(ϕ)) | ∃s ∈ �∗, ∃ν ∈ ϕ(Gs) such that ŵ = s, [w] = ν}
= {w ∈ Lin(free(ϕ)) | [w] ∈ ϕ(Gŵ)}.

We will show that linenc(ϕ) is regular. We first require the following auxiliary result.

LEMMA 6.11. linenc(α) is regular, for every RPQ α.

PROOF. Let α = (x, L, y) with L ⊆ (� ∪ {�,�})∗. From L, we compute the following
four languages:

R��∗� = {s ∈ �∗ | vsw ∈ L for some v ∈ �+, w ∈�+},
R��∗ = {s ∈ �∗ | vs ∈ L for some v ∈ �+},
R�∗� = {s ∈ �∗ | sw ∈ L for some w ∈�+},

R�∗ = {s ∈ �∗ | s ∈ L}.
We claim that these four are all regular. Indeed, it is straightforward to verify the
following.

R��∗� = ((L% �+)/ �+) ∩ �∗,

R��∗ = (L% �+) ∩ �∗,

R�∗� = (L/ �+) ∩ �∗,
R�∗ = L ∩ �∗.

Hence, since L is regular and since the class of regular languages is closed under
concatenation, intersection and both left and right quotients, the four languages are
regular. Therefore, K defined as follows is also regular.

K = xR��∗�y ∪ xR��∗ y�∗ ∪ �∗xR�∗�y ∪ �∗xR�∗ y�∗.

Note that K is {x, y}-linear. We claim that K = linenc(α). We first show that K ⊆
linenc(α). Assume w ∈ K. Then, w belongs to one of xR��∗�y, xR��∗ y�∗, �∗xR�∗�y,
or �∗xR�∗ y�∗. Assume that it belongs to xR��∗�y (the other cases are similar). Then
w = xsy with s ∈ �∗ and v1sv2 ∈ L, for some v1 ∈ �+ and v2 ∈�+. Then, clearly, ŵ = s,
[w] = {x �→ 1, y �→ |s| + 1} and [w] ∈ α(Gs), as desired.

We now show that linenc(α) ⊆ K. Assume w ∈ linenc(α). Then, w ∈ Lin({x, y}) and
[w] ∈ ϕ(Gŵ). By definition of the semantics of CRPQs, there exists some path �e from
ν(x) to ν(y) in Gŵ such that str(�e) ∈ L. Moreover, by definition of Gŵ, it follows that str(�e)
must be of the form v1sv2 with v1 ∈ �∗, s ∈ �∗ and v2 ∈�∗. We distinguish four cases:
(1) v1 �= ε and ε �= v2; (2) v1 �= ε = v2; (3) v1 = ε �= v2; and (4) v1 = v2 = ε. We illustrate

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:42 R. Fagin et al.

the reasoning only for the first case; the other cases are similar. Suppose that v1 �= ε
and v2 �= ε. Then, ν(x) must have an outgoing �-labeled edge. Since only the first node
in Gŵ has such an edge, ν(x) = 1. Similarly, ν(y) must have an incoming �-labeled edge
and hence ν(y) = |ŵ| + 1. Then, clearly w = xsy. Since v1sv2 ∈ L with v1 ∈ �+ and
v2 ∈�+, we have s ∈ R��∗� by construction. Then, w = xsy ∈ xR��∗�y ⊆ K.

LEMMA 6.12. linenc(ϕ) is regular, for every CRPQ ϕ with free(ϕ) = NVars(ϕ) (i.e., for
every CRPQ without existential quantification).

PROOF. Let X = NVars(ϕ) = free(ϕ). Since ϕ does not contain existential quantifica-
tion, it is of the form

ϕ ≡
∧

α∈body(ϕ)

α.

By Lemma 6.11, linenc(α) ⊆ Lin(free(α)) is regular, for every α ∈ body(ϕ). Let Yα =
X \ free(α), for every α ∈ body(ϕ). Then, define the set K of X-linear strings by

K =
⎛
⎝ ⋂

α∈body(ϕ)

del−1
�∪free(α),Yα

(linenc(α))

⎞
⎠ ∩ Lin(X).

Note that K is regular since the class of regular languages is closed under inverse
morphisms and since Lin(X) is regular by Lemma 6.9.

We claim that K = linenc(ϕ). We first show that K ⊆ linenc(ϕ). Assume w ∈ K.
Then, in particular, w ∈ Lin(X). To show that w ∈ linenc(ϕ), we need to show that
[w] ∈ ϕ(Gŵ). In this respect, first observe that, for s ∈ �∗ we have ν ∈ ϕ(Gs) if and only
if ν|free(α) ∈ α(Gs), for every atom α ∈ body(ϕ). Then, let wα = del�∪free(α),Yα

(w), for every
α ∈ body(ϕ). It is straightforward to check that ŵ = ŵα and [w]|free(α) = [wα]. Then,
since by definition of K we have

w ∈ del−1
�∪free(α),Yα

(linenc(α)),

we obtain that wα ∈ linenc(α). Therefore, [w]|free(α) ∈ α(Gŵ), for every α ∈ body(ϕ) and
hence [w] ∈ ϕ(Gŵ), as desired.

