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It is a well-known result of Fagin that the complexity class NP coin-
cides with the class of problems expressible in existential second-order
logic {£}). Monadic NP is the class of problems expressible in monadic
2'}, ie., Z} with the restriction that the second-order quantifiers range
only over sets {as opposed to ranging over, say, binary relations). We
prove that connectivity of finite graphs is not in monadic NP, even in
the presence of arbitrary built-in relations of moderate degree (that is,
degree (log n)°'*'). This extends earlier results of Fagin and de Rouge-
mont. Our proof uses a combination of three techniques: (1) an old
technique of Hanf for showing that two (infinite) structures agree on
ali first-order sentences, under certain conditions, {2) a recent new
approach to second-order Ehrenfeucht-Fraissé games by Ajtai and
Fagin, and (3) playing Ehrenfeucht-Frai'ssé games over random struc-
tures (this was also used by Ajtai and Fagin). Regarding (1), we give
a version of Hanf's result that is better suited for use as a tool in
inexpressibility proofs for classes of finite structures. The power of
these techniques is further demonstrated by using them (actually, using
just the first two techniques) to give a very simple proof of the separa-
tion of monadic NP from monadic co-NP without the presence of
built-in relations.  © 1995 Academic Press, Inc.

1. INTRODUCTION

The computational complexity of a problem is the amount
of resources, such as time or space, required by a machine
that solves the problem. Complexity theory traditionally
has focused on the computational complexity of problems.
A more recent branch of complexity theory focuses on the
descriptive complexity of problems, which is the complexity
of describing problems in some logical formalism [ Imm89].
One of the exciting developments in complexity theory is
the discovery of a very intimate connection between com-
putational and descriptive complexity.

This intimate connection was first discovered by Fagin,
who showed [ Fag74] (cf. [JS74]) that the complexity class
NP coincides with the class of properties of finite structures
expressible in existential second-order logic, otherwise
known as Z'|. Stockmeyer then observed that this could be
extended to give a tight correspondence between the poly-
nomial-time hierarchy and second-order logic [Sto77].

* A condensed version of this paper appeared in “Proceedings of the 8th
IEEE Conference on Structure in Complexity Theory,” 1993, pp. 19-30.
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The next discovery was by Immerman and Vardi, who
proved that the complexity class P coincides with the class
of properties of finite ordered structures expressible in
fixpoint logic [Imm86, Var82]. The connection between
descriptive and computational complexity, typically
referred to as the connection between “logic and com-
plexity”, was then proclaimed by Immerman [ Imm871], and
studied by many researchers; see [Imm89] for a survey.
This connection is considered to be one of the major
features of finite-model theory; see [ Fag93].

A consequence of the connection between NP and
existential second-order logic is that NP =co-NP if and
only if existential and universal second-order logic have the
same expressive power over finite structures, i.e., if and only
if Z1 = I1}. This equivalence of questions in computational
and descriptive complexity is one of the major features of
the connection between the two branches of complexity
theory. It holds the promise that techniques from one
domain could be brought to bear on questions in the other
domain. In particular, there is a standard technique in
finite-model theory for proving separation results: Ehren-
feucht-Fraissé games. It is known that X'} 5 IT| if and only
if such a separation can be proven via second-order Ehren-
feucht-Fraissé games [ Fag75a7]. Unfortunately, “playing”
second-order Ehrenfeucht-Fraissé games is very difficult,
and the above promise is essentially still largely unfulfilled;
for example, the equivalence between the NP = co-NP ques-
tion and the X} =1II| question has not so far led to any
progress on either of these questions.

One way of attacking these difficult questions is to restrict
the classes under consideration. Instead of considering X'}
(=NP) and 7] (=co-NP) in their full generality, we could
consider the monadic restriction of these classes, i.e., the
restriction obtained by allowing second-order quantifica-
tion only over sets (as opposed to quantification over, say,
binary relations). We refer to the restricted classes as
monadic X} or monadic NP (resp., monadic I1} or monadic
co-NP). (It should be noted that, in spite of its severely
restricted syntax, monadic NP does contain NP-complete
problems, such as 3-colorability and satisfiability.) The
hope is that the restriction to the monadic classes will yield
more tractable questions and will serve as a training ground
for attacking the problems in their full generality.



ON MONADIC NP VS MONADIC co-NP 79

This line of attack was pursued by Fagin in [ Fag75a],
where he separated monadic NP from monadic co-NP.
Specifically, he showed that connectivity of finite graphs is
not in monadic NP, although it is easy to see that it is in
monadic co-NP. This result was the first lower bound in
descriptive-complexity theory. It was also the first significant
demonstration of the weakness of first-order logic over finite
structures, since it implies that connectivity of finite graphs is
not expressible in first-order logic (the inexpressibility of con-
nectivity of general graphs in first-order logic is a trivial con-
sequence of the Compactness Theorem). This consequence
was rediscovered later by Aho and Ullman [AU79] and
inspired a great deal of research in the theory of database
queries (cf. [ Cha881) and in finite-model theory.

To separate monadic NP from monadic co-NP, Fagin
extended the theory of Ehrenfeucht-Fraissé games to
monadic Z'}. In the standard Ehrenfeucht-Fraissé game over
a pair A, B of structures, two players, the spoiler and the
duplicator, take turns placing pebbles on elements of the
structures.' In the game for monadic X'}, the spoiler starts by
coloring the elements of A, the duplicator responds by color-
ing the elements of B, and the two players then follow the
standard game. To show that connectivity of finite graphs is
not expressible in monadic X}, Fagin used the generalized
game over a pair A, B of graphs, where A consists of a single
cycle and B consists of two cycles. The separation of monadic
NP and monadic co-NP now follows, since, as we noted
above, connectivity is in monadic co-NP.

One essential difference between NP and monadic NP is
that in NP one can assume the existence of certain built-in
relations on the domain, such as successor or linear order,
since the existence of such relations can be expressed by a
second-order existential quantifier. This is not the case for
monadic NP, which is one of the reasons for the weakness of
this class. For example, the property “evenness” (i.e., the
graph having an even number of nodes) is not in monadic
NP, but it is in monadic NP with a built-in successor relation.

Extending the techniques to handle built-in relations is
important, since some connections between computational
complexity and descriptive complexity are known to hold only
if there is a built-in successor relation (or a built-in linear
order). For example, as we noted earlier, Immerman and Vardi
showed that a property is in P iff it can be expressed in fixpoint
logic with a built-in successor relation (or a built-in linear
order). Allowing successor is crucial in this case, since evenness
is not definable in fixpoint logic without successor [ CH82].

