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Abstract. One approach to representing knowledge or belief of agents, used by 
economists and computer scientists, involves an infinite hierarchy of beliefs. 
Such a hierarchy consists of an agent’s beliefs about the state of the world, his 
beliefs about other agents’ beliefs about the world, his beliefs about other 
agents’ beliefs about other agents’ beliefs about the world, and so on. (Econ- 
omists have typically modeled belief in terms of a probability distribution on 
the uncertainty space. In contrast, computer scientists have modeled belief 
in terms of a set of worlds, intuitively, the ones the agent considers possible.) 
We consider the question of when a countably infinite hierarchy completely 
describes the uncertainty of the agents. We provide various necessary and 
sufficient conditions for t h i s  property. It turns out that the probability-based 
approach can be viewed as satisfying one of these conditions, which explains 
why a countable hierarchy suffices in this case. These conditions also show 
that whether a countable hierarchy suffices may depend on the “richness” of 
the states in the underlying state space. We also consider the question of 
whether a countable hierarchy suffices for “interesting” sets of events, and 
show that the answer depends on the definition of “interesting”. 
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1. Introduction 

Reasoning about the knowledge of agents and their knowledge of each other’s 
knowledge has now been recognized as a fundamental concern in game theory, 
computer science, artificial intelligence, and philosophy (see [FHMV95]). The 
importance of finding good formal models that can represent the knowledge 
of the agents has also been long recognized. 

The original approach to representing knowledge and common knowledge 
in the game-theory literature is due to Aumann [Aum 761. Consider a situa- 
tion with n agents. To model this, Aumann considers structures of the form 
A = ( W ,  .TI, . . . , S”), where Wis a set of states of the world, and each X. is 
a partition of W. We henceforth call these Aumann structures.‘ An agent 
“knows” about events, which are identified with subsets of W. Agent i’s 
knowledge is modeled by %, his information partition. Given a state s E W, 
we use %.(s) to denote the set of states in the same element of the partition as 
s; these are the states that agent i considers to be possible in state s. Agent i is 
said to know an event E at the state s if X(s) is a subset of E. The intuition 
behind this is that in state s, agent i cannot distinguish between any of the 
worlds in %(s). Thus, agent i knows E in state s if E holds at all the states that 
i cannot distinguish from s. Using this intuition, we define an operator Ki from 
events to events. Given an event E, the event Ki(E) (intuitively, the event 
“agent i knows E”) is identified with the set of states where agent i knows E 
according to our definition. We also define the event O(E) (“everyone knows 
Eyy) to be the intersection of the events Ki(E), over all agents i = 1 , .  . . ,n .  
Finally, we define the event C(E)  (“E is common knowledge”) to be the 
intersection of the events O(E),  O(O(E)) ,  and so on. 

There is, unfortunately, a philosophical difficulty with this approach (cf. 
[Gi188, TW88, Aum891). The problem is that it is not a priori clear what the 
relation is between a state in an Aumann structure -which is, after all, just an 
element of a set - and the rather complicated reality that this state is trying to 
model. If we think of a state as a complete description of the world, then it 
must capture all of the agents’ knowledge. Since the agents’ knowledge is 
defined in terms of the partitions, the state must include a description of the 
partitions. This seems to lead to circularity, since the partitions are defined 
over the states, but the states contain a description of the partitions. One 
particularly troubling issue, already mentioned in Aumann’s original paper, is 
how the states can be used to capture knowledge about the model itself, such 
as the fact that the partitions are common knowledge. (See [BD93] for dis- 
cussion about the importance of this assumption.) Again, there seems to be 

The reader with a background in modal logic will recognize that an Aumann structure is noth- 
ing more than a KripkefrMle for S5 m 5 9 ,  HC68, HM921. In [Aum76], Aumann assumes that 
there is a probability distribution on W. Since the probability function plays no role in our dis- 
cussion of knowledge in Aumann structures, we have decided to drop it here. This is consistent 
with Aumann’s own discussion of knowledge in later papers (see [AumSS]), and with the presen- 
tation of Aumann’s framework in, for example, [Wer89]. 
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some circularity here, since the state must describe the model, which therefore 
includes a description of itself. 

