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We consider a language for reasoning about probability which allows us to make 
statements such as “the probability of E, is less than f” and “the probability of E, 
is at least twice the probability of E,,” where E, and EZ are arbitrary events. We 
consider the case where all events are measurable (i.e., represent measurable sets) 
and the more general case, which is also of interest in practice, where they may not 
be measurable. The measurable case is essentially a formalization of (the proposi- 
tional fragment of) Nilsson’s probabilistic logic. As we show elsewhere, the general 
(nonmeasurable) case corresponds precisely to replacing probability measures by 
Dempster-Shafer belief functions. In both cases, we provide a complete axiomatiza- 
tion and show that the problem of deciding satistiability is NP-complete, no worse 
than that of propositional logic. As a tool for proving our complete axiomatiza- 
tions, we give a complete axiomatization for reasoning about Boolean combina- 
tions of linear inequalities, which is of independent interest. This proof and others 
make crucial use of results from the theory of linear programming. We then extend 
the language to allow reasoning about conditional probability and show that the 
resulting logic is decidable and completely axiomatizable, by making use of the 
theory of real closed fields. ( 1990 Academic Press. Inc 

1. INTRODUCTION 

The need for reasoning about probability arises in many areas of 
research. In computer science we must analyze probabilistic programs, 
reason about the behavior of a program under probabilistic assumptions 
about the input, or reason about uncertain information in an expert 
system. While probability theory is a well-studied branch of mathematics, 
in order to carry out formal reasoning about probability, it is helpful to 
have a logic for reasoning about probability with a well-defined syntax and 
semantics. Such a logic might also clarify the role of probability in the 
analysis: it is all too easy to lose track of precisely which events are being 
assigned probability, and how that probability should be assigned (see 
[HT89] for a discussion of the situation in the context of distributed 
systems). There is a fairly extensive literature on reasoning about probabil- 

* A preliminary version of this paper appeared in the Proceedings of the 3rd IEEE 1988 
Symposium on Logic in Computer Science, pp. 277-291. 
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ity (see, for example, [Bac88, CarSO, Gai64, GKP88, GF87, HF87, Hoo78, 
Kav88, Kei85, Luk70, Ni186, Nut87, Sha76] and the references in 
[Ni186]), but there are remarkably few attempts at constructing a logic to 
reason explicitly about probabilities. 

We start by considering a language that allows linear inequalities 
involving probabilities. Thus, typical formulas include 3w((p) < 1 and 
w(q) >, 2w($). We consider two variants of the logic. In the first, cp and $ 
represent measurable events, which have a well-defined probability. In this 
case, these formulas can be read “three times the probability of cp is less 
than one” (i.e., cp has probability less than $) and “cp is at least twice as 
probable as $.” However, at times we want to be able to discuss in the 
language events that are not measurable. In such cases, we view I as 
representing the inner measure (induced by the probability measure) of the 
set corresponding to cp. The letter u‘ is chosen to stand for “,weight”; 121 will 
sometimes represent a (probability) measure and sometimes an inner 
measure induced by a probability measure. 

Mathematicians usually deal with nonmeasurable sets out of mathemati- 
cal necessity: for example, it is well known that if the set of points in the 
probability space consists of all numbers in the real interval [0, 11, then we 
cannot allow every set to be measurable if (like Lebesgue measure) the 
measure is to be translation-invariant (see [Roy64, p. 541). However, in 
this paper we allow nonmeasurable sets out of choice, rather than out of 
mathematical necessity. Our original motivation for allowing non- 
measurable sets came from distributed systems, where they arise naturally, 
particularly in asynchronous systems (see [HT89] for details). It seems 
that allowing nonmeasurability might also provide a useful way of reason- 
ing about uncertainty, a topic of great interest in AI. (This point is 
discussed in detail in [FH89].) Moreover, as is shown in [FH89], in a 
precise sense inner measures induced by probability measures correspond 
to Dempster-Shafer belief functions [Dem68, Sha76], the key tool in the 
Dempster-Shafer theory of evidence (which in turn is one of the major 
techniques for dealing with uncertainty in AI). Hence, reasoning about 
inner measures induced by probability measures corresponds to one 
important method of reasoning about uncertainty in AI. We discuss belief 
functions more fully in Section 7. 

We expect our logic to be used for reasoning about probabilities. All for- 
mulas are either true or false. They do not have probabilistic truth values. 
We give a complete axiomatization of the logic for both the measurable 
and general (nonmeasurable) cases. In both cases, we show that the 
problem of deciding satisfiability is NP-complete, no worse than that of 
propositional logic. The key ingredient in our proofs is the observation that 
the validity problem can be reduced to a linear programming problem, 
which allows us to apply techniques from linear programming. 

643.‘87. I/2-6 
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The logic just described does not allow for general reasoning about 
conditional probabilities. If we think of a formula such as w(p, 1 p2) 3 f as 
saying “the probability of p, given pr is at least $,” then we can express this 
in the logic described above by rewriting i+(p, / p2) as w(p, A pz)/w(p2) 
and then clearing the denominators to get w(pl A pz) -2w(p,) ~0. 
However, we cannot express more complicated expressions such as 
w(p, ( p,) + w(p, 1 p2) 3 5 in our logic, because clearing the denominator in 
this case leaves us with a nonlinear combination of terms. In order to deal 
with conditional probabilities, we can extend our logic to allow expressions 
with products of probability terms, such as 2w(p, A pz) w(p7) + 
2w(p, A p2) w(pl)> w(p,) w(pz) (this is what we get when we clear the 
denominators in the conditional expression above). Because we have 
products of terms, we can no longer apply techniques from linear program- 
ming to get decision procedures and axiomatizations. However, the deci- 
sion problem for the resulting logic can be reduced to the decision problem 
for the theory of real closed fiefds [Sho67]. By combining a recent result 
of Canny [Can881 with some of the techniques we develop in the linear 
case, we can obtain a polynomial space decision procedure for both the 
measurable case and the general case of the logic. We can further extend 
the logic to allow first-order quantification over real numbers. The decision 
problem for the resulting logic is still reducible to the decision problem for 
the theory of real closed fields. This observation lets us derive complete 
axiomatizations and decision procedures for the extended language, for 
both the measurable and the general case. In this case, combining our 
techniques with results of Ben-Or, Kozen, and Reif [BKR86], we get an 
exponential space decision procedure. Thus, allowing nonlinear terms in 
the logic seems to have a high cost in terms of complexity, and further 
allowing quantifiers has an even higher cost. 

The measurable case of our first logic (with only linear terms) is essen- 
tially a formalization of (the propositional fragment of) the logic discussed 
by Nilsson in [Ni186].’ The question of providing a complete axiomatiza- 
tion and decision procedure for Nilsson’s logic has attracted the attention 
of other researchers. Haddawy and Frisch [HF87] provide some sound 
axioms (which they observe are not complete) and show how interesting 
consequences can be deduced using their axioms. Georgakopoulos, Kav- 
vadias, and Papadimitriou [GKP88] show that a logic less expressive than 
ours (where formulas have the form (w(cp,) = ci) A ... A (w(cp,) = c,), and 
each ‘pi is a disjunction of primitive propositions and their negations) is 
also NP-complete. Since their logic is weaker than ours, their lower bound 
implies ours; their upper bound techniques (which were developed inde- 

I Nilsson does not give an explicit syntax for his logic, but it seems from his examples that 
he wants to allow linear combinations of terms. 
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pendently of ous) can be extended in a straightforward way to the language 
of our first logic. 

The measurable case of our richer logic bears some similarities to the 
first-order logic of probabilities considered by Bacchus [Bac88]. There are 
also some significant technical differences; we compare our work with that 
of Bacchus and the more recent results on first-order logics of probability 
in [AH89, Ha1891 in more detail in Section 6. 

The measurable case of the richer logic can also be viewed as a fragment 
of the probabilistic propositional dynamic logic considered by Feldman 
[Fe184]. Feldman provides a double-exponential space decision procedure 
for his logic, also by reduction to the decision problem for the theory of 
real closed fields. (The extra complexity in his logic arises from the 
presence of program operators.) Kozen [Koz85], too, considers a 
probabilistic propositional dynamic logic (which is a fragment of 
Feldman’s logic) for which he shows that the decision problem is 
PSPACE-complete. While a formula such as w(q) 3 2w(ll/) can be viewed 
as a formula in Kozen’s logic, conjunctions of such formulas cannot be so 
viewed (since Kozen’s logic is not closed under Boolean combination). 
Kozen also does not allow nonlinear combinations. 

None of the papers mentioned above consider the nonmeasurable case. 
Hoover [Ho0781 and Keisler [Kei85] provide complete axiomatizations 
for their logics (their language is quite different from ours, in that they 
allow finite conjuctions and do not allow sums of probabilities). Other 
papers (for example, [LS82, HR87]) consider modal logics that allow 
more qualitative reasoning. In [LS82] there are modal operators that 
allow one to say “with probability one” or “with probability greater than 
zero”; in [HR87] there is a modal operator which says “it is likely that.” 
Decision procedures and complete axiomatizations are obtained for these 
logics. However, neither of them allows explicit manipulation of 
probabilities. 

In order to prove our results on reasoning about probabilities for our 
first logic, which allows only linear terms, we derive results on reasoning 
about Boolean combinations of linear inequalities. These results are of 
interest in their own right. It is here that we make our main use of results 
from linear programming. Our complete axiomatizations of the logic for 
reasoning about probabilities, in both the measurable and the non- 
measurable case, divide neatly into three parts, which deal respectively with 
propositional reasoning, reasoning about linear inequalities, and reasoning 
about probabilities. 

The rest of this paper is organized as follows. Section 2 defines the first 
logic for reasoning about probabilities, which allows only linear combina- 
tions, and deals with the measurable case of the logic: we give the syntax 
and semantics, provide an axiomatization, which we prove is sound and 
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complete, prove a small-model theorem, and show that the decision 
procedure is NP-complete. In Section 3, we extend these results to the non- 
measurable case. Section 4 deals with reasoning about Boolean combina- 
tions of linear inequalities: again we give the syntax and semantics, provide 
a sound and complete axiomatization, prove a small-model theorem, and 
show that the decision procedure is NP-complete. In Section 5, we extend 
the logic for reasoning about probabilities to allow nonlinear combinations 
of terms, thus allowing us to reason about conditional probabilities. In 
Section 6, we extend the logic further to allow first-order quantification 
over real numbers. We show that the techniques of the previous sections 
can be extended to obtain decision procedures and complete axiomatiza- 
tions for the richer logic. In Section 7, we discuss Dempster-Shafer belief 
functions and their relationship to inner measures induced by probability 
measures. We give our conclusions in Section 8. 

2. THE MEASURABLE CASE 

2.1. Syntax and Semantics 

The syntax for our first logic for reasoning about probabilities is quite 
simple. We start with a fixed infinite set @ = (p,, pz, . ..} of primitive 
propositions or basic events. For convenience, we define true to be an 
abbreviation for the formula p v lp, where p is a fixed primitive proposi- 
tion. We abbreviate 1 true by false. The set of propositional formulas or 
events is the closure of @ under the Boolean operations A and 1. We use 
p, possibly subscripted or primed, to represent primitive propositions, and 
cp and $, again possibly subscripted or primed, to represent propositional 
formulas. A primitive weight term is an expression of the form w(q), where 
cp is a propositional formula. A weight term, or just term, is an expression 
of the form a, w(cp,) + + a,w(cp,), where a,, . . . . ak are integers and 
k b 1. A basic weight formula is a statement of the form t 3 c, where t is a 
term and c is an integer.2 For example, 2w(p, A p2) + 7w(p, v 1~~) 3 3 is 
a basic weight formula. A weight formula is a Boolean combination of basic 
weight formulas. We now use ,f and g, again possibly subscripted or 

‘In an earlier version of this paper [FHMSS], we allowed c and the coefficients that 
appear in terms to be arbitrary real numbers, rather than requiring them to be integers as we 
do here. There is no problem giving semantics to formulas with real coefficients, and we can 
still obtain the same complete axiomatization by precisely the same techniques as described 
below. However, when we go to richer languages later, we need the restriction to integers in 
order to make use of results from the theory of real closed fields. We remark that we have 
deliberately chosen to be sloppy and use a for both the symbol in the language that represents 
the integer a and for the integer itself. 
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primed, to refer to weight formulas. When we refer to a “formula,” without 
saying whether it is a propositional formula or a weight formula, we mean 
“weight formula.” We shall use obvious abbreviations, such as w(p) - 
~($)>,a for t~(cp)+(-l)w($)>,a, w(cp)>/w(+) for w(q)-w($)>O, 
w(cp)<c for -w(q)>,-c, w(q)<c for l(w(cp)>/c), and w(cp)=c for 
(w(q) 3 c) A (w(q) < c). A formula such as w(cp) z 4 can be viewed as an 
abbreviation for 3w((p) 3 1; we can always allow rational numbers in our 
formulas as abbreviations for the formula that would be obtained by 
clearing the denominators. 

In order to give semantics to such formulas, we first need to review 
briefly some probability theory (see, for example, [FelV, Ha1501 for more 
details). A probability space is a tuple (S, 3, p) where S is a set (we think 
of S as a set of states or possible worlds, for reasons to be explained below), 
JZ is a a-algebra of subsets of S (i.e., a set of subsets of S containing the 
empty set and closed under complementation and countable union) whose 
elements are called measurable sets, and p is a probability measure defined 
on the measurable sets. Thus p: .Ci? ---t [0, l] satisfies the following proper- 
ties: 

Pl. p(X) > 0 for all XE X. 
P2. p(S)= 1. 
P3. p(U y= i Xi) =x7=, p(Xi), if the X,‘s are pairwise disjoint mem- 

bers of 3. 

Property P3 is called countable additivity. Of course, the fact that X is 
closed under countable union guarantees that if each Xie X, then so is 
Uy=, Xi. If .5? is a finite set, then we can simplify property P3 to 

P3’. ~(XU Y) = p(X) + p( Y), if X and Y are disjoint members of 3. 

This property is called finite additivity. Properties PI, P2, and P3’ charac- 
terize probability measures in finite spaces. Observe that from P2 and P3’ 
it follows (taking Y= F, the complement of X) that p(X) = 1 -p(X). 
Taking X= S, we also get that p((zI) = 0. We remark for future reference 
that it is easy to show that P3’ is equivalent to the following axiom: 

P3”. p(X) = p(Xn Y) + p(Xn P). 