There is another reason (besides our interest in successor
relations) to allow built-in relations. Proving that a problem
is not in monadic NP shows that the problem cannot be
captured in a certain uniform way, where we think of a fixed

! Following Joel Spencer [ Spe91], we shall refer to the two players in an
Ehrenfeucht-Fraissé game as “the spoiler” and “the duplicator,” rather
than the more usual but less suggestive “player I” and “player 11.”

monadic X'} sentence as a uniform description. Proving that
a problem is not in monadic NP even in the presence of cer-
tain built-in relations shows that the problem cannot even
be captured in certain nonuniform ways (since the built-in
relations vary from universe to universe). So allowing built-
in relations makes nonexpressibility results that much more
powerful. We note that first-order logic, in the presence of
arbitrary built-in relations, is precisely (nonuniform) AC°,
that is, properties that can be recognized by a family of
polynomial-size circuits with bounded depth [Imm87]. It
follows, for example, that the graph property “the number
of edges is even” cannot be expressed in first-order logic
with arbitrary built-in relations, since this property is not in
ACP [Ajt83, FSS84].

Unfortunately, extending Fagin’s result, that connectivity
1s not in monadic NP, to allow (certain) built-in relations is
not easy. The hard part in Fagin’s proof is showing that the
duplicator has a winning strategy. There are several parts to
the duplicator’s winning strategy: his coloring strategy, his
pebbling strategy, and (depending on the version of the
game we consider) also his strategy in the choice of graphs
to play the game over (the graphs are simply disjoint unions
of cycles, but the size of the cycles is an issue). All of these
parts of the duplicator’s winning strategy in Fagin’s proof
are very complicated. The complexity of the proof makes it
quite hard to extend it to built-in relations. Such an exten-
sion was accomplished by de Rougemont, who proved that
connectivity is not in monadic NP with a built-in successor
relation { dR87] (by considering graphs that are substan-
tially more complicated than the cycles in Fagin’s proof).

Our goal in this paper is to provide new tools for separa-
tion proofs. This provides us not only with a simple and
elegant proof of Fagin’s result, but also with its extension to
arbitrary built-in relations of moderate degree (that is,
degree (log 7)°'"). Such built-in relations include successor
relations, but not linear orders.? We accomplish this by
using three tools: an old but relatively unknown technique
by Hanf [ Han65] for showing that the duplicator has a
winning strategy in certain situations, a recent new
approach to Ehrenfeucht-Fraissé games by Ajtai and Fagin
[AF90], and the idea (used also by Ajtai and Fagin) of
having the duplicator select structures at random.

The basic idea in the approach of Ajtai and Fagin is not
to view the pair A, B of structures as an input to the game.
Rather, they should be viewed as selected by the duplicator.
According to this view, to prove that a certain property P is
not expressible by a monadic X] sentence, the game
proceeds as follows. The duplicator selects a pair A, B of
structures such that P holds for A and fails for B. The two
players then play the generalized game over A, B.

2 Note added in proof. Schwentick [Sch94a, Sch94b] has recently
shown that connectivity is not in monadic NP, even in the presence of a
linear order.

‘.
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However, once the selection of the structures is viewed as
a move in the game, it is quite natural to consider inter-
leaving this move with the other moves. Ajtai and Fagin
considered the following interleaving. The duplicator first
selects the structure A, which is then colored by the spoiler.
The duplicator then selects the structure B and colors it. The
two players then play the standard game over the colored
structures A, B. Note that this variant handicaps the spoiler
and helps the duplicator. Nevertheless, Ajtai and Fagin
showed that it suffices to consider their variant when trying
to prove lower bounds on expressibility for monadic NP.
The advantage of using this variant of the game is that it is
tilted in favor of the duplicator, and therefore it is much
easier to describe a winning strategy for the duplicator.

Ajtai and Fagin introduced another powerful idea that we
use: having the duplicator select structures at random; it suf-
fices to show that the probability of winning is nonzero.
(Actually, both here and in Ajtai and Fagin’s proof, it is
shown that the probability of winning is not just nonzero,
but nearly one.)

As we will show, in the case of connectivity, the
Ajtai-Fagin game makes the coloring step for the duplicator
easy: the duplicator can essentially “copy” the coloring of
the spoiler. This leaves the other difficult part of the
strategy—how the duplicator responds to pebble moves by
the spoiler. In our proof, we use a “library subroutine” based
on Hanf’s technique that gives the duplicator’s winning
strategy for responding to pebble moves by the spoiler.

We note that Ajtai [ Ajt83 ] previously proved separation
between monadic NP and monadic co-NP allowing
arbitrary built-in relations. In fact, Ajtai proved the very
strong separation result that there is a (somewhat artificial)
property of graphs, which belongs to monadic co-NP (with
no built-in relations), but which does not belong to
monadic NP even in the presence of arbitrary built-in
relations. Ajtai and Fagin [AF90] proved a separation
involving (s, 7)-connectivity (otherwise known as directed
reachability): they showed that although this problem is in
monadic co-NP, it is not in monadic NP, even in the
presence of binary built-in relations of degree n°"), as long
as these built-in relations have no “small cycles.” In our
separation result, there is no restriction on the length of
cycles or on the arity of the built-in relations, but we can
only allow degree (log n)°V.

Recently, Arora and Fagin [AF94] found another
technique, different from Hanf’s, for showing that the
duplicator has a winning strategy in certain situations. They
showed the usefulness of this new tool in a way parallel to
ours. Specifically, they used this technique in two ways: (1)
they gave a proof that directed (s, z)-connectivity is not in
monadic NP that is much easier than the earlier proof by
Ajtai and Fagin, and (2) they showed that directed (s, )-
connectivity is not in monadic NP in the presence of a larger
class of built-in relations than was known before. In (2),

they allow built-in relations of arbitrary arity and they allow
small cycles, as long as not too many vertices lie on the
small cycles. They also showed that they can replace Hanf’s
technique by their technique, in our proof of Fagin’s result
that connectivity is not in monadic NP.

Turan [ Tur84 ] has taken Fagin’s result in another direc-
tion by showing that connectivity is not expressible in
existential monadic second-order logic if we can (existen-
tially) quantify over sets of edges of G as well as sets of
vertices of G (in Fagin’s result, quantification only over sets
of vertices is allowed). Essentially, this amounts to repre-
senting a graph as a set of vertices, a set of edges, and an
incidence relation between vertices and edges. In contrast,
we represent a graph as a set of vertices and an edge
relation. The former representation of graphs is, in fact, the
representation used by Courcelle in, for example, [ Cou90],
where quantification over both vertices and edges of the
graph are allowed. We remark that our proofs that connec-
tivity is not in monadic NP (both the simple proof not
allowing built-in relations and the more complicated proof
allowing built-in relations of moderate degree) still work
with very minor modification for this alternate approach.

