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It is a well-known result of Fagin that the complexity class NP coin- 
cides with the class of problems expressible in existential second-order 
logic (1;). Monadic NP is the class of problems expressible in monadic 
Z;, i.e., 1: with the restriction that the second-order quantifiers range 
only over sets (as opposed to ranging over, say, binary relations). We 
prove that connectivity of finite graphs is not in monadic NP, even in 
the presence of arbitrary built-in relations of moderate degree (that is, 
degree (log n ) ” “ ) ) .  This extends earlier results of Fagin and de Rouge- 
mont. Our proof uses a combination of three techniques: ( 1  ) an old 
technique of Hanf for showing that two (infinite) structures agree on 
all first-order sentences, under certain conditions, ( 2 )  a recent new 
approach to second-order Ehrenfeucht-Fraisse games by Ajtai and 
Fagin, and ( 3 )  playing Ehrenfeucht-Fraisse games over random struc- 
tures (this was also used by Ajtai and Fagin). Regarding ( 1 ), we give 
a version of Hanf’s result that is better suited for use as a tool in 
inexpressibility proofs for classes of finite structures. The power of 
these techniques is further demonstrated by using them (actually, using 
just the first two techniques) to give a very simple proof of the separa- 
tion of monadic NP from monadic co-NP without the presence of 
built-in relations. 0 1995 Academic Press, Inc. 

1. INTRODUCTION 

The computational complexity of a problem is the amount 
of resources, such as time or space, required by a machine 
that solves the problem. Complexity theory traditionally 
has focused on the computational complexity of problems. 
A more recent branch of complexity theory focuses on the 
descriptive complexity of problems, which is the complexity 
of describing problems in some logical formalism [ Imm891. 
One of the exciting developments in complexity theory is 
the discovery of a very intimate connection between com- 
putational and descriptive complexity. 

This intimate connection was first discovered by Fagin, 
who showed [ Fag741 (cf. [ JS741) that the complexity class 
N P  coincides with the class of properties of finite structures 
expressible in existential second-order logic, otherwise 
known as Z!. Stockmeyer then observed that this could be 
extended to give a tight correspondence between the poly- 
nomial-time hierarchy and second-order logic [ 90771. 

* A condensed version of this paper appeared in “Proceedings of the 8th 
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The next discovery was by Immerman and Vardi, who 
proved that the complexity class P coincides with the class 
of properties of finite ordered structures expressible in 
fixpoint logic [ lmm86, Var821. The connection between 
descriptive and computational complexity, typically 
referred to as the connection between “logic and com- 
plexity”, was then proclaimed by Immerman [ Imm871, and 
studied by many researchers; see [Imm89] for a survey. 
This connection is considered to be one of the major 
features of finite-model theory; see [ Fag931. 

A consequence of the connection between N P  and 
existential second-order logic is that NP  = co-NP if and 
only if existential and universal second-order logic have the 
same expressive power over finite structures, i.e., if and only 
if Zi = li‘ :. This equivalence of questions in computational 
and descriptive complexity is one of the major features of 
the connection between the two branches of complexity 
theory. It holds the promise that techniques from one 
domain could be brought to bear on questions in the other 
domain. In particular, there is a standard technique in 
finite-model theory for proving separation results: Ehren- 
feucht-FraissC games. It is known that C: # IZ if and only 
if such a separation can be proven via second-order Ehren- 
feucht-Fraisse games [ Fag75al. Unfortunately, “playing” 
second-order Ehrenfeucht-FralssC games is very difficult, 
and the above promise is essentially still largely unfulfilled; 
for example, the equivalence between the NP  = co-NP ques- 
tion and the C: =I7; question has not so far led to any 
progress on either of these questions. 

One way of attacking these dificult questions is to restrict 
the classes under consideration. Instead of considering 2: 
( = NP) and I7 ( = co-NP) in their full generality, we could 
consider the monadic restriction of these classes, i.e., the 
restriction obtained by allowing second-order quantifica- 
tion only over sets (as opposed to quantification over, say, 
binary relations). We refer to the restricted classes as 
monadic 2: or monadic N P  (resp., monadic or monadic 
co-NP). (It should be noted that, in spite of its severely 
restricted syntax, monadic N P  does contain NP-complete 
problems, such as 3-colorability and satisfiability. ) The 
hope is that the restriction to the monadic classes will yield 
more tractable questions and will serve as a training ground 
for attacking the problems in their full generality. 

78 
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This line of attack was pursued by Fagin in [Fag75a], 
where he separated monadic N P  from monadic co-NP. 
Specifically, he showed that connectivity of finite graphs is 
not in monadic NP, although it is easy to see that it is in 
monadic co-NP. This result was the first lower bound in 
descriptive-complexity theory. It was also the first significant 
demonstration of the weakness of first-order logic over finite 
structures, since it implies that connectivity of finite graphs is 
not expressible in first-order logic (the inexpressibility ofcon- 
nectivity of general graphs in first-order logic is a trivial con- 
sequence of the Compactness Theorem). This consequence 
was rediscovered later by Aho and Ullman [AU79] and 
inspired a great deal of research in the theory of database 
queries (cf. [ Cha881) and in finite-model theory. 

To separate monadic N P  from monadic co-NP, Fagin 
extended the theory of Ehrenfeucht-Fralsse games to 
monadic 2:. In the standard Ehrenfeucht-Fralsse game over 
a pair A, B of structures, two players, the spoiler and the 
duplicator, take turns placing pebbles on elements of the 
structures.’ In the game for monadic Cl , the spoiler starts by 
coloring the elements of A, the duplicator responds by color- 
ing the elements of B, and the two players then follow the 
standard game. To show that connectivity of finite graphs is 
not expressible in monadic Ct, Fagin used the generalized 
game over a pair A, B of graphs, where A consists of a single 
cycle and B consists of two cycles. The separation of monadic 
N P  and monadic co-NP now follows, since, as we noted 
above, connectivity is in monadic co-NP. 

One essential difference between N P  and monadic N P  is 
that in N P  one can assume the existence of certain built-in 
relations on the domain, such as successor or linear order, 
since the existence of such relations can be expressed by a 
second-order existential quantifier. This is not the case for 
monadic NP, which is one of the reasons for the weakness of 
this class. For example, the property “evenness” (i.e., the 
graph having an even number of nodes) is not in monadic 
NP, but it is in monadic N P  with a built-in successor relation. 

Extending the techniques to handle built-in relations is 
important, since some connections between computational 
complexity and descriptive complexity are known to hold only 
if there is a built-in successor relation (or a built-in linear 
order). For example, as we noted earlier, Immerman and Vardi 
showed that a property is in P iff it can be expressed in fixpoint 
logic with a built-in successor relation (or a built-in linear 
order). Allowing successor is crucial in this case, since evenness 
is not definable in fixpoint logic without successor [ CH821. 

There is another reason (besides our interest in successor 
relations) to allow built-in relations. Proving that a problem 
is not in monadic N P  shows that the problem cannot be 
captured in a certain uniform way, where we think of a fixed 

’ Following Joel Spencer [ Spe911, we shall refer to the two players in an 
Ehrenfeucht-Fraisse game as “the spoiler” and “the duplicator,” rather 
than the more usual but less suggestive “player I” and “player 11.” 

monadic sentence as a uniform description. Proving that 
a problem is not in monadic N P  even in the presence of cer- 
tain built-in relations shows that the problem cannot even 
be captured in certain nonuniform ways (since the built-in 
relations vary from universe to universe). So allowing built- 
in relations makes nonexpressibility results that much more 
powerful. We note that first-order logic, in the presence of 
arbitrary built-in relations, is precisely (nonuniform) AC’, 
that is, properties that can be recognized by a family of 
polynomial-size circuits with bounded depth [ Imm871. It 
follows, for example, that the graph property “the number 
of edges is even” cannot be expressed in first-order logic 
with arbitrary built-in relations, since this property is not in 
ACo [ Ajt83, FSS841. 

Unfortunately, extending Fagin’s result, that connectivity 
is not in monadic NP, to allow (certain) built-in relations is 
not easy. The hard part in Fagin’s proof is showing that the 
duplicator has a winning strategy. There are several parts to 
the duplicator’s winning strategy: his coloring strategy, his 
pebbling strategy, and (depending on the version of the 
game we consider) also his strategy in the choice of graphs 
to play the game over (the graphs are simply disjoint unions 
of cycles, but the size of the cycles is an issue). All of these 
parts of the duplicator’s winning strategy in Fagin’s proof 
are very complicated. The complexity of the proof makes it 
quite hard to extend it to built-in relations. Such an exten- 
sion was accomplished by de Rougemont, who proved that 
connectivity is not in monadic N P  with a built-in successor 
relation [ dR871 (by considering graphs that are substan- 
tially more complicated than the cycles in Fagin’s proof). 

Our goal in this paper is to provide new tools for separa- 
tion proofs. This provides us not only with a simple and 
elegant proof of Fagin’s result, but also with its extension to 
arbitrary built-in relations of moderate degree (that is, 
degree (log n)‘“)) .  Such built-in relations include successor 
relations, but not linear orders.’ We accomplish this by 
using three tools: an old but relatively unknown technique 
by Hanf [ Han65 ] for showing that the duplicator has a 
winning strategy in certain situations, a recent new 
approach to Ehrenfeucht-FraissC games by Ajtai and Fagin 
[AF90], and the idea (used also by Ajtai and Fagin) of 
having the duplicator select structures at random. 