We next show that linenc(ϕ) ⊆ K. Assume w ∈ linenc(ϕ). Then w ∈ Lin(X) and
[w] ∈ ϕ(Gŵ). Since [w] ∈ ϕ(Gŵ), we know that [w]|free(α) ∈ α(Gŵ), for every atom
α ∈ body(ϕ). Then, let wα = delYα

(w), for every α ∈ body(ϕ). It is straightforward to
check that ŵ = ŵα and [w]|free(α) = [wα]. Hence, wα ∈ linenc(α), for every α ∈ body(ϕ).
As such, w ∈ del−1

�∪free(α),Yα
(linenc(α)), for every α ∈ body(ϕ). Hence, w ∈ K.

PROPOSITION 6.13. linenc(ϕ) is regular, for every CRPQ ϕ.

PROOF. Let X = NVars(ϕ) be the set of all node variables occurring in ϕ and let
ϕ′ be the CRPQ

∧
α∈body(ϕ) α. That is, ϕ′ is equal to ϕ, except that it does not contain

the existential quantification of ϕ (if any). In particular, X = NVars(ϕ) = free(ϕ′). By
Lemma 6.12, linenc(ϕ′) ⊆ Lin(X) is regular.

Let Z be the set NVars \ free(ϕ) of variables that are existentially quantified in ϕ.
Let L = delZ(linenc(ϕ′)). Note that L is regular since the class of regular languages
is closed under morphisms. We now show that L = linenc(ϕ). We first show that L ⊆
linenc(ϕ). Assume w ∈ L. Then, there exists w′ in linenc(ϕ′) such that w = delZ(w′).
In particular, since w′ is X-linear, w is free(ϕ)-linear. Since w′ ∈ linenc(ϕ′), we know
that [w′] ∈ ϕ′(Gŵ′). Hence, [w′]|free(ϕ) ∈ ϕ(Gŵ′). It is straightforward to check that, since
w = delZ(w′), we have ŵ = ŵ′ and [w] = [w′]|free(ϕ). As such, w ∈ linenc(ϕ).

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:43

We next show that L ⊇ linenc(ϕ). Assume w ∈ linenc(ϕ). Then w ∈ Lin(free(ϕ)) and
[w] ∈ ϕ(Gŵ). Since [w] ∈ ϕ(Gŵ), there exists ν ′ ∈ ϕ′(Gŵ) with [w] = ν ′|free(ϕ). Then, for all
X-linear strings w′ with (ŵ′, [w′]) = (ŵ, ν ′) we have w′ ∈ linenc(ϕ′). At least one such
w′ must satisfy w = delZ(w′) and hence w ∈ L, as desired.

6.5.2. Parses. Let V be a finite set of span variables. A string w is called a V -parse
if w ∈ (� ∪ Ṽ)∗, w is Ṽ -linear and, moreover, for every x ∈ V it holds that x� occurs
before x� in w. (Recall that Ṽ = {x�, x� | x ∈ V }.) Clearly, if w is a V -parse, then
[w](x�) ≤ [w](x�). Therefore, [w] naturally corresponds to the unique span assignment
μ over V on ŵ such that μ(x) = [[w](x�), [w](x�)〉, for every x ∈ V . We denote this μ by
�w� in what follows. Note that μ = �w� if and only if μ̃ = [w].

Let Parses(V) denote the set of all V -parses. A V -parse language is a set L ⊆
Parses(V). Since Ṽ is finite, it is not difficult to check by means of a finite state
automaton that w ∈ (� ∪ Ṽ)∗ is a V -parse. Hence, we have the following lemma.

LEMMA 6.14. Parses(V) is regular, for every finite set V of span variables.

Define, for every spanner P over a finite set V of span variables, the V -parse language
P̃ to be

P̃ = {w ∈ Parses(V) | ∃s ∈ �∗, ∃μ ∈ P(s) such that ŵ = s, �w� = μ}
= {w ∈ Parses(V) | �w� ∈ P(ŵ)}.

PROPOSITION 6.15. P̃ is regular, for every P ∈ �VAset�.

PROOF. Let V = SVars(V). By Proposition 6.7, there exists a UCRPQ ϕ = ϕ1 ∨· · ·∨ϕk

that defines P. Then let L = Parses(V)∩⋃k
i=1 linenc(ϕi). Since every linenc(ϕi) is regular

by Proposition 6.13 and since Parses(V) is regular by Lemma 6.14, we obtain that L is
also regular. Then, by definition of linenc(ϕi) and because ϕ(Gs) = ⋃m

i=1 ϕi(Gs), we have

L = {w ∈ Parses(V) | ∃s ∈ �∗, ∃ν ∈ ϕ(Gs) such that ŵ = s, [w] = ν}
= {w ∈ Parses(V) | ∃s ∈ �∗, ∃μ ∈ P(s) such that ŵ = s, [w] = μ̃}
= {w ∈ Parses(V) | ∃s ∈ �∗, ∃μ ∈ P(s) such that ŵ = s, �w� = μ}
= P̃.