We do not know whether our restriction on the built-in
relations (that they be of moderate degree) is essential: we
consider it possible that connectivity is not in monadic NP,
even in the presence of arbitrary built-in relations of
arbitrary degree and arity (sometimes called “a polynomial
amount of advice”).

2. DEFINITIONS AND CONVENTIONS

A language ¥ (sometimes called a similarity type, a
signature, or a vocabulary) is a finite set {Py, .., P,} of
relation symbols, each of which has an arity.

An Z-structure (or structure over ¥, or simply structure)
is a set A (called the universe), along with a mapping
associating a relation R; over 4 with each P;e %, where R;
has the same arity as P,, for 1 <i<s We may call R, the
interpretation of P;. The structure is called finite if A is.
Unless otherwise stated, throughout the rest of this paper
we make the assumption that all structures we consider are
finite. We note that all of our results hold whether or not we
restrict our attention to finite structures. (The fact that
connectivity is not in X'}, monadic or otherwise, even in the
presence of a built-in linear order, has an extremely simple
proof using the Compactness Theorem in the case where
infinite structures are allowed.)

In this paper, we are especially interested in graphs and
colored graphs. Graphs are simply structures where the
language consists of a single binary relation symbol
Although such structures are in general directed graphs, we
often view the structure as an undirected graph by ignoring
the directions of the edges. Colored graphs are structures
where the language consists of a single binary relation
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symbol and some number of unary relation symbols. If G is
a colored graph, where the interpretations of the unary
relation symbols in the language are U,, ..., Uy, then by the
color of a point a in the universe of G, we mean a description
of which U,’s the point a is a member of. Thus, intuitively,
there are 2* possible colors.

For definitions of a first-order sentence {where, intuitively,
the only quantification is over members of the universe, and
not over, say, sets of members of the universe), and what it
means for a structure A to satisfy a sentence o, written
A = o, see Enderton [ End72] or Shoenfield [ Sho67]. We
note that equality is treated as a special relation symbol,
which is not considered to be a member of the language .,
and which always has the standard interpretation.

When we pass from first-order logic to second-order
logic, we allow quantification over sets and relations. In
particular, a 2| sentence is a sentence of the form
34, ---3A, Y, where ¥ 1s first-order and where the A4,’s are
relation symbols. As an example, we now construct a X'}
sentence that says that a graph (with edge relation denoted
by E) is 3-colorable. Let E'xy denote Exy v Eyx. In this
sentence, the three colors are represented by the unary rela-
tion symbols 4,, 4,, and 4,. Let y, say “Each point has
exactly one color.” Thus, ¥, is

Ux((A;x A 1 Aax A T1Asx) v T4 x A Ao x A T145X)

V(T4 x A 14, A A3X)).

Let ¢, say “No two points with the same color are con-
nected by an edge”. Thus, v, is

VxVy({Ax A A, y="1Exy) A (Ayx A A, y= T1E'xy)
A(Asx A A3 y= —1E'xy)).

The X| sentence 34, 34, 3A45(¥, A ¥,) then says “The
graph is 3-colorable.”

As another example, which is very relevant for this paper,
we now show that the class of graphs that are not connected
is Z} (this demonstration is from [Fag75a]). Let y, say
“The set 4 is nonempty and its complement is nonempty,”
that 1s, 3x 3y(4Ax A —1Ay). Let y, say “There is no edge
between 4 and its complement,” that is, Vx Vy((Ax A —14y)
= —1E'xy). It is clear that the X! sentence 34(¥, A V¥,)
characterizes the class of graphs that are not connected.

A X} sentence 34, --- 34, where / is first-order, is said
to be monadic if each of the 4,’s is unary, that is, the existen-
tial second-order quantifiers quantify only over sets. A class
& of L-structures is said to be (monadic) Z} if it is the class
of all #-structures that obey some fixed (monadic) X!
sentence. A (monadic) X'} class is also called a (monadic)
generalized spectrum. One reason that X} classes are of
great interest is the result [ Fag74] that the collection of X}
classes coincides with the complexity class NP. For this
reason, we refer to the collection of monadic ~ } classes as
monadic NP. We often refer to a class of graphs by a defining

property, for example, 3-colorability or connectivity. As we
saw above, 3-colorability and nonconnectivity are in
monadic NP. Note that 3-colorability 1s an NP-complete
property [GJ79]. Thus, monadic NP includes NP-com-
plete properties. Let us define a class to be in monadic co-
NP if its complement is in monadic NP. For example, since
nonconnectivity ts in monadic NP, it follows that connec-
tivity is in monadic co-NP. This is of interest, because one
result of this paper is a simple proof of Fagin’s result that
connectivity is not in monadic NP (and an extension of this
result where we allow certain built-in relations). In par-
ticular, monadic NP and monadic co-NP are not the same.

3. EHRENFEUCHT-FRAISSE GAMES

Among the few tools of model theory that “survive” when
we restrict our attention to finite structures are Ehrenfeucht—
Fraissé-type games [ Ehr61, Fra54]. For an introduction to
Ehrenfeucht-Fraissé games and some of their applications to
finite-model theory, see | AF90, pp. 122-1261].

We begin with an informal definition of an r-round
first-order Ehrenfeucht—Fraissé game (where r is a positive
integer), which we shall call an r-game for short. It is
straightforward to give a formal definition, but we shall not
do so. For ease in description, we shall restrict our attention
to colored graphs, but everything we say generalizes easily
to arbitrary structures. There are two players, called the
spoiler and the duplicator, and two colored graphs, G, and
G,. In the first round, the spoiler selects a point in one of the
two colored graphs, and the duplicator selects a point in the
other colored graph. Let a, be the point selected in Gy, and
let b, be the point selected in G,. Then the second round
begins, and again, the spoiler selects a point in one of the
two colored graphs, and the duplicator selects a point in the
other colored graph. Let a, be the point selected in G, and
let b, be the point selected in G,. This continues for r
rounds. The duplicator wins if the colored subgraph of G,
induced by (a,, .., a,) is isomorphic to the colored sub-
graph of G, induced by <{b,, ..., b,>, under the function that
maps a; onto b; for 1 <i<r. That is, for the duplicator to
win, (a) a;=a; it b;=b;, for each i, j; (b) (a;, a,) is an edge
in G, iff (b, b;) is an edge in G, for each i, j; and (c) a; has
the same color as b;, for each i. Otherwise, the spoiler wins.
We say that the spoiler or the duplicator has a winning
strategy if he can guarantee that he will win, no matter how
the other player plays. Since the game is finite, and there are
no ties, the spoiler has a winning strategy iff the duplicator
does not. If the duplicator has a winning strategy, then we
write Gy~, G,. In this case, intuitively, G, and G, are
indistinguishable by an r-game.