Given a probability space (S, 3, cc), we can give semantics to weight 
formulas by associating with every basic event (primitive proposition) a 
measurable set, extending this association to all events in a straightforward 
way, and then computing the probability of these events using p. More 
formally, a probability structure is a tuple A4 = (S, 3, p, rc), where (S, ?&, p) 
is a probability space, and rc associates with each state in S a truth 
assignment on the primitive propositions in @. Thus x(s)(p) E {true, false} 
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foreachsESandpE@.Define@“‘={SESI~(S)(P)=frue). Wesaythata 
probability structure M is measurable if for each primitive proposition p, 
the set P”” is measurable. We restrict attention in this section to measurable 
probability structures. The set P”” can be thought of as the possible worlds 
where p is true, or the states at which the event p occurs. We can extend 
n(s) to a truth assignment on all propositional formulas in the standard 
way and then associate with each propositional formula cp the set (P‘~ = 
{sESJx(s)(q)=truej. A n easy induction on the structure of formulas 
shows that cp AJ is a measurable set. If A4 = (S, X, p. 711, we define 

Mt= u,w(cp,)+ ..’ +u,w(q,)>c iff a,~(cp;~)+ ... +~~~u((p,M)>c(.. 

We then extend k (“satisfies”) to arbitrary weight formulas, which are just 
Boolean combinations of basic weight formulas, in the obvious way, namely 

Mi= 1.f iff M /# ,f 

Ml=fAiz iff M/=j”andM+g. 

There are two other approaches we could have taken to assigning 
semantics, both of which are easily seen to be equivalent to this one. One 
is to have 7~ associate a measurable set pM directly with a primitive 
proposition p, rather than going through truth assignments as we have 
done. The second (which was taken in [Ni186]) is to have S consist of one 
state for each of the 2” different truth assignments to the primitive proposi- 
tions of @ and have 3 consist of all subsets of S. We choose our approach 
because it extends more easily to the nonmeasurable case considered in 
Section 3, to the first-order case, and to the case considered in [FH88] 
where we extend the language to allow statements about an agent’s 
knowledge. (See [FH89] for more discussion about the relationship 
between our approach and Nilsson’s approach.) 

As before, we say a weight formulaf is valid if M /= .ffor all probability 
structures M, and is sutisfiuble if M /= f for some probability structure M. 
We may then say that f is satisfied in M. 

2.2. Complete Axiomutizution 

In this subsection we characterize the valid formulas for the measurable 
case by a sound and complete axiomatization. A formula f is said to be 
provable in an axiom system if it can be proven in a finite sequence of steps, 
each of which is an axiom of the system or follows from previous steps by 
an application of an inference rule. It is said to be inconsistent if its 
negation 1 f is provable, and otherwise f is said to be consistent. An axiom 
system is sound if every provable formula is valid and all the inference rules 
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preserve validity. It is complete if every valid formula is provable (or, 
equivalently, if every consistent formula is satisfiable). 

The system we now present, which we call AX,,,,, divides nicely into 
three parts, which deal respectively with propositional reasoning, reasoning 
about linear inequalities, and reasoning about probability. 

Propositional reasoning: 

Taut. All instances of propositional tautologies. 
MP. From f and f * g infer g (modus ponens). 

Reasoning about linear inequalities: 

Ineq. All instances of valid formulas about linear inequalities (we 
explain this in more detail below). 

Reasoning about probabilities: 

Wl. w(q) 3 0 (nonnegativity). 
W2. w(true) = 1 (the probability of the event true is 1). 
W3. w(cp A $) + w(cp A l$) = u(q) (additivity). 
W4. w(q) = w($) if cp s $ is a propositional tautology (dis- 

tributivity). 

Before we prove the soundness and completeness of AXMEAS, we briefly 
discuss the axioms and rules in the system. 

First note that axioms Wl, W2, and W3 correspond precisely to Pl, P2, 
and P3”, the axioms that characterize probability measures in finite spaces. 
We have no axiom that says that the probability measure is countably 
additive. Indeed, we can easily construct a “nonstandard” model 
M = (S, !E, ,u, rc) satisfying all these axioms where p is finitely additive, but 
not countably additive, and thus not a probability measure. (An example 
can be obtained by letting S be countably infinite, letting :r consist of the 
finite and co-finite sets, and letting ,u( T) = 0 if T is finite, and p(T) = 1 if T 
is co-finite, for each TE X.) Nevertheless, as we show in Theorem 2.2, the 
axiom system above completely characterizes the properties of weight 
formulas in probability structures. This is consistent with the observation 
that our axiom system does not imply countable additivity, since countable 
additivity cannot be expressed by a formula in our language. 

Instances of Taut include formulas such as f v if, where f is a weight 
formula. However, note that if p is a primitive proposition, then p v -up is 
not an instance of Taut, since p v 1p is not a weight formula, and all of 
our axioms are, of course, weight formulas. We remark that we could 
replace Taut by a simple collection of axioms that characterize proposi- 
tional tautologies (see, for example, [Men64]). We have not done so here 
because we want to focus on the axioms for probability. 
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The axiom Ineq includes “all valid formulas about linear inequalities.” 
To make this precise, assume that we start with a fixed infinite set of 
variables. Let an inequality term (or just term, if there is no danger of con- 
fusion) be an expression of the form a,x, + ... + akxk, where a,, . . . . ak are 
integers and k > 1. A basic inequality formula is a statement of the form 
t 2 c, where t is a term and c is an integer. For example, 2x, + 7x, 3 3 is 
a basic inequality formula. An inequality formula is a Boolean combination 
of basic inequality formulas. We usefand g, again possibly subscripted or 
primed, to refer to inequality formulas. An assignment to variables is a 
function A that assigns a real number to every variable. We define 

A + a,x, + ... +a,x,>c iff a,A(x,)+ ... +a,A(x,)ac 

We then extend + to arbitrary inequality formulas, which are just Boolean 
combinations of basic inequality formulas, in the obvious way, namely, 

‘4 k 1.f iff A l# ,f 

Al=-ff‘r\ iff A+fandA+g. 

As usual we say that an inequality formula f is valid if A /= f for all A 
that are assignments to variables, and is satisfiable if A + ,f for some 
such A. 

A typical valid inequality formula is 

(a,x, + ... +a,x,>c) A (a;x, + ... +a;x,3c’) 

*(a,+a;)x,+ ... +(a,+a;)x,2(c+c’). (1) 

To get an instance of Ineq, we simply replace each variable x, that occurs 
in a valid formula about linear inequalities by a primitive weight term 
w(qi) (of course, each occurrence of the variable xi must be replaced by the 
same primitive weight term w(cpi)). Thus, the weight formula 

(a,w(cp,)+ ... +a,w(cp,)>c) A (a;w(cp])+ ... +a;w(qk)>c’) 

*(aI+a;)w~(cpl)+ ... +(ak+a;)w~(~k)>(c+c’), (2) 

which results from replacing each occurrence of X, in (1) by w(cp,), is an 
instance of Ineq. We give a particular sound and complete axiomatization 
for Boolean combinations of linear inequalities (which, for example, has (1) 
as an axiom) in Section 4. Other axiomatizations are also possible; the 
details do not matter here. 

Finally, we note that just as for Taut and Ineq, we could make use of 
a complete axiomatization for propositional equivalences to create a 
collection of elementary axioms that could replace W4. 
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In order to see an example of how the axioms operate, we show that 
w(fulse) = 0 is provable. Note that this formula is easily seen to be valid, 
since it corresponds to the fact that p(D) = 0, which we have already 
observed follows from the other axioms of probability. 

LEMMA 2.1. The formula w( false) = 0 is provable from AX,,,, 

Proof. In the semiformal proof below, PR is an abbreviation for 
“propositional reasoning,” i.e., using a combination of Taut and MP. 

1. w(true A true) + \v( true A false) = w(true) (W3, taking cp and $ 
both to be true). 

2. w(true A true) = w(true) (W4). 

3. w(true A false) = w(fulse) (W4). 

4. ((w(true A true) + w(true A false) = w(true)) A (w(true A true) = 
w(true)) A (w(true A false) = w(false))) * (w(false) = 0) (Ineq, since this 
is an instance of the valid inequality ((x, +x,=x~) A (x, =x3) A 

(x2 =x4)) =a (x4 = 0)). 

5. w(false) = 0 (1, 2, 3, 4, PR). 1 

THEOREM 2.2. AX,,,s is sound and complete with respect to measurable 
probability structures. 

Proof It is easy to see that each axiom is valid in measurable probabil- 
ity structures. To prove completeness, we show that if f is consistent then 
f is satisfiable. So suppose that f is consistent. We construct a measurable 
probability structure satisfying f by reducing satisfiability of f to 
satistiability of a set of linear inequalities, and then making use of the 
axiom Ineq. 

Our first step is to reduce f to a canonical form. Let g, v ... v g, be a 
disjunctive normal form expression for f (where each gi is a conjunction of 
basic weight formulas and their negations). Using propositional reasoning, 
we can show that fis provably equivalent to this disjunction. Since f is con- 
sistent, so is some g,; this is because if 1 g, is provable for each i, then so 
is i(g, v ... v g,). Moreover, any structure satisfying gi also satisfies f. 
Thus, without loss of generality, we can restrict attention to a formula f 
that is a conjunction of basic weight formulas and their negations. 

An n-atom is a formula of the form pi A .. A pi,, where pi is either pi 
or lp, for each i. If n is understood or not important, we may refer to 
n-atoms as simply atoms. 

LEMMA 2.3. Let cp be a propositional formula. Assume that {p,, . . . . p,,} 
includes all of the primitive propositions that appear in cp. Let At,,(q) consist 
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of all the n-atoms 6 such that 6 =S cp is a propositional tautology. Then 
w(q) = CbCA,,,W, w(6) is prouahle.’ 

ProoJ: While the formula ~z(cp) = CdGAt,,qp) ~(6) is clearly valid, show- 
ing it is provable requires some care. We now show by induction on ,j 3 1 
that if $r, . . . . ti2, are all of the ,j-atoms (in some fixed but arbitrary order), 
then w(q) = w(cp A $,) + ... + ~a(cp A Gz,) is provable. Ifj= 1, this follows 
by finite additivity (axiom W3), possibly along with Ineq and propositional 
reasoning (to permute the order of the l-atoms, if necessary). Assume 
inductively that we have shown that 

w(q)=w(q A $,)+ “’ +w(cp A $2,) (3) 

iS provable. By W3, w(cp A $, A p,+ 1)+ w(cp A ti, A l~~+~)=w(cp A $,) 

is provable. By Ineq and propositional reasoning, we can replace each 
w((~ A $I) in (3) by w(cp A $I A p,+ 1) + w((p A $, A lpi+ ,). This proves 
the inductive step. 

In particular, 

W(q)=W((p A 6,)+ ... +W(qO A a,,) (4) 

is provable. Since {p,, . . . . p,} includes all of the primitive propositions that 
appear in rp, it is clear that if 8,~ At,,(q), then cp A 6, is equivalent to 6,, 
and if 6,+! At,,(q), then cp A 6, is equivalent to false. So by W4, we see that 
if 6, E At,(q), then w(cp A 6,) = ~(6,) is provable, and if 6,$ At,,(p), then 
w((p A 6,) = w(fulse) is provable. Therefore, as before, we can replace each 
w(cp A 6,) in (4) by either ~(6,) or w(fulse) (as appropriate). Also, we can 
drop the w(false) terms, since w(fulse) = 0 is provable by Lemma 2.1. The 
lemma now follows. 1 

Using Lemma 2.3 we can find a formula f' provably equivalent to f 
where f’ is obtained from f be replacing each term in f by a term of the 
form a,w(6,)+ . . . + a,.w(6,.), where (pl, . . . . pn} includes all of the 
primitive propositions that appear in f, and where (6,) . . . . c?,~} are the 
n-atoms. For example, the term 2w(p, v pz) + 3w( 1 pz) can be replaced 
by 2W(P, A Pz)+2W(lPl A Pz)+ 5w(p, A ~PZ)+~W(~P~ A 1~2) (the 
reader can easily verify the validity of this replacement with a Venn 
diagram). Let f" be obtained from f' by adding as conjuncts to f' all of the 
weight formulas ~(6~) 2 0, for 1 d j< 2”, along with weight formulas 
w(S,)+ ... + w(6,,)> 1 and -M(c~,)- ... - ~(a,,)> -1 (which together 
say that the sum of the probabilities of the n-atoms is 1). Then ,f” is 
provably equivalent to f’, and hence to.6 (The fact that the formulas that 

3 Here ILtAr,cq, w(6) represents ~‘(6~)+ ... + ~(6,), where C’S,, . . . . 6, are the distinct mem- 
bers of At,(q) in some arbitrary order. By Ineq, the particular order chosen does not matter. 
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say “the sum of the probabilities of the n-atoms is 1” are provable follows 
from Lemma 2.3, where we let cp be true.) So we need only show that f” 
is satisfiable. 

The negation of a basic weight formula a, ~(6,) + ... + a,,w(6,.) 3 c 
can be written -a, ~(6,) - ... - u,.w(~~~) > -c. Thus, without loss of 
generality, we can assume that ,f” is the conjunction of the 2” + r + s + 2 
formulas 

(5) 

Here the u,.~‘s and a:, j’s are some integers. 
Since probabilities can be assigned independently to n-atoms (subject to 

the constraint that the sum of the probabilities equal one), it follows that 
f” is satisfiable iff the following system of linear inequalities is satisfiable: 

x, + .’ + xp 3 1 

--XI - ... - xp 2 - 1 

x1 30 
. 

X2” 3 0 

u1,,x1+ ‘.. +u,,,.x,. > c, 

Ur,lXl + ... +u,,nx,, > c, 
-u;,,x- ‘.. -u;,,.x,, > -c; 

(6) 

-u:,*x, - ‘.. -u:>,“x,” > -c;.. 
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As we have shown, the proof is concluded if we can show that .f’” is 
satisfiable. Assume that ,f” is unsatisfiable. Then the set of inequalities in 
(6) is unsatisfiable. So 1.f” is an instance of the axiom Ineq. Since .f” is 
provably equivalent toJI it follows that if is provable, that is, ,fis incon- 
sistent. This is a contradiction. 1 

Remark. When we originally started this investigation, we considered a 
language with weight formulas of the form w(q) 3 c, without linear com- 
binations. We extended it to allow linear combinations, for two reasons. 
The first is that the greater expressive power of linear combinations seems 
to be quite useful in practice (to say that cp is twice as probable as $, for 
example). The second is that we do not know a complete axiomatization 
for the weaker language. The fact that we can express linear combinations 
is crucial to the proof given above. 

2.3. Small-Model Theorem 

The proof of completeness presented in the previous subsection gives us 
a great deal of information. As we now show, the ideas of the proof let us 
also prove that a satisfiable formula is satisfiable in a small model. 

Let us define the length IfI of the weight formula f to be the number of 
symbols required to write ,f; where we count the length of each coefficient 
as I. We have the following small-model theorem. 