Conversely, define, for each L ⊆ Parses(V) the spanner �L� such that �L�(s) = {�w� |
w ∈ L, ŵ = s}. Note that, since for every s and every span assignment μ over V on s
we can find a V -parse w such that ŵ = s and �w� = μ, we have �P̃� = P, for every
spanner P.

PROPOSITION 6.16. �L� ∈ �VAset�, for every regular parse language L.

PROOF. Let A = (QA, qA
0 , qA

f , δ
A) be an NFA over � ∪ Ṽ such that L(A) = L. We then

define the vset-automaton B = (QB, qB
0 , qB

f , δB) such that (1) the states QB of B are the
same as the states QA of A; (2) qB

0 = qA
0 ; (3) qB

f = qA
f ; and (4) δB contains exactly the

same transitions as A, except that x� becomes x � and x� becomes � x. Specifically, δB

contains all transitions

—(q, σ, q′) with (q, σ, q′) ∈ δA and σ ∈ �;
—(q, ε, q′) with (q, ε, q′) ∈ δA;
—(q, x �, q′) with (q, x�, q′) ∈ δA and x ∈ SVars; and
—(q,� x, q′) with (q, x�, q′) ∈ δA and x ∈ SVars.

It is now routine to check that �L� = �B�.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:44 R. Fagin et al.

Let RParses denote the class of all regular V -parse languages, for some finite set V
of span variables. From Propositions 6.15 and 6.16, we obtain the following.

COROLLARY 6.17. �RParses� = �VAset�.

Our next step is to prove the following proposition.

PROPOSITION 6.18. �CRPQ� ⊆ �VAset�.

PROOF. Let ϕ be a CRPQ that defines a spanner P. Let V = SVars(P). In particular,
Ṽ = free(ϕ) and {μ̃ | μ ∈ P(s)} = ϕ(Gs), for every s ∈ �∗. Then, let L = linenc(ϕ) ∩
Parses(V). We have that L is regular since linenc(ϕ) is regular by Proposition 6.13 and
Parses(V) is regular by Lemma 6.14. Therefore, �L� ∈ �VAset� by Proposition 6.16. It
remains to show that P = �L�, for which it suffices to show that P̃ = L since then
P = �P̃� = �L�. Now observe that, since ϕ defines P,

L = {w ∈ Parses(V) | ∃s ∈ �∗, ∃ν ∈ ϕ(Gs) such that ŵ = s, [w] = ν}
= {w ∈ Parses(V) | ∃s ∈ �∗, ∃μ ∈ P(s) such that ŵ = s, [w] = μ̃}
= {w ∈ Parses(V) | ∃s ∈ �∗, ∃μ ∈ P(s) such that ŵ = s, �w� = μ}
= P̃

as desired.

PROPOSITION 6.19. �UCRPQ� ⊆ �VAset�.

PROOF. Let P be a spanner defined by UCRPQ ϕ = ϕ1 ∨· · ·∨ϕk. Then every ϕi defines
a spanner Pi, and P = P1 ∪ · · · ∪ Pk. From Proposition 6.18, we know that Pi ∈ �VAset�,
for every 1 ≤ i ≤ k. Then, since �VAset� is closed under union by Theorem 4.12, also
P ∈ �VAset�.

By combining Propositions 6.7 and 6.19, we obtain Theorem 6.5.

6.6. Proof of Proposition 6.6

The proof uses the technical tools developed in Section 6.5. Let Y = {y1, . . . , yn}, let
Y � = {y�

1 , . . . , y�
n } and. let Y � = {y�

1 , . . . , y�
n }. Let f : � ∪ {x1, . . . , xn} → � ∪ Y � be the

morphism defined by

f (a) =
{

y�
i if a = xi, 1 ≤ i ≤ n,

a otherwise.

Then consider L = del−1
Y � (f (linenc(ϕ))) ∩ Parses(V). Clearly, L ⊆ Parses(V). Moreover,

because linenc(ϕ) is regular by Proposition 6.13, and because the class of regular lan-
guages is closed under morphisms and inverse morphisms, L is regular. Therefore,
�L� ∈ �VAset� by Proposition 6.16. It is now routine to check that P = �L� satisfies the
claimed condition.

6.7. CRPQs with String Equality and Core Spanners

In light of the correspondence between UCRPQs and regular spanners given by Theo-
rem 6.5, it is natural to ask whether there exists an extension of UCRPQs that corre-
sponds to the core spanners. In this section, we show that such an extension exists: it
suffices to add to UCRPQs the ability to check string equality.

To formally define this extension of UCRPQs, fix an infinite set PVars of path vari-
ables, pairwise disjoint from NVars, SVars, and �. A conjunctive regular path query

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:45

with string equality (CRPQ=) over an alphabet � is a formula ϕ of the form

∃�z ∃ �p
⎛
⎝ m∧

i=1

(xi, pi : Li, yi) ∧
n∧

j=1

(
p1

j = p2
j

)⎞⎠ ,

where (xi, Li, yi) are RPQs; p1, . . . , pm are pairwise distinct path variables;
p1

1, p2
1, . . . , p1

n, p2
n are path variables in {p1, . . . , pm}; �z is a sequence of node variables;

and �p = p1, . . . , pm. (Note, in particular, that all path variables are quantified in a
CRPQ=.)