Partly in response to these concerns, an alternative approach to modeling 
knowledge was investigated in a number of economics papers [BE79, MZ85, 
TW88, BD931. This approach, which involves an infinite hierarchy of beliefs, 
takes its cue from the work of Harsanyi [Har68]. We start with a set S of 
states of nature, which we take to be descriptions of certain facts about the 
world, such as the possible outcomes of a game, and the associated payoffs. 
Each agent has beliefs about the state of nature, where these beliefs are mod- 
eled by a probability distribution over S. These beliefs are clearly highly rele- 
vant to the agent’s choice of strategy. But agents also have beliefs about other 
agents’ beliefs, and beliefs about other agents’ beliefs about their beliefs, and 
so on. Pursuing this line, one is naturally led to associate with each agent a 
hierarchy of beliefs. We can build up this hierarchy level by level: at the O* 
level is the state of nature; the first-order beliefs of agent i are modeled by a 
probability distribution on the possible states of nature; for each natural 
number m 2 1, the (rn + I)s‘-order beliefs of agent i are modeled by a proba- 
bility distribution on the possible states of nature and the other agents’ m*- 
order beliefs (together with some consistency conditions described in [MZ85, 
BD931). An agent’s type is his infinite hierarchy of beliefs. We define a beZief 
structure to consist of a state of nature and a description of each agent’s type. 
Given a set S of states of the world, we take a ( S )  to be the set of belief 
structures where S is the set of states of nature. 

In belief structures, knowledge is identified with “belief with probability 
1”. That is, roughly speaking, agent i is said to know an event E c S in a 
given belief structure b if, according to agent i ’s  type in b, event E is assigned 
probability 1 at level 1 of agent i ’ s  hierarchy. Similarly, agent i knows that 
agent j knows E if the event “agent j knows E” is assigned probability 1 at 
level 2 of agent i’s type hierarchy. Finally, we say that E is common knowl- 
edge if all agents know E, all agents know that they know E, and so on. 

We would like to think of a belief structure as describing a state of the 
world. It is not clear, however, that a belief structure is an adequate descrip- 
tion of a state of the world. Even if we accept the doctrine that a state of the 
world can be adequately described by describing the actual state of nature and 
each agent’s uncertainty about the state of nature and other agents’ uncertainty 
(at all levels), it is not clear that the infinite hierarchy just described completely 
exhausts an agent’s uncertainty. After all, an agent may have uncertainty as to 
the type of other agents. Harsanyi essentially assumed that there is an exoge- 
nously given probability distribution that describes each agent’s probability 
distribution on the state of nature and the other agents’ types. The key result 
proved in [BE79, MZ851 is that the hierarchy described above does exhaust an 
agent’s beliefs: an agent’s type determines a unique probability distribution on 
the states of nature and the other agents’ types. 

This result also suggests that we can view the belief structures in a ( S )  as 
the states in an Aumann structure, since each one completely describes a state 
of the world. If we take that view, then we might hope that the definitions of 
knowledge and common knowledge in Aumann structures and belief struc- 
tures coincide. Unfortunately, this is not quite the case. Nevertheless, Bran- 
denburger and Dekel [BD93] show that these notions do coincide if we inter- 
pret knowledge in Aumann structures probabilistically. Thus, we view W ( S )  
as an Aumann structure, with the information partitions being determined by 
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the type (so that two belief structures b and b’ are in the same equivalence 
class of Xi iff agent i has the same type in b and b’). In addition, we endow 
W ( S )  with probability measures pi (one probability for each agent i) based on 
information in the individual belief structures (for more details on the con- 
struction, see [BD93]). Suppose we identify the event E E S with the subset of 
W ( S )  consisting of all belief structures for which the state of nature is in E. We 
then take the event “agent i knows E” to hold in state s if pi(E I .%(s)) = 1; 
similar modifications are necessary for common knowledge. Brandenburger 
and Dekel then show that an event E G S is common knowledge in a state b 
in the (probabilistically endowed) Aumann structure W ( S )  iff E is com- 
mon knowledge in the belief structure b. A complementary result is proved 
in [Tw88], where it is shown that given an Aumann structure A = 
(S, X I , .  . . , Xn) and so E S, there is a belief structure b E W(S)  such that an 
event E c S is common knowledge at so iff E is common knowledge in b. 

This may seem to pretty much complete the picture: the hierarchical 
approach provides the answer to the problem of circularity in Aumann 
structures, since the above results seem to indicate that belief structures are 
adequate for modeling the states in Aumann structures. Unfortunately, the 
situation is somewhat more complicated than these results suggest. The 
fundamental problem with these results is that they are trying to relate two 
incomparable concepts of knowledge: the information-theoretic concept in 
Aumann structures and the probability-theoretic concept in belief structures 
(which is why Brandenburger and Dekel had to recast Aumann’s framework 
in a probabilistic setting). The probabilistic framework masks some of the 
subtleties in the issue of the adequacy of the hierarchical approach. Thus, we 
examine the issue of the adequacy of the hierarchical approach here in a non- 
probabilistic setting. 