The basic idea in the approach of Ajtai and Fagin is not 
to view the pair A, B of structures as an input to the game. 
Rather, they should be viewed as selected by the duplicator. 
According to this view, to prove that a certain property P is 
not expressible by a monadic Ci sentence, the game 
proceeds as follows. The duplicator selects a pair A, B of 
structures such that P holds for A and fails for B. The two 
players then play the generalized game over A, B. 

*Note added in proof. Schwentick [Sch94a, Sch94bl has recently 
shown that connectivity is not in monadic NP, even in the presence of a 
linear order. 
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However, once the selection of the structures is viewed as 
a move in the game, it is quite natural to consider inter- 
leaving this move with the other moves. Ajtai and Fagin 
considered the following interleaving. The duplicator first 
selects the structure A, which is then colored by the spoiler. 
The duplicator then selects the structure Band colors it. The 
two players then play the standard game over the colored 
structures A, B. Note that this variant handicaps the spoiler 
and helps the duplicator. Nevertheless, Ajtai and Fagin 
showed that it suffices to consider their variant when trying 
to prove lower bounds on expressibility for monadic NP. 
The advantage of using this variant of the game is that it is 
tilted in favor of the duplicator, and therefore it is much 
easier to describe a winning strategy for the duplicator. 

Ajtai and Fagin introduced another powerful idea that we 
use: having the duplicator select structures at random; it suf- 
fices to show that the probability of winning is nonzero. 
(Actually, both here and in Ajtai and Fagin’s proof, it is 
shown that the probability of winning is not just nonzero, 
but nearly one.) 

As we will show, in the case of connectivity, the 
Ajtai-Fagin game makes the coloring step for the duplicator 
easy: the duplicator can essentially “copy” the coloring of 
the spoiler. This leaves the other difficult part of the 
strategy-how the duplicator responds to pebble moves by 
the spoiler. In our proof, we use a “library subroutine” based 
on Hanf‘s technique that gives the duplicator’s winning 
strategy for responding to pebble moves by the spoiler. 

We note that Ajtai [ Ajt831 previously proved separation 
between monadic NP and monadic co-NP allowing 
arbitrary built-in relations. In fact, Ajtai proved the very 
strong separation result that there is a (somewhat artificial) 
property of graphs, which belongs to monadic co-NP (with 
no built-in relations), but which does not belong to 
monadic NP  even in the presence of arbitrary built-in 
relations. Ajtai and Fagin [AF90] proved a separation 
involving (s, 2)-connectivity (otherwise known as directed 
reachability): they showed that although this problem is in 
monadic co-NP, it is not in monadic NP, even in the 
presence of binary built-in relations of degree no(’), as long 
as these built-in relations have no “small cycles.” In our 
separation result, there is no restriction on the length of 
cycles or on the arity of the built-in relations, but we can 
only allow degree (log n)O(’). 

Recently, Arora and Fagin [AF94] found another 
technique, different from Hanf‘s, for showing that the 
duplicator has a winning strategy in certain situations. They 
showed the usefulness of this new tool in a way parallel to 
ours. Specifically, they used this technique in two ways: ( 1 ) 
they gave a proof that directed (s, t)-connectivity is not in 
monadic N P  that is much easier than the earlier proof by 
Ajtai and Fagin, and ( 2 )  they showed that directed (s, t ) -  
connectivity is not in monadic NP  in the presence of a larger 
class of built-in relations than was known before. In ( 2 ) ,  

they allow built-in relations of arbitrary arity and they allow 
small cycles, as long as not too many vertices lie on the 
small cycles. They also showed that they can replace Hanf’s 
technique by their technique, in our proof of Fagin’s result 
that connectivity is not in monadic NP. 

Turan [ Tur841 has taken Fagin’s result in another direc- 
tion by showing that connectivity is not expressible in 
existential monadic second-order logic if we can (existen- 
tially) quantify over sets of edges of G as well as sets of 
vertices of G (in Fagin’s result, quantification only over sets 
of vertices is allowed). Essentially, this amounts to repre- 
senting a graph as a set of vertices, a set of edges, and an 
incidence relation between vertices and edges. In contrast, 
we represent a graph as a set of vertices and an edge 
relation. The former representation of graphs is, in fact, the 
representation used by Courcelle in, for example, [ Cou901, 
where quantification over both vertices and edges of the 
graph are allowed. We remark that our proofs that connec- 
tivity is not in monadic NP (both the simple proof not 
allowing built-in relations and the more complicated proof 
allowing built-in relations of moderate degree) still work 
with very minor modification for this alternate approach. 

We do not know whether our restriction on the built-in 
relations (that they be of moderate degree) is essential: we 
consider it possible that connectivity is not in monadic NP, 
even in the presence of arbitrary built-in relations of 
arbitrary degree and arity (sometimes called “a polynomial 
amount of advice”). 

2. DEFINITIONS AND CONVENTIONS 

A language 2’ (sometimes called a similarity type, a 
signature, or a vocabulary) is a finite set { P I ,  ..., Ps} of 
relation symbols, each of which has an arity. 

An 9-structure (or structure over 9, or simply structure) 
is a set A (called the universe), along with a mapping 
associating a relation R, over A with each Pi E 9, where Ri 
has the same arity as Pi, for 1 d ids. We may call R j  the 
interpretation of Pi. The structure is called finite if A is. 
Unless otherwise stated, throughout the rest of this paper 
we make the assumption that all structures we consider are 
finite. We note that all of our results hold whether or not we 
restrict our attention to finite structures. (The fact that 
connectivity is not in Z;, monadic or otherwise, even in the 
presence of a built-in linear order, has an extremely simple 
proof using the Compactness Theorem in the case where 
infinite structures are allowed.) 

In this paper, we are especially interested in graphs and 
colored graphs. Graphs are simply structures where the 
language consists of a single binary relation symbol. 
Although such structures are in general directed graphs, we 
often view the structure as an undirected graph by ignoring 
the directions of the edges. Colored graphs are structures 
where the language consists of a single binary relation 
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symbol and some number of unary relation symbols. If G is 
a colored graph, where the interpretations of the unary 
relation symbols in the language are U , ,  ..., Uk, then by the 
color of a point a in the universe of G, we mean a description 
of which U,’s the point a is a member of. Thus, intuitively, 
there are 2k possible colors. 

For definitions of a first-order sentence (where, intuitively, 
the only quantification is over members of the universe, and 
not over, say, sets of members of the universe), and what it 
means for a structure A to satisfy a sentence CT, written 
A 0, see Enderton [End721 or Shoenfield [Sho67]. We 
note that equality is treated as a special relation symbol, 
which is not considered to be a member of the language 2, 
and which always has the standard interpretation. 

When we pass from first-order logic to second-order 
logic, we allow quantification over sets and relations. In 
particular, a C: sentence is a sentence of the form 
3A,  ... 3A,$, where $ is first-order and where the Ai’s are 
relation symbols. As an example, we now construct a 2; 
sentence that says that a graph (with edge relation denoted 
by E )  is 3-colorable. Let E’xy denote Exy v Eyx. In this 
sentence, the three colors are represented by the unary rela- 
tion symbols A , ,  A , ,  and A , .  Let say “Each point has 
exactly one color.” Thus, $ is 

VX((A,X A l A , X  A 1 A 3 X )  V ( l A , X  A A , X  A l A , X )  

V ( l A , X  A l A 2 X  A A 3 X ) ) .  

Let $, say “No two points with the same color are con- 
nected by an edge”. Thus, $, is 

V X v y ( ( A , X A A , y = > l E ’ X y ) A  ( A , X A A , y * l E ’ X y )  

A ( A , x  A A ,  y * i E ’ x y ) ) .  

The Ci sentence 3 A ,  3A2 3A3($ ,  A $,) then says “The 
graph is 3-colorable.” 

As another example, which is very relevant for this paper, 
we now show that the class of graphs that are not connected 
is 2: (this demonstration is from [Fag75a]). Let say 
“The set A is nonempty and its complement is nonempty,” 
that is, 3x 3y(Ax A i A y ) .  Let $, say “There is no edge 
between A and its complement,” that is, V x  Vy((Ax A 7 A y )  

i E ’ x y ) .  It is clear that the 2: sentence ] A ( $ ,  A $,) 
characterizes the class of graphs that are not connected. 

A Zt sentence 3A, . . . 3Ak$, where $I is first-order, is said 
to be monadic if each of the Ai’s is unary, that is, the existen- 
tial second-order quantifiers quantify only over sets. A class 
Y of 9-structures is said to be (monadic) C: if it is the class 
of all 9-structures that obey some fixed (monadic) C: 
sentence. A (monadic) 2: class is also called a (monadic) 
generalized spectrum. One reason that C: classes are of 
great interest is the result [ Fag741 that the collection of L’: 
classes coincides with the complexity class NP. For this 
reason, we refer to the collection of monadic 2: classes as 
monadic NP. We often refer to a class of graphs by a defining 

property, for example, 3-colorability or connectivity. As we 
saw above, 3-colorability and nonconnectivity are in 
monadic NP. Note that 3-colorability is an NP-complete 
property [ GJ793. Thus, monadic N P  includes NP-com- 
plete properties. Let us define a class to be in monadic co- 
N P  if its complement is in monadic NP. For example, since 
nonconnectivity is in monadic NP, it follows that connec- 
tivity is in monadic co-NP. This is of interest, because one 
result of this paper is a simple proof of Fagin’s result that 
connectivity is not in monadic NP (and an extension of this 
result where we allow certain built-in relations). In par- 
ticular. monadic N P  and monadic co-NP are not the same. 