The following important theorem (from [ Ehr61, Fra54])
shows why these games are of interest. If & is a class of
colored graphs, then let & be the complement of &, that is,
the class of colored graphs not in &.
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THEOREM 3.1. & is first-order definable iff there is r such
that whenever Gy ¥ and G,€ %, then the spoiler has a
winning strategy in the r-game over G,, G,.

We now discuss a more complicated game, which is a
c-color, r-round, monadic NP game, and which we shall call
a (c,r)-game for short. This game was introduced in
[Fag75a] to prove that connectivity is not in monadic NP.
We start with two graphs G, and G, (in this case, not
colored). Let C be a set of ¢ distinct colors. The spoiler first
colors each of the points of G, using the colors in C, and
then the duplicator colors each of the points of G, using the
colors in C. Note that there is an asymmetry in the two
graphs in the rules of the game, in that the spoiler must
color the points of Gy, not G,. The game then concludes
with an r-game. The duplicator now wins if the colored sub-
graph of G, induced by (a,, .., a,> is isomorphic to the
colored subgraph of G, induced by (b, .., b,> (under the
function that maps g, onto b, for 1 <i<r).

The following theorem (from [ Fag75a]) is analogous to
Theorem 3.1.

THEOREM 3.2. A class & of graphs is in monadic NP iff
there are c, r such that whenever Gy & and G, € &, then the
spoiler has a winning strategy in the (c, r)-game over G, G,.

In [Fag75a] it is shown that given ¢ and r, there is a
graph G, that is a cycle, and a graph G, that is the disjoint
union of two cycles, such that the duplicator has a winning
strategy in the (c, r)-game over G,, G,. Since G, is con-
nected and G, is not, it follows from Theorem 3.2 that
connectivity is not in monadic NP.

In addition to considering games over pairs G,, G, of
graphs, Ajtai and Fagin [ AF90] found it convenient, for
reasons we shall see shortly, to consider games over a class
&. The rules of an r-game over & are as follows. The
duplicator begins by selecting a member of & to be G, and
a member of & to be G,. The players then play an r-game
over Gy, G, to determine the winner. Similarly, we can
define a (c, r)-game over .#. The rules are as follows.

1. The duplicator selects a member of & to be G,.

2. The duplicator selects a member of & to be G,.

3. The spoiler colors G, with the ¢ colors.

4. The duplicator colors G, with the ¢ colors.

5. The spoiler and duplicator play an r-game on the
colored Gy, G,.

The next theorem follows easily from Theorems 3.1
and 3.2.

THEOREM 3.3. (a) & is first-order definable iff there is
r such that the spoiler has a winning strategy in the r-game
over &.

(b) & is in monadic NP iff there are c, r such that the
spoiler has a winning strategy in the (c, r)-game over .

We now explain why Ajtai and Fagin allow G, and G, to
be selected by the duplicator, rather than inputs to the
game. A (directed) graph with distinguished points s, ¢ is
said to be (s, t)-connected if there is a directed path in the
graph from s to ¢. Ajtai and Fagin wished to prove that
directed (s, ¢)-connectivity is not in monadic NP, but they
did not see how to prove this by using (c, r)-games. By
considering the choice of G, and G, to be moves of the
duplicator, rather than inputs to the game, they were able to
define a variation of (c, r)-games, in which the choice of G,
by the duplicator is delayed until after the spoiler has
colored G,. They successfully used the new game to prove
the desired result (that directed (s, ¢)-connectivity is not in
monadic NP). Their new game, which we call the Ajtai-
Fagin (c, r)-game, is, on the face of it, easier for the
duplicator to win. The rules of the new game are obtained
from the rules of the (¢, r)-game by reversing the order of
two of the moves. Specifically, the rules of the Ajtai~Fagin
(¢, r)-game are as follows.

1. The duplicator selects a member of & to be G,.
2. The spoiler colors G, with the ¢ colors.

3. The duplicator selects a member of & to be G,.
4. The duplicator colors G, with the ¢ colors.

5. The spoiler and duplicator play an r-game on the
colored Gy, G,.

The winner is decided as before. Thus, in the Ajtai-Fagin
(¢, r)-game, the spoiler must commit himself to a coloring of
G, with the ¢ colors before knowing what G, is. In order to
contrast it with the Ajtai-Fagin (¢, r)-game, we may some-
times refer to the (¢, r)-game as the original (¢, r)-game. In
spite of the fact that it seems to be harder for the spoiler to
win the Ajtai-Fagin (c, r)-game than the original (c, r)-
game, we have the following analogue [ AF90] to Theorem
3.3(b).

THEOREM 34. & is in monadic NP iff there are c, r such
that the spoiler has a winning strategy in the Ajtai-Fagin
(¢, r)-game over &.

We will make use of Theorem 3.4 to give a simple proof
that connectivity is not in monadic NP (and to extend to
allowing certain built-in relations).

4. HANF’S TECHNIQUE

In this section, we shall provide a simple but very useful
sufficient condition for guaranteeing that A ~, B for two
structures A, B. The proof is based on a technique of Hanf
[Hané5].

Let A be an Z-structure, where ¥ = {P,, .., P.}, and
where R, is the interpretation in A of the relation symbol P,
for 1 <i<s. Let a and b be two points in (the universe of)
A. We say that g and b are adjacent (in A) if cither a=b or
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there is some R, and some tuple 7 such that t € R; and such
that a and b are entries in the tuple . Intuitively, two
points a and b are adjacent if they are either identical or
directly related by some relation of A. The degree of a point
a 1s the cardinality of the set of points adjacent to a but not
equal to a. By A | X for a subset X of the universe of A, we
mean the structure with universe X where the interpretation
of P, is the set of tuples ¢ in R, such that every entry of ¢ is
mX, forl <i<s.

Essentially following Hanf, we define the neighborhood
Nbd(d, a) of radius d about a recursively as follows:

Nbd(1, a) = {a)
Nbd(d + 1, a) = {x | x is adjacent to some b € Nbd(d, a)}.

It is helpful to think of these neighborhoods as open spheres.
Thus, intuitively, Nbd(d, a) consists of all points whose dis-
tance from a is strictly less than 4. Note that because a is
adjacent to itself, we have that Nbd(d, a) = Nbd(d+ 1, a).