A non-probabilistic setting for the hierarchical approach is described in 
[FHV91]. (A precursor to this approach is described in [EGSSO].) We again 
start with a set S of states of nature (at “level 0”) and build a hierarchy, level 
by level. In this case, the first-order knowledge of agent i is a set of states of 
nature (which intuitively corresponds to the set of states the agent considers 
possible); the (m + 1)“-order knowledge of agent i (for m 2 1) is modeled by a 
set of possibilities, each of which is a description of a state of nature and each 
agent’s mh-order knowledge (again, certain consistency conditions must be 
satisfied). Intuitively, whatever is in the subset is considered to be possible, 
and whatever is not in the subset is known to be impossible. Note that there is 
no probability distribution, just a set of possibilities. A knowledge structure 
consists of a state of nature and, for each agent, a hierarchy consisting of that 
agent’s &-order knowledge, for each finite m 2 1. We take F(S) to be the 
set of knowledge structures, where S is the set of states of nature. 

Knowledge and common knowledge are defined in knowledge structures in 
an information-theoretic fashion, as in Aumann structures. That is, agent i is 
said to know E C S in a given knowledge structure if the set of states that i 
considers possible at level 1 is a subset of E; agent j knows that agent i knows 
E if the set of sequences of length 2 that j considers possible at level 2 is a 
subset of the set of sequences of length 2 where i knows E. Common knowl- 
edge is again dehed in the standard way in terms of knowledge. 

In [FHV91], results connecting knowledge structures and Aumann struc- 
tures analogous to those of [BD93] and p 8 8 ]  are proved. Namely, it is 
shown that we can view 9 ( S )  as an Aumann structure, where the partitions 
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are determined by the agents’ types, and an event E E S is common knowl- 
edge in a knowledge structure f E F(S) according to Aumann’s definition iff 
E is common knowledge at f according to the knowledge-structure definition. 
Moreover, it is shown that given an Aumann structure A = (S, XI , .  . . , Xn) 
and a state so E S, there is a knowledge structure f E F(S) such that an event 
E _c S is common knowledge at SO iff E is common knowledge in f. 

This seems to c0dk-m the results of frW88, BD93] and suggest that the 
hierarchical approach does address the circularity problem. Unfortunately, it 
is also shown in [FHV91] that knowledge structures are in general not an 
adequate description of the world, since they do not completely describe an 
agent’s uncertainty. In particular, an agent’s type does not determine what 
other types the agent considers possible. The problem is that the hierarchy in 
knowledge structures (as well as in belief structures) contains only w levels, 
when in general we need to consider transfinite hierarchies2 In fact, Fagin 
[Fag941 and Heifetz and Samet wS93, HS981 show independently that in 
general, no ordinal level in the hierarchy is sufficiently large to describe com- 
pletely an agent’s uncertainty. We say more about this result in Section 7. 

Why are knowledge structures not an adequate description of an agent’s 
knowledge while belief structures are? And how do we reconcile the inade- 
quacy of knowledge structures with the results relating knowledge structures 
to Aumann structures? Our goal in this paper is to address these questions by 
using the non-probabilistic framework of knowledge structures to examine the 
adequacy of hierarchical structures and to make precise how expressive they 
are. 

We start by considering the question of when a knowledge structure does 
completely characterize the agents’ knowledge. More precisely, we consider 
(in Section 3) when it is the case that the first o levels of the hierarchy com- 
pletely determine the rest of the hierarchy. We provide three necessary and 
sufficient conditions for this to be the case. One surprising condition is that a 
knowledge structure completely characterizes the agents’ knowledge iff it 
characterizes the first w + w levels of knowledge. A consequence of that is that 
in order to check if the first w levels of the hierarchy determine the rest of the 
hierarchy, it suffices to show that they determine the first w + w levels of the 
hierarchy. Another consequence of this condition is that the adequacy of 
knowledge structures may depend on the “richness” of the states in the un- 
derlying state space S. If the states of nature are modeled in enough detail, 
then knowledge structures do characterize the agents’ knowledge; otherwise, 
they may not. 

In Section 4, we provide a different analysis of adequacy, one that sheds 
further light on why we can stop after o levels in the probabilistic case. This 
analysis highlights the role of a certain limit-closure property, which says that 
what happens at finite levels determines what happens at the limit. Limit clo- 
sure can be viewed as a continuity property. The probabilistic analogue to 
limit closure holds for belief structures, but only because we restrict attention 
to countably additive measures. If we allow probabilities that are only fhitely 
additive, then the analogue to limit closure does not hold and, as we show, 
such belief structures do not in general completely characterize the agents’ 

* Tranrfinite hierarchies have levels that are indexed by infinite ordinals (or as they are often 
caned, tranrfiite ordinals). For a discussion of transfinite ordinals, see almost any book on set 
theory and many books on logic, such as [Sho67]. 
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beliefs. That is, the results of [BE79, MZ851 no longer hold once we consider 
probabilities that are only finitely additive. 