3. EHRENFEUCHT-FRAISSI?, GAMES 

Among the few tools of model theory that “survive” when 
we restrict our attention to finite structures are Ehrenfeucht- 
Fraisse-type games [ Ehr61, Fra541. For an introduction to 
Ehrenfeucht-Frai’sse games and some of their applications to 
finite-model theory, see [ AF90, pp. 122-1263. 

We begin with an informal definition of an r-round 
fi:rst-order Ehrenfeucht-Fraib6 game (where r is a positive 
integer), which we shall call an r-game for short. It is 
straightforward to give a formal definition, but we shall not 
do so. For ease in description, we shall restrict our attention 
to colored graphs, but everything we say generalizes easily 
to arbitrary structures. There are two players, called the 
spoiler and the duplicator, and two colored graphs, Go and 
G I .  In the first round, the spoiler selects a point in one of the 
two colored graphs, and the duplicator selects a point in the 
other colored graph. Let a ,  be the point selected in Go, and 
let b,  be the point selected in G,.  Then the second round 
begins, and again, the spoiler selects a point in one of the 
two colored graphs, and the duplicator selects a point in the 
other colored graph. Let a2 be the point selected in Go, and 
let b, be the point selected in G I .  This continues for r 
rounds. The duplicator wins if the colored subgraph of Go 
induced by ( a 1 ,  ..., a,) is isomorphic to the colored sub- 
graph of G ,  induced by ( b , ,  ..,, b,), under the function that 
maps a,  onto 6,  for 1 < i d  r. That is, for the duplicator to 
win, (a)  a,= a, iff b, = b,, for each i, j ;  (b)  (u, ,  a,) is an edge 
in Go iff (b,, b,) is an edge in G I ,  for each i, j ;  and (c) a,  has 
the same color as b,, for each i. Otherwise, the spoiler wins. 
We say that the spoiler or the duplicator has a winning 
strategy if he can guarantee that he will win, no matter how 
the other player plays. Since the game is finite, and there are 
no ties, the spoiler has a winning strategy iff the duplicator 
does not. If the duplicator has a winning strategy, then we 
write G 0 m r  G,. In this case, intuitively, Go and G I  are 
indistinguishable by an r-game. 

The following important theorem (from [ Ehr61, Fra541) 
shows why these games are of interest. If Y is a class of 
colored graphs, then let 9 be the complement of Y, that is, 
the class of colored graphs not in Y.  
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THEOREM 3.1. Y isfirst-order definable iff there is r such 
that whenever G 0 € Y  and G I  E 9, then the spoiler has a 
winning strategy in the r-game over Go, G I .  

We now discuss a more complicated game, which is a 
c-color, r-round, monadic NP  game, and which we shall call 
a (c ,  r)-game for short. This game was introduced in 
[ Fag75al to prove that connectivity is not in monadic NP. 
We start with two graphs Go and G, (in this case, not 
colored). Let C be a set of c distinct colors. The spoiler first 
colors each of the points of Go, using the colors in C, and 
then the duplicator colors each of the points of G I ,  using the 
colors in C. Note that there is an asymmetry in the two 
graphs in the rules of the game, in that the spoiler must 
color the points of Go, not G I .  The game then concludes 
with an r-game. The duplicator now wins if the colored sub- 
graph of Go induced by ( a , ,  ..., a,) is isomorphic to the 
colored subgraph of G, induced by (b , ,  ..., b,) (under the 
function that maps ai  onto b, for 1 < i <  r). 

The following theorem (from [ Fag75al) is analogous to 
Theorem 3.1. 

THEOREM 3.2. A class Y of graphs is in monadic NP iff 
there are c, r such that whenever Go E Y and GI E 9, then the 
spoiler has a winning strategy in the (c, r)-game over Go, G I .  

In [Fag75a] it is shown that given c and r, there is a 
graph Go that is a cycle, and a graph GI that is the disjoint 
union of two cycles, such that the duplicator has a winning 
strategy in the ( c ,  r)-game over Go, G I .  Since Go is con- 
nected and GI is not, it follows from Theorem 3.2 that 
connectivity is not in monadic NP. 

In addition to considering games over pairs Go, GI of 
graphs, Ajtai and Fagin [AF90] found it convenient, for 
reasons we shall see shortly, to consider games over a class 
9. The rules of an r-game over Y are as follows. The 
duplicator begins by selecting a member of Y to be Go, and 
a member of 9 to be G I .  The players then play an r-game 
over Go, GI to determine the winner. Similarly, we can 
define a (c, r)-game over Y. The rules are as follows. 

1. The duplicator selects a member of Y to be Go. 
2. The duplicator selects a member of 9 to be G I .  
3. The spoiler colors Go with the c colors. 
4. The duplicator colors G, with the c colors. 
5. The spoiler and duplicator play an r-game on the 

The next theorem follows easily from Theorems 3.1 

THEOREM 3.3. (a)  Y isfirst-order definable iff there is 
r such that the spoiler has a winning strategy in the r-game 
over Y. 

(b) Y is in monadic NP iff there are c, r such that the 
spoiler has a winning strategy in the (c ,  r)-game over 9. 

colored Go, G I .  

and 3.2. 

We now explain why Ajtai and Fagin allow Go and GI  to 
be selected by the duplicator, rather than inputs to the 
game. A (directed) graph with distinguished points s, t is 
said to be (s, t)-connected if there is a directed path in the 
graph from s to t. Ajtai and Fagin wished to prove that 
directed (s, t)-connectivity is not in monadic NP, but they 
did not see how to prove this by using (c ,  r)-games. By 
considering the choice of Go and G, to be moves of the 
duplicator, rather than inputs to the game, they were able to 
define a variation of (c ,  r)-games, in which the choice of GI  
by the duplicator is delayed until after the spoiler has 
colored Go. They successfully used the new game to prove 
the desired result (that directed (s, t)-connectivity is not in 
monadic NP). Their new game, which we call the Ajtai- 
Fagin ( c ,  r)-game, is, on the face of it, easier for the 
duplicator to win. The rules of the new game are obtained 
from the rules of the ( c ,  r)-game by reversing the order of 
two of the moves. Specifically, the rules of the Ajtai-Fagin 
(c, r)-game are as follows. 

1. The duplicator selects a member of Y to be Go. 
2. The spoiler colors Go with the c colors. 
3. The duplicator selects a member of 9 to be G I .  
4. The duplicator colors GI  with the c colors. 
5. The spoiler and duplicator play an r-game on the 

colored Go, GI .  

The winner is decided as before. Thus, in the Ajtai-Fagin 
(c ,  r)-game, the spoiler must commit himself to a coloring of 
Go with the c colors before knowing what G, is. In order to 
contrast it with the Ajtai-Fagin ( c ,  r)-game, we may some- 
times refer to the ( c ,  r)-game as the original (c, r)-game. In 
spite of the fact that it seems to be harder for the spoiler to 
win the Ajtai-Fagin (c, r)-game than the original (c ,  r)- 
game, we have the following analogue [ AF901 to Theorem 
3.3(b). 

THEOREM 3.4. Y is in monadic NP iff there are c, r such 
that the spoiler has a winning strategy in the Ajtai-Fagin 
(c, r)-game over 9. 

We will make use of Theorem 3.4 to give a simple proof 
that connectivity is not in monadic NP  (and to extend to 
allowing certain built-in relations). 

4. HANF’S TECHNIQUE 

In this section, we shall provide a simple but very useful 
sufficient condition for guaranteeing that A -, B for two 
structures A, B. The proof is based on a technique of Hanf 
[ Han65 1. 

Let A be an 9-structure, where 2 = { P I ,  ..., P,}, and 
where Ri is the interpretation in A of the relation symbol Pi, 
for 1 < i<s .  Let a and b be two points in (the universe of) 
A. We say that a and b are adjacent (in A) if either a = b or 
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there is some R, and some tuple t such that t E R ,  and such 
that a and b are entries in the tuple t. Intuitively, two 
points a and b are adjacent if they are either identical or 
directly related by some relation of A. The degree of a point 
a is the cardinality of the set of points adjacent to a but not 
equal to a. By A f X for a subset X of the universe of A, we 
mean the structure with universe X where the interpretation 
of Pi is the set of tuples t in R, such that every entry of t is 
in X ,  for 1 <i,<s. 

Essentially following Hanf, we define the neighborhood 
Nbd(d, a )  ofradius d about a recursively as follows: 

Nbd( 1, a )  = {a} 

Nbd(d + 1 ,  a )  = { x I x is adjacent to some b E Nbd(d, a)}. 

It is helpful to think of these neighborhoods as open spheres. 
Thus, intuitively, Nbd(d, a )  consists of all points whose dis- 
tance from a is strictly less than d. Note that because a is 
adjacent to itself, we have that Nbd(d, a )  _C Nbd(d + 1, a). 

Also following Hanf, we define the d-type of a point a to 
be the isomorphism type of the neighborhood of radius d 
about a with a as a distinguished point. Thus, the points a 
in A and b in B have the same d-type precisely if 
A r Nbd( d, a) E B r Nbd( d, b), under an isomorphism 
mapping a to b. 