Similarly to normal CRPQs, a CRPQ= formula ϕ evaluates to a set of mappings
free(ϕ) → V when evaluated on a �-labeled graph G = (V, E). To formally define these
semantics, let ν be a mapping that associates to each node variable a node in G, and
to each path variable a path in G. We define the relationship (G, ν) |= ϕ to hold if for
each atom (xi, pi : Li, yi) of ϕ it holds that ν(pi) is a path from ν(xi) to ν(yi) in G such
that str(ν(pi)) ∈ Li and, moreover, str(ν(p1

j)) = str(ν(p2
j)) for every j with 1 ≤ j ≤ n.

The semantics ϕ(G) of CRPQ= ϕ on G are then the set of all mappings ν|free(ϕ) such that
(G, ν) |= ϕ for some ν.

A union of CRPQ= (UCRPQ=) is a formula ϕ of the form ϕ1 ∨ · · · ∨ ϕk where every ϕi
is a CRPQ= and free(ϕ1) = · · · = free(ϕk). We define ϕ(G) to be ϕ(G) ∪ · · · ∪ ϕk(G).

UCRPQ= now define spanners similarly to UCRPQs (cf. Definition 6.4).

THEOREM 6.20. �UCRPQ=� = �RGX{∪,π,�,ς=}�.

The inclusion �RGX{∪,π,�,ς=}� ⊆ �UCRPQ=� is easy to prove using the Core-
Simplification Lemma (Lemma 4.19): since each core spanner can be written as an
expression of the form πV SA where A is a vset automaton and S is a sequence of selec-
tions ς=

x,y we can first translate A to a UCRPQ using Proposition 6.7; assign a unique
path variable to each atom in the UCRPQ, and then translate the selections ς=

x,y by
corresponding string equalities among the corresponding path variables.

The converse inclusion is a bit trickier since the strings that we compare when
evaluating a UCRPQ= on a marked path may contain the special marker symbols
� and �, to which we do not have access to when comparing substrings using ς=.
Fortunately, this difficulty can be done away with. To explain how this can be done,
we need to introduce the following terminology. Recall that in a CRPQ= ϕ of the form
∃�z ∃ �p (

∧m
i=1(xi, pi : Li, yi) ∧ ∧n

j=1 (p1
j = p2

j)) all the pi, for 1 ≤ i ≤ m, are required to
be pairwise distinct. For each pi the atom (xi, pi : Li, yi) that introduces it is hence
uniquely determined. We call xi the start node variable of pi, we call yi the end node
variable of pi, and we call Li the range of pi. Now call a string comparison p1

j = p2
j in ϕ

�-restricted if the ranges of both p1
j and p2

j are subsets of �∗. Intuitively, a �-restricted
comparison compares only strings of paths in which � and � do not occur. A CRPQ= is
�-restricted if all of the comparisons p1

j = p2
j for 1 ≤ j ≤ n are �-restricted. A UCRPQ=

is �-restricted if each of its CRPQ= is �-restricted.

LEMMA 6.21. On marked paths, every UCRPQ= is equivalent to a �-restricted
UCRPQ=.

PROOF. It suffices to show that, on marked paths, every CRPQ= is equivalent to a
�-restricted UCRPQ=. Then fix some CRPQ= ∃�z ∃ �p (

∧m
i=1(xi, pi : Li, yi)∧

∧n
j=1 (p1

j = p2
j))

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:46 R. Fagin et al.

which we denote by ϕ. Then clearly, ϕ is equivalent on marked paths to

∃�z ∃ �p
⎛
⎝ m∧

i=1

⎛
⎝ ∨

K∈{�∗,�+�∗,�∗�+,�+�∗�+}
(xi, pi : Li ∩ K, yi)

⎞
⎠ ∧

n∧
j=1

(
p1

j = p2
j

)
⎞
⎠ .

By converting the latter expression into disjunctive normal form we obtain a UCRPQ=
ϕ′ that is equivalent to ϕ on marked paths. We will now show that each disjunct ψ of
ϕ′ is equivalent on marked paths to a �-restricted CRPQ=.

First, observe that if ψ contains an equality condition q = q′ where the range of q and
q′ are disjoint, then ψ is unsatisfiable, and we can simply replace it by the unsatisfiable
but �-restricted CRPQ= ∧

x∈free(ψ)(x,∅, x).
Otherwise, for every equality condition q = q′ in ψ , we know that the ranges of

q and q′ are not disjoint. By construction of ϕ′, the range of q is a subset of some
K ∈ {�∗,�+ �∗, �∗�+,�+ �∗�+}. Similarly, the range of q′ is a subset of some K′ in
this set. Then, since the elements of {�∗,�+ �∗, �∗�+,�+ �∗�+} are pairwise disjoint,
while the ranges of q and q′ are not, it follows that K = K′. By case analysis on K, we
next show that we can convert each equality condition q = q′ to a �-restricted equality
condition.