Since knowledge structures do not, in general, characterize the agents’ 
knowledge, we next consider the question as to whether knowledge structures 
characterize the agents’ knowledge with respect to “interesting” sets of events. 
The answer, of course, depends on what is considered to be an “interesting” 
set of events. It turns out, for example, that if we consider only events that can 
be dehed from “natural events” by knowledge and common knowledge op- 
erators, then knowledge structures are adequate. If, on the other hand, we are 
interested in common knowledge among coalitions of agents (rather than just 
common knowledge among uN the agents), then knowledge structures are not 
adequate. In this case, a transfinite hierarchy is necessary, but w 2  levels suf€ice. 
Note that this result is quite different from that involving the ordinal o + w 
mentioned earlier. The later result says that if all we care about are events that 
can be defined from the base events and operators for “coalition” common 
knowledge, then o2 levels of the hierarchy suffice. The earlier result applies to 
arbitrary events, not just interesting ones, and shows that the first w levels 
determine the whole hierarchy iff they determine the first o + w levels of the 
hierarchy. 

This discussion gives the impression that the only issue underlying the 
adequacy of the hierarchical approach is that of the “length” of the hierarchy. 
But it is easy to see that knowledge structures are also deficient in a way 
that no transfinite hierarchy can remedy. Aumann structures contain infor- 
mation about all conceiuubk states, even states that are commonly known not 
to hold. Thus, Aumann structures enable counterfactual reasoning, such as 
“If Ron Fagin were the President, then he would not have stopped the war 
against Iraq so soon.” A counterfactual statement can be viewed as a state- 
ment about a world commonly known not to be possible. (It is presumably 
common knowledge that Ron Fagin is not the President.) Knowledge struc- 
tures, on the other hand, do not enable such reasoning, since situations 
commonly known to be impossible never appear as prefixes in knowledge 
structures. 

It turns out that this deficiency is not inherent in the hierarchical approach, 
but rather is the result of the manner in which this approach was used in 
knowledge Structures. Knowledge structures were designed to model knowl- 
edge; no more, no less. As we show, the hierarchical approach can also be 
used to define structures that do capture information about conceivable states. 
These results suggest that hierarchical structures can always serve as adequate 
models of the world. In general, however, we may need to capture more than 
just knowledge and we may need to continue the hierarchy into the transfinite 
ordinals, in order to completely capture the agents’ uncertainty. What we 
choose to capture and how far into the ordinals we need to go depends on the 
events that we are interested in capturing. Thus, the question of whether 
knowledge or belief structures as defined are adequate models depends both 
on what features of the world we are trying to model, and on the events we are 
interested in describing. 

In Section 2, we review knowledge structures and belief structures. In Sec- 
tion 3, we define what it means for a knowledge structure to characterize the 
agents’ knowledge at a given level, and in particular for a knowledge structure 
to completely characterize the agents’ knowledge. We give three necessary and 
sufficient conditions for a knowledge structure to completely characterize the 
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agents’ knowledge, including the result that a knowledge structure completely 
characterizes the agents’ knowledge iff it characterizes the first w + w levels of 
knowledge. We also give a simple suflicient condition, which arises naturally 
in practice, that guarantees that a knowledge structure completely character- 
izes the agents’ knowledge. In order to better understand how the character- 
ization of knowledge in knowledge structures relates to the characterization of 
beliefs in belief structures, we present in Section 4 an alternative way of cap 
turing the intuition of when a knowledge structure characterizes the agents’ 
knowledge, in terms of the limitclosure condition mentioned above. We also 
show that belief structures no longer characterize the agents’ beliefs if we 
consider probability measures that are only finitely additive. In Section 5, we 
consider whether it really is a problem when knowledge structures do not 
characterize an agents’ knowledge, and show that this depends on the set of 
events we are interested in. In Section 6, we discuss how to modify knowledge 
structures to model counterfactual statements. In Section 7, we discuss some 
results related to those in this paper. In Section 8, we give our conclusions. In 
Appendix A, we give proofs of some theorems from Section 3, and in A p  
pendix B, we give proofs of some theorems from Section 5. 

2. Knowledge structures and belief structures: a review 

In this section we review the definitions of knowledge structures and belief 
structures. We begin with knowledge structures. The following material is 
largely taken from [FHV91], slightly modified to be consistent with the rest of 
our presentation here. For the sake of generality, and since we will need these 
definitions later, we define not just knowledge structures, but the more general 
“1-worlds” for ordinals 4 knowledge structures are the special case where 
1 = w. 