Let d, m be positive integers. We say that 9-structures A 
and B are (d, m)-equivalent iffor every d-type z, either A and 
B have the same number ofpoints with d-type t, or else both 
have at least m points with d-type z. Intuitively, A and B are 
(d, m)-equivalent if for every d-type z, they have the same 
number of points with d-type t, where we can count only 
as high as m. We say that the structures A and B are 
d-equivalent if for every d-type 7, they have exactly the 
same number of points with d-type t. 

We need two simple lemmas. 

LEMMA 4.1. If A and B are (d, m)-equivalent, and if 
d > d‘, then A and B are (d‘, m)-equivalent. 

ProoJ Let t’ be a d’-type. Let us say that a d-type z 
refines z’, and write t > t’, if every point with d-type t also 
has d’-type 7’. Since d >  d’, it follows easily that for every 
point with d‘-type t’, there is some d-type t that refines t’. 
Define count(A, t) to be the number of points in A with 
d-type t (and similarly for count(B, t), count(A, t’), and 
count(B, 7’)). It follows easily from our remarks, and from 
the fact that every point has exactly one d-type, that 

count(A, t‘) = count(A, z). ( 1 )  
T t T’ 

Iden tically, 

count(B, 7’) = count(B, t). (2) 
r > r ’  

Since A and B are (d, m)-equivalent, the right-hand sides 
(and hence the left-hand sides) of Eqs. ( 1 ) and ( 2 )  are either 
the same, or both at least m. Thus, count(A, 7’) and 
count(B, 7’) are either the same, or both at least m. Since z‘ 
is an arbitrary d‘-type, it follows that A and B are (d‘, m)- 
equivalent. 

LEMMA 4.2. Assume that f 2 2 .  The size of a 
neighborhood cf radius d in a structure where every point has 
degree at most f is less than f d. 

Proof. It is easy to see thEt the size of a neighborhood 
of radius d in a structure where every point has degree at 
most f is at most 

1 +  f + f ’ +  . ”  + f * - ’ = ( f ” - I ) ,  , 
( f  - 1) < f d  

The next theorem (Theorem 4.3) is a key tool in our proof 
that connectivity is not in monadic NP (including the exten- 
sion to allowing certain built-in relations). We give it in 
slightly more generality than we need, since we believe that 
it can be a useful tool in the future. The simpler version of 
the theorem that we actually use is then obtained as an 
immediate corollary. 

THEOREM 4.3. Let r, f be positive integers. There are 
positive integers d, m, where d depends only on r, such that 
whenever A and B are (d, m)-equivalent structures where 
every point has degree at mostf, then A -,B. 

Proof. We can assume without loss of generality that 
f 2 2. We can also assume without loss of generality that the 
universes of A and B are disjoint. Let d=3‘-’, and let 
m = r . f d -  ’. Assume that A and B are (d, m)-equivalent 
structures where every point has degree at most J: We now 
describe a winning strategy for the duplicator in an r-game 
over the structures A,B. The duplicator’s strategy is to 
ensure that afterjrounds, i fa , ,  ..., a,(resp. b,,  ..., b,) are the 
points selected in A (resp. B), then a certain condition, 
which we call the j-matching condition holds: 

j-matching condition: A r ( U i G ,  Nbd(3‘-/ a , ) )  E B 
(UiG,Nbd(3r-7, b,)) under an isomorphism mapping a, to 
b,,for I<i ,<j .  

We first show that, for j = 1, the duplicator can ensure 
that the j-matching condition holds after the first round. 
Suppose that the spoiler selects a, from A. Let t be the 
d-type of a ,  in A. Since A and B are (d, m)-equivalent, there 
is at least one point that has d-type t in B. The duplicator 
selects one such point to be b,  . Since d=  3r-1 and j=  1, the 
j-matching condition is identical to the definition that a, 
and b,  have the same d-type. (By symmetry, the same 
strategy works when we reverse the roles of A and B.) 

We now show that if 1 < j < r and if thej-matching condi- 
tion holds, and the spoiler selects a,,, from A, then the 
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duplicator can select b,+, from B so that the (j+ 1)- 
matching condition holds (again, by symmetry, the same is 
true when we reverse the roles of A and B). 

There are two cases. 

Case 1. If 

then 

Nbd(3'-'-', a , , , ) ~  Nbd(3'-j,ai). 
iC j 

Then the duplicator can select bj+ to be the corresponding 
point of B (given by the isomorphism of the j-matching 
condition ). 

Case 2. If (3) fails, then let t be the 3'-J-'-type of 
a,,,. Let 1 be the number of points in R A =  
U i C j N b d ( 2 .  3r-j- ' ,  a,) with 3'-J-'-type t. Let us denote 
by A' (resp. B') the structure on the left-hand side (resp. 
right-hand side) of the isomorphism in the j-matching 
condition. Now for every point a E R,, we have 

Nbd(3'-'-', a ) ~  u Nbd(3'-', a,), 

Therefore, for each point a E RA,  the 3'-JP1-type of a in A 
is the same as its 3'-f-'-type in A'. Hence, I equals the num- 
ber of points in R, whose 3'-J-'-type in A' is t. Let RB = 
U,, Nbd(2. 3'-J- ', bj) .  By thej-matching condition, 1 also 
equals the number of points in RB whose 3'-J-  '-type in B' 
is t. Just as in the situation with A and A', it follows that 1 
equals the number of points in R, whose 3'-j-'-type in B 
is t. 

< 3- 1 - We now show that I<m. Since 2 .  3'-j-' -d ,  it 
follows that 2 .3'-J- ' < d - 1. Therefore, by Lemma 4.2, for 
each i < j  the number of points in Nbd(2.3'-j- ' ,  a,) is less 
than f"-'. So j such neighborhoods have less than 
j .  f d - l  < r . f d -  ' = m points altogether. Therefore, RA has 
less than m points, so certainly I < m. 

There are at least I + 1 points in A with 3'-'-'-type t 
(namely, a,+ I ,  along with the I points in RA with 3r-y-'- 
type t). Now A and B are (d ,  m)-equivalent, and hence, by 
Lemma 4.1, they are (d ' ,  m)-equivalent, where d' = 

< d. Therefore, since I + 1 < m, and since there are at 
least I +  1 points in A with 3'-j-'-type t, there are also at  
least I + 1 points in B with 3 r - j -  '-type t. In particular, there 
is some such point x outside of RB, since RB contains only 
1 such points. Define bi+ , to be x. From the fact that (3) 
fails, it is easy to see that A r Ui, Nbd(3'-'-', a,) contains 
no point adjacent to a member of A Nbd(3'-'-', a,+ ,) 
(and similarly in B), It follows easily that the ( j +  1)- 
matching condition holds. 

i < J  

3r-j-1 

Since the duplicator's strategy guarantees that the 
j-matching condition holds for 1 < j d r ,  in particular the 
r-matching condition holds. The r-matching condition 
says that A r { a , ,  ..., a,} E B r { b , ,  ..., b,} under an 
isomorphism mapping a,  to b,, for 1 d i <  r. So the 
duplicator wins. Therefore, A -, €3. 

Since d in  Theorem 4.3 depends only on r, and since two 
d-equivalent structures are (d ,  m)-equivalent for every m, 
the following corollary is immediate. 

Let r be a positive integer. There is a 
positive integer d such that whenever A and B are d-equivalent 
structures, then A -, B. 

I 

COROLLARY 4.4. 

We now describe Hanf's Lemma [Han65] (rewritten 
slightly to match our terminology). Hanf was not doing 
finite-model theory, so his lemma deals with both finite and 
infinite structures. Two structures A and B are elementarily 
equivalent if they agree on all first-order sentences (that is, 
A 

LEMMA 4.5 (Hanf's Lemma). Assume that every 
neighborhood in A and B contains finitely many points. Then 
A and B are elementarily equivalent provided that, for each 
integer d and each d-type t, either 

(T iff B + 6, for every first-order sentence (T). 

1. 

2. 

both A and B have infinitely many points of d-type t, 

A and B have the same finite number of points of 
or 

d-type z. 

By the results in [Ehr61, Fra541, two structures A and B 
are elementarily equivalent precisely if A - B for all r > 0. 
Thus, Theorem 4.3 is closely related to Hanf's Lemma, but 
neither seems to directly imply the other. In particular, 
Hanf's Lemma as stated is not useful in the context of finite 
structures, since two finite structures are elementarily equiv- 
alent iff they are isomorphic (discussion of this well-known 
fact can be found in [Fag93]). Our version of Hanf's 
Lemma is better suited for inexpressibility proofs for classes 
of finite structures, since it can show a bounded form of 
elementary equivalence, namely A B, in cases where A 
and B are nonisomorphic finite  structure^.^ 

A result on graphs that is very similar to Theorem 4.3 
appears in [ Tho91, Lemma 4.1 1. Theorem 4.3 is also related 
to a result by Gaifman [Gai82], who proved that in 
a precise sense, first-order logic talks only about 
neighborhoods. We can think of Hanf's Lemma, as well as 

We now discuss how A - r  B is a limited form of elementary equiv- 
alence. The quantifier depth Q D ( q )  of a first-order sentence q is defined 
recursively as follows: QD( q) = 0 if q is quantifier-free; QD( i q )  = QD(cp); 
QD(qi A q d = m a x { Q D ( ~ i ) ,  QWCP,)}; QD(%)= 1 + QWV). It turns 
out (and is closely related to results of Ehrenfeucht [Ehr61] and Fraissk 
[ Fra541) that A -, B iff A and B agree on all first-order sentences of quan- 
tifier depth r (that is, if 0 is a first-order sentence of quantifier depth r, then 
A u iff B u).  
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our versions, Theorem 4.3 and Corollary 4.4, as giving a 
library subroutine for the duplicator. Thus, instead of 
coming up with a winning strategy for a game, we can make 
use of the winning strategy given by the result. 