THEOREM 2.4. Suppose f is a weight formula that is satisfied in some 
measurable probability structure. Then f is satisfied in a structure (S, X, p, rc) 
with at most /f 1 states where every set of states is measurable. 

Proof We make use of the following lemma [Chv83, p. 1451. 

LEMMA 2.5. If a system of r linear equalities und/or inequalities has a 
nonnegative solution, then it has a nonnegative solution with at most r entries 
positive. 

(This lemma is actually stated in [Chv83] in terms of equalities only, but 
the case stated above easily follows: if x,*, . . . . xz is a solution to the system 
of inequalities, then we pass to the system where we replace each inequality 
h(x , , . . . . Xk) 3 c or h(x,, . . . . .xk)> c by the equality h(x,, . . . . xk)= 
h(x:, . . . . x;).) 

Returning to the proof of the small-model theorem, as in the complete- 
ness proof, we can write ,f‘in disjunctive normal form. It is easy to show 
that each disjunct is a conjunction of at most 1 f / - 1 basic weight formulas 
and their negations. Clearly, sincefis satisfiable, one of the disjuncts, call 
it g, is satisfiable. Suppose that g is the conjunction of r basic weight 
formulas and s negations of basic weight formulas. Then just as in the 
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completeness proof, we can find a system of equalities and inequalities of 
the following form, corresponding to g, which has a nonnegative solution: 

x,+ “’ $X,” = 1 

0,.,x1 + ‘.’ Scl,,,.X,” 2 (‘1 

a,,x, + .‘. +ar,,.x,. 3 c, 

-a; ,x1 - ... -a;.zR,v2n > -c; 

-a:.,,xl- ... -ak,2n.x,,, > -c:. 

(7) 

So by Lemma 2.5, we know that (7) has a solution x*, where x* is a vector 
with at most Y + s + 1 entries positive. Suppose xz, . . . . xc are the positive 
entries of the vector x*, where t < r + s + 1. We can now use this solution 
to construct a small structure satisfying J Let M= (S, ?Z> p, rc), where S 
has t states, say sr, . . . . s,, and S consists of all subsets of S. Let rr(s,) be 
the truth assignment corresponding to the n-atom 6, (and where 
x($,)(p) = false for every primitive proposition p not appearing in f). The 
measure p is defined by letting p( {si}) = I ii Y* and extending p by additivity. 
We leave it to the reader to check that M /= J Since t < r + s + 1 < Ifl, the 
theorem follows. 1 

2.4. Decision Procedure 

When we consider decision procedures, we must take into account the 
length of coefficients. We define llfll to be the length of the longest 
coefficient appearing in f, when written in binary. The size of a rational 
number a/h, where a and b are relatively prime, is defined to be the sum 
of the lengths of a and b, when written in binary. We can then extend the 
small model theorem above as follows: 

THEOREM 2.6. Suppose f is a weight formula that is satisfied in some 
measurable probability structure. Then f is satisfied in a structure (S, X, u, n) 
with at most If I states where every set of states is measurable, and where the 
probability assigned to each state is a rational number with size 0( I f I /If /I + 
Ifl log(lfl)). 

Theorem 2.6 follows from the proof of Theorem 2.4 and the following 
variation of Lemma 2.5, which can be proven using Cramer’s rule and 
simple estimates on the size of the determinant. 

LEMMA 2.7. If a system of r linear equalities andJor inequalities with 
integer coefficients each of length at most 1 has a nonnegatitje solution, then 
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it has a nonnegative solution with at most r entries positive, and where the 
size oj each member qf the solution is O(rl+ r log(r)). 

We need one more lemma, which says that in deciding whether a weight 
formulaf is satisfied in a probability structure, we can ignore the primitive 
propositions that do not appear in,f: 

LEMMA 2.8. Let ,f be a weight .formula. Let M= (S, X, u, 71) and 
M’ = (S, 5, ,u, 71’) be probability structures with the same underlying 
probability space (S, f, u). Assume that n(s)(p) = x’(s)(p) for every state .s 
and every primitive proposition p that appears in j: Then M /= ,f zlf M’ k j: 

Proof Iffis a basic weight formula, then the result follows immediately 
from the definitions. Furthermore, this property is clearly preserved under 
Boolean combinations of formulas. 1 

We can now show that the problem of deciding satisfiability is 
NP-complete. 

THEOREM 2.9. The problem of deciding whether a weight ,formula is 
satisfiable in a measurable probability structure is NP-complete. 

Proof For the lower bound, observe that the propositional formula q 
is satisfiable iff the weight formula in > 0 is satisfiable. For the upper 
bound, given a weight formula ,L we guess a satisfying structure 
M= (S, X, p, 71) for f with at most ifi states such that the probability of 
each state is a rational number with size 0( IfI lifll + IfI log(lfl)), and 
where n(s)(p) = false for every state s and every primitive proposition p not 
appearing in f (by Lemma 2.8, the selection of x(s)(p) when p does not 
appear in f is irrelevant). We verify that M l= f as follows. For each term 
w($) off, we create the set Z, c S of states that are in $“’ by checking the 
truth assignment of each s E S and seeing whether this truth assignment 
makes + true; if so, then s E $“. We then replace each occurrence of w($) 
in f by C, E zB p(s) and verify that the resulting expression is true. 1 

3. THE GENERAL (NONMEASURABLE)~ASE 

3.1. Semantics 

In general, we may not want to assume that the set qM associated with 
the event cp is a measurable set. For example, as shown in [HT89], in an 
asynchronous system, the most natural set associated with an event such as 
“the most recent coin toss landed heads” will not in general be measurable. 
More generally, as discussed in [FH89], we may not want to assign a 
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probability to all sets. The fact that we do not assign a probability to a set 
then becomes a measure of our uncertainty as to its precise probability; as 
we show below, all we can do is bound the probability from above and 
below. 

If q”” is not a measurable set, then ~(cp”) is not well-defined. Therefore, 
we must give a semantics to the weight formulas that is different from the 
semantics we gave in the measurable case, where p(q”) is well-defined for 
each formula cp. One natural semantics is obtained by considering the inner 
measure induced by the probability measure rather than the probability 
measure itself. Given a probability space (S, !.Y%, h) and an arbitrary subset 
A of S, define p*(A)= sup(p(B)l BE A and BE%}. Then LL* is called the 
inner measure induced by p [HalSO]. Clearly p* is defined on all subsets of 
S, and p,(A) = p(A) if A is measurable. We now define 

and extend this definition to all weight formulas just as before. Note that 
M satisfies w(q) > c iff there is a measurable set contained in qM whose 
probability is at least c. Of course, if M is a measurable probability 
structure, then p*(cp”)=~(cp~) for every formula cp, so this definition 
extends the one of the previous section. 

We could just as easily have considered outer measures instead of inner 
measures. Given a probability space (S, 3, I*) and an arbitrary subset A of 
S, define p*(A)=inf(p(B)l A z B and BE%}. Then p* is called the outer 
measure induced by p [HalSO]. As with the inner measure, the outer 
measure is defined on all subsets of S. It is easy to show that 
p*(A) <p*(A) for all A c S; moreover, if A is measurable, then 
p*(A) = p(A) if A is measurable. We can view the inner and outer measures 
as providing the best approximations from below and above to the 
probability of A. (See [FH89] for more discussion of this point.) 

Since p*(A) = 1 -p,(A), where as before, A is the complement of A, it 
follows that the inner and outer measures are expressible in terms of the 
other. We would get essentially the same results in this paper if we were to 
replace the inner measure p.+ in (8) by the outer measure ,u*. 

If M= (S, X, p, rc) is a probability structure, and if ?X’ is a set of non- 
empty, disjoint subsets of S such that X consists precisely of all countable 
unions of members of X’, then let us call X’ a basis of M. We can think 
of X’ as a “description” of the measurable sets. It is easy to see that if 3 
is finite, then there is a basis. Moreover, whenever X has a basis, it is 
unique: it consists precisely of the minimal elements of X (the nonempty 
sets in X none of whose proper nonempty subsets are in X). Note that if 
% has a basis, once we know the probability of every set in the basis, we 
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can compute the probability of every measurable set by using countable 
additivity. Furthermore, the inner and outer measures can be defined in 
terms of the basis: the inner measure of A is the sum of the measures of the 
basis elements that are subsets of A, and the outer measure of A is the sum 
of the measures of the basis elements that intersect A. 

3.2. Complete Axiomatkation 

Allowing p M to be nonmeasurable adds a number of complexities to 
both the axiomatization and the decision procedure. Of the axioms for 
reasoning about weights, while WI and W2 are still sound, it is easy to see 
that W3 is not. Finite additivity does not hold for inner measures. It is easy 
to see that we do not get a complete axiomatization simply by dropping 
W3. For one thing, we can no longer prove ~(@se) = 0. Thus, we add it 
as a new axiom: 

w5. w(,fulse) = 0. 

But even this is not enough. For example, superadditivity is sound for 
inner measures. That is, the axiom 

w(cp A $)+ M'((P A l$)< w(q) (9) 

is valid in all probability structures. But adding this axiom still does not 
give us completeness. For example, let 6,) 6,, 6, be any three of the four 
distinct 2-atomsp, A p2,p, A lp2, lp, A p2, and lp, A lp2. Consider 
the formula 

w(6, v 61 v 6,) - “(6, v 6,) - M.(fi, v 6,)- w(6, v 6,) 

+ w(6,) + !4(6,) + w(6,) 3 0. (10) 

Although it is not obvious, we shall show that (10) is valid in probability 
structures. It also turns out that (10) does not follow from the other 
axioms and rules mentioned above: we demonstrate this after giving a few 
more definitions. 

As before, we assume that 6,, . . . . 6,” is a list of all the n-atoms in some 
fixed order. Define an n-region to be a disjunction of n-atoms where the 
n-atoms appear in the disjunct in order. For example, 6, v 6, is an 
n-region, while 6, v 6, is not. By insisting on this order, we ensure that 
there are exactly 2” distinct n-regions (one corresponding to each subset of 
the n-atoms). We identify the empty disjunction with the formula false. As 
before, if n is understood or not important, we may refer to n-regions as 
simply regions. Note that every propositional formula all of whose 
primitive propositions are in { p, , . . . . pn} is equivalent to some n-region. 
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Define a size Y region to be a region that consists of precisely r disjuncts. 
We say that p’ is a subregion of p if p and p’ are n-regions, and each 
disjunct of p’ is a disjunct of p. Thus, p’ is a subregion of p iff p’*p is a 
propositional tautology. We shall often write p’*p for “p’ is a subregion 
of p.” A size r subregion of a region p is a size r region that is a subregion 
of p. 

Remark. We can now show that (10) (where 6,) 6,, (5, are distinct 
2-atoms) does not follow from AX,,,, with W3 replaced by W5 and the 
superadditivity axiom (9). Define a function v whose domain is the set of 
propositional formulas, by letting v(q) = 1 when at least one of the 
2-regions b1 v 6,, 6, v 6,, and 6, v 6, logically implies cp. Let F be the set 
of basic weight formulas that are satisfied when v plays the role of M: (for 
example, a basic weight formula a, ~(cp,) + . . + ak u’((pk) 3 c is in F iff 
a, v(cp ,) + . . + a,v(cp,) > c). Now (10) is not in F, since the left-hand side 
of (10) is 1 - 1 - 1 - 1 + 0 + 0 + 0, which is - 2. However, it is easy to see 
that F contains every instance of every axiom of AX,,,, other than W3, 
as well as W5 and every instance of the superadditivity axiom (9), and is 
closed under modus ponens. (The fact that every instance of (9) is in F 
follows from the fact that both cp A Ic/ and cp A l$ cannot simultaneously 
be implied by 2-regions where two of 6,) a,, 6, are disjuncts.) Therefore, 
(10) does not follow from the system that results when we replace W3 by 
W5 and the superadditivity axiom. 

NOW ( 10) is just one instance of the following new axiom: 

w6’ c:= I 2,’ a sire I subregion of p ( - 1)’ ’ w( p’) 2 0, if p is a size r region 
and r> 1. 

There is one such axiom for each n, each n-region p, and each r with 
1 d r d 22”. It is instructive to look at a few special cases of W6. Let the size 
r region p be the disjunction 6, v .. v 6,. If r = 1, then W6 says that 
~(6,) 3 0, which is a special case of axiom Wl (nonnegativity). If r = 2, 
then W6 says 

w(S, v 6,) - w(S,) - w(S,) 3 0, 

which is a special case of superadditivity. If r = 3, we obtain (10) above. 

3.2.1. Soundness of W6 

In order to prove soundness of W6, we need to develop some machinery 
(which will prove to be useful again later for both our proof of complete- 
ness and our decision procedure). 

Let M(S, SY, p, rc) be a probability structure. We shall find it useful to 
have a fixed standard ordering p I, . . . . p22” of the n-regions, where every size 



96 FAGIN, HALPERN, AND MEGIDDO 

r’ region precedes every size r region if r‘ < r. In particular, if pk, is a proper 
subregion of pk, then k’ < k. We have identified p, with false; similarly, we 
can identify p22n with true. 

We now show that for every n-region p there is a measurable set 
h(p) G pM such that all of the h(p)‘s are disjoint, and such that the inner 
measure of p M is the sum of the measures of the sets h(p’), where p’ is a 
subregion of p. In the measurable case (where each p M is measurable), it 
is easy to see that we can take h(p) = p”’ if p is an n-atom, and h(p) = 0 
otherwise. Let 2 be the set of all 2” distinct n-regions. 

PROPOSITION 3.1. Let M= (S, X, p, n) be a probability structure. There 
is a function h: 9? + X such that if p is an n-region, then 

1. h(p) E p”‘. 

2. If p and p’ are distinct n-regions, then h(p) and h(p’) are disjoint. 

3. Zf h(p) E (p’)” for some proper subregion p’ of p, then h(p) = @. 

4. P,(P”) = C,,+, I*(h(p’)). 

Proof If A4 has a basis, then the proof is easy: We define h(p) to be the 
union of all members of the basis that are subsets of p”, but not of (P’)~ 
for any proper subregion p’ of p. It is then easy to verify that the four 
conditions of the proposition hold. 

We now give the proof in the general case (where A4 does not necessarily 
have a basis). This proof is more complicated. 

We define h(p,) by induction on j, in such a way that 
1. h(p,) E p;. 

2. If j’ < j, then h(p,.) and h(p,) are disjoint. 
3. If j’ < j, and h(p,) G py, then h(p,) = 0. 

4. &p~) = lE+,, Mp’)). 

Because our ordering ensures that if pjS is a subregion of p.i then j’ d j, this 
is enough to prove the proposition. 