—Case K = �∗. Then this equality condition is already �-restricted.
—Case K =�+ �∗. Let x (and y) be the start node variable (respectively end node

variable) of q and x′ (respectively, y′) the start node (respectively, end node) variable
of q′. Since K =�+ �∗ is a superset of the range of both q and q we know that for
every s ∈ �∗ and every ν such that (Gs, ν) |= ψ , it must be the case that str(ν(q)) and
str(ν(q′)) start with a number of � symbols. This implies that ν(x) = ν(x′) = 1, the
start position in s. Moreover, it is easy to see that str(ν(q)) = str(ν(q′)) if, and only if,
in addition, ν(y) = ν(y′). Therefore, the equality condition q = q′ in ψ is equivalent
to demanding that x is bound to the same node as x′ and y to the same node as y′.
We can hence replace q = q′ by

(x,�, x) ∧ (x, ε, x′) ∧ (y, ε, y′).

Here, the conjunct (x,�, x) ensures that x is bound to position 1, while (x, ε, x′) ∧
(y, ε, y′) ensures that x is mapped to the same node as x′ and y to the same node as
y′. Note that no string equality is required in this case.

—The cases K = �∗�+ and K =�+ �∗�+ are similar.

Using this lemma, we can establish the inclusion �UCRPQ=� ⊆ �RGX{∪,π,�,ς=}� of
Theorem 6.20 as follows.

PROPOSITION 6.22. �UCRPQ=� ⊆ �RGX{∪,π,�,ς=}�

PROOF. Since �RGX{∪,π,�,ς=}� is closed under union, it suffices to show that �CRPQ=� ⊆
�RGX{∪,π,�,ς=}�. Towards establishing this inclusion, let ϕ be a CRPQ= that defines
the spanner P, and let V = {v1, . . . , vl} be the span variables of P. In particular,
free(ϕ) = Ṽ = {v�

1 , v�
1 , . . . , v�

l , v�
l }, and, for every string s, we have

P(s) = {V -tuple μ | ∃ν with (Gs, ν) |= ϕ

s. t. μ(vi) = [ν(v�
i), ν(v�

i)〉 for all i with 1 ≤ i ≤ l}. (6)

By Lemma 6.21, we may assume without loss of generality that ϕ is �-restricted.
Let ϕ be ∃�z ∃ �p (

∧m
i=1(xi, pi : Li, yi) ∧ ∧n

j=1 (p1
j = p2

j)). To express ϕ as a core spanner,
we will obviously need to simulate the equality conditions

∧n
j=1 (p1

j = p2
j) by means of

the operator ς= on spans. This is conceptually simple enough: define, for every path

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:47

variable p a spanner with a single span variable that starts at the same position as
the start node variable of p, and ends at the same position as the end node variable of
p. Then use this to enforce the equalities. Notice, however, that p may have endpoint
node variables that do not occur in Ṽ = free(ϕ). Since correspondence Theorem 6.5
gives us “access” to only the variables in Ṽ = free(ϕ) (in the sense that it yields a
spanner over V with no reference to the bound node variables �z of ϕ), we will employ
the correspondence given by Proposition 6.6 towards this end instead.

Formally, let ϕ′ be the CRPQ obtained by removing the path variables, the equality
conditions, and the quantification from ϕ, that is, ϕ′ = ∧m

i=1(xi, Li, yi). Let X be the
set of node variables occurring in ϕ′. Fix, for every node variable x ∈ X, a new span
variable x′ that is not in V . Let X′ = {x′ | x ∈ X}. By Proposition 6.6, there exists a
regular spanner P ′ ∈ �RGX{∪,π,�}� with SVars(P ′) = X′ such that, for all s ∈ �∗, we
have

P ′(s) = {X′-tuple μ | ∃ν ∈ ϕ′(Gs) such that for all x ∈ X there exists k

with μ(x′) = [ν(x), k〉}. (7)

In other words, the tuples in P ′ simulate the mappings of ϕ′, including the node vari-
ables that are bound in ϕ. We will now modify P ′ so that it defines the same spanner
as P. Towards this, assume that pi is one of the path variables mentioned in one of the
equality conditions in ϕ, where 1 ≤ i ≤ m, and let xi and yi be its start and end node
variable in ϕ, respectively. Since ϕ is �-restricted, we know that for every s ∈ �∗ and
every mapping ν with (Gs, ν) |= ϕ, it must be the case that ν assigns to pi the unique
path from ν(xi) to ν(yi) in Gs that traverses only edges labeled by elements of �. In
other words, str(ν(pi)) = s[ν(xi),ν(yi)〉. Hence, we can simulate every equality condition
q = q′ in ϕ by checking the equality of the substrings between the start and end node
variables of q and q′. From this observation, it ensues that we can express P as follows
in �RGX{∪,π,�,ς=}�.