Also following Hanf, we define the d-type of a point a to
be the isomorphism type of the neighborhood of radius 4
about a with a as a distinguished point. Thus, the points a
in A and b in B have the same d-type precisely if
A [ Nbd(d, a)=~B | Nbd(d,b), under an isomorphism
mapping a to b.

Let d, m be positive integers. We say that .#-structures A
and B are (d, m)-equivalent if for every d-type 7, either A and
B have the same number of points with d-type 7, or else both
have at least m points with d-type 7. Intuitively, A and B are
(d, m)-equivalent if for every d-type 7, they have the same
number of points with d-type 7, where we can count only
as high as m. We say that the structures A and B are
d-equivalent if for every d-type t, they have exactly the
same number of points with d-type 7.

We need two simple lemmas.

Lemma 4.1. If A and B are (d, m)-equivalent, and if
d>d', then A and B are (d’', m)-equivalent.

Proof. Let v’ be a d'-type. Let us say that a d-type 7
refines v’, and write 7 > 7', if every point with d-type 7 also
has d'-type 7'. Since d>d’, it follows easily that for every
point with d'-type 7', there is some d-type t that refines 7'.
Define count(A, r) to be the number of points in A with
d-type 7 (and similarly for count(B, ), count(A, '), and
count(B, t')). It follows easily from our remarks, and from
the fact that every point has exactly one d-type, that

count(A, t')= ) count(A, 7).

T>1

(1)
Identically,

count(B, 7')= Y count(B, 7).

>t

(2)
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Since A and B are (d, m)-equivalent, the right-hand sides
(and hence the left-hand sides) of Eqs. (1) and (2) are either
the same, or both at least m. Thus, count(A, 1') and
count(B, 7’) are either the same, or both at least m. Since 7’
is an arbitrary d’-type, it follows that A and B are (d’, m)-
equivalent. |

LeMMA 42. Assume that f[=22. The size of a
neighborhood of radius d in a structure where every point has
degree at most [ is less than f°.

Proof. 1t is easy to see that the size of a neighborhood
of radius d in a structure where every point has degree at
most f is at most

LHf+/ 4 4 =)
(f=n<s? '

The next theorem (Theorem 4.3) is a key tool in our proof
that connectivity is not in monadic NP (including the exten-
sion to allowing certain built-in relations). We give it in
slightly more generality than we need, since we believe that
it can be a useful tool in the future. The simpler version of
the theorem that we actually use is then obtained as an
immediate corollary.

THEOREM 4.3. Let r, f be positive integers. There are
positive integers d, m, where d depends only on r, such that
whenever A and B are (d, m)-equivalent structures where
every point has degree at most f, then A ~,B.

Proof. We can assume without loss of generality that
f =2. We can also assume without loss of generality that the
universes of A and B are disjoint. Let d=3""", and let
m=r.f?"! Assume that A and B are (d, m)-equivalent
structures where every point has degree at most £ We now
describe a winning strategy for the duplicator in an r-game
over the structures A, B. The duplicator’s strategy is to
ensure that after j rounds, if a,, ..., a; (resp. b,, .., b;) are the
points selected in A (resp. B), then a certain condition,
which we call the j-matching condition holds:

J-matching condition: A (U),c; Nbd(3"~/, a))) = B|
(U:<, Nbd(3"~/, b;)) under an isomorphism mapping a, to
b, for 1 <i<j

We first show that, for j=1, the duplicator can ensure
that the j-matching condition holds after the first round.
Suppose that the spoiler selects a, from A. Let ¢ be the
d-type of a, in A. Since A and B are (d, m)-equivalent, there
is at least one point that has d-type 7 in B. The duplicator
selects one such point to be b,. Since d=3""'and j= 1, the
J-matching condition is identical to the definition that a,
and b, have the same d-type. (By symmetry, the same
strategy works when we reverse the roles of A and B.)

We now show that if 1 < j <r and if the j-matching condi-
tion holds, and the spoiler selects 4;,, from A, then the
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duplicator can select b;,; from B so that the (j+1)-
matching condition holds (again, by symmetry, the same is
true when we reverse the roles of A and B).

There are two cases.

Case 1. If
aj+1e U Nbd(2.3r—j—l, ai)’ (3)

i<j

then

Nbd(3 =", a,, )< | Nbd(3 7, a,).

i<y

Then the duplicator can select b, , | to be the corresponding
point of B (given by the isomorphism of the j-matching
condition).

Case 2. 1f (3) fails, then let © be the 377/~ '-type of
a;,,. Let | be the number of points in R, =
Uic; Nbd(2-37771, a,) with 3"/~ '-type 7. Let us denote
by A’ (resp. B’) the structure on the left-hand side (resp.
right-hand side) of the isomorphism in the j-matching
condition. Now for every point a € R, , we have

Nbd(3 =", a) = | ) Nbd(3"~, a,).

i<j

Therefore, for each point ae R,, the 3"~/ -type of a in A
is the same as its 3"/~ '-type in A’. Hence, / equals the num-
ber of points in R, whose 3"/~ !-type in A’ is 7. Let Ry =
U<, Nbd(2-377771 b,). By the j-matching condition, / also
equals the number of points in Ry whose 3"/~ -type in B’
is 7. Just as in the situation with A and A’, it follows that /
equals the number of points in Ry whose 3”7/~ !-type in B
1S T.

We now show that /<m. Since 2-3" 7/~ 1«3~ 1= it
follows that 2. 37—/~ < d — 1. Therefore, by Lemma 4.2, for
each i < j the number of points in Nbd(2-3"/~", a,) is less
than f?~'. So j such neighborhoods have less than
J-f'<r.f9"'=m points altogether. Therefore, R, has
less than m points, so certainly / <m.

There are at least /+ 1 points in A with 3"/~ !-type 7
(namely, a;, ,, along with the / points in R, with 37—/~ 1.
type 7). Now A and B are (d, m)-equivalent, and hence, by
Lemma 4.1, they are (d’, m)-equivalent, where d’'=
37~/~! < d. Therefore, since / + 1 <m, and since there are at
least /+ 1 points in A with 3"/~ l-type 7, there are also at
least / + 1 points in B with 3" =/~ I-type 7. In particular, there
is some such point x outside of Ry, since Ry contains only
I such points. Define b, , to be x. From the fact that (3)
fails, it is easy to see that A | Uig, Nbd(3"~/~1, a;) contains
no point adjacent to a member of A | Nbd(3' 7~ a,, )
(and similarly in B). It follows easily that the (j+1)-
matching condition holds.