To begin the induction, let us define h(p,) (that is, h(false)) to be 0. 
For the inductive step, assume that h(p,) has been defined whenever j< k, 
and that each of the four conditions above holds whenever j< k. We now 
define h(p,) so that the four conditions hold when j= k. Clearly p,(pr) 2 

L aPkandpc+pk~(h(~‘)), since UP,l.Pkandp,+pkhW) is a measurable set 
contained in p,” 

L 
(because h(p’) G (p’)” E SF), with measure 

~Pk and PS +Pk p(h(p’)) (because by inductive assumption the sets h(p’) 
where p(h(p’)) goes into this sum are pairwise disjoint). If ,u*(pr)= 

Cd -PnandpPZPI p(h(p’)), then we define h(pk) to be 0. In this case, the 
four conditions clearly hold when j= k. If not, let W be a measurable 
subsetofp,Msuchthatp,(p,M)=p(W).Let W’= W-Up’~p~andp’fpkh(p’). 
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Since by inductive assumption the sets h(p’) that go into this union are 
pairwise disjoint and are each subsets of pr (because h(p’) c (p’)” c p,“), 
it follows that p.Jpr) = ,u( IV’) + C,.,,, p(h(p’)), and in particular 
p(w’)>O. Let W”= W’-Uk.<k h(p,,). Suppose we can show p( IV’) = 
p( W’). It then follows that p*(py) = p( W”) + xP.DPk p(h(p’)). We define 
h(p,) to be W”. Thus, condition 4 holds when j = k, and by construction, 
so do conditions 1 and 2. We now show that condition 3 holds. If not, find 
k’< k such that h(p,) c pp and h(p,) # 0. By our construction, since 
h(p,) # 0, it follows that h(p,) has positive measure. By inductive 
assumption, &.(pz) = C,,,,,, p(h(p’)). Now when p’ * pk’. it follows that 
h(p’) c (p’)” G p!. Hence, if T= lJP,aPk, h(p’), then T is a measurable set 
contained in pr with measure equal to the inner measure of pr. However, 
h(pk) is a measurable set contained in p: with positive measure and which 
is disjoint from T. This is clearly impossible. 

Thus it only remains to show that p( W”) =p( W’). If not, then 
,u( W’ n h(p,,)) > 0 for some k’ <k. Let 2 = W’ n h(pk,) (thus, p(Z) > 0), 
and let pks. be the n-region logically equivalent to pk A pk.. Since k’ <k, it 
follows that pk., is a proper subregion of pk, and hence k” < k. Since 
W’s wsp,M, and since h(p,,) c pf!, it follows that Z- W’ n h(p,,) E 
ppnpE=pF (where the final equality follows from the fact that pk.. is 
logically equivalent to pk A pk,). By construction, W’ is disjoint from h(p’) 
for every subregion p’ of pk, and in particular for every subregion p’ of pk.. 
(since pk,, +. pk). Z is disjoint from h(p’) for every subregion p’ of pk.,, since 
ZG W’. So Z is a subset of pz with positive measure which is disjoint from 
h(p’) for every subregion p’ of pk... But this contradicts our inductive 
assumption that p*(p~)=Cp.~pt,, ,u(h(p’)). Thus we have shown that 
P(W”)=P(~)* I 

In the fourth part of Proposition 3.1, we expressed inner measures of 
n-regions in terms of measures of certain measurable sets h(p). We now 
show how to invert, to give the measure of a set h(p) in terms of inner 
measures of various n-regions. We thereby obtain a formula expressing 
p(h(p)) in terms of the inner measure. As we shall see, axiom W6 says 
precisely that p(h(p)) is nonnegative. So W6 is sound, since probabilities 
are nonnegative. Since we shall “re-use” this inversion later, we shall state 
the next proposition abstractly, where we assume that we have vectors 
(xp, 9 . . . . Xp*2” ) and ( yp, , . . . . ypz2”), each indexed by the n-regions. In our case 
of interest, y, is p(h(p)), and xp is p,(p”). 

PROPOSITION 3.2. Assume that x, = C,, up y,., for each n-region p. Let 
p be a size r region. Then 

YP= c c (- l)r-’ X&. 
I = 0 p’ a size f subregion of p 
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Proof: This proposition is simply a special case of Mobius inversion 
[Rot641 (see [Ha167, pp. 14181). Since the proof of Proposition 3.2 is 
fairly short, we now give it. 

Replace each x,, in the right-hand side of the equality in the statement 
of the proposition by I,,, ap, JJ~,,. We need only show that the result is 
precisely y, (in particular, every other y, “cancels out”). Note that for every 
y, that is involved in this replacement, r is a subregion of p (since it is a 
subregion of some p’ that is a subregion of p). 

First, yp is contributed to the right-hand side precisely once, when t = r, 
by xc,. Now let r be a size s subregion of p, where 0 < s < r - 1. We shall 
show that the total of the contributions of y, is zero (that is, the sum of 
the positive coefficients of the times it is added in plus the sum of the 
negative coefficients is zero). Thus, we count the number of times J’~ is 
contributed by 

i c (-l)rpf.Xp.. (11) 
I = 0 0’ B sue I subregmn of p 

If t <s, then yr is not contributed by the tth summand of (11). If t 3 s, then 
it is straightforward to see that z is a subregion of (;I,“) distinct size 1 
subregions of p, and so the total contribution by the tth summand of (11) 
is (- l)‘-’ (i-f). Therefore, the total contribution is 

(12) 

This last expression is easily seen to be equal to (- 1)’ .’ CL<:, (- 1)” 
(r ; “). But this is ( - 1)’ -A times the binomial expansion of (1 - l)‘-~ ‘, and 
so is 0. 1 

COROLLARY 3.3. Let p be a size r region. Then 

Ah(p))= i c (-1r’P*wY). 
r = 0 p’ a size f subregmn of p 

Proof: Let y, be p(h(p)), and let x, be pL*(pM). The corollary then 
follows from part 4 of Proposition 3.1, and Proposition 3.2. [ 

COROLLARY 3.4. Let p be u size r region. Then 

c c (-1)‘--‘p*((p’)“)m 
I = 0 (I’ a S,LC , subregmn of p 
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Proof This follows from Corollary 3.3 and from the fact that measures 
are nonnegative. 1 

PROPOSITION 3.5. Axiom W6 is sound. 

Proof: This follows from Corollary 3.4, where we ignore the t = 0 term 
since ,u,(@)=O. 1 

3.2.2. Completeness 

Let AX be the axiom system that results when we replace W3 by W5 and 
W6. We now prove that AX is a complete axiomatization in the general 
case, where we allow nonmeasurable events. Thus we want to show that if 
a formulaf is consistent, then f is satisfiable. As in the measurable case, we 
can easily reduce to the case in whichfis a conjunction of basic weight for- 
mulas and their negations. However, now we cannot rewrite subformulas of 
fin terms of subformulas involving atoms over the primitive propositions 
that appear inf, since this requires W3, which does not hold if we consider 
inner measures. Instead, we proceed as follows. 

Let pl, . . . . p, include all of the primitive propositions that appear in f: 
Since every propositional formula using only the primitive propositions 
p, , . . . . pn is provably equivalent to some n-region pi, it follows that f is 
provable equivalent to a formulaf’ where each conjunct off’ is of the form 
a, w(p,) + . + a22nw(p22n). As before, f’ corresponds in a natural way to 
a system Ax 2 6, A’x > 6’ of inequalities, where x = (x1, . . . . X,P) is a column 
vector whose entries correspond to the inner measures of the n-regions 
pl, . . . . ~~2”. Iff is satisfiable in a probability structure (when w is interpreted 
as an inner measure induced by a probability measure), then Ax> b, 
A’x > b’ clearly has a solution. However, the converse is false. For example, 
if this system consists of a single formula, namely -w(p) > 0, then of 
course the inequality has a solution (such as w(p) = - I), but f is not 
satisfiable. Clearly, we need to add constraints that say that the inner 
measure of each n-region is nonnegative, and the inner measure of the 
region equivalent to the formula false (respectively true) is 0 
(respectively 1)” But even this is not enough. For example, we can con- 
struct an example of a formula inconsistent with W6 (namely, the negation 
of (IO)), where the corresponding system is satisfiable. We now show that 
by adding inequalities corresponding to W6, we can force the solution to 
act like the inner measure induced by some probability measure. Thus, we 
can still reduce satisfiability off to the satistiability of a system of linear 
inequalities. 

4 Actually, when we speak about the inner measure of an n-region p, we really mean the 
inner measure of the set pM that corresponds to the n-region p. 
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Let P be the 22’ x 22n matrix of O’s and l’s such that if x = (x,,,, . . . . .x~,~:~) 
and Y = (Y,,, , . . . . ypzgn), then x = Py describes the hypotheses of Proposi- 
tion 3.2, that is, such that x = PJ, “says” that x, = xp.=>l, yp., for each 
n-region p. Similarly, let N be the 22” x 22” matrix of O’s, l’s, and - l’s such 
that y = Nx describes the conclusions of Proposition 3.2, that is, such that 
y = NX “says” that 

1’,,= c c (-1)’ ‘Xl,,, 
f = 0 6)’ a me I subregion of p 

for each n-region p. We shall make use of the following technical properties 
of the matrix N: 

LEMMA 3.6. 1. The matrix N is invertible. 

2. cf”, (Nx), = x22” for each vector x of length 22’. 

Proof: The proof of Proposition 3.2 shows that whenever x and y are 
vectors where x = Py, then y = Nx. Therefore, P is invertible, with inverse 
N. Hence, N is invertible. This proves part 1. As for part 2, let x be an 
arbitrary vector of length 22n, and let y = Nx. Since N and P are inverses, 
it follows that x = Py. Now cff, (Nx), = xf:, y,. But it is easy to see that 
the last row of x= Py says that x2’“= cfz, yi. So zff, (Nx), = x2:n, as 
desired. m 

We can now show how to reduce satisliability of J’to the satisfiability of 
a system of linear inequalities. Assume that ,f is a conjunction of basic 
weight formulas and negations of basic weight formulas. Define p to be the 
system Ax b b, A’x > b’ of inequalities that correspond to f: 

THEOREM 3.7. Let f be a conjunction of basic weight formulas and 
negations of basic weight formulas. Then f is satisfied in some probability 
structure iff there is a solution to the system i x, = 0, x2?” = 1, Nx 3 0. 

Proof Assume first that f’ is satisfiable. Thus, assume that 
(S, X, p, rc) + J: Define x* by letting XT =p,(p,“), for 1 d i622”. Clearly 
x* is a solution to the system given in the statement of the theorem, where 
XT = 0 holds since p,(0) = 0, x,*2* = 1 holds since p,(S) = 1, and Nx* > 0 
holds by Corollary 3.4. 

Conversely, let x* satisfy the system given in the statement of the 
theorem. We now construct a probability structure M= (S, X, p, rc) such 
that A4 + f: This, of course, is sufficient to prove the theorem. Assume that 
{P 1, ...> p,} includes all of the primitive propositions that appear inf: For 
each of the 2” n-atoms 6 and each of the 22’ n-regions p, if 6 *p (that is, 
if 6 is one of the n-atoms whose disjunction is p), then let s~,~ be a distinct 
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state. We let S consist of these states s~,~ (of which there are less than 
2”2*“). Intuitively, s~,~ will turn out to be a member of h(p) where the atom 
6 is satisfied. For each n-region p, let H, be the set of all states s~,~. Note 
that H, and H,, are disjoint if p and p’ are distinct. The measurable sets 
(the members of 57) are defined to be ail possible unions of subsets of 
{H,,, . . . . Hp22n}. If J is a subset of { 1, . . . . 2*“}, then the complement of 
UjEJ H, is U14J H,. Thus, ?Z is closed under complementation. Since also 
X clearly contains the empty set and is closed under union, it follows that 
57 is a a-algebra of sets. As we shall see, H, will play the role of h(p) in 
Proposition 3.1. The measure p is defined by first letting p( HP,) (where pi 
is the ith n-region) be the ith entry of Nx* (which is nonnegative by 
assumption), and then extending p to .5? by additivity. Note that the only 
H,, that is empty is HP,, and that p(H,,) is correctly assigned the value 0, 
since the first entry of Nx* is x:, which equals 0, since x1 = 0 is an equality 
of the system to which x* is a solution. By additivity, p(S) (where S is the 
whole space) is assigned the value CyL, p(H,) = cf!, (Nx*)~, which 
equals x,*2” by Lemma 3.6, which equals 1, since x22” = 1 is an equality of the 
system to which x* is a solution. Thus, p is indeed a probability measure. 

We define n: by letting ~(s~,~)(P,) = true iff 6 =z- pi, for each primitive 
proposition pi. It is straightforward to verify that if 6 is an n-atom, then dM 
is the set of all states sd p, and if p is an n-region, then pM is the set of all 
states s~,~, , where 6 = p. 

Recall that 9 is the set of all n-regions. For each p E 2, define h(p) = H,. 
We now show that the four conditions of Proposition 3.1 hold. 

1. h(p) G p”: This holds because h(p) = H, = {s~,~ 16 =S p} s 
hxp, 16 -P> = PM. 

2. If p and p’ are distinct n-regions, then h(p) and h(p’) are disjoint: 
This holds because if p and p’ are distinct, then h(p) = {s~,~ 16 * p}, which 
is disjoint from h(p’) = {s~,~, 16 3 p’}. 

3. If h(p) c (p’)” for some proper subregion p’ of p, then h(p) = a: 
We shall actually prove the stronger result that if h(p) c (p’)“, then p * p’. 
If p pp’, then let 6 be an n-atom of p that is not an n-atom of p’. Then 
~6,~ E h(p), but ~6,~ 4 WY’. So 4~) g (~‘1~. 

4. P*(P”) = c,,,, p(h(p’)): We just showed (with the roles of p and 
p’ reversed) that if h(p’) E p”“, then p’ * p. Also, if p’ * p, then h(p’) E P’~ 
by condition 1 above, so h(p’)sp”. Therefore, the sets h(p’) that are 
subsets of P”” are precisely those where p’ G- p. By construction, every 
measurable set is the disjoint union of sets of the form h(p’). Hence, 
U p,-p h(p’) is the largest measurable set contained in p”. Therefore, by 
disjointness of the sets h(p’), it follows that p,(p”) = Cprap p(h(p’)). 
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Let y* = Nx*. Then, by construction, the ith entry of ,t~* is 
,u(H,,) = ,~(h(p~)), for i = 1, . . . . 2’“. Define a vector z* of length 2*” by letting 
the ith entry be P.+(P~). Since, as we just showed, p.+(p”)= 
c p’=.p ,n(h(p’)), it follows from Proposition 3.2 that y* = Nz*. By 
Lemma 3.6, the matrix N is invertible. So, since y* = Nx* and y* = Nz*, it 
follows that x* = z*. But x* satisfies the inequalities .f Since ,Y* = z*, it 
follows that x* is the vector of inner measures. So M + f, as desired. 1 

THEOREM 3.8. AX is a sound and complete axiom system with respect to 
probability structures. 