We start with a set S of states (of nature) and a fixed finite set { 1, . . . , n} of 
agents. For each ordinal 1 > 1 (finite or infinite), we now define A-worlds, by 
induction on 1. A 0th-order knowledge assignment fo is a member of S, that is, 
a state of nature (which, intuitively, corresponds to the “real world”). We call 
go) a 1-world (since its length is 1). Assume inductively that  worlds have 
been defined for all K with 1 5 K < A. Let W, be the set of all ~-worlds, for 
K < 1. If K 2 1, then a uth-order knowledge-assignment f, is a function that 
associates with each agent i a set f,(i) c W, of “possible K-worlds”; we think 
of the worlds in f , ( i )  as ‘‘possible’’ for agent i and the worlds in W, - f ,( i)  as 
“impossible” for agent i. A A-world is a sequence f = cfo, fi , . . . ) of length A 
such that for each K < A, we have that f, is a Kth-order knowledge assignment 
and each K-prefix (Le., prefix of length K) is a x-world. If A is a limit ordinal, 
there are no further conditions on A-worlds. If A = A’ + 1 is a successor ordi- 
nal, there are further conditions. Note that in this case, a I-world is a sequence 
f = cfo, f i , .  . . ,At). Let us use f<, to denote the x-prefix off. The conditions 
are: 

K1. Correctness: f,,, E f,~(i). 
K2. Introspection: If <go,gl,. . . ) E f,r(i), then g,(i) = f , ( i )  for all K with 

K3. Extendiiility: If 0 < K < A’, then g E S,(i) iff there is some h E 1;t(i) such 
0 < K < 1’. 

that g = h<,. 
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These conditions enforce some intuitive properties of knowledge. Intuitively, 
K1 says that each agent wrrectly takes the actual world to be one of the 
worlds he considers possible. By contrast, for belief, as opposed to knowledge, 
an agent can (incorrectly) believe that the actual world is not a possibility. K2 
implies that agents are introspective about their own knowledge; at each level, 
they know exactly what they know and what they do not know at lower levels. 
Finally, K3 says that the different levels of knowledge describing a knowledge 
world are consistent with each other. 

Let f = cfo, fi, . . . ) be a I-world. Define agent i 's  type in f, denoted ni(f), 
to be the sequence V l ( i ) , & ( i ) ,  . . . >. We write f -if' if ni(f) = ni(f'), that is, 
if i has the same type in f and f'. D e h e  i's view (at f), denoted f"', to be 
{g I f -i g). Intuitively, i's view at f consists of the I-worlds where i has the 
same knowledge as in f. 

We are in particular interested in w-worlds, which we refer to (following 
[FHVBI]) as knowledge Structures. Thus, a knowledge structure describes 
knowledge of arbitrary finite depth. We use 9 ( S )  to denote the set of knowl- 
edge structures over S. We now define knowledge in knowledge structures. Let 
w be a k-world. We say that agent i considers w possible in a knowledge 
structure f = (fo, fi, . . . ) if w E fk(i) .  A k-ary event (or k-event, for short) is a 
set of k-worlds. Thus, a O-event is an assertion about the state of nature, as it 
is essentially a subset of the set S; a l-event is an assertion about the state of 
nature and the agents' knowledge of the state of nature; a 2event is an asser- 
tion about the state of nature, the agents' knowledge of the state of nature, 
and the agents' knowledge of the agents' knowledge of the state of nature; and 
so on. Agent i knows a k-event E in f if all the k-worlds agent i considers 
possible in fare in E, that is, if fk ( i )  E: E. This definition of knowledge has the 
same information-theoretic flavor as the definition of knowledge in Aumann 
structures given in the introduction. 

Belief structures are defined along similar lines. We briefly sketch the defi- 
nition here, and refer the reader to [MZ85, TW88, BD93] for more details. We 
start with S, which we assume is endowed with a topology that makes it a 
compact metric space.3 Given a compact metric space X, let d(X) denote the 
set of Bore1 probability measures on X. If we endow d(X) with the topology 
of weak convergence of measures, then d(X) is also a compact metric space. 
Define a sequence of spaces Xk, for k = 0,1,2,.. . , inductively, by taking 
& = s and xk+l = xk X d(Xk)". Thus, 

A belief structure b is a sequence (bo,bl, ...) such that bo ES, and bk E 
d ( X . - l ) "  for each k > 0. This means that, for k > 0, we can view bk as a 
function such that for each agent i, we have b k ( i )  E A(&-*).  We have con- 
sistency conditions B1 and B2 on belief structures that correspond to K2 
and K3: 

The assumption that S is a compact metric space is made in pW88]. Variants of this assump- 

The assumption and all its variants are trivially true if S is finite, which is often a reasonable 
tion were used in [BE79, BW3, M a s ] .  

assumption in practice. 
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B1. For all k > 1, the probability measure bk(i) assigns probability 1 to the 
subspace of Xk-1 consisting of sequences <CO, . . . , C k - 1 )  with ck-l(i) = 
bk-I ( i ) .  This says that agent i knows his own probability assignment. 

B2. For all k > I ,  the probability measure bk-1 ( i )  is the marginal of bk(i) on 
xk-2. 

3. When are knowledge structures adequate models of knowledge? 

It is shown in [FHV91] that, in a precise sense, knowledge structures are not 
adequate to fully capture all of an agent’s knowledge. An agent’s type does 
not necessarily determine the set of knowledge structures that he considers 
possible. To make this precise, we need to make clear what we mean by “the 
knowledge structures that agent i considers possible”. 