As a warm-up for the proof in the next section, let us see 
how to use Corollary 4.4 to show that connectivity is not 
first-order. Assume that Y (the class of connected graphs) is 
first-order. Let r be given by Theorem 3.3(a). We obtain a 
contradiction by showing that the duplicator wins the 
r-game over 9. Find d as in Corollary 4.4. Let Go be a cycle 
with 4d nodes, and let G I  be the disjoint union of two cycles, 
each with 2d nodes. It is easy to see that every point in Go 
and G I  has the same d-type. Since Go and G I  have the same 
number of points, and all with the same d-type, it follows 
that Go and G I  are d-equivalent. By Corollary 4.4 and our 
choice of d, it follows that Go w r  G I .  Now the duplicator has 
a winning strategy in the r-game over Y :  he selects Go E Y 
and GI €2.  Since, as we just showed, G o - r  G I ,  the 
duplicator can now win. 

5. APPLICATION TO CONNECTIVITY 

Now we apply Theorem 3.4 and Corollary 4.4 to give a 
very simple proof that connectivity is not in monadic NP 
(and in particular, a proof that is much simpler than Fagin’s 
original proof in [ Fag75al). Even though the details of our 
proof are not difficult, it is instructive to first outline the 
basic method, since a similar method might be applied to 
properties other than connectivity. 

Let Y be the class of connected graphs. Assuming that 
connectivity is in monadic NP, we obtain a contradiction by 
giving, for all constants c and r, a winning strategy for the 
duplicator in the Ajtai-Fagin (c, r)-game over 9. The 
duplicator begins by choosing Go to be a suficiently long 
cycle. After the spoiler colors Go with the c colors, the 
duplicator finds points ap and a, of Go such that ap and a, 
are sufficiently far apart and such that, intuitively, the color- 
ing of points near to ap looks the same as the coloring of 
points near to a,. Here, the precise definition of “suficiently 
far apart” and “near” both depend on the parameter d given 
by Corollary 4.4. The duplicator then “pinches” Go together 
at the points ap and a, to split Go into two disjoint cycles. 
This pair of disjoint cycles is the duplicator’s choice for G ,  , 
and the coloring of G ,  is inherited from Go. Thus, the 
duplicator’s coloring strategy is trivial. It then follows that, 
for every d-type z, the graphs Go and GI have exactly the 
same number of points with d-type t. Corollary 4.4 can then 
be applied to conclude that Go N, G , .  In the proof of the 
following, the details are filled in. 

THEOREM 5.1. 

ProoJ 

Connectivity is not in monadic NP.  

Let Y be the class of connected graphs and 
assume that Y is in monadic NP. Let c, r be given by 

Theorem 3.4. We obtain a contradiction by showing that 
the duplicator wins the Ajtai-Fagin (c, r)-game over Y .  

Let d be given by Corollary 4.4 for this r. The duplicator 
chooses Go to be a directed cycle of length n, for a suf- 
ficiently large n. Let ao, a , ,  ..., a,_l denote the points in 
order around the cycle, so that there is an edge from a; to 
a;+,  for O<i<n. Here and subsequently, subscripts are 
reduced modulo n to belong to the interval [0, n - I ] .  

The spoiler now colors Go with c colors. Let ,y(ai) denote 
the color of ai. Assuming that n 3 2d, the d-type of the point 
ai in the resulting structure is fully described by the 
following vector of 2d - 1 colors: 

The number of possible d-types is some constant, depending 
on c and d, but not on n. So it is clear that, for n suficiently 
large, there must be at least 4d points with the same d-type. 
Therefore, there must exist points ap and a, that have the 
same d-type and are at least distance 2d apart (that is, 

The duplicator now forms G ,  , a pair of disjoint directed 
cycles, by pinching Go together at the points ap and a, (see 
Fig. 1). More precisely, let G, be a structure with universe 
consisting of n distinct points Po, PI,  ..., / ? , - I .  There is an 
edge from Pi to pi+ for all i with 0 < i < n, i fp,  and i # q, 

ap $ Nbd(2d, a,)). 

Go i 0 

0 

aq+1 Qq 

G’ Bq+2 b, 
89+1 89 

FIG. 1. Go and G , .  
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there is an edge from p, to pq+ , , and there is an edge from 
p, to /3,+ There are no other edges. The duplicator’s 
coloring of G, is given by x( p i )  = X(ai) for all i. 

Note that each component cycle of Go or GI  contains at 
least 2d points, since ap and aq are at least distance 2d apart. 
Since also ap and aq have the same d-type, it follows that a; 
and pi have the same d-type for all i, so Go and GI  are 
d-equivalent. It follows from Corollary 4.4 that Go -, G I ,  
so the duplicator wins. I 

It is instructive to see why the use of the Ajtai-Fagin 
( c ,  r)-game, as opposed to the original (c, r)-game, is impor- 
tant for our proof. The choice of GI  depends on the coloring 
by the spoiler of Go. Our proof would not work if, as in the 
original (c ,  r)-game, the duplicator were required to select 
Go and G, before the spoiler colors Go. 

We note that Hajek [Haj75], independently of Fagin 
[ Fag75al but somewhat later, also proved that connec- 
tivity is not in monadic NP. Hhjek‘s proof uses nonstandard 
analysis and semisets. Interestingly enough, Hajek’s proof 
involves splitting a cycle, just as our proof does. 

6. BUILT-IN RELATIONS OF MODERATE DEGREE 

In this section the result that connectivity is not in 
monadic NP  is extended to the case where sentences are 
allowed to contain built-in relations of moderate (i.e., suf- 
ficiently small) degree. This gives, in particular, the result of 
de Rougemont [dR87] that connectivity is not in monadic 
NP in the presence of a built-in successor relation. Let 
V, = { v o ,  v l ,  ..., v,- be a universe of size n. A particular 
collection of built-in relations is specified by a language 
{ P, , ~ . ,  Ps} and, for each n 3 1 and 1 d id s, an interpreta- 
tion P,,i of Pi as a relation on V,. Let P ,  denote the struc- 
ture with domain V,  and relations p, , , ,  ..., p,,s. Let f(n) be 
the maximum degree of a point v in the structure P,. (Recall 
from Section 4 that the degree of u is the number of points 
adjacent to u but not equal to v ,  where v and v‘ are adjacent 
(in P,) if they both belong to the same tuple in P ,  for some 
i.) We say that the built-in relations have moderate degree if 
f(n) = (log n ) O ( l ) ,  that is, if there is a function g in)  with 
limn+ a (n )  = 0 such that f(n) d (log n)ocn) for all n. 
(Although the base of the logarithm is not important, say 
that the base is 2 for definiteness.) 

The next theorem is our main result. 

THEOREM 6.1. Connectivity is not in monadic NP,  even in 
the presence of built-in relations of moderate degree. 

Proof. The proof is similar to the proof of Theorem 5.1, 
although the details are more complicated. Fix some collec- 
tion of built-in relations as above. Assume that the class 9’ 
of connected graphs is in monadic N P  using these built-in 
relations. Let c, r be given by Theorem 3.4. Although 
Theorem 3.4 is stated for the case where there are no built-in 

relations, it is clear how the Ajtai-Fagin game generalizes to 
the case of built-in relations, and Theorem 3.4 remains true 
in this case. For example, in the first step, the duplicator 
extends the “built-in” structure P ,  by choosing an inter- 
pretation E, for the edge relation of a connected graph on 
V,. As before, the duplicator will choose E ,  to be a directed 
cycle on V,, henceforth called a full cycle. As before, we 
want to show that the duplicator can choose the full cycle Eo 
such that, no matter how the spoiler colors the points, the 
duplicator can split the cycle into two disjoint cycles in such 
a way that Corollary 4.4 applies to the two structures. The 
new difficulty is that the built-in relations impose an addi- 
tional structure on the points, and we know nothing about 
this structure, other than that it has moderate degree. (It 
should perhaps be noted that the duplicator cannot choose 
E, arbitrarily. As a simple example, suppose that one of the 
built-in relations is itself a full cycle. If the duplicator 
chooses E,  to coincide with this built-in relation then the 
spoiler will always win no matter how the duplicator splits 
the cycle.) We show that if the duplicator chooses a cycle at 
random, then with high probability the chosen cycle will 
work to defeat the spoiler. In particular, since the proba- 
bility is positive, this shows that there exists a choice that 
the duplicator can make that is guaranteed to defeat the 
spoiler. 