Proof: We proved soundness of W6 in Proposition 3.5 (the other 
axioms are clearly sound). As for completeness, assume that formula .f is 
unsatisfiable; we must show that f is inconsistent. As we noted, we reduce 
as before to the case in which f is a conjunction of basic weight formulas 
and their negations. By Theorem 3.7, since f is unsatisfiable, the system 
Ax 3 b, A’x > b’, x, = 0, x22” = 1, Nx > 0 of Theorem 3.7 has no solution. 
Now the formulas corresponding to x, = 0, .Y~Y = 1, and Nx 30 are 
provable; this is because the formulas corresponding to x, = 0 and x22” = 1 
are axioms W5 and W2, and because the formulas corresponding to Nx 3 0 
follow from axiom W6. We now conclude by making use of INEQ as 
before. 1 

The observant reader may have noticed that the proof of Theorem 3.8 
does not make use of axiom Wl. Hence, the axiom system that results by 
removing axiom Wl from AX is still complete. This is perhaps not too 
surprising. We noted earlier that Wl in the case of atoms (i.e., Mu 3 0 for 
6 an atom) is a special case of W6. With a little more work, we can prove 
Wl for all formulas cp from the other axioms. 

3.3. Small-Model Theorem 

It follows from the construction in the proof of Theorem 3.7 that a small- 
model theorem again holds. In particular, it follows that if f is a weight 
formula and if f is satisfiable in the nonmeasurable case, then f is satisfied 
in a structure with less than 2”22” states. Indeed, it is easy to see from our 
proof that iff involves only k primitive propositions, and f is satisfiable in 
the nonmeasurable case, then f is satisfied in a structure with less than 
2k22k states. However, we can do much better than this, as we shall show. 

The remaining results of Section 3 were obtained jointly with Moshe 
Vardi. 

THEOREM 3.9. Let f be a w?eight formula that is satisfied in some 
probability structure. Then it is satisfied in a structure with at most /f12 
states, with a basis of size at most I,fl. 
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Proof. By considering a disjunct of the disjunctive normal form off, we 
can assume as before that f is a conjunction of basic weight formulas and 
their negations. Let us assume that f is a conjunction of r such inequalities 
altogether. 

If M = (S, X, 11, 7~) is a probability structure, let us define an extension of 
M to be a tuple E = (S, X, p, rc, h), where h is a function as in Proposi- 
tion 3.1. In particular, h(p) is a measurable set for each p E 9?. We call E 
an extended probability structure. By Proposition 3.1, for every probability 
structure M there is an extended probability structure E that is an 
extension of M. If p E 9 and E is an extension of M, then we may write 
pE for p”. Define an h-term to be an expression of the form 
u,w(cp,)+ ... +~~w((~~)+a;H(cp;)+ ... +uai,H(cp,.), where cpl, . . . . (Pi, 
cp’,, . . . . cp;, are propositional formulas, a,, . . . . uk, a’, , . . . . a;! are integers, and 
k + k’ > 1. An h-basic weight formula is a statement of the form t > c, where 
t is an h-term and c is an integer. If E = (S, X, ,u, rr, h) is an extension of 
A4 we define 

Et= u,w(cp,)+ ... +~~w((~~)+u;H(cp’,)+ ... +u;,N(cp,,)>c 

iff 

Thus, H(p) represents p(h(p)). We construct h-weight formulas from 
h-basic weight formulas, and make the same conventions on abbreviations 
(“ > )” etc.) as those we made with weight formulas. 

Again, assume that { pl, . . . . p,} includes all of the primitive propositions 
that appear in f: Let f' be obtained from f by replacing each “w(q)” that 
appears in f by “w(p),” where p is the n-region equivalent to cp. Then f and 
f' are equivalent. By part 4 of Proposition 3.1, we can “substitute” 
c p,ap H(p’) for w(p) in f' for each n-region p, to obtain an equivalent 
h-weight formula f' (which is a conjunction of basic h-weight formulas and 
their negations). Since f is a conjunction of r inequalities, so is f ". 

Consider now the system corresponding to the r inequalities that are the 
conjuncts off “, along with the equality C, H(p) = 1. Since ,f, and hence f ", 
is satisfiable, this system has a nonnegative solution. Therefore, we see from 
Lemma 2.5 that this system has a nonnegative solution with at most r + 1 
of the H(p)‘s positive. Let .Af be the set of n-regions p E 9 such that H(p) 
is positive in this solution; thus, 1x1 <r + 1. Assume that. the solution is 
given by H(p)=c, for PEA”, and H(p)=0 if p&N. Note in particular 
that C psM c, = 1, and that each cp is nonnegative. 

Let F be the set of all n-regions p such that w(p) appears inf: Note that 
r + (51 + 1 < 1 f 1. Recall that At,(p) consists of all the n-atoms 6 such that 
6 * p is a propositional tautology. Thus p is equivalent to the disjunction 
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of the n-atoms in At,(p). For each n-region p E .A/ and each n-region 
ZEM u Y such that At,(p) g At,(z), select an n-atom up,r such that 
0 p.i * P but mp.r PS. For each n-region p E dV”, let p* be the n-region 
whose n-atoms are precisely all such n-atoms o,,~. So p* is a subregion of 
p; moreover, if p* is a subregion of T E ,V‘ u r, then p is a subregion of 5. 
Let ,V* = {p*) p E A”}. By construction, if p and p’ are distinct members 
of A*‘, then p* # (p’)*. Now ,li‘* contains 1A’“l <r + 1 < IfI members, and 
if p* E .,Y*, then p* contains at most r + lr7/ d If‘1 n-atoms. 

We know from part 4 of Proposition 3.1 that in each extended probabil- 
ity structure it is the case that w(p) =xJ1.+(, H(p’) is satisfied. Let d, = 
c ip, ,p, ~ p and p, t,, i cp., for each n-region p E r. Now f “, and hence f, is 
satisfied when H(p)=c,, for p~..$? and H(p)=0 if ~$~fi”. Therefore, ,f is 
satisfied when w(p) = d, for each p E 9. 

We now show that if p E Y-, then { p’l p’* p and p’ E ,+-} = 
(~‘1 (p’)* *p and (p’)* E X*}. First, p’ E JV iff (p’)* EM*, by delinition. 
We then have {p’lp’ *p and p’~.A”}~c{p’I(p’)*ap and (p’)*~M*j 
since if p’ is a subregion of p (i.e., p’ ap), then (p’)* is a subregion of p, 
because (p’)* is a subregion of p’, which is a subregion of p. Conversely, 
if (p’)* is a subregion of p, then p’ is a subregion of p because p E Y (this 
was shown above). 

We now prove that if an extended probability structure satisfies 
H(p*) = cp if p* E A/*, and H(T) =0 if T $ A’*, then it also satisfies f: In 
such an extended probability structure, w(p) takes on the value 
c {(Q’)*/(,T’)*=-pand (p’)*t.l.*} ‘/I’, which equals C (~‘/(~‘)*~~and(p’)‘~.4 *) ‘6 
(since * gives a l-1 correspondence between JV and M*), which, from 
what we just shown, equals C1p,,p, ~ p and p,t +.) c,‘., which by definition 
equals d,. But we showed that f IS satisfied when u>(p) = d,> for each p E F. 

Therefore, we need only construct an extended probability structure E = 
(S, J, p(, 71, h) (which extends a structure M) that satisfies H(p*) = cp if 
p* E Jv*, and H(z)=0 if T$A”*, such that E has at most Ifl’ states and 
has a basis of size at most Ifl. Our construction is similar to that in the 
proof of Theorem 3.7. For each p* E./V* and each 6~At,(p*), let s~.~* be 
a distinct state. Let S, the set of states of E, be the set of all such states 
s(j p’. Since .A/* contains at most IfI members and At,(p*) contains at 
m&t IfI n-atoms for each p* E JV*, it follows that S contains at most 1 f I* 
states. We shall define 71 and h in such a way that s~,~. is a state in dM and 
in h(p*). Define 71 by letting ~(s,,,,)(p) = true iff 6 *p (intuitively, iff the 
primitive proposition p is true in the n-atom 6). In a manner similar to that 
seen earlier, it is straightforward to verify that if 6 is an n-atom, then 6”” 
is the set of all states sd p*, and if r is an n-region, then gM is the set of all 
states .Y~,~. , where 6 E At,(z). For each n-region t E 9, define h by letting 
h(z) be the set of all states s~,~ (in particular, if t$.,b"*, then h(T) = @). 
The measurable sets (the members of X) are defined to be all disjoint 
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unions of sets h(r). (It is easy to verify that the sets h(~) and h(t’) are dis- 
joint if r and z’ are distinct, and that the union of all sets h(r) is the whole 
space S.) Finally, ~1 is defined by letting ,u(h(p*)) = cpr and extending p by 
additivity. It is easy to see that p is a measure, because the h(p*)‘s are non- 
empty, disjoint sets whose union is all of S, and C,* E,,.. p(h(p*)) = 
z:pc,4e cP= 1. The collection of sets h(p*), of which there are IJfl*l < IfI, 
is a basis. Clearly, this construction has the desired properties. 1 

3.4. Decision Procedure 

As before, we can modify the proof of the small-model theorem to obtain 
the following: 

THEOREM 3.10. Let f be a weight formula that is satisfied in some 
probability structure. Then f is satisfied in a structure with at most 1 f I2 
states, with a basis of size at most 1 f 1, where the probability assigned to each 
member of the basis is a rational number with size O( / f 1 II f II + If 1 log( (f I)). 

Once again, this gives us a decision procedure. Somewhat surprisingly, 
the complexity is no worse than it is in the measurable case. 

THEOREM 3.11. The problem of deciding whether a weight formula is 
satisfiable with respect to general probability structures case is NP-complete. 

Proof: For the lower bound, again the propositional formula cp is 
satisfiable iff the weight formula VV((P) >O is satisfiable. For the upper 
bound, given a weight formulaf, we guess a satisfying structure M for f as 
in Theorem 3.10, where the way in which we represent the measurable sets 
and the measure in our guess is through a basis and a measure on each 
member of the basis. Thus, we guess a structure M= (S, %, p, 7~) with at 
most If I2 states and a basis B of size at most (f 1, such that the probability 
of each member of B is a rational number with size 0( If / //f/l + 
If I log( I f I )), and where x(s)(p) = false for every state s and every primitive 
proposition p not appearing in f (again, by Lemma 2.8, the selection of 
x(s)(p) when p does not appear in f is irrelevant). We verify that M k f 
as follows. Let w($) be an arbitrary term off: We define B, c B, by letting 
B, consist of all WEB such that the truth assignment n(@ of each w E W 
makes $ true. We then replace each occurrence of w($) in f by 
c wsB+ P(W), d an verify that the resulting expression is true. 1 

4. REASONING ABOUT LINEAR INEQUALITIES 

In this section, we consider more carefully the logic for reasoning about 
linear inequalities. We provide a sound and complete axiomatization and 
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consider decision procedures. The reader interested only in reasoning about 
probability can skip this section with no loss of continuity. 

4.1. Complete Axiomatization 

In this subsection we give a sound and complete axiomatization for 
reasoning about linear inequalities, where now the language consists of 
inequality formulas (as defined in the discussion of the axiom Ineq in 
Section 2). The system has two parts, the first of which deals with 
propositional reasoning, and the second of which deals directly with 
reasoning about linear inequalities. 

Propositional reasoning: 

Taut. All instances of propositional tautologies.5 
MP. From f and f =S g infer g (modus ponens). 

Reasoning about linear inequalities: 

Il. x2x (identity). 
12. (a,x, + ... + akxk 3 c) - (alx, + ... + akxk + Oxk+, 3 c) 

(adding and deleting 0 terms) 
13. (a,xl + ... +a,x,3c)*(a,,x,, + ... +a,,xjkac), ifj,, . . . . j, is a 

permutation of 1, . . . . k (permutation). 
14. (a,x,+ ... +a,x,>c) A (a;x,+ ... +a;x,>c’) * (a,+a;)x, 

+ . + (ak + ah) xk 2 (c + c’) (addition of coefficients). 
15. (a,x,+ ... +a,x,3c)o(da,x,+ ... +da,x,>dc) if d>O 

(multiplication and division of nonzero coefficients). 
16. (t 3 c) v (t < c) if t is a term (dichotomy). 
17. (t 2 c) + (t > d) if t is a term and c > d (monotonicity). 

It is helpful to clarify what we mean when we say that we can replace the 
axiom Ineq by this axiom system in our axiomatizations AX and AX,,,, 
of the previous sections. We of course already have the axiom and rule for 
propositional reasoning (Taut and MP) in AX and AX,,,,, so we can 
simply replace Ineq by axioms 11-17. As we noted earlier, this means that 
we replace each variable xi by w(cp,), where vi is an arbitrary propositional 
formula. For example, axiom I3 would become 

(a,w(cpl)f ... +a,w(qk)>c) A (a;w(cp,)+ ... +a;w(qDk)>c’) 

*(a,+a;)w(cp,)+ ... +(ak+a;)w(vk)>(c+c’). 

’ For example, if f is an inequality formula, then ,/ v ~j’is an instance. 
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We note also that 11 (which becomes w(q) 2 w(q)) is redundant in AX and 
AX MEAS, because it is a special case of axiom W4 (which says that 
w(q) = w($) if cp zz ij is a propositional tautology). 

We call the axiom system described above AXrNEQ. In this section, we 
show that AXINEQ is sound and complete. 

In order to see an example of how the axioms operate, we show that the 
formula 

(U,Xl +u;x, +a,x,+ .” +a,x,,>c) 
*((a* +a;)x,+u,x,+ ..’ +u,x,3c). (13) 

is provable. This formula, which is clearly valid, tells us that it is possible 
to add coefficients corresponding to a single variable and thereby reduce 
each inequality to one where no variable appears twice. We give the proof 
in fairly painful detail, since we shall want to make use of some techniques 
from the proof again later. We shall make use of the provability of (13) in 
our proof of completeness of AXINEQ. 

LEMMA 4.1. The formula (13) is provable from AX,,,p. 

Proof: In the semiformal proof below, we again write PR as an 
abbreviation for “propositional reasoning,” i.e., using a combination of 
Taut and MP. We shall show that the right implication (the formula that 
results from replacing “0” in formula (13) by “=s”) is provable from 
AX iNEo. The proof that the left implication holds is very similar and is left 
to the reader. If these proofs are combined and PR is used, it follows that 
formula (13) is provable. 

If the coefficient a, =0 in (13) then the result follows from 12, 13, and 
propositional reasoning. Thus, we assume a, # 0 in our proof. 