(1) Fix, for every path variable pi in ϕ with 1 ≤ i ≤ m a new span variable p′
i not in

V ∪ X. Let Y = X ∪ {p′
1, . . . , p′

m}. Define, for every path variable pi in ϕ with start
node variable xi and end node variable yi the regular spanner Ppi by

Ppi = �∗ p′
i

{
x′

i{�∗}�∗}y′
i{�∗}�∗.

Note in particular that in every tuple output by Ppi , the span assigned to p′
i starts

at the same position as x′
i and ends at the start position of y′

i. Therefore, if we denote
by Q the spanner P ′ � Pp1 � Pp2 � · · ·� Ppm with SVars(Q) = Y , then, by (7), we have

Q(s) = {Y -tuple μ | ∃ν ∈ ϕ′(Gs) such that for all x ∈ X there exists k with
μ(x′) = [ν(x), k〉 and μ(p′

i) = [ν(xi), ν(yi)〉 for every i with 1 ≤ i ≤ m}.
Then, since, as observed previously, str(ν(pi)) = s[ν(xi),ν(yi)〉 for every assignment ν to
node and path variables such that (Gs, ν) |= ϕ we have
(ς=

p1
1 ,p2

1
. . . ς=

p1
n,p2

n
Q)(s)

={μ | ∃ν ∈ ϕ′(Gs) such that, for all x ∈ X there exists k with μ(x′) = [ν(x), k〉
and μ(p′

i) = [ν(xi), ν(yi)〉 for every i with 1 ≤ i ≤ m

and str(μ(p′1
j)) = str(μ(p′2

j)) for every j with 1 ≤ j ≤ n}
={μ | ∃ν with (Gs, ν) |= ϕ such that, for all x ∈ X there exists k with μ(x′) = [ν(x), k〉

and μ(p′
i) = [ν(xi), ν(yi)〉 for every i with 1 ≤ i ≤ m

and str(μ(p′1
j)) = str(μ(p′2

j)) for every j with 1 ≤ j ≤ n}.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:48 R. Fagin et al.

Now let R denote the core spanner πX′(ς=
p1

1 ,p2
1
. . . ς=

p1
n,p2

n
Q) with SVars(R) = X′. Then

R(s) = {X′-tuple μ | ∃ν with (Gs, ν) |= ϕ

such that for all x ∈ X there exists k with μ(x′) = [ν(x), k〉}. (8)
(2) To finish the proof, observe that R is a spanner over X′ whereas the spanner P that

we need to express is over V . To obtain the correct output, define, for every span
variable v ∈ V , the spanner Pv by

Pv = �∗v{v�′{�∗}�∗}v�′{�∗}�∗.
Note in particular that in every tuple output by Pv, the span assigned to v starts
at the same position as v�′ and ends at the start position of v�′. By combining this
observation with Eqs. (8) and (6), we obtain, for every string s,

πv1,...,vl (R � Pv1 � · · · � Pvl)(s)
= {V -tuple μ | ∃μ′ ∈ R(s) such that μ(vi)

= [μ′(v�
i

′
), μ′(v�

i
′
)〉 for all i with 1 ≤ i ≤ l}

= {V -tuple μ | ∃ν with (Gs, ν) |= ϕ such that μ(vi)

= [ν(v�
i), ν(v�

i)〉 for all i with 1 ≤ i ≤ l}
= P(s).

This finishes the proof since πv1,...,vl (R� Pv1 �· · ·� Pvl) is a spanner in �RGX{∪,π,�,ς=}�,
as desired.

One could further extend this discourse, and pose the question whether the so-called
extended CRPQs introduced by Barceló et al. [2012b], which extend CRPQs with the
ability to check any regular relation between path variables (not just string equality)
correspond, on marked paths, to �RGX{∪,π,�}∪O�, where O = {ς R | R a regular relation}.
It is not difficult to see that, if the extended CRPQs can use only regular relations
over � (which conforms to �-restriction) then the proof for CRPQ= can indeed be
generalized. When the extended CRPQs can use regular relations over the extended
alphabet � ∪ {�,�}, however, it is not clear that spanners defined by extended CRPQs
can always be expressed in �RGX{∪,π,�}∪O�. We leave an investigation of this question
to future work.

7. SUMMARY AND DISCUSSION

We introduced the concept of a spanner, and investigated three primitive spanner
representations: regex formulas, vstk-automata and vset-automata. As we showed, the
classes of regex formulas and vstk-automata have the same expressive power, and
vset-automata (defining the regular spanners) have the same expressive power as
the closure of regex formulas under the relational operators union, natural join, and
projection. By adding the string-equality operator, we get the core spanners. We gave
some basic results on core spanners, like the core-simplification lemma. We discussed
selectable string relations, and showed, among other things, that REC is precisely the
class of relations selectable by the regular spanners. We showed that regular spanners
are closed under difference, but core spanners are not (which we proved using the core-
simplification lemma). Finally, we discussed the connection between core spanners and
xregexes, and showed a tight connection between regular spanners and CRPQs.