Two definitions are given in [FHV91] for when an agent considers a world 
possible; these are then shown to be equivalent. We already saw one defhi- 
tion. Let w be a k-world. Recall that agent i considers w possible in a knowl- 
edge structure f = (fo,fi,. . . ) if w E f k ( i ) .  There is, however, another notion 
of possibility. We say that agent i considers w possible’ in f if w is a prefix of 
some knowledge structure f‘ such that f y f ’ ;  i.e., w is the prefix of a knowl- 
edge structure that agent i cannot distinguish from f. The following theorem 
assures us that the two notions of “possible world” are identical. 

Theorem 3.1. [FHV91] Agent i considers a k-world w possible in a knowledge 
structure f iflagent i considers w possible’ in f. 

The notion “possible”’ can be thought of as an external notion of possi- 
bility. It says that we consider each of the knowledge structures f‘ that i con- 
siders possible (that is, each knowledge structure f’ in i ’ s  view fWi)  and take its 
k-prefix. The other notion (“possible”) is an internal notion: we consider every 
k-world that i considers possible, by “looking inside” the knowledge structure 
(at level k). Theorem 3.1 tells us that the external and internal notions coin- 
cide. Consequently, agent i knows a k-event E in f precisely when fWi  is con- 
sistent with E; that is, the k-prefix of every knowledge structure in f is in E. 
In other words, it does not matter whether we define knowledge in terms of 
possible worlds or in terms of possible’ worlds. 

Now consider an (co + 1)-world f’ = Vo,fr,. . . ,f,), extending the 
knowledge structure f = (fo,fi,. . . ). We frequently abuse notation in such 
situations by writing (f, f,) as an abbreviation for f’. As before, there are two 
ways that we can define “the knowledge structures that agent i considers pos- 
sible in f’”. One way is to say that agent i considers the knowledge structure g 
possible in f’ precisely if g E f,(i). Another way is to say that agent i considers 
the knowledge structure g possible’ in f’ precisely if g is the prefjx of some 
(o + ])-world g’ such that f’ -i g’. It is shown in [FHV91] that these two 
ways are not equivalent; the set of knowledge structures that agent i considers 
possible’ in f’ is precisely f”’; this is always a superset of fm(i) ,  but equality 
need not hold. In fact, knowledge structures do not fully describe the agents’ 
knowledge; there are distinct (w + !)-worlds that agree on the first w levels 
(an example, taken from [FHV91], is given in Example 3.10). 

This “discrepancy” can also be described in terms of knowledge of o- 
events, which are sets of w-worlds. We can define knowledge of an o-event E 



340 R. Fagin et al. 

in the (w + 1)-world f’, in two ways. We say that agent i knows E in P if every 
o-world g that agent i considers possible in f‘ is in E, i.e., f,(i) c E. We say 
that agent i knows’ E in P if every o-world g that agent i considers possible‘ 
in P is in E, i.e., f“’ c E. Note that there is possibly a difference between 
knowing and knowing’; if f,(i) is a proper subset off“‘ then agent i knows 
but does not know’ the oevent f,(i). In this sense, knowledge structures may 
not fully describe the agents’ knowledge, 

The fact that knowledge structures may not fully describe the agents’ 
knowledge should be contrasted with the situation for belief structures, which 
completely describe the agents’ beliefs. Thus, in the case of belief worlds, the 
first o levels of the hierarchy completely describe the agents’ beliefs, which is 
not the case for knowledge worlds. To understand this difference better, the 
first question we want to examine here is when knowledge structures com- 
pletely describe the agents’ knowledge. 

3.1. Three characterizations of adequacy 

To answer this question of when knowledge structures completely describe the 
agents’ knowledge, we first need to formalize it. If 1 2 w is an ordinal, then 
we say that a knowledge structure i characterizes the agents’ I-knowledge 
if there is a unique extension of f = cfo, f i  , A , .  . . ) to a (I + 1)-world 
(fo,fi, f2, . . . , h). In particular, f characterizes the agents’ 0-knowledge if 
the “next” level f, is uniquely determined. We say that a knowledge structure 
f (completely) characterizes the agents’ knowledge if it characterizes the 
agents’ I-knowledge for every 1 2 o, that is, if all extensions of f are deter- 
mined. This definition captures the intuition that the first w levels determine 
the agents’ knowledge. As we have already observed, the result of pE79, 
Ma51 implies that all belief structures characterize the agents’ beliefs in this 
sense. An example is given in Remark 3.11 where a knowledge structure 
characterizes the agents’ o-knowledge, but not the agents’ knowledge. 

There is a very simple case where a knowledge structure characterizes the 
agents’ knowledge: namely, when there is only one agent. In fact, in this case, 
the first two levels (fo and f l )  completely characterize the agent’s knowledge: 

Proposition 3.2. Assume that there is only one agent. Let f = ( fo, fi , . . . ) and 
g = (go, 91,. . . ) be I-worldr, where 1 2 2. Iff0 = go a d f i  = 91, then f = g. 