Since the duplicator’s strategy guarantees that the
Jj-matching condition holds for 1< j<r, in particular the
r-matching condition holds. The r-matching condition
says that A {a,,.,a,} = B[ {b,.,b} under an
isomorphism mapping a, to b;, for 1<i<r. So the
duplicator wins. Therefore, A~,B. |

Since d in Theorem 4.3 depends only on r, and since two
d-equivalent structures are (d, m)-equivalent for every m,
the following corollary is immediate.

CoRrROLLARY 4.4. Let r be a positive integer. There is a
positive integer d such that whenever A and B are d-equivalent
structures, then A ~, B.

We now describe Hanf’s Lemma [ Han65] (rewritten
slightly to match our terminology). Hanf was not doing
finite-model theory, so his lemma deals with both finite and
infinite structures. Two structures A and B are elementarily
equivalent if they agree on all first-order sentences (that is,
A E o iff B k= g, for every first-order sentence o).

LeMMA 4.5 (Hanf’s Lemma). = Assume that every
neighborhood in A and B contains finitely many points. Then
A and B are elementarily equivalent provided that, for each
integer d and each d-type 1, either

1. both A and B have infinitely many points of d-type T,
or

2. A and B have the same finite number of points of
d-type 1.

By the results in [ Ehr61, Fra54], two structures A and B
are elementarily equivalent precisely if A ~, B for all »>0.
Thus, Theorem 4.3 is closely related to Hanf’s Lemma, but
neither seems to directly imply the other. In particular,
Hanf’s Lemma as stated is not useful in the context of finite
structures, since two finite structures are elementarily equiv-
alent iff they are isomorphic (discussion of this well-known
fact can be found in [Fag93]). Our version of Hanf’s
Lemma is better suited for inexpressibility proofs for classes
of finite structures, since it can show a bounded form of
elementary equivalence, namely A ~, B, in cases where A
and B are nonisomorphic finite structures.?

A result on graphs that is very similar to Theorem 4.3
appears in [ Tho91, Lemma 4.1 ]. Theorem 4.3 is also related
to a result by Gaifman [Gai82], who proved that in
a precise sense, first-order logic talks only about
neighborhoods. We can think of Hanf’s Lemma, as well as

3 We now discuss how A ~, B is a limited form of elementary equiv-
alence. The quantifier depth OQD(g) of a first-order sentence ¢ is defined
recursively as follows: OD(¢) = 01if ¢ is quantifier-free; QD{ 1) = QD(9);
OD(¢, A 9;) =max{QD(¢,), 0D(¢,)}; QD(3¢)=1+0D(p). It tumns
out (and is closely related to results of Ehrenfeucht [ Ehr61] and Fraissé
[Fra54]) that A ~ Bifl A and B agree on all first-order sentences of quan-
tifier depth r (that is, if @ is a first-order sentence of quantifier depth r, then
AECciffB = o).
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our versions, Theorem 4.3 and Corollary 4.4, as giving a
library subroutine for the duplicator. Thus, instead of
coming up with a winning strategy for a game, we can make
use of the winning strategy given by the result.

As a warm-up for the proof in the next section, let us see
how to use Corollary 4.4 to show that connectivity is not
first-order. Assume that & (the class of connected graphs) is
first-order. Let r be given by Theorem 3.3(a). We obtain a
contradiction by showing that the duplicator wins the
r-game over . Find d as in Corollary 44. Let G, be a cycle
with 4d nodes, and let G, be the disjoint union of two cycles,
each with 24 nodes. It is easy to see that every point in G,
and G, has the same d-type. Since G, and G| have the same
number of points, and all with the same d-type, it follows
that G, and G, are d-equivalent. By Corollary 4.4 and our
choice of d, it follows that G, ~, G,. Now the duplicator has
a winning strategy in the r-game over & he selects Goe &
and G,e€%. Since, as we just showed, G,~,G;, the
duplicator can now win.

5. APPLICATION TO CONNECTIVITY

Now we apply Theorem 3.4 and Corollary 4.4 to give a
very simple proof that connectivity is not in monadic NP
(and in particular, a proof that is much simpler than Fagin’s
original proof in [ Fag75a]). Even though the details of our
proof are not difficult, it is instructive to first outline the
basic method, since a similar method might be applied to
properties other than connectivity.

Let & be the class of connected graphs. Assuming that
connectivity is in monadic NP, we obtain a contradiction by
giving, for all constants ¢ and r, a winning strategy for the
duplicator in the Ajtai-Fagin (c, r)-game over <. The
duplicator begins by choosing G, to be a sufficiently long
cycle. After the spoiler colors G, with the ¢ colors, the
duplicator finds points «, and a, of G, such that «, and «,
are sufficiently far apart and such that, intuitively, the color-
ing of points near to «, looks the same as the coloring of
points near to «,. Here, the precise definition of “sufficiently
far apart™ and “near” both depend on the parameter d given
by Corollary 4.4. The duplicator then “pinches” G, together
at the points «, and a, to split G, into two disjoint cycles.
This pair of disjoint cycles is the duplicator’s choice for G,
and the coloring of G, is inherited from G,. Thus, the
duplicator’s coloring strategy is trivial. It then follows that,
for every d-type 7, the graphs G, and G, have exactly the
same number of points with d-type 7. Corollary 4.4 can then
be applied to conclude that G, ~, G,. In the proof of the

following, the details are filled in.
THEOREM 5.1. Connectivity is not in monadic NP.

Proof. Let & be the class of connected graphs and
assume that & is in monadic NP. Let ¢, r be given by

Theorem 3.4. We obtain a contradiction by showing that
the duplicator wins the Ajtai-Fagin (¢, r)-game over <.

Let d be given by Corollary 4.4 for this r. The duplicator
chooses G, to be a directed cycle of length n, for a suf-
ficiently large n. Let a4, @, .., a,_; denote the points in
order around the cycle, so that there is an edge from a; to
®; 4 for 0<i<n. Here and subsequently, subscripts are
reduced modulo # to belong to the interval [0, n—1].

The spoiler now colors G, with ¢ colors. Let x(«,) denote
the color of «,. Assuming that n > 24, the d-type of the point
o, in the resulting structure is fully described by the
following vector of 2d — 1 colors:

<X(ai-(d— 1))’ e X0 1)y 200, (% 1)y s X(“f+(d— 1))>-

The number of possible d-types is some constant, depending
on ¢ and d, but not on n. So it is clear that, for n sufficiently
large, there must be at least 4d points with the same d-type.
Therefore, there must exist points «, and «, that have the
same d-type and are at least distance 2d apart (that is,
a, ¢ Nbd(2d, o).