1. x,-x, 20 (11). 
2. u,x,-u,x,~O(thisfollowsfrom1,I5andPRifu,~O;ifu,~0, 

then instead of multiplying by a,, we multiply by -a, and get the same 
result after using the permutation axiom I3 and PR). 

3. u,xl --a,~, +0x, 20 (2, 12, PR). 
4. u;xl -a;~, +0x, b0 (by the same derivation as for 3). 
5. u;x,+Ox,-a;~,>0 (4, 13, PR). 
6. (u,+u;)x,-a,~,-a’,~,30 (3, 5, 14, PR). 
7. --a,~,-ua;x,+(u,+u;)x,+0x,+ ... +0x,20 (6, 12, 13, PR). 
8. (u,x1+ u;x, + u2x2 + ... +u,,x,z2c) =+ (u,x, +u;x, +0x, + 

a2x2 + . . + a,,,~,, 3 c) (12, 13, PR). 
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9. (a,x,+a;x,+Ox,+a,x,+ “. +a,x,bc) A (-u,x,-ua;x, + 
(al + u;)x, + ox, + ... + ox, 2 0) =a (Ox, + ox, + (a, +ui)x, + u2x2 
+ “. +u,x,>c) (14). 

10. (Ox, +0x, +(a, +u\)x, +u,x,+ “. +u,,x,>c) * ((a, +u\)x, 
+ u2x2 + . . . + a,~,, 3 c) (12, 13, PR). 

11. (u,x,+u;x,+u,x,+ “. +u,x,3c) =+ ((u,+u;)x,+u,x,+ 
... +u,x,>c) (7, 8, 9, 10, PR). [ 

For the sake of our proof of completeness of AX,,,o, we need also to 
show that the formula 

ox,+ .‘. +ox,>o (14) 

is provable. This formula can be viewed as saying that the right implication 
of axiom 15 holds when d = 0. 

LEMMA 4.2. The formula (14) is provable from AXINEa. 

Prooj This time we shall give a more informal proof of provability. 
From 11, we obtain x1 3 xi, that is, x, -x, b 0. By permutation 
(axiom 13), we obtain also -x1 +x, 20. If we add the latter two 
inequalities by 14, and delete a 0 term by 12, we obtain Ox, 3 0. By using 
12 to add 0 terms, we obtain Ox, + . . + Ox, 3 0, as desired. 1 

THEOREM 4.3. AXINEa is sound and complete. 

Prooj It is easy to see that each axiom is valid. To prove completeness, 
we show that if f is consistent then f is satisfiable. So suppose that f is 
consistent. 

As in the proof of Theorem 2.2, we first reducefto a canonical form. Let 
g, v . v g, be a disjunctive normal form expression for f (where each g, 
is a conjunction of basic inequality formulas and their negations). Using 
propositional reasoning, we can show that f is provably equivalent to this 
disjunction. As in the proof of Theorem 2.2, since S is consistent, so is 
some g,. Moreover, any assignment satisfying gi also satisfies J Thus, 
without loss of generality, we can restrict attention to a formula f that is 
a conjunction of basic inequality formulas and their negations. The 
negation of a basic inequality formula ulxl + ... + u,x, > c can be written 
-u,x, - ... - u,x, > -c. Thus, we can think of both basic inequality for- 
mulas and their negations as inequalities. By making use of Lemma 4.1, we 
can assume that no variable appears twice in any inequality. By making use 
of axiom 12 to add 0 terms and I3 to permute if necessary, we can assume 
that all of the inequalities contain the same variables, in the same order, 
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with no variable repeated in any given inequality. Thus, without loss of 
generality, we can assume that f is the conjunction of the r + s formulas 

u,,,x1+ ‘.. +a,,,x, >, Cl 

. . 

a,,x,+ “’ +ur,nX,, 2 c, 

-a;,,x,- ... -a; ,,,, x, > -c; 
. 

-a:,,x, - ... -ah,x, > -c.i, 

(15) 

where x,, . . . . x, are distinct variables. The argument now splits into two 
cases, depending on whether s (the number of strict inequalities in the 
system above or, equivalently, the number of negations of basic inequality 
formulas inf) is zero or greater than zero. 

We first assume s = 0. We make use of the following variant of Farkas’ 
lemma [Far021 (see [Sch86, p. 891) from linear programming, where A is 
a matrix, b is a column vector, and x is a column vector of distinct 
variables: 

LEMMA 4.4. If Ax 2 b is unsatisfiable, then there exists a row vector c( 
such that 

1. a>o. 
2. aA =O. 

3. cib>O. 

Intuitively, CI is a “witness” or “blatant proof” of the fact that Ax > b is 
unsatisfiable. This is because if there were a vector x satisfying Ax > b, then 
0 = (olA)x = c~(Ax) k crb > 0, a contradiction. 

Note that if s = 0, then we can write (15) in matrix form as Ax > b, 
where A is the r x n matrix of coefficients on the left-hand side, x is the 
column vector (x, , . . . . x,), and b is the column vector of the right-hand 
sides. 

Suppose, by way of contradiction, that f and hence Ax3 b is 
unsatisfiable. We now show that f must be inconsistent, contradicting our 
assumption that f is consistent. Let c( = (a,, . . . . c(,) be the row vector 
guaranteed to us by Lemma 4.4. Either by 15 or by Lemma 4.2 (depending 
on whether uj > 0 or aj = 0), we can multiply the jth inequality formula in 
(15) (i.e., the jth conjunct off) by ~1, (for 1 d j < r), and then use 14 to add 
the resulting inequality formulas together. The net result (after deleting 
some 0 terms by 12) is the formula (Ox, > c), where c = crb > 0. From this 
formula, by 17, we can conclude (Ox, > 0), which is an abbreviation for 
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1(0x, GO), which is in turn an abbreviation for 1 (-Ox, > -O), i.e., 
1 ((Ox, 2 0). Thus f + 1 (OX, 2 0) is provable. 

However, by Lemma 4.2, (OX, 30) is also provable. It follows by 
propositional reasoning that 1 f is provable, that is, fis inconsistent. Thus 
the assumption that f is unsatisfiable leads to the conclusion that f is incon- 
sistent, a contradiction. 

We now consider the case where s > 0. Farkas’ lemma does not apply, 
but a variant of it, called Motzkin’s transposition theorem, which is due to 
Fourier [Fou26], Kuhn [Kuh56], and Motzkin [ Mot561 (see [Sch86, 
p. 94]), does. A and A’ are matrices, b and h’ are column vectors, and x 
is a column vector of distinct variables. 

LEMMA 4.5. If the system Ax > b, A’x > b’ is unsatisfiable, then there 
exist rou’ vectors c(, LX’ such that 

1. cc>0 andcc’>O. 

2. ctA+a’A’=O. 

3. Either 

(a) crb+cc’b’>O, or 
(b) some entry qf cx’ is strictly positive, and crb + a’b’ 2 0. 

We now show that c( and E’ together form a witness to the fact that the 
system Ax 3 b, A’x > b’ is unsatisfiable. Assume that there were x satisfying 
Ax b b and A’x > b’. In case 3(a) of Lemma 4.5 (ctb + a’b’ > 0), we are in 
precisely the same situation as that in Farkas’ lemma, and the argument 
after Lemma 4.4 applies. In case 3(b) of Lemma 4.5, let A = (A’x)- b’; 
thus, A is a column vector and d >O. Then 0 = (MA + cr’A’)x = 
(aA)x + (a’A’)x = a(Ax) + cr’(A’x) > ctb + a’(b’ + A) = (clb + cr’b’) + a’A > 
a’A > 0, where the last inequality holds since every ai is nonnegative, some 
31; is strictly positive, and every entry of A is strictly positive. This is a 
contradiction. 

In order to apply Motzkin’s transposition theorem, we write (15) as two 
matrix inequalities: Ax > b, where A is the r x n matrix of coefficients on 
the left-hand side of the first r inequalities (those involving “a”), x is the 
column vector (x,, . . . . x,), and b is the column vector of the right-hand 
sides of the first r inequalities; and A’x > b’, where A’ is the s x n matrix of 
coefficients on the left-hand side of the last s inequalities (those involving 
“B”), and b’ is the column vector of the right-hand sides of the last s 
inequalities. 

Again assume that f is unsatisfiable. Let c( = (a,, . . . . CC,) and ~1’ = 
(~1;) . . . . N’,) be the row vectors guaranteed to us by Lemma 4.5. In case 3(a) 
of Lemma 4.5, we replace every “ > ” in (15) by “a” and proceed to derive 
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a contradiction as in the case s = 0. Note that we can do this replacement 
by 16, since t > c is an abbreviation for 1 (t < c). 

In order to deal with case 3(b) of Lemma 4.5, we need one preliminary 
lemma, which shows that a variation of axiom I5 holds. 

LEMMA 4.6. (alxl + ... + akxk > c) o (du,x, + ... + da,x, > dc) is 
provable, if d > 0. 

Proof: The formula 

(d(-a,)x,+ ... +d(-a,)x,>d(-c)) 

-((--all-x,+ ... +(-a,)x,>, -c). 

is an instance of axiom 15. By taking the contrapositive and using the fact 
that t > c is an abbreviation for l(- t 3 -c), we see that the desired 
formula is provable. 1 

Since we are considering case 3(b) of Lemma 4.5, we know that some 01: 
is strictly positive; without loss of generality, assume that cc: is strictly 
positive. For 1 6 j< s - 1, let us replace the “>” in the jth inequality 
involving “>” in (15) by “a.” Again, this is legal by 16. As before, either 
by axiom 15 or by Lemma 4.2, we can multiply the jth inequality formula 
in the system (15) by 01~ (for 1 d j < r), and multiply each of the next s - 1 
inequalities that result when we replace > by > by uJ, j= 1, . . . . s- 1, 
respectively. Finally, by Lemma 4.6, we can multiply the last inequality in 
(15) by c(, (which is strictly positive, by assumption). This results in the 
system of inequalities 

UlcL1,1X, + ... + @lal,,xn 3 XlCl 

. . 

M,u,,lXI + .” +u,ar,,x, 2 u,c, 

-ci;a;,,x, - ... -a;a;,,x, 2 -c(;c; (16) 

Let us denote the last inequality (the inequality involving “ > “) in (16) by 
g. Let a;‘xl + . . . + six, > d be the result of “adding” all the inequalities in 
(16) except g. This inequality is provable from f using 14. Since 
ctA + cc’A’ = 0, we must have that cc:~:,~ = a,!‘, for j= 1, . . . . n. So the 
inequality g is ( -a;xl - . . . - six, > - GI:c:). Since crb + cc’b’ > 0, it follows 
that -cx:c:> -d. Hence, the formula g* (--a;~~ - . . . --six, > -d) is 
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provable using I7 and propositional reasoning (there are two cases, 
depending on whether -xi.c:= -d or -cc:c:> -d). Now -a;lx, - ... - 
six, > -d is equivalent to apx, + ... + six, cd. But this contradicts 
a;xl + ... + six, ad, which we already showed is provable from J: It 
follows by propositional reasoning that if is provable, that is, .f is 
inconsistent, as desired. 

Since we have shown that assumingfis unsatisfiable leads to the conclu- 
sion that f is inconsistent, it follows that if f is consistent then f is 
satisfiable. i 

4.2. Small-Model Theorem 

A “model” for an inequality formula is simply an assignment to 
variables. We think of an assignment to variables as “small” if it assigns a 
nonzero value to only a small number of variables. We now show that a 
satisfiable formula is satisfiable by a small assignment to variables. 

As we did with weight formulas, let us define the length IfI of an 
inequality formulaf to be the number of symbols required to writef, where 
we count the length of each coefficient as 1. We have the following 
“small-model theorem.” 

THEOREM 4.7. Suppose f is a satisfiable inequality formula. Then f is 
satisfied by an assignment to variables where at most 1 f 1 variables are 
assigned a nonzero value. 

Proof. As in the completeness proof, we can write f in disjunctive 
normal form. It is easy to show that each disjunct is a conjunction of at 
most 1 f 1 basic inequality formulas and their negations. Clearly, since f is 
satisfiable, one of the disjuncts is satisfiable. The result then follows from 
Lemma 4.8, below, which is closely related to Lemma 2.5. Lemma 2.5 says 
that if a system of r linear equalities and/or inequalities has a nonnegative 
solution, then it has a nonnegative solution with at most r entries positive. 
Lemma 4.8, by contrast, says that if the system has a solution (not 
necessarily nonnegative), then there is a solution with at most r variables 
assigned a nonzero (not necessarily positive) value. 

LEMMA 4.8. If a system of r linear equalities and/or inequalities has a 
solution, then it has a solution with at most r variables assigned a nonzero 
value. 

Proof By the comment after Lemma 2.5, we can pass to a system of 
equalities only. 

Hence, let Ax = b represent a satisfiable system of linear equalities, where 
A has r rows: we must show that there is a solution where at most r of the 
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variables are assigned a nonzero value. Since Ax = b is satisfiable, it follows 
that b is in the vector space V spanned by the columns of A. Since each 
column is of length r, it follows from standard results of linear algebra that 
I/ is spanned by some subset of at most r columns of A. So b is the linear 
combination of at most r columns of A. Thus, there is a vector y* with at 
most r nonzero entries, where Ay* = b. This proves the lemma. u 

4.3. Decision Procedure 

As before, when we consider decision procedures, we must take into 
account the length of coefficients. Again, we define llfll to be the length of 
the longest coefficient appearing inf, when written in binary, and we define 
the size of a rational number a/b, where a and b are relatively prime, to be 
the sum of lengths of a and b, when written in binary. We can then extend 
the small-model theorem above as follows: 

THEOREM 4.9. Suppose f is a satisfiable inequality formula. Then f is 
satisfied by an assignment to variables where at most 1 f 1 variables are 
assigned a nonzero value and where the value assigned to each variable is a 
rationalnumberwithsizeO(lfl Ilflj+Ifllog(lf()). 

Theorem 4.9 follows from the proof of Theorem 4.7 and the following 
simple variation of Lemma 4.8, which can be proven using Cramer’s rule 
and simple estimates on the size of the determinant. 

LEMMA 4.10. If a system of r linear equalities andJor inequalities with 
integer coefficients each of length at most 1 has a solution, then it has a 
solution with at most r variables assigned a nonzero value and where the size 
of each member of the solution is O(rl+ r log(r)). 

As a result, we get 

THEOREM 4.11. The problem of deciding whether an inequality formula is 
satisfiable in a measurable probability structure is NP-complete. 