We first outline the duplicator’s winning strategy in the 
Ajtai-Fagin (c, r)-game. Let d be given by Corollary 4.4 for 
this r. The duplicator chooses a sufficiently large n. 
Abbreviate V =  V ,  and P = P,. If E is a binary (edge) rela- 
tion, let P, (E)  (abbreviated P ( E ) )  denote the structure on 
the universe V, with relations pn,l ,  ..., P , , ,  E. A key con- 
cept in the proof is the notion of a point being “good” for a 
full cycle E. Let ao, a , ,  ..., a ,,-, denote the points in order 
around E. Informally, we say that a,  is good for E if a suf- 
ficiently large neighborhood around a,  can be partitioned 
into a left part L and a right part R such that 
a, E L, a,+ , E R, the only adjacency between a point of L and 
a point of R is the adjacency between a ,  and a,+ and, 
moreover, this adjacency occurs only in the cycle E, not in 
any of the built-in relations. Intuitively, the left part and the 
right part are “unrelated,” except for the single cycle edge 
from a,  to a ,  + We show that if the duplicator chooses a full 
cycle E uniformly at random, then he can expect that 
“many” points will be good for E (this is one place where we 
use the assumption of moderate degree). In particular, there 
must exist a full cycle E, for which “many” points are good. 
The duplicator begins by choosing the structure P( Eo). 
After the spoiler colors the points of P(E, )  with the c colors, 
let A denote the resulting colored structure. Since there are 
a large number of good points, and since the number of 
possible 2d-types can be shown to be much smaller than n 
(this is another place where we use the assumption of 
moderate degree), we can find points ap and aq such that ap 
and a, are good, up and aq have the same 2d-type in A, and 
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ap and aq are sufficiently “far apart” in A. Similar to the 
proof of Theorem 5.1, the duplicator then forms El ,  con- 
sisting of two disjoint directed cycles, by removing two 
edges from E,, and adding two other edges to E,, as shown 
in Figure 1. Let B be the resulting structure. That is, B is P, 
with all points colored the same as in A, but extended by the 
edge relation E ,  instead of E,. It will then follow from the 
properties of ap and a,  that, for every d-type t, the structures 
A and B have exactly the same number of points with d-type 
t. In particular, since ap and a, are good and are sufficiently 
far apart, the left and right parts associated with ap and the 
left and right parts associated with aq are pairwise unrelated 
in A, except for the cycle edge from ap to ap + , and the cycle 
edge from a, to a,+ Since, in addition, up and aq have the 
same 2d-type, we can argue that the d-type of every point is 
not changed when these two cycle edges are replaced by 
edges from ap to aq + I and from aq to up + , . By Corollary 
4.4, A -, B. So the duplicator wins the Ajtai-Fagin (c, r ) -  
game over 9’. 

In what follows, we will be dealing with neighborhoods in 
a variety of different structures. For a structure S, let 
Nbd(S; d, u )  denote the neighborhood Nbd(d, u )  in the 
structure S. 

We begin to fill in the details by giving the formal defini- 
tion of a point being good for a full cycle E. Let 
a,, a , ,  ..., a,_ , denote the points in order around E; that is, 
( a ; ,  a j )  E E iff j = i + 1 mod n. Let E(i) be the relation E 
with the tuple ( a ; ,  a ,+ , )  removed. (As before, subscripts 
are reduced modulo n.) The point ai is good for E if 
Nbd(P(E); 2d, a;)  can be partitioned into a left part L and 
a right part R (that is, LuR=Nbd(P(E);2d,  a;) and 
L n R = a), such that a, E L, ai+ , E R, and, for every u E L 
and u’ E R, the points u and u’ are not adjacent in P( E( i)). 
Any pair ( L ,  R) having these properties is said to be a good 
partition for a; in E. 

The next step is to show that there is a full cycle E, for 
which at least half of the points are good. This is done by a 
probabilistic argument. By a randomly chosen full cycle we 
mean one chosen from the uniform distribution where every 
full cycle has the same probability (I/(n - l ) ! )  of being 
chosen. The key step is to prove the following: 

CLAIM 1. Assume that n is sufficiently large. Fix a point 
v. r f  E is a randomly chosen full cycle, then the probability 
that u is good for E is at least i. 

From this it follows immediately that, for a randomly 
chosen full cycle E, the expected number of good points is 
at least 4 2 .  So there must be some E, with at least 4 2  good 
points. The following terminology will be useful in proving 
Claim 1.  If F E V x V, say that I; is legal if F E F‘ for some 
full cycle F‘. Thus, F is legal if it consists of a subset of the 
edges of a full cycle. If (v, u ’ )  E F where F is legal, v is the 
left neighbor of v’ in F, and u’ is the right neighbor of v in F. 

The point u is f i l l  in F if v has a left neighbor and a right 
neighbor in F. The point v is deficient in F if it is not full. 

To prove Claim 1 ,  fix an arbitrary u E V and consider the 
random procedure RandomCycle(u). The output is a pair 
( E ,  b) where E is a full cycle and b e  (0, 1) .  The output 
b = 0 means that the procedure was successful in producing 
an E for which u is good. The procedure RandomCycle(u) 
is described precisely below. In outline, the procedure 
operates as follows. The procedure has n steps and con- 
structs a full cycle by randomly adding one edge at each 
step. The procedure has two phases. In the first phase 
(labelled 2( a)  below), the procedure (repeatedly and 
deterministically) chooses a deficient point ui in the 
neighborhood of radius 2d about u, and randomly adds a 
cycle edge incident on u i  by randomly choosing the other 
endpoint z of the edge from among the z’s that preserve 
legality of the set of chosen edges; this continues until no 
point in this neighborhood is deficient. (This neighborhood 
grows as edges are added.) During this phase, u remains 
good for the cycle being chosen provided that the randomly 
chosen endpoint of each added edge does not belong to a set 
of “bad” points that lie “too close” to u. Intuitively, this 
works for the following reason. Let u‘ be the point reached 
by following the cycle edge from u. If u is not good for the 
chosen cycle, then, for every way of partitioning the 
neighborhood of radius 2d about u into a left part L con- 
taining u and a right part R containing u‘, there will be an 
adjacency between L and R other than the adjacency caused 
by the cycle edge ( u ,  u ‘ ) ;  this implies the existence of a 
“short” path of adjacencies from u to u’ not involving the 
cycle edge ( u ,  u ’ ) .  If the randomly chosen endpoints lie suf- 
ficiently far from v, then such short paths of adjacencies are 
avoided. A detailed proof of this is given in the proof of 
Claim 1.2 below. Moreover, the set of bad points is suf- 
ficiently small, and the first phase lasts for sufficiently few 
steps, that all points chosen in the first phase are not bad 
with high probability. A detailed proof of this is given in the 
proof of Claim 1.3 below. During the second phase (labelled 
2(b) below), any remaining deficient points are made full by 
randomly choosing cycle edges incident on these points. The 
choices made during the second phase do not affect v being 
good for the chosen cycle, since these edges are all incident 
on points outside the neighborhood of radius 2d about v. 
The procedure uses S ,  to denote the set of edges chosen 
during the first t - 1 steps, and it uses B,  to denote the set 
of points that are “bad” choices for the randomly chosen 
endpoint of the edge added at step t. In general, B ,  is the 
neighborhood of radius 4d about u in the structure P 
extended by the set of cycle edges chosen so far. 

RANDOMCYCLE( v): 

1. 

2. 
Set S ,  = a, B ,  = Nbd(P; 4d, u), and b = 0. 

Do the following for  t = 1,2, ..., n: 
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(a) If there is a point v, E Nbd(P(S,);  2d, v )  that is 
deficient in S,, let v, be such a point with smallest i. ( W e  
choose the minimum i just to be definite; this choice is not 
important.) I f v ,  does not have a right neighbor, choose a right 
neighbor z for v i  at random; that is choose a point z uniformly 
at random from those points z such that S,  u { ( v i ,  z ) }  is 
legal. Set St+I=Sru{(vi,z)) .  If v i  does have a right 
neighbor, then randomly choose a Ieft neighbor z for v; in a 
similar way. In either case, i f z  E B, then set b = 1. Set B,+ I = 

If there is no point vi E Nbd(P(S,); 2d, v) that is 
deficient in S,, then let vi be a point with smallest i that is 
deficient in S,. Choose a random right or left neighbor z for 
v i  as above, and let S,+, be S ,  together with the new edge 
( v,, z )  or ( z ,  0,) .  In this case, b does not change, and we can 
(arbitrarily) take B, + = B,. 

Nbd(p(S,+i);  4 4  v). 
(b) 

3. Output (S,+ ,, b ) .  

To see why the choice of €I,+, is not important in 
case 2(b), note that if at some step t we have that no point 
of Nbd(P(S,); 2d, v )  is deficient, then Nbd(P(S,); 2d, v )  = 

Nbd( P( S,); 2d, v )  for all j > t. Thus, case 2( a )  will occur at 
all steps up to some step to ,  and case 2(b) will occur at all 
steps thereafter (where to may depend on the random 
choices made by the procedure). This fact is used again 
below. 

Claim 1 follows immediately from the following three 
claims about the output ( E ,  b )  of RandomCycle(u), for 
each fixed u. 

The distribution of E is the uniform distribu- 
tion on full cycles. 

If b = 0, then v is good for E. 

Pr[ b = 01 3 1/2, for all sufficiently large n. 

CLAIM 1.1. 

CLAIM 1.2. 

CLAIM 1.3. 