Proox Assume that fo = go and fi = gl. We shall show that f2 = 92. The 
proof that fe = for every 6’ < 1 is very similar. Suppose the only agent is 
agent 1. We now show that h(1) = {(ho,fi)lho ~ f i ( 1 ) ) .  If (ho,hl) ~ & ( 1 ) ,  
then condition K3 tells us that ho E fi(l),  and condition K2 tells us 
that hl(1) = fi (I), so hl = fi (since agent 1 is the only agent). Conversely, if 
ho E f i ( l ) ,  then condition K3 tells us that there is some hl such that 
(ho,hI)Ef2(1), and condition K2 tells us that hl(1) =f i ( l ) ,  so again hl = 
fi. We have shown that f2c1) = {(ho,fi) I ho E fi(1)). Similarly, g2(1) = 
{(ho,gl)lho Egl(1)). So, since fi = 91, it follows that h ( 1 )  =gz(l), and so 
f2=92. 

We shall shortly provide a necessary and sufficient condition for a knowl- 
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edge structure to characterize the agents' knowledge when there are two or 
more agents. First, we give a necessary and sufficient condition for a knowl- 
edge structure to characterize the agents' w-knowledge. 

Assume that agent i considers the k-world w possible in the knowledge 
structure f = ( j & f i , .  . . ), that is, w E fk( i ) .  By Theorem 3.1, it follows that 
there is a knowledge structure g such that w is a prefix of g and f -i g. We say 
that w is i-uniquely extendible w.r.t. (with respect to) f if there is a unique such 
knowledge structure g. 

We need another definition before we prove our next theorem. Let f be a A- 
world and let i be an agent. Define the (one-step) no-information extension ff 
off to be the (A + I)-world (f,fn) extending f such that h(i) = f"' for each 
agent i. By results in [FHV91], the no-information extension is indeed a 
(A -I- 1)-world. Intuitively, the one-step no-information extension f+ describes 
what each agent knows at depth A, assuming that "all that each agent knows" 
is already described by f. Thus, in this case h(i) is the set of all  worlds that 
are compatible with i's lowerdepth knowledge. 

Theorem 3.3. A knowledge structure f characterizes the agents' w-knowledge iff 
for each agent i and each knowledge structure g # f such that f -i g, somefinite 
prefix of g is i-uniquely extendible w.r.t. f. 

Proofi (+): Assume that there is some agent i and some knowledge structure 
g different from f such that f - i g ,  but no finite prefix of g is i-uniquely ex- 
tendible w.r.t. f. Therefore, for every finite prefix of g, there is some knowl- 
edge structure h with that prefix such that f -i h and h # g. 

Let f+ = (f, f,) be the one-step no-information extension of f. Thus, 
f , ( i )  = f"'. In particular, g E f , ( i ) .  Define f: by letting f:(i) = f,(i) - {g}, 
and f : ( j )  = f,(j) if j # i. It is easy to check that f' = (f, f : )  is an (o + 1)- 
world the correctness condition K1 holds, since g # r; the introspection con- 
dition K2 is immediate; and the extendibility condition K3 holds, since for 
every finite prefix of g there is some h with that prefix, such that b -if and 
h # g. Since f' # P, it follows that f does not characterize the agents' 
w-knowledge. 

(e): Let <f,f,) be an arbitrary (w + I)-world extending f. We shall 
show that f , ( i )  = f"' for each agent i. We fist show that f , ( i )  5 f"'. Assume 
that h = (ho, hl , .  . . ) E f,(i); we must show that b E f"i. By K2, we have 
that hk(i)  = f k ( i )  for all k 2 1. It follows that h -if. That is, h E f"', as 
desired. 

Conversely, assume that g E f"'; we must show that g E f,(i). If g = f, 
then g E f ,( i) ,  by condition K1. So assume that g # f. By assumption, some 
finite prefix w of g is i-uniquely extendible w.r.t. f. This tells us that g is the 
unique member off"' with prefix w. By condition K3, there must be some 
g ' E f , ( i )  with prefix w. Since f ,( i)  E fWi, it follows that g'ef"'. Since 
g' E f and g' has prefix w, it follows by uniqueness that g' = g, and that so 
g E f ,( i) ,  as desired. 

Thus, f , ( i )  = f"'. We have shown that f ,  is uniquely determined by 
f, since f ,( i)  = fWi for each agent i. So f characterizes the agents' 
w-knowledge. 

Theorem 3.3, which will turn out to be quite useful, gives a sense in which 
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knowledge at finite levels determines when the agents’ w-knowledge is 
“forced” to a unique value. 