Proof For the lower bound, a propositional formula q is satisfiable iff 
the inequality formula that is the result of replacing each propositional 
variable pi by the inequality xi> 0 is satisfiable. For the upper bound, 
given an inequality formulaf, we guess a satisfying assignment to variables 
for f with at most If I variables being assigned a nonzero value such that 
each nonzero value assigned to a variable is a rational number with size 
0( 1 f I 11 f I/ + If I log( (f I )). We then verify that the assignment satisfies the 
inequality formula. # 
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5. REASONING ABOUT CONDITIONAL PROBABILITY 

We now turn our attention to reasoning about conditional probability. 
AS we pointed out in the Introduction, the language we have been con- 
sidering is not sufficiently expressive to allow us to express statements such 
as 2w(p,l pI)+ w(p, I pz)b 1. Suppose we extend our language to allow 
products of terms, so that formulas such as 2w(p, ) u$pZ) > 1 are allowed. 
We call such formulas polynomial weight formulas. To help make the con- 
trast clearer, let us now refer to the formulas we have been calling “weight 
formulas” as “linear weight formulas.” We leave it to the reader to provide 
a formal syntax for polynomial weight formulas. Note that by clearing 
the denominators, we can rewrite the formula involving conditional 
probabilities to 24~~ * PA w(pd + WP, * p2) 4~~) 3 w(P,) w(p2), 
which is a polynomial weight formula.6 

In order to discuss decision procedures and axiomatizations for polyno- 
mial weight formulas, we need to consider the theory of real closed fields. 
We now define a real closed field. All of our definitions are fairly standard 
(see, for example, [Sho67]). An ordered field is a field with a linear 
ordering < , where the field operations + (plus) and . (times) respect the 
ordering: that is, ( 1) x < y implies that x + z < y + Z, and (2) if x and y are 
positive, then so is x. y. A real closed field is an ordered field where every 
positive element has a square root and every polynomial of odd degree has 
a root. Tarski showed [TarSl, Sho67] that the theory of real closed fields 
coincides with the theory of the reals (under +, ., < and constants 
0, 1, - 1). That is, any first-order formula that involves only + , ., 
< , 0, 1, - 1 is true about the real numbers if and only if it is true of every 
real closed field. 

Tarski [Tar511 showed that the decision problem for this theory is 
decidable. Ben-Or, Kozen, and Reif [BKR86] have shown that the deci- 
sion problem is decidable in exponential space. Fischer and Rabin [FR74] 
prove a nondeterministic exponential time lower bound for the complexity 
of the decision problem, In fact, Fischer and Rabin’s lower bound holds 
even if the only nonlogical symbol is + (plus). Berman [Ber80] gives a 
slightly sharper lower bound in terms of alternation. Canny [Can881 has 
shown recently that the quantifier-free fragment is decidable in polynomial 
space. 

We do not know a sound and complete axiomatization for polynomial 
weight formulas. For this reason, later we shall allow first-order quantifica- 
tion, which will enable us to obtain a complete axiomatization in a larger 

’ Actually, it might be Getter to express it as the polynomial weight formula I # 0 A 
W(PZ) #O=> (24p, A pz) w(pz) + 2w%p, A p2) w(pl) > w(p,) w(pz)), to take care of the case 
where the denominator is 0. 
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language. However, we do have small-model theorems and decision proce- 
dures. which we now describe. 

5.1. Small-Model Theorems 

Despite the added expressive power of the language, we can still prove 
small-model theorems along much the same lines as those along which we 
proved them in the case of linear weight formulas. 

THEOREM 5.1. Suppose f is a polynomial weight formula that is satisfied 
in some measurable probability structure. Then f is satisfied in a structure 
with at most 1.f 1 states where every set of states is measurable. 

Proof Let f be a polynomial weight formula which is satisfied in some 
measurable probability structure, say M = (S, X, /J, rc). Let ‘pr , . . . . (Pi be the 
propositional formulas that appear in f: Clearly k 6 I/f 11. Let ci = p((pM), 
for 1 6 i < k. As before, assume that { pl, . . . . p,} includes all of the primitive 
propositions that appear inf, and let 6 r, . . . . 6,. be the n-atoms. Let F be the 
set of equalities and inequalities 

w(6,)+ “’ + w(6,.) = 1 

where we think of each w(6) as a variable. Since f is satisfiable in a 
measurable probability structure, this system F has a nonnegative solution. 
Hence, by Lemma 2.5, there is a solution with at most k + 1 of the ~(6)‘s 
positive. As in the proof of Theorem 2.4, this gives us a structure that 
satisfies f with at most 1 f 1 states, where every set of states is 
measurable. 1 

Note. We could have proven Theorem 2.4 with the same proof. 
However, the proof would not generalize immediately to proving 
Theorem 2.6. 

THEOREM 5.2. Let f be a polynomial weight formula that is satisfied in 
some probability structure. Then it is satisfied in a structure with at most ) f I2 
states, and with a basis of size at most 1 f 1. 

Proof The proof of this theorem is obtained by modifying the proof of 
Theorem 3.9 in the same way in which the proof of Theorem 5.1 is obtained 
by modifying the proof of Theorem 2.4. 1 
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5.2. Decision Procedures 

In Sections 2 and 3, we were able to obtain decision procedures for 
linear weight formulas by extending the small-model theorems to show that 
not only are there small models, but there are small models where the 
probabilities have a “small” length. Such a result is false for polynomial 
weight formulas (consider 2w(p) w(p) = 1). Hence, in order to obtain a 
decision procedure in this case, we use a different technique for deciding 
satisfiability: We reduce the problem to a problem in the quantifier-free 
theory of real closed fields and then apply Canny’s decision procedure. 

THEOREM 5.3. There is a procedure that runs in polynomial space for 
deciding if a polynomial weight formula is satisfiable in a measurable 
probability structure. 

Proof: Let f be a polynomial weight formula, where the distinct 
primitive propositions that appear in f are pl, . . . . pn. Let a,, . . . . 6,. be the 
n-atoms, and let T be a subset of the n-atoms, with at most if 1 members. 
Assume that the members of T are precisely 6,, , . . . . S;,, where i, < . .. < i,. 
Let xi, . . . . x, be variables (as many variables as the cardinality of T), where 
intuitively, x, will correspond to ~(6~)). Let fT be the conjunction of 
x1 + ... + x, = 1 with the result of replacing each term w(p) of f by 
c $t ~h(‘+‘l xJ’ By Theorem 5.1, it is easy to see that f is satisfiable in a 
measurable probability structure iff for some T with at most Ifi members, 
fT is satisfiable over the real numbers (that is, iff there are real numbers 
x:, . ..) xl” such that the result of replacing each variable xi by x7 is true 
about the real numbers). It is straightforward to verify that lfrl is polyno- 
mial in 1 f 1, where jfrl is the length of fT, and again we count the length 
of each coefficient as 1. 

We would now like to apply Canny’s decision procedure for checking if 
fr is satisfiable, but there is one small problem. The formula fr has 
arbitrary integer coefftcients, whereas the language of real closed fields 
allows only the constants 0, 1, and - 1. Now we could replace a constant 
like 17 by 1 + . + 1 (17 times). This would result in a formula f 6 that is 
in the language of real closed fields, but If ;I might be exponential in Ilfll 
The solution is to express 17 as 24 + 1 and then write this in the language 
of real closed fields as (1+1)~(1+1).(1+1)~(1+1)+1. Using this 
technique we can clearly represent any coefficient whose length is k when 
written in binary by an expression in the language of real closed fields 
of length O(k’). Let f; be the formula that results by representing the 
coefficients of fT in this way. Thus If ;I is polynomial in If I I/f Il. 

The PSPACE decision procedure for satisfiability of f proceeds by 
systematically cycling through each candidate for T and using Canny’s 
PSPACE algorithm to decide if f k is satisfiable over the real numbers. Our 
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algorithm says that f is satisfiable iff f> is satisfiable over the real numbers 
for some T. 1 

THEOREM 5.4. There is a procedure that runs in polynomial space for 
deciding whether a polynomial weight formula is satisfiable in a (general) 
probability structure. 

Proof. Let f be a polynomial weight formula. Assume that {pl, . . . . pn j 
includes all of the primitive propositions that appear in J Define a partial 
probability structure to be a tuple Q = (S, B, n), where S is a set (thought 
of as a set of states); B = {T,, . . . . T,} gives a partition of S, that is, the Ti’s 
are nonempty and pairwise disjoint, and their union is S (we think of B as 
being a basis); and n(s) is a truth assignment for every state in S, where 
we assume that n(s)(p) = false for every primitive proposition p that does 
not appear in f (note: the analog to Lemma 2.8 holds, so we do not care 
about primitive propositions that ,30 not appear in f). Intuitively, a partial 
probability structure gives all the mformatitin about a probability structure 
except the measure of the basis elements. For each propositional formula 
cp over {ply . . . . p,}, define k’(q) G { 1, . . . . t > by letting i E V( cp) iff cp is true 
under the truth assignment x(b) for every h E Ti. Intuitively, if we expanded 
Q to a probability structure M by defining the measure of each basis 
element, then the inner measure of qM would be obtained by adding the 
measures of each T;, where ie V(q). Let x1, . . . . x, be variables (as many 
variables as the cardinality of B), where intuitively, xi corresponds to the 
measure of T,. Let fQ be the conjunction of x, + . + x, = 1 with the result 
of replacing each term w(q) off by C,, V,w) xi (and by 0 if I’( cp) is empty) 
and replacing each integer coefficient off by the appropriate representation 
as discussed in the proof of Theorem 5.3. By Theorem 5.2, it is easy to see 
that f is satisfiable in a probability structure iff for some “small” partial 
probability structure Q (that is, a partial probability structure Q = 
(S, B, n), where S has at most 1 f I2 members and B has at most (f 1 mem- 
bers), fe is satisfiable over the real numbers. It is easy to see that if Q is 
small, then the size of fe is polynomial in 1 f 1 lif/l. The PSPACE decision 
procedure for satisfiability off proceeds by systematically cycling through 
each small partial probability structure Q, and using Canny’s PSPACE 
algorithm to decide if fe is satisfiable over the real numbers, Our algorithm 
says that f is satisfiable iff one of these fQ’s is satisfiable over the real 
numbers. 1 

6. FIRST-ORDER WEIGHT FORMULAS 

The basic idea in proving completeness for linear weight formulas was to 
use the axioms Wl-W4 to reduce the problem to checking validity of a set 



118 FAGIN, HALPERN, AND MEGIDDO 

of linear inequalities and then apply the axiom Ineq. In the case of polyno- 
mial weight formulas we want to use a similar technique. In this case, we 
use Wl-W4 to reduce the problem to checking validity of a formula in the 
language of real closed fields and then apply a sound and complete 
axiomatization for real closed fields. There is only one difficulty in carrying 
out this program: the theory of real closed fields allows first-order quan- 
tification over the reals. Thus, in order to carry out our program, we must 
extend the language yet again to allow such quantification. 

We define a basic first-order weight formula to be like a basic polynomial 
weight formula, except that now we allow variables (intended to range over 
the reals) in expressions. Thus, a typical basic first-order weight formula is 

(3$x).w(cp).M?($ A cp)+2.%V($)>Z 

The set of first-order weight formulas is obtained by closing off the basic 
first-order weight formulas under conjunction, negation, and first-order 
quantification (where the quantification is over the reals). In order to 
ascribe semantics to first-order weight formulas, we now need a pair con- 
sisting of a probability structure A4 and a valuation u, where a valuation is 
a function from variables to the reals that gives meaning to the free 
variables in the formula. Thus, for example, if A4 = (S, !X, /A, x), then 

(M,v) t= (3-tX).M’((P).W($ A q)+2.w($)32 

iff 

(3 +4x)) P*GP) P*(ti * 47) + 2P*(V) 2 r(z). 

We deal with quantification as usual, so that (M, V) + Vxcp iff (M, u’) k cp 
for all v’ that agree with v except possibly in the value that they assign to 
x. We leave the remaining details to the reader. It would be quite natural 
to restrict attention to sentences, i.e., formulas with no free variables. Note 
that the truth or falsity of a sentence is independent of the valuation. We 
shall usually not bother to do so. Thus, when we say that a first-order 
weight formula is satisfiable, we mean that there is a probability structure 
A4 and a valuation v such that (M, v) l= f: Note that a formula f with free 
variables x,, . . . . xk is satisfiable iff the sentence 3x, ... 3x, f is satisfiable. 
Similarly, f is valid iff the sentence Vx, Vx, f is valid. 

We can prove a small-model theorem for first-order weight formulas 
using techniques identical to those used in Theorems 5.1 and 5.2. 

THEOREM 6.1. Let f be a first-order weight formula that is satisfied in 
some measurable probability structure. Then f is satisfied in a structure with 
at most (f 1 states where every set of states is measurable. 
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THEOREM 6.2. Let f be a first-order weight formula that is satisfied in 
some probability structure. Then f is satisfied in a structure with at most /f I 2 
states, and with a basis of size at most 1 f I. 

We can also obtain decision procedures for first-order weight formulas 
by appropriately modifying Theorems 5.3 and 5.4, except that instead of 
using Canny’s PSPACE algorithm, we use Ben-Or, Kozen, and Reif’s 
exponential space algorithm (since the first-order formulas .f’; and fQ of the 
proofs are no longer necessarily quantifier-free). 

THEOREM 6.3. There is a procedure that runs in exponential space for 
deciding whether a first-order weight formula is satisfiable in a measurable 
probability structure. 

THEOREM 6.4. There is a procedure that runs in exponential space for 
deciding whether a first-order weight formula is satisfiable in a (general) 
probability structure. 

In order to get a complete axiomatization for first-order weight formulas, 
we begin by giving a sound and complete axiomatization for real closed 
fields, which Tarski [Tar511 proved is complete for the reals. The version 
we give is a minor modification of that appearing in [Sho67]. The non- 
logical symbols are + , ., < , 0, 1, - 1. 

First-order reasoning: 

FO-Taut. All instances of valid formulas of first-order logic with 
equality (see, for example, [End72, Sho67]). 

MP. From f and f * g infer g (modus ponens). 

Reasoning about real closed fields: 

Fl. 
F2. 
F3. 
F4. 
F5. 
F6. 
F7. 
F8. 
F9. 
FlO. 
Fll. 

VxVyVz((x+ y)+z=x+(y+z)). 
Vx( x + 0 = x). 

Vx(x+(-1.x)=0). 
VxVy(x+y= y+x). 
vxvyvz((x’y)‘z=x~(y~z)). 
Vx(x . 1 = x). 
vx(x#o=s3y(x~ y= 1)). 
VxVy(x. y= y.x). 
vx,vy Vz(x. (y + z) = (x. y) + (x ‘Z)). 
O# 1. 
VX(l(X<X)). 
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F12. VxV’yVz((x<y) A (y<z)=(x<z)). 
F13. VxVy((x<y) v (x=y) v (y<x)). 