Proof of Claim 1.1. First observe that, at each step t 
with 1 < t < n ,  if v, does not have a right (resp., left) 
neighbor, there are precisely n - t  points z that are 
candidates for a right (resp., left) neighbor of v; .  To see this, 
note that if t = 1 there are n - 1 candidates (namely, every 
point except vi itself), and every time we add a new edge to 
E the number of candidates decreases by one. So there are 
a total of ( n  - l ) !  different choices that the procedure can 
make at all n steps. Next observe that, for every full cycle I?, 
there is a way for the procedure to make chdices so that the 
output will be ( k ,  b )  for some b. That is, when the proce- 
dure is choosing a right (left) neighbor for v ,  in step 2, it 
chooses the right (left) neighbor of v i  in I?. It follows that 
there is a one-to-one correspondence between the ( n  - 1) ! 
full cycles and the ( n  - l ) !  choices, so each full cycle is 
produced with the same probability (l /(n - 1 ) !). This com- 
pletes the proof of Claim 1.1. 

Suppose ( E ,  0) is produced. As 
above, let ao, ..., a,... be the points in order around E. Let 

Proof of Claim 1.2. 

i be such that v=a,.  Recall that E(i )  is E with the tuple 
( a , ,  a j +  ) removed. It is useful to view the adjacency rela- 
tionship in P( E )  as an undirected graph H. The vertex set of 
H i s  V,  and there is an undirected edge (u ,  u’ )  iff u # u‘ and 
u and u’ are adjacent in P(E).  Define the adjacency graph 
H ( i )  similarly for the structure P(E( i ) ) .  Observe that a,  and 
ai + , are not adjacent in the built-in structure P. For if they 
were, we would have both ai and a,+ in every bad set B, for 
all t 2 1, so adding the edge ( a i ,  a,+ ,) to E a t  some step t 
would cause b to be set to 1. So the only difference between 
Hand H ( i )  is that (a; ,  a,+ is not an edge of H(i) ,  whereas 
it is an edge of H. 

Let L = Nbd( P( E( i));  2d, a,)  and R = Nbd( P(E( i ) ) ;  
2d- 1, a,+ I ) .  Note that L u R = Nbd(P(E); 2d, ai), since we 
reach a point u of Nbd(P(E);  2d, ai)  either by following a 
path in H of length at most 2d - 1 from ai to u not using the 
edge (a; ,  ai+ and 
then following a path of length at most 2d- 2 from a,+ 
to u. Obviously, a,  E L and a ,  + , E R. 

To complete the proof that ( L ,  R) is a good partition for 
v = ai in E (and, therefore, that u is good for E) ,  we must 
show that, for every u E L and u’ E R, the points u and u‘ are 
not adjacent in P(E( i ) ) .  (Since a point is adjacent to itself, 
this implies, in particular, that L n R = @.) Assume for con- 
tradiction that u E L, u’ E R, and u and u‘ are adjacent in 
P(E( i ) ) .  Recall that (a i ,  a i + l )  is not an edge of H(i) .  We 
now show that there is a path from ai to a,+ , in H ( i ) ,  having 
length at least 2 and at most 4d - 2. (The length is at least 
2, since (a,, a,+ ,) is not an edge of H(i) . )  Beginning at air 
the path first follows a path of length at most 2d - 1 to u, 
then follows a path of length at most one to u’, and then 
follows a path of length at most 2d - 2 to a,+ So there is 
also a simple (i.e., having no repeated vertices) path from a ,  
to a,+ , in H ( i )  of length at least 2 and at most 4d - 2. Since 
the edge (a, ,  a,+ ,) appears in H ,  there is a simple cycle C in 
H,  of length at least 3 and at most 4d- 1, passing through 
a, and ai+,. Note that there is .a pair ( y ,  y ’ ) ,  namely, 
( a i ,  ai+ ,), such that y and y’ are connected by an edge of 
C and ( y ,  y ‘ )  E E. Among all the pairs ( y ,  y’ ) meeting 
these two conditions, consider the one that Random- 
Cycle(v) added last to E. Say that this happens at step t. 
Since all the adjacencies in C, except possibly ( y ,  y’) ,  occur 
in the structure P(S,), and since u = a,  is on the cycle C, we 
have y ,  y’ E Nbd(P( S,); 4d, v )  c B, ,  and at least one of y or 
y’ belongs to Nbd(P(S,);  2d, v). Since both y and y’ are 
deficient in S,  (since the edge ( y ,  y ’ )  is added at step t ) ,  it 
must be that case 2(a) occurs at step t. Since y ,  y’ E B,,  
adding the edge ( y ,  y ’ )  to E at step t would cause b to be 
set to 1. This contradiction completes the proof of Claim 1.2. 

or by first following the edge (a, ,  a,+ 

Proof of Claim 1.3. Recall that f ( n )  is the maximum 
degree of a point in the built-in structure P,, and that 
f ( n )  = (log n ) O ( ’ ) .  Hence, ( f ( n )  i- 2 )  is the maximum degree 
of a point in P,(E). Let p ( n )  = ( f ( n )  + 2)? By LCmma 4.2, 
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it follows that p ( n )  is an upper bound on the number 
of points in a neighborhood of radius 2d in a structure 
where every point has degree at most f ( n )  + 2. SO 
Nbd(P(S,);  2d, u )  contains at most p ( n )  points for any t. 
Since t l  < t, implies Nbd(P( S,,); 2d, u )  c Nbd(P(S,,); 2d, v), 
after the procedure has added 2p(n) edges to E (i.e., at step 
t = 2p(n) + l ) ,  no point of Nbd(P(S,); 2d, u )  will be deficient 
in S , .  Therefore, letting t o  be such that case 2( a)  occurs at 
steps 1,2, ..., t o ,  and case 2(b) occurs thereafter, we have 
t 0<2p(n) .  Since f(n) = (log n)O(’), we also have p(n) = 
(log n)u( l ’ .  Similarly, B, contains at most (f(n) + 2)4d= 
(p(n) ) ’  points for every t. At each step t d 2 p ( n ) ,  there are at 
least n - 4p( n )  “legal” choices for z in 2( a), since every point 
that is not an endpoint of an edge in S ,  is a legal choice. So 
at each step t ,< 2p(n), the probability that z is chosen in B, ,  
and therefore the probability that b is set to 1, is at most 
(p(n))’/(n -4p(n)). Therefore, the probability that b is set 
to 1 during the first 2p(n) steps is at most 

(4) 

Since p ( n )  = (log n ) O ( ’ ) ,  the above expression gets arbitrarily 
small as n gets arbitrarily large. Thus, the probability that 
the final value of b is 0 is at least 1/2 for sufficiently large n. 
This completes the proof of Claim 1.3. 

Having proved Claim 1, we can now complete the proof 
of Theorem 6.1, following the outline above. The duplicator 
first chooses the structure P(E,) where E, is a full cycle for 
which at least n/2 points are good. The spoiler then colors 
the points of P(E,) with the c colors. Let A denote the 
resulting structure. 

We need the following simple upper bound on the num- 
ber of 2d-types in A. 

For all sufficiently large n,  there are at most 
& dflerent 2d-types in A. 

ProoJ As above, p ( n )  = ( f ( n )  + 2)2d is an upper bound 
on the number of points in any neighborhood of radius 2d 
in A. For appropriate constants a and b, an upper bound on 
the number of 2d-types in A is N ( n )  = 26(p(n))“. To see this, let 
a be the maximum arity of the built-in relations and the 
edge relation. In any set S containing at most p ( n )  points, 
there are at most (p(n) )“  distinct a‘-tuples if a’ < a, so there 
are at most 2(@(”))O interpretations of an a’-ary predicate on 
S. So for a collection of b such predicates, there are at most 
N(n) different interpretations. Since p ( n )  = (log n)O(l), we 
have N(n) < & for sufficiently large n. This proves Claim 2. 

The next claim states that we can find points a, and a, 
having certain properties. These properties then allow us to 
prove that, if B is obtained from A by splitting the cycle at 
a, and a,, then A and B are d-equivalent. 

CLAIM 2. 

CLAIM 3. If n is sufficiently large, then there arepoints a, 
and a, such that (1) a, and a, are good for E,, (2) ap and a, 
have the same 2d-type in A, and ( 3 )  a, $ Nbd( A; 4d, a,). 

Since there are at least n/2 points good for E,, 
and since there are at most different 2d-types in A (by 
Claim 2 for n suficiently large), there must be a set of at 
least &/2 points good for E, that have the same 2d-type 7 
in A. Let a, be an arbitrary point with 2d-type 7 that is good 
for E,. Since the size of Nbd(A; 4d, a,) is (log n)’(’), there 
must be a point a, with 2d-type 7 that is good for E,  and 
that is not in Nbd(A; 4d, a,), This proves Claim 3. 

For iE {p,  q } ,  let ( L , ,  R,) be a good partition for ai 
in E,. The relevant part of A is shown in the top half of 
Fig. 2. By choice of ap and aq,  if u is a point in one of the sets 
L,, R,, L,, R,, and u’ is a point in a different one of these 
sets, then u and u’ are not adjacent in the built-in structure 
P. Moreover, such a u and u’ are adjacent in E, iff { u, u ‘ }  = 

The duplicator now forms a structure B as follows. 
With regard to the built-in relations, let P’ be an isomorphic 
copy of P on the universe { P o ,  P I ,  ..., /Iflp under the 
isomorphism mapping a,  to pi for each i. Define the edge 
relation E l  by (pi, pi+ E El  for all i with i #p and i #  q, 
and ( f l p ,  P,, ,> E 4, and ( P , ,  P,+ E E l .  Let B = P’(E,). 
(See the bottom half of Fig. 2.) 