The duplicator now forms G, a pair of disjoint directed
cycles, by pinching G, together at the points «, and «, (see
Fig. 1). More precisely, let G, be a structure with universe
consisting of n distinct points £, f,, ... f,,_1. There is an
edge from f;to B, , forall iwith O0<i<n,i#p, and i #g¢,

%p Xp+1
“P/—\u
Co : :
“qvq
Ag+1 g
ﬁp ﬁp+1
ﬂp/r ﬂp+2
G :
pq& %_1
<
Bq+1 ﬂq
FIG. 1. Gyand G,.
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there is an edge from §, to 8, ;, and there is an edge from
B, to B,,,. There are no other edges. The duplicator’s
coloring of G, is given by x(f,) = x(«;) for all i.

Note that each component cycle of G, or G, contains at
least 2d points, since a, and «, are at least distance 2d apart.
Since also a, and «, have the same d-type, it follows that «;
and B, have the same d-type for all i, so G, and G, are
d-equivalent. It follows from Corollary 4.4 that G, ~, G,
so the duplicator wins.

It is instructive to see why the use of the Ajtai-Fagin
(¢, r)-game, as opposed to the original (c, r)-game, is impor-
tant for our proof. The choice of G, depends on the coloring
by the spoiler of G,. Our proof would not work if, as in the
original (c, r)-game, the duplicator were required to select
G, and G, before the spoiler colors Gy.

We note that Hajek [Haj75], independently of Fagin
[Fag75a] but somewhat later, also proved that connec-
tivity is not in monadic NP. Hajek’s proof uses nonstandard
analysis and semisets. Interestingly enough, Hajek’s proof
involves splitting a cycle, just as our proof does.

6. BUILT-IN RELATIONS OF MODERATE DEGREE

In this section the result that connectivity is not in
monadic NP is extended to the case where sentences are
allowed to contain built-in relations of moderate (i.e., suf-
ficiently small) degree. This gives, in particular, the result of
de Rougemont [ dR87] that connectivity is not in monadic
NP in the presence of a built-in successor relation. Let
V,={vg, vy, ., v, _1} be a universe of size n. A particular
collection of built-in relations is specified by a language

{P,,.., P} and, for each n>1 and 1 <i<s, an interpreta- -

tion 13,,, ; of P; as a relation on V. Let P, denote the struc-
ture with domain ¥, and relations P, , .., P, .. Let f(n) be
the maximum degree of a point v in the structure P,. (Recall
from Section 4 that the degree of v is the number of points
adjacent to v but not equal to v, where v and v" are adjacent
(in P,,) if they both belong to the same tuple in £, , for some
i.) We say that the built-in relations have moderate degree if
fi{n)=(log n)°V, that is, if there is a function o{(r) with
lim,_, . o(n)=0 such that f(n)<(logn)°™ for all n
(Although the base of the logarithm is not important, say
that the base is 2 for definiteness.)
The next theorem is our main result.

THEOREM 6.1. Connectivity is not in monadic NP, even in
the presence of built-in relations of moderate degree.

Proof. The proof is similar to the proof of Theorem 5.1,
although the details are more complicated. Fix some collec-
tion of built-in relations as above. Assume that the class &
of connected graphs is in monadic NP using these built-in
relations. Let ¢,r be given by Theorem 3.4. Although
Theorem 3.4 is stated for the case where there are no built-in

relations, it is clear how the Ajtai-Fagin game generalizes to
the case of built-in relations, and Theorem 3.4 remains true
in this case. For example, in the first step, the duplicator
extends the “built-in” structure P, by choosing an inter-
pretation E, for the edge relation of a connected graph on
V.. As before, the duplicator will choose E, to be a directed
cycle on V,, henceforth called a full cycle. As before, we
want to show that the duplicator can choose the full cycle E,
such that, no matter how the spoiler colors the points, the
duplicator can split the cycle into two disjoint cycles in such
a way that Corollary 4.4 applies to the two structures. The
new difficulty is that the built-in relations impose an addi-
tional structure on the points, and we know nothing about
this structure, other than that it has moderate degree. (It
should perhaps be noted that the duplicator cannot choose
E, arbitrarily. As a simple example, suppose that one of the
built-in relations is itself a full cycle. If the duplicator
chooses E, to coincide with this built-in relation then the
spoiler will always win no matter how the duplicator splits
the cycle.) We show that if the duplicator chooses a cycle at
random, then with high probability the chosen cycle will
work to defeat the spoiler. In particular, since the proba-
bility is positive, this shows that there exists a choice that
the duplicator can make that is guaranteed to defeat the
spoiler.

We first outline the duplicator’s winning strategy in the
Ajtai-Fagin (¢, r)-game. Let d be given by Corollary 4.4 for
this r. The duplicator chooses a sufficiently large n.
Abbreviate V=V, and P=P,. If E is a binary (edge) rela-
tion, let P,(E) (abbreviated P(E)) denote the structure on
the universe ¥V, with relations P,,,l, s Ian,s, E. A key con-
cept in the proof is the notion of a point being “good” for a
full cycle E. Let ag, a4, ..., o, _; denote the points in order
around E. Informally, we say that «, is good for E if a suf-
ficiently large neighborhood around «; can be partitioned
into a left part L and a right part R such that
a;€L, a;, € R, the only adjacency between a point of L and
a point of R is the adjacency between «, and «a,, ,, and,
moreover, this adjacency occurs only in the cycle E, not in
any of the built-in relations. Intuitively, the left part and the
right part are “unrelated,” except for the single cycle edge
from a, to a,, ;. We show that if the duplicator chooses a full
cycle E uniformly at random, then he can expect that
“many” points will be good for E (this is one place where we
use the assumption of moderate degree). In particular, there
must exist a full cycle E, for which “many” points are good.
The duplicator begins by choosing the structure P(E,).
After the spoiler colors the points of P(E,) with the c colors,
let A denote the resulting colored structure. Since there are
a large number of good points, and since the number of
possible 2d-types can be shown to be much smaller than »
(this is another place where we use the assumption of
moderate degree), we can find points «, and a, such that «,
and a, are good, a,, and o, have the same 2d-type in A, and
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a, and a, are sufficiently “far apart” in A. Similar to the
proof of Theorem 5.1, the duplicator then forms E,, con-
sisting of two disjoint directed cycles, by removing two
edges from F, and adding two other edges to E,, as shown
in Figure 1. Let B be the resulting structure. That is, Bis P,
with all points colored the same as in A, but extended by the
edge relation E, instead of E,. It will then follow from the
properties of «, and a that, for every d-type 7, the structures
A and B have exactly the same number of points with d-type
7. In particular, since a, and a, are good and are sufficiently
far apart, the left and right parts associated with «, and the
left and right parts associated with a, are pairwise unrelated
in A, except for the cycle edge from «, to «,, , , and the cycle
edge from a, to «, , ;. Since, in addition, «, and «, have the
same 2d-type, we can argue that the d-type of every point is
not changed when these two cycle edges are replaced by
edges from a, to «,,, and from «a, to «,,,. By Corollary
4.4, A ~, B. So the duplicator wins the Ajtai-Fagin (c, r)-
game over ..