From the perspective of system building, the designer of an extraction rule language
negotiates a tradeoff between expressivity, conciseness, and performance. To be an
effective tool for building extractors, a language needs to be expressive in the sense

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:49

that a rule developer can write typical extractors entirely inside the confines of the
domain-specific language, without resorting to custom code. At the same time, the
language needs to be concise: Small numbers of simple rules should cover important
and common patterns within text. Performance is also important, both in terms of
throughput (number of documents annotated per second) and in terms of memory
consumption. This work provides a detailed exploration of the expressivity dimension
of extraction language design. Our theoretical development captures core operations of
a rule language in a way that bridges different semantics for rule languages, including
finite state transducers and operator algebras. Certain important operations, such as
cleaning and aggregation, are outside the scope of this work; but on the whole, we have
established a good understanding of the expressive power that different components of
the system provide. Moreover, a central aspect of system building is that of complexity—
both software complexity (how complicated is it for a developer to build solutions, in
terms of the number of rules and their level of sophistication?) and computational
complexity (how costly is it to execute programs?). We believe that in this work we
have set the theoretical framework that will enable the future investigation of such
fundamental aspects.

Indeed, this work is our first step in embarking on the investigation of spanners.
Many aspects remain to be considered, and many problems remain to be solved. As
mentioned previously, one major aspect is that of complexity. For example, what is the
complexity of the translations among spanner representations that were applied in
this article? What is the (data and combined) complexity that query evaluation entails
in each representation? Regarding the difference operator, an intriguing question is
whether we can find a simple form, in the spirit of the core-simplification lemma, when
adding difference to the representation of core spanners (i.e., the class VA{∪,π,�,ς=,\}

set); as
illustrated here, such a result would be highly useful for reasoning about the expressive
power of that class. As another open problem, we repeat the one we mentioned in
Section 6: can extended regular expressions express every Boolean core spanner?

Cleaning of inconsistent tuples has an important role in the practice of rule-
based information extraction [Chiticariu et al. 2010]. As a simple example, on the
string John Fitzgerald Kennedy, one component of an extraction program may iden-
tify the span of John Fitzgerald as that of a person name, another may do so for
Fitzgerald Kennedy, and a third may do so for John Fitzgerald Kennedy. As only one
of these is the mentioning of a person name, a cleanup resolution filters out two of
the three annotations. In CPSL [Appelt and Onyshkevych 1998], for instance, this
resolution takes place implicitly at every stage (cascade). A significant differentiator
of SystemT’s AQL is that it exposes inconsistency cleaning as an explicit relational
operator, similarly to selection, and moreover, supports multiple resolution semantics.
Yet, this operator is different from a standard selection, as it is not applied in a tuple-
by-tuple basis, but rather in an aggregate manner. We have investigated the topic of
inconsistency cleaning [Fagin et al. 2014] and established a framework for declarative
cleaning through the database concept of inconsistent database repairs [Arenas et al.
1999]. Specifically, our framework adopts the notion of prioritized repairs of Staworko
et al. [2012], and we have shown that our framework provides a unified formalism
to express and generalize the ad-hoc cleaning strategies of various systems such as
SystemT and CPSL.

ACKNOWLEDGMENTS

We are grateful to Pablo Barceló, Kenneth Clarkson, and Leonid Libkin for helpful discussions. We also
thank the SystemT group their intensive work in establishing the system, and for useful input.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

12:50 R. Fagin et al.

REFERENCES

Alfred V. Aho. 1990. Algorithms for finding patterns in strings. In Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity (A). North Holland, 255–300.

James F. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832–843.
Douglas E. Appelt and Boyan Onyshkevych. 1998. The common pattern specification language. In Proceed-

ings of the TIPSTER Text Program: Phase III. Association for Computational Linguistics, 23–30.
Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent query answers in inconsistent

databases. In Proceedings of PODS. ACM, 68–79.
Pablo Barceló, Diego Figueira, and Leonid Libkin. 2012a. Graph logics with rational relations and the

generalized intersection problem. In Proceedings of LICS. IEEE, 115–124.
Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012b. Expressive languages for

path queries over graph-structured data. ACM Trans. Datab. Syst. 37, 4, 31. DOI: http://dx.doi.org/
10.1145/2389241.2389250

Pablo Barceló, Juan L. Reutter, and Leonid Libkin. 2013. Parameterized regular expressions and their
languages. Theoret. Comput. Sci. 474, 21–45.

Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. 2003. Definable relations and
first-order query languages over strings. J. ACM 50, 5, 694–751.

Jean Berstel. 1979. Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart.
Anthony J. Bonner and Giansalvatore Mecca. 1998. Sequences, datalog, and transducers. J. Comput. Syst.

Sci. 57, 3, 234–259.
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000a. Containment of

conjunctive regular path queries with inverse. In Proceedings of KR 2000. 176–185.
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000b. View-based query

processing and constraint satisfaction. In Proceedings of LICS. 361–371.
Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. 2003. A formal study of practical regular expressions. Int. J.