F14. VxVyVz((x<y)=~-((x+z)<(y+z))). 

F1.5. VxVy(((O<x) A (O<y))=s(O<x.y)). 

F16. vx((o<x)*~y(y~y=x)). 
F17. Every polynomial of odd degree has a root. 

An instance of axiom F17, which would say that every polynomial of 
degree 3 has a root, would be 

Axioms Fl-FlO are the field axioms, axioms Fll-F13 are the axioms for 
linear orders, axioms F14-F15 are the additional axioms for ordered fields, 
and axioms F16-F17 are the additional axioms for real closed fields. Let us 
denote the axiom system above by AX,,,. Then AX,cF is a sound and 
complete axiomatization for real closed fields [TarSl, Sho67]. Let us 
denote by AXFoMEAS the result of taking AX,,, along with our axioms 
Wl-W4 and one more axiom, F18, below, that lets us replace the integer 
coefficients that appear in weight formulas by an expression in the 
language of real closed fields: 

F18. k= 1 + ... + 1 (k times). 

(We remark that there is no need to use an efficient representation of 
integer coefftcients here, as there was, say, in Theorem 5.3, since complexity 
issues do not arise.) Let us denote by AX,, the result of replacing W3 in 
AX roeMEAS by W5 and W6.’ We now show that AXFoeMEAs is a sound and 
complete axiomatization for first-order weight formulas with respect to 
measurable probability structures, and AX,, is a sound and complete 
axiomatization for first-order weight formulas with respect to (general) 
probability structures. 

THEOREM 6.5. AX,,+,,,, is a sound and complete axiomatization for 
first-order weight formulas with respect to measurable probability structures. 

Proof. From what we have said, it is clear that AX,,.,,,, is sound. To 
show completeness, we carry out the ideas sketched at the beginning of this 
section: namely, we reduce a first-order weight formula to an equivalent 
formula in the language of real closed fields. Assume that f is a first-order 
weight formula that is unsatisfiable with respect to measurable probability 
structures (that is, there is no measurable probability structure that satisfies 

‘The occurrences of 2 is an expression such as I, > t, in Wl-W6 can be viewed as an 
abbreviation for (z2 < t, ) v (r, = tz), which is a formula in the language of real closed fields. 
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it). Let pi, . . . . pn include all of the primitive propositions that appear in f, 
and let 6,, . . . . &, be the n-atoms. Let xi, . . . . x2” be new variables, where 
intuitively, xi represents ~(6;). Let f’ be 3x, ... 3x,. g, where g is the 
conjunction of 

(17) 

along with the result of replacing each w(q) in f by &+V .xi (and by 0 if 
cp is equivalent to false) and replacing each integer coefficient k in f by 
1 + ... + 1 (k times). It is easy to see that since f is unsatisfiable with 
respect to measurable probability structures, it follows that J” is false about 
the real numbers. By Tarski’s result on the completeness of AX,,,, it 
follows that if’ is provable in AXRCF. By making use of Lemma 2.3 
(which again holds, by essentially the same proof), it is not hard to see that 
1 f is provable in AXFoeMEAS. The straightforward details are omitted. [ 

To prove completeness of AXFo in the general (nonmeasurable) case, we 
need a lemma, which is completely analogous to Theorem 3.7. Let f be a 
first-order weight formula, where (pl, . . . . p,} includes all of the primitive 
propositions that appear in f, and let pi, . . . . pr2n be the n-regions. Let 
x1, . . . . x22” be new variables (one new variable for each n-region), where 
intuitively, xi corresponds to w(p,). Let f be the result of replacing each 
w(q) in f by xi, where pi is the n-region equivalent to cp. Let f be 
p A (x, = 0) A (x22” = 1) A “Nx > 0,” where “Nx 3 0” is the conjunction of 
the inequalities Nx > 0. 

LEMMA 6.6. Let f be a first-order weight formula. Then .f is satisfied in 
some probability structure iff 3 is satisfiable over the real numbers. 

ProoJ The proof is virtually identical to that of Theorem 3.7. For 
example, iffis satisfiable over the real numbers, then let x* = XT, . . . . X;Y be 
real numbers such that the result of replacing each xi in f by x,+ is true 
about the real numbers. The proof of Theorem 3.7 shows how to use x* to 
build a probability structure that satisfies f. m 

THEOREM 6.7. AX, is a sound and complete axiomatization for first- 
order weight formulas with respect to (general) probability structures. 

Proof Again, it is clear that AX,, is sound. To show completeness, 
assume that f is an unsatisfiable first-order weight formula (that is, there is 
no probability structure that satisfies it). Let f’ be 3x, . . 3x22nJ By 
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Lemma 6.6, f’ is false about the real numbers. By Tarski’s result again on 
the completeness of AX,cr, it follows that 1 f’ is provable in AX,,,. As 
before, it is therefore not hard to see that Tf’is provable in AX,,. Again, 
the straightforward details are omitted. 1 

We close this section with a few remarks on how these results relate to 
those obtained in [Bac88] and [AH89, Ha189]. In Bacchus’ language it is 
possible to represent probabilities of first-order formulas. However, while 
we place probabilities on possible worlds here, Bacchus instead places the 
probability on the domain. Thus (using our notation), he would allow a 
formula such as Vx(w,(P(x, ~1)) 3 f), which should be read “for all x, the 
probability that a random y satisfies P(x, y) is at least 4.” In addition, first- 
order quantification over probabilities is allowed, as in a formula of the 
form 3r V.Y(M:,.(P(X, y)) 3 r). Thus we can view Bacchus’ language as an 
extension of first-order weight formulas, where the arguments of the weight 
function are first-order formulas rather than just propositional formulas. 
There is an additional technical difference between our approach and that 
of Bacchus. Bacchus’ “probabilities” do not have to be real valued; they 
can take values in arbitrary ordered fields. Moreover, Bacchus requires his 
probability measures to be only finitely additive rather than countably 
additive; thus they are not true probability measures. Bacchus does provide 
a complete axiomatization for his language. However, a formula that is 
valid when the probabilities take on real values is not necessarily provable 
in his system, since it may not be valid when probabilities are allowed to 
take values in arbitrary ordered fields. On the other hand, Bacchus’ axioms 
are all sound when probability is interpreted in the more standard way 
and, as Bacchus shows, they do enable us to prove many facts of interest 
regarding the probability of lirst-order sentences. 

More recently, in [Ha189], two first-order logics of probability are 
presented. One, in the spirit of Bacchus, puts probability on the domain 
while the other, more in the spirit of our approach here, puts probability 
on the possible worlds. It is shown that these ideas can be combined to 
allow a logic where we can reason simultaneously about probabilities on 
the domain and on possible worlds. In all cases, the probabilities are 
countably additive and take values in the reals. In [AH891 it is shown 
that in general the decision problem for these logics is wildly undecidable 
(technically, it is nf-complete). However, in some special cases, the 
logic is decidable; complete axiomatization for these cases are provided in 
[Ha189]. 
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7. DEMPSTER-SHAFER BELIEF FUNCTIONS 

The Dempster-Shafer theory of evidence [Sha76] provides one 
approach to attaching likelihoods to events. This theory starts out with a 
belieffunction (sometimes called a support function). For every event A, the 
belief in A, denoted Bel(A), is a number in the interval [0, l] that places 
a lower bound on likelyhood of A. Shafer [Sha76] defines a belief function 
(over 5’) to be a function Bel: 2’ -+ [0, l] (where, as usual, 2’ is the set of 
subsets of S) that satisfies the following conditions: 

Bl. Bel(@) = 0. 
B2. Bel(S) = 1. 

B3. WA,u ... u~,)bC,,~,...,,,I,,,,(-l)“‘f’Bel(n,.I~I). 

Property B3 may seem unmotivated. Perhaps the best way to understand 
it is as an analogue to the usual inclusionexclusion rule for probabilities 
[Fe157, p. 891, which is obtained by replacing the inequality by equality 
(and the belief function Be1 by a probability function ,u). In particular, B3 
holds for probability functions. In [FH89] it is shown to hold for all inner 
measures induced by probability functions. Thus, every inner measure is a 
belief function. The converse is almost true, but not quite. It turns out that 
roughly speaking, the converse would be true if the domain of belief 
functions and inner measures were formulas, rather than sets. We now give 
a precise version of this informal statement. 

By analogy with probability structures, let us define a DS structure 
(where, of course, “DS” stands for Dempster-Shafer) to be a tuple D = 
(S, Bel, rc), where Be1 is a belief function over S, and as before, rc associates 
with each state in S a truth assignment on the primitive propositions in @. 
For each propositional formula cp, we define ‘pD just as we defined (Pi for 
probability structures M. Let M= (S, 3, p, n) be a probability structure. 
Following [FH89], we say that D and M are equivalent if 
Bel(cp”) = p,(cp”) for every propositional formula cp. 

For the purposes of the next theorem, we wish to consider probability 
structures and DS structures where there are effectively only a finite 
number of propositional variables. Let us say that a probability structure 
M=(S, X,p,71) or a DS structure D = (S, Bel, n) is special if 
x(s)(p) =false for all but finitely many primitive propositions p and for 
every state s. 

THEOREM 7.1 [FH89]. 1. For every special probability structure there 
is an equivalent special DS structure. 

2. For every special DS structure there is an equivalent special 
probability structure. 
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It follows immediately that AX is a sound and complete axiomatization 
for linear weight formulas with respect to DS structures (i.e., where w(q) 
is interpreted as the belief in q).* Similarly, AX,, is a sound and complete 
axiomatization for first-order weight formulas with respect to DS struc- 
tures. All of our decision procedures carry over immediately. Thus, for 
linear weight formulas, the complexity of the decision problem with respect 
to DS structures is NP-complete; for polynomial weight formulas, there is 
a polynomial space procedure for deciding satisfiability (and validity), and 
for first-order weight formulas, there is an exponential space procedure for 
deciding satisliability (and validity). Let W6’ be the following axiom, which 
is obtained directly from Shafer’s condition B3, above, in the obvious way. 

We’. w(cp, v ... v ‘pr)XLcf ,,..., ri.,+@ ( _ 1 )I” + ’ 4Al, I cp,). 

In the remainder of this section, we show that we could just as well have 
used W6’ as W6 throughout this paper. Let AX’ (respectively, AX;;,) be 
the axiom system that results when we replace W6 in AX (respectively, 
AXro) by W6’. 

THEOREM 7.2. The axiom system AX (respectively, AX,,) is equivalent 
to the axiom system AX’ (respectively, AX&). 

Proof. For convenience, we restrict attention to AX, since the proof is 
essentially identical in the case of AX,,. We first show that if f is an 
instance of axiom W6’, then f is provable in AX. Assume not. Then 1 f is 
consistent with AX. By completeness (Theorem 3.8), there is a probability 
structure that satisfies l$ So by Theorem 7.1, there is a DS structure that 
satisfies lx However, this is impossible, since it is easy to see that every 
DS structure satisfies every instance of axiom W6’. 

Now let f be an instance of axiom W6; we must show that f is provable 
in AX’. Let f be 

i c (-l)‘~‘w(p’)80, (18) 
f = 1 p’ a size f subregion of p 

where p is the size r region 6 I v . . . v 6,, and r > 1. If r = 1, then (18) says 
~(6,) 2 0, which is a special case of axiom Wl. Assume now that r 2 2. 

* We can restrict attention to special structures because of Lemma 2.8, which implies that 
if we are concerned with the validity of a formulaS, then we can restrict attention without loss 
of generality to the finitely many primitive propositions that appear inf: In [FH89], attention 
was restricted to structures where there are only a finite numbers of primitive propositions, 
which is equivalent to considering special structures. 
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Define cp,, for 1 < i < Y, to be the disjunction of each of 6,) ,.., 6, except 6,. 
Rewrite W6’ as 

w(cp, ” ... ” v,)+ c (19) 
IG(l....,r}.1#0 

We now show that (18) and (19) are equal, term by term. First, the 
w(6, v ... v cp,) term of (19) is equal to w(p), since ‘pI v ... v cpr is 
equivalent to p. This corresponds to the term of (18), where t = r and 
p’ = p. Now consider the term of (19), where the distinct members of I are 
precisely i, , . . . . i,. It is straightforward to verify that Aia, ‘pi is equivalent to 
the t-subregion p’ of p which is the disjunction of each of 6,) . . . . 6, except 
6i, 2 ...2 6,, where t =r-3. So the term (- 1)“’ w(Ai,,cpi) equals 
( - 1)” w(p’), which equals ( - 1)‘~ ’ w(p’), a term of ( 18). The only term of 
(19) that does not match up with a term of (18) occurs when I= { 1, . . . . r}; 
but then Aje, cpZ is equivalent to false, so w(,&~, cp,) = 0. Otherwise, there 
is a perfect matching between the terms of (18) and (19). It follows easily 
that (18) is provable in AX’. 1 

8. CONCLUSIONS 

We have investigated a logic for reasoning about probability, both for 
cases where propositions necessarily represent measurable sets and for the 
general case. We have provided complete axiomatizations and decision 
procedures for a number of variants of the logic. 

We were surprised both to be able to get fairly elegant complete 
axiomatizations for so rich a logic and to be able to prove that the 
satisfiability problem for the linear case is in NP. This is certainly the best 
we could have hoped for, since clearly the satisliability problem for our 
logic is at least as hard as that of propositional logic. We remark that in 
[GKP88, Kav88] there is some discussion of subcases of the decision 
procedure for the measurable case that can be handled efficiently. It would 
be of interest to have further results on easily decidable subcases of the 
logic, or on good heuristics for checking validity. 

While the focus of this paper is on technical issues-axiomatizations and 
decision procedures-it is part of a more general effort to understand 
reasoning about knowledge and probability. In [FH89] we consider the 
issue of appropriate models for reasoning about uncertainty in more detail 
and compare the probabilistic approach to the Dempster-Shafer approach. 
In [FH88], we consider a logic of knowledge and probability that allows 
arbitrary nesting of knowledge and probability operators. In particular, we 
allow higher-order weight formulas such as w(w(cp) > i) 2 f. (See also 



126 FAGIN, HALPERN, AND MEGIDDO 

[Gai86] for discussion and further references on the subject of higher- 
order probabilities.) We are again able to prove technical results about 
complete axiomatizations and decision procedures for the resulting logics 
extending those of this paper. There is also a general look at the interaction 
between knowledge and probability. In [HT89] the focus is on knowledge 
and probability in distributed systems. Finally, in [AH89, Ha1891 the 
issues of reasoning about probability in a first-order context are considered. 

We feel that there is far more work to be done in this area, particularly 
in understanding how to model real-world phenomena appropriately. We 
expect that our formalization will help provide that understanding. 
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