In what follows, we will be dealing with neighborhoods in
a variety of different structures. For a structure S, let
Nbd(S; d, v) denote the neighborhood Nbd(d, v) in the
structure S.

We begin to fill in the details by giving the formal defini-
tion of a point being good for a full cycle E. Let
®g, &y, ..., &, _, denote the points in order around FE; that is,
Ca, o> € EMff j=i+ 1 modn Let E(i) be the relation E
with the tuple <«;, a;, ;> removed. (As before, subscripts
are reduced modulo n.) The point «; is good for E if
Nbd(P(E); 2d, o,) can be partitioned into a left part L and
a right part R (that is, LU R=Nbd(P(E);2d, ;) and
L R=(¥), such that ;€ L, «,, ; € R, and, for every ue L
and u’ € R, the points « and ' are not adjacent in P(E(i)).
Any pair (L, R) having these properties is said to be a good
partition for o, in E.

The next step is to show that there is a full cycle E, for
which at least half of the points are good. This is done by a
probabilistic argument. By a randomly chosen full cycle we
mean one chosen from the uniform distribution where every
full cycle has the same probability (1/(n—1)!) of being
chosen. The key step is to prove the following:

Cram 1. Assume that n is sufficiently large. Fix a point
v. If E is a randomly chosen full cycle, then the probability
that v is good for E is at least 1.

From this it follows immediately that, for a randomly
chosen full cycle E, the expected number of good points is
at least n/2. So there must be some E, with at least n/2 good
points. The following terminology will be useful in proving
Claim 1. If F< V' x V, say that F is legal if F < F’ for some
full cycle F'. Thus, F is legal if it consists of a subset of the
edges of a full cycle. If (v, v'> € F where F is legal, v is the
left neighbor of v' in F, and v’ is the right neighbor of v in F.

The point v is full in F if v has a left neighbor and a right
neighbor in F. The point v is deficient in F if it is not full.

To prove Claim 1, fix an arbitrary ve V and consider the
random procedure RandomCycle(v). The cutput is a pair
{E,b) where E is a full cycle and be {0, 1}. The output
b = 0 means that the procedure was successful in producing
an E for which v is good. The procedure RandomCycle(v)
is described precisely below. In outline, the procedure
operates as follows. The procedure has n steps and con-
structs a full cycle by randomly adding one edge at each
step. The procedure has two phases. In the first phase
(labelled 2(a) below), the procedure (repeatedly and
determimistically) chooses a deficient point v, in the
neighborhood of radius 24 about v, and randomly adds a
cycle edge incident on v; by randomly choosing the other
endpoint z of the edge from among the z’s that preserve
legality of the set of chosen edges; this continues until no
point in this neighborhood is deficient. (This neighborhood
grows as edges are added.) During this phase, v remains
good for the cycle being chosen provided that the randomly
chosen endpoint of each added edge does not belong to a set
of “bad” points that lie “too close” to v. Intuitively, this
works for the following reason. Let v’ be the point reached
by following the cycle edge from v. If v is not good for the
chosen cycle, then, for every way of partitioning the
neighborhood of radius 24 about v into a left part L con-
taining v and a right part R containing v’, there will be an
adjacency between L and R other than the adjacency caused
by the cycle edge (v, v'>; this implies the existence of a
“short” path of adjacencies from v to v’ not involving the
cycle edge (v, v'). If the randomly chosen endpoints lie suf-
ficiently far from v, then such short paths of adjacencies are
avoided. A detailed proof of this is given in the proof of
Claim 1.2 below. Moreover, the set of bad points is suf-
ficiently small, and the first phase lasts for sufficiently few
steps, that all points chosen in the first phase are not bad
with high probability. A detailed proof of this is given in the
proof of Claim 1.3 below. During the second phase (labelled
2(b) below), any remaining deficient points are made full by
randomly choosing cycle edges incident on these points. The
choices made during the second phase do not affect v being
good for the chosen cycle, since these edges are all incident
on points outside the neighborhood of radius 24 about v.
The procedure uses S, to denote the set of edges chosen
during the first t — 1 steps, and it uses B, to denote the set
of points that are “bad” choices for the randomly chosen
endpoint of the edge added at step r. In general, B, is the
neighborhood of radius 4d about v in the structure P
extended by the set of cycle edges chosen so far.

RANDOMCYCLE(v):

1. Set S, =, B, =Nbd(P; 4d, v), and b =0.
2. Do the following for t=1,2, .., n:
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(a) If there is a point v,e Nbd(P(S,); 2d, v) that is
deficient in S,, let v; be such a point with smallest i. (We
choose the minimum i just to be definite; this choice is not
important.) If v; does not have a right neighbor, choose a right
neighbor z for v, at random; that is choose a point z uniformly
at random from those points z such that S, v {{v,,z>} is
legal. Set S, =S,0{{v,z)}. If v, does have a right
neighbor, then randomly choose a left neighbor z for v; in a
similar way. In either case, if z€ B, thensetb=1.Set B, , | =
Nbd(P(S, . ,); 4d, v).

(b) If there is no point v;e Nbd(P(S,); 2d, v) that is
deficient in S,, then let v; be a point with smallest i that is
deficient in S,. Choose a random right or left neighbor z for
v; as above, and let S, ., be S, together with the new edge
{v;, 2> or {z,v;>. In this case, b does not change, and we can
(arbitrarily) take B, ., = B,.

3. Output (S, ., b).

To see why the choice of B,,, is not important in
case 2(b), note that if at some step ¢ we have that no point
of Nbd(P(S,); 2d, v) is deficient, then Nbd(P(S)); 2d, v) =
Nbd(P(S,); 2d, v) for all j> ¢. Thus, case 2(a) will occur at
all steps up to some step ¢4, and case 2(b) will occur at all
steps thereafter (where f, may depend on the random
choices made by the procedure). This fact is used again
below.

Claim 1 follows immediately from the following three
claims about the output (£, b) of RandomCycle(v), for
each fixed v.

Cram 1.1.  The distribution of E is the uniform distribu-
tion on full cycles.

Cram 12, Ifb=0, then v is good for E.
Pr[b=0] = 1/2, for all sufficiently large n.

Proof of Clai