Found. Comput. Sci. 14, 6, 1007–1018.
Cezar Câmpeanu and Nicolae Santean. 2009. On the intersection of regex languages with regular languages.

Theoret. Comput. Sci. 410, 24–25, 2336–2344.
Benjamin Carle and Paliath Narendran. 2009. On extended regular expressions. In Proceedings of LATA

2009. Lecture Notes in Computer Science, vol. 5457. 279–289.
Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, and Shivaku-

mar Vaithyanathan. 2010. SystemT: An algebraic approach to declarative information extraction. In
Proceedings of the 48th Annual/Meeting of the Association for Computer Linguisties (ACL’10). 128–137.

Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: A visual formalism for real life recursion.
In Proceedings of PODS. ACM, 404–416.

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A graphical query language supporting
recursion. In Proceedings of SIGMOD Conference. ACM, 323–330.

Hamish Cunningham. 2002. GATE, A General Architecture for text engineering. Comput. Human. 36, 2,
223–254.

Alin Deutsch and Val Tannen. 2001. Optimization properties for classes of conjunctive regular path queries.
In Proceedings of DBPL. 21–39.

Calvin C. Elgot and J. E. Mezei. 1965. On relations defined by generalized finite automata. IBM J. Res. Devel.
9, 47–68.

Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2013. Spanners: A formal frame-
work for information extraction. In Proceedings of PODS. 37–48.

Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2014. Cleaning inconsistencies
in information extraction via prioritized repairs. In Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS’14). ACM, 164–175.

Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1998. Query containment for conjunctive queries with regular
expressions. In Proceedings of PODS. 139–148.

Dayne Freitag. 1998. Toward general-purpose learning for information extraction. In Proceedings of
COLING-ACL. 404–408.

Dominik D. Freydenberger. 2011. Extended regular expressions: Succinctness and decidability. In Proceed-
ings of STACS (LIPIcs). Vol. 9, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 507–518.

Jeffrey Friedl. 2006. Mastering Regular Expressions. O’Reilly Media.

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

Document Spanners: A Formal Approach to Information Extraction 12:51

Seymour Ginsburg and Xiaoyang Sean Wang. 1998. Regular sequence operations and their use in database
queries. J. Comput. Syst. Sci. 56, 1, 1–26.

Gösta Grahne, Matti Nykänen, and Esko Ukkonen. 1999. Reasoning about strings in databases. J. Comput.
Syst. Sci. 59, 1, 116–162.

Ralph Grishman and Beth Sundheim. 1996. Message understanding conference- 6: A brief history. In Pro-
ceedings of COLING. 466–471.

Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. 2010. Variable automata over infinite alphabets.
In Proceedings of LATA. 561–572.

Donald E. Knuth. 1968. Semantics of context-free languages. Math. Syst. Theory 2, 2, 127–145.
Donald E. Knuth. 1971. Correction: Semantics of context-free languages. Math. Syst. Theory 5, 1, 95–96.
Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivakumar Vaithyanathan, and

Huaiyu Zhu. 2008. SystemT: A system for declarative information extraction. SIGMOD Record 37, 4,
7–13.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of ICML. Morgan Kaufmann,
282–289.

T. R. Leek. 1997. Information extraction using hidden Markov models. Master’s thesis University of
California, San Diego.

Peter Linz. 2001. An Introduction to Formal Languages and Automata 3rd Ed. Jones and Bartlett Publishers,
Inc., Sudbury, M.A.

B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. R. Reiss. 2010. Automatic rule refinement for information
extraction. Proc. VLDB Endow. 3, 1–2, 588–597.

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. 2000. Maximum entropy Markov models for
information extraction and segmentation. In Proceedings of ICML. Morgan Kaufmann, 591–598.

Frank Neven and Thomas Schwentick. 2002. Query automata over finite trees. Theoret. Comput. Sci. 275,
2, 633–674.

Frank Neven and Jan Van den Bussche. 2002. Expressiveness of structured document query languages based
on attribute grammars. J. ACM 49, 1, 56–100.

Maurice Nivat. 1968. Transduction des langages de Chomsky. Ann. Inst. Fourier 18, 339–455.
Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, and Shivakumar

Vaithyanathan. 2008. An algebraic approach to rule-based information extraction. In Proceedings of
ICDE. IEEE, 933–942.

Ellen Riloff. 1993. Automatically constructing a dictionary for information extraction tasks. In Proceedings
of AAAI. AAAI Press/The MIT Press, 811–816.

Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy G. Lehnert. 1995. CRYSTAL: Inducing a
conceptual dictionary. In Proceedings of IJCAI. Morgan Kaufmann, 1314–1321.

Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. 2012. Prioritized repairing and consistent query
answering in relational databases. Ann. Math. Artif. Intell. 64, 2–3, 209–246.

Sheng Yu. 1997. Regular Languages. In Handbook of Formal Languages, Grzegorz Rozenberg and Arto
Salomaa (Eds.), vol. 1, Springer, Chapter 2.

Received August 2013; revised October 2014; accepted October 2014

Journal of the ACM, Vol. 62, No. 2, Article 12, Publication date: April 2015.