To complete the proof we argue that, for every j ,  the 
points a, and p, have the same d-type. This implies that A 
and B are d-equivalent, so, by Corollary 4.4, the duplicator 
wins. In the rest of the proof, neighborhoods of points ai are 

Prooj 

{ap’ap+l}  or {u ,u ’>  ={aq ,aq+1) .  

A 

Fig. 2. A and B. 
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taken in A, and neighborhoods of points pi are taken in B. 
Define the “identity” map z by z(ai) = p i  for all i. Let Lb 
(resp., R;) be the image under z of L, (resp., R,). Define L; 
and Rb similarly. (Again see Fig. 2.) Fix an arbitraryj with 
0 < j < n. If a, $ Nbd(d, a,) and a, $ Nbd(d, a,), then clearly 
a, and /Ij have the same d-type since these d-types do not 
involve any of the edges that were changed in going from E, 
to E l .  (So a suitable restriction of z gives an isomorphism 
between Nbd( d, a,) and Nbd( d, a,).) Say that a, E Nbd( d, a,). 
(The case a, E Nbd(d, a,) is completely symmetric and is 
omitted.) Note that 

Nbd(d, a j )  E Nbd(2d, a,) = L, u R ,  

Say that aJ E L,. (The case aJ E R, is similar and is omitted.) 
If a, + , $ Nbd( d, aJ),  then Nbd(d, aJ) is contained completely 
in L,, so it is again obvious that a, and /IJ have the same 
d-type (with z giving the isomorphism). So assume that 
Nbd(d, aJ)  contains both a, and a, + , . 

First, the map z restricted to Nbd(d, aJ) n L, gives an 
isomorphism 

A r (Nbd( d, aj )  n L,) E B r (Nbd( d, p,) n Lb) 

mapping a, to B, and mapping a, to /3,. Call this 
isomorphism nL. Since A r Nbd( 2d, a,) r A Nbd( 2d, a,) 
under an isomorphism mapping a, to a,, it follows that 
A r R, g A r R, under an isomorphism n, mapping up+ , 
to a,+,. (It also follows that A r L , g A  r L, under an 
isomorphism mapping a, to a,, although we do not need 
this isomorphism for the present case.) The restriction of z to 
R, gives A r R , r B  R; under an isomorphism n2 map- 
ping a, + , to p, + ,. So the composition of n, and n, is an 
isomorphism A r R, z B r R; mapping a, + , to p, + , . 
Restricting this latter isomorphism to Nbd(d, a,) n R, gives 
nR , an isomorphism 

A r (Nbd(d, a,) n R,) g B r (Nbd(d, p,) n R;) 

mapping a, + , to p, + , . Since the only adjacency between a 
point of Nbd( d, a,) n L, and a point of Nbd( d, a,) n R, is the 
adjacency between a, and a, + , in Eo, and since the only 
adjacency between a point of Nbd( d, p,) n L; and a point of 
Nbd( d, p,) n Rb is the adjacency between a, and /?, + , in E l ,  
it follows that the union of n, and nR is an isomorphism 
A r Nbd(d, a,) 2 B r Nbd(d, 8,) mapping a, to p,. So a, and 
/3, have the same d-type. 

As an immediate corollary of Theorem 6.1, we obtain the 
following result, originally proved by de Rougemont [ dR871. 

Connectivity is not in monadic NP  in 
the presence of a built-in successor relation. 

I 

COROLLARY 6.2. 

Since it is an open question4 whether Theorem 6.1 
remains true with a degree bound larger than (log n)’(’), it 
is instructive to see where our proof of Theorem 6.1 breaks 
down when the degree bound is increased. The first place 
where we used the degree bound was in the proof of Claim 
1.3. This proof remains valid with the larger degree bound 
no(’) ,  since the probability in (4) still gets arbitrarily small 
as n increases. (To see this, note that p(n) =no(’)  if the 
degree is at most f ( n )  = n‘’(’) .)  The second place where we 
used the degree bound (the more critical place) was in the 
proof of Claim 2 placing an upper bound on the number of 
2d-types in A. If a built-in relation has degree 
f( n)  = (log n)‘ for some constant E > 0, then, since our 
proof must work for an arbitrary d, the size of 
neighborhoods of radius 2d can exceed logn for large 
enough d. Even for a single 2-ary relation, the number of 
non-isomorphic structures on log points exceeds n (for all 
sufficiently large n ) ,  so we cannot argue as before that there 
must be two points with the same 2d-type to use in splitting 
the cycle. (Although it was convenient to use 2d-types 
rather than d-types in the proof, this difficulty holds for 
d-types as well.) 

Regarding the problem of showing that connectivity is 
not in monadic N P  in the presence of arbitrary built-in rela- 
tions, it should be noted that monadic NP  with arbitrary 
built-in relations has a natural circuit characterization in 
terms of nondeterministic ACo where the number of bits of 
nondeterminism is linear in the size of the universe. 
Intuitively, kn bits of nondeterminism correspond to k 
existentially-quantified monadic relations. This charac- 
terization follows easily from the equivalence of ACo and 
first-order logic with arbitrary built-in relations [ Imm871. 
More precisely, a class %‘ of graphs that is closed under 
isomorphism is in monadic NP  in the presence of some 
collection of built-in relations iff there is a positive integer k 
and a family H = { h ,  1 n > l }  of functions such that, for 
each n, (i) h, is a Boolean-valued function of n2 Boolean 
“edge inputs” { xi, ,  1 0 < i, j d n - 1 } and kn Boolean “non- 
deterministic inputs’’ { yi 11 < i < k n } ,  (ii) the family H 
belongs to (nonuniform) ACO (i.e., there is a polynomial p 
and a constant d such that, for each n, the function h, is 
computed by some circuit of size p ( n )  and depth d con- 
taining and-gates, or-gates, and not-gates), and (iii) for 
every graph G on n points { 0, 1, ..., n - 1 } , if the edge inputs 
are set according to the edges of G (i.e., ej, , = 1 iff there is an 
edge from point i to pointj in G), then G is in the class %‘ iff 

(3yI . . - ~ ~ ~ , ) ( h , ( e ~ , ~ ,  -.) en-,,,-,, Y , ,  . . . ,Y~,)= 1). 

We note that Ajtai [Ajt83] has shown that the property 
“the number of edges of G is even” is not in monadic NP in 
the presence of arbitrary built-in relations. 

Note added in proof. Schwentick [ Sch94al has recently extended this 
result to hold with a degree bound of no(’) 
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7. CONCLUSIONS AND OPEN QUESTIONS 

We have given a new, simple proof of Fagin’s result that 
connectivity is not in monadic NP. Furthermore, we have 
extended this result, and extended de Rougemont’s result 
that connectivity is not in monadic N P  even in the presence 
of successor, by showing that connectivity is not in monadic 
N P  even in the presence of built-in relations of moderate 
degree, that is, degree (log n)‘( ). 

Our proofs combined three techniques. First, we used a 
technique based on work of Hanf which permits the 
Ehrenfeucht-Fraissb game part of the proof to be replaced 
by a combinatorial argument, counting d-types. Second, we 
made use of the Ajtai-Fagin (c, r)-game in place of the 
original ( c ,  r)-game. Finally, we made use of another 
technique, also introduced by Ajtai and Fagin, of playing 
Ehrenfeucht-Fraissk games over random structures. Note 
that the first two techniques were sufficient to enable us to 
obtain an almost trivial proof that connectivity is not in 
monadic NP. It is likely that the above methods can be 
applied to show that other graph properties are not in 
monadic NP. For example, we can show that non-3- 
colorability is not in monadic NP. (Recall from Section 2 
that 3-colorability is in monadic NP.) The proof follows the 
same outline as the proof for connectivity, although the 
graph Go is more complicated. Cosmadakis [ Cos931 inde- 
pendently proved that non-3-colorability is not in monadic 
NP; moreover, he shows that this holds in the presence of a 
built-in successor relation. His proof works by giving a first- 
order reduction from connectivity to non-3-colorability 
that expands the size of the universe at most linearly. 
Cosmadakis [Cos93] also uses this reduction method to 
show that several other problems in monadic co-NP are not 
in monadic NP, even in the presence of a built-in successor 
relation. 

While an exact characterization of the monadic N P  graph 
properties may be too much to hope for, some type of 
“general” result, showing that a large number of graph 
properties are not in monadic NP, seems feasible at this 
point. In analogy, there are results that establish NP-com- 
pleteness for large classes of graph properties, for example, 
results of [ LYSO]. 

An open problem is to extend Theorem 6.1 to built-in 
relations of larger degree. Another interesting open 
problem in the area of 2; inexpressibility results for graph 
properties is to extend beyond the monadic case. As noted 
in [ Fag75b, Fag931, even the following is open: Is there a 
property of graphs that can be expressed by some (non- 
monadic) 2; sentence (equivalently, a property that 
belongs to NP), but that cannot be expressed by a sentence 
of the form 3Q+ where Q is a single binary relation and + 
is first-order? Extending beyond the monadic case is an 

But see Footnote 4 

important direction ifthe connection between “logic and com- 
plexity” is to have an impact on questions in computational 
complexity such as the N P  = co-NP question. We believe 
that developing our descriptive complexity toolkit is a use- 
ful and necessary step, if we are ever to make progress on 
such difficult questions through descriptive complexity 
techniques. Evidence that we are moving in the right direc- 
tion is that our tools are now powerful enough (1) to give 
a very simple proof of a result that used to have only a hard 
proof, and (2) to enable us to prove a new result, where we 
allow a large class of built-in relations. 
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