We might hope that if a knowledge structure characterizes the agents’ o- 
knowledge, then it completely characterizes the agents’ knowledge. Un- 
fortunately, this is not the case. For example, there is a knowledge structure 
with two agents that characterizes the agents’ o-knowledge and has two ex- 
tensions to (o + 1)-worlds: Roughly speaking, in one of these, agent 2 knows 
that agent 1’s wknowledge is characterized, and in the other extension agent 2 
does not know this. Another example of a knowledge structure that charac- 
terizes the agents’ w-knowledge but does not characterize the agents’ knowl- 
edge is given in Remark 3.1 1. As the next result shows, a knowledge structure 
characterizes the agents’ knowledge iff it is common knowledge that the first w 
levels characterizes the agents’ o-knowledge. To make this precise, we need 
some more definitions. 

Let f and g be knowledge structures. We say that g is reachable from f (by 
a path of length r) if there are knowledge structures b, . . . , h, such that f = b, 
g = h,, and for all j < r, we have hj -i hj+l for some agent i .  There is a close 
connection between reachability and common knowledge. For example, it can 
be shown that an event E c S is common knowledge in fit€ E holds at each 
knowledge structure reachable from f. (See [Aum 76, HM921 for analogous 
results in the context of Aumann structures, and [TW88] for an analogous 
result in the context of belief structures.) 

The following two theorems give necessary and sufficient conditions for a 
knowledge structure to characterize the agents’ knowledge. 

Theorem 3.4. A knowledge structure f characterizes the agents’ knowledge 
i f f  every knowledge structure reachable from f characterizes the agents’ 
o-kno wledge. 

Proox See Appendix A. W 

It is not hard to provide examples of knowledge structures that do and 
knowledge structures that do not characterize the agents’ knowledge. For ex- 
ample, given a k-world w, define (as in [FHV91]) the no-information extension 
w* of w by repeatedly taking one-step no-information extensions. Infor- 
mally, w* is the knowledge structure where all each agent knows is what is 
already described by w. It can be shown from the construction of the one-step 
no-information extension that w* does not characterize the agents’ o-knowl- 
edge. We shall see another example later (Example 3.10) where the knowl- 
edge structure does not characterize the agents’ o-knowledge. An example 
of a knowledge structure that characterizes the agents’ knowledge is one 
where the state of nature is common knowledge. This is a knowledge structure 
f = < f o , f l , .  . . ) where every j;C(i) is a singleton set. We leave to the reader the 
straightforward verification, using theorem 3.4, that such a knowledge struc- 
ture characterizes the agents’ knowledge. 

As we noted, there exist knowledge structures that characterize the agents’ 
o-knowledge, but do not completely characterize the agents’ knowledge. 
Rather surprisingly, it turns out that if a knowledge structure f characterizes 
the agents’ knowledge through the first ci, + o levels (that is, iff characterizes 
the agents’ (o + k)-knowledge for every natural number k), then f completely 
characterizes the agents’ knowledge. 
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Theorem 3.5. A knowledge structure characterizes the agents’ knowledge iff it 
characterizes the agents’ knowledge through the first w + w levels. 

Proof See Appendix A. 

We now provide another characterization of knowledge structures that 
characterize the agents’ knowledge, in the case where the state space S is finite. 

Theorem 3.6. Assume that there are only finitely many states of nature. A 
knowledge structure f characterizes the agents’ knowledge IF g“i is finite for 
every knowledge structure g reachable from f and every agent i. 

Proof See Appendix A. W 

If f is a knowledge structure, then let be a graph whose nodes are all 
knowledge structures reachable from f, such that there is an edge between two 
nodes g and h iff g -i h for some agent i. Then Theorem 3.6 says that f char- 
acterizes the agents’ knowledge iff Gf has finite fanout at every node. This is 
closely related to Theorem 5.7 of [Fag94], which gives a similar finite fanout 
characterization for structures like knowledge structures, except that they do 
not satisfy condition K1. 

3.2. A suficient condition for characterizing the agents’ knowledge 

To gain a better understanding of the issue of characterization of knowledge, 
we now consider a simple sufficient condition on knowledge structures that 
guarantees characterization of the agents’ knowledge. Let f be a knowledge 
structure. A world is reachable from f if it is a prefix of a knowledge structure 
that is reachable from f. Intuitively, a world w is reachable from f if some 
agent considers it possible that some agent considers it possible . . . that some 
agent considers w possible. We say that it is common knowledge in f how the 
state of nature determines the agents’ knowledge if whenever w = (go,. . . , 9,) 
and w’ = (96, . . . , 9:) are reachable from f, and go = g;, then w = w‘. In- 
tuitively, it is common knowledge in f how the state of nature determines the 
agents’ knowledge if there is a “commonly-known algorithm” for determining 
each agent’s finite levels of knowledge from the state of nature. It can be easily 
shown that it is common knowledge in f how the state of nature determines 
the agents’ knowledge precisely if whenever g and g‘ are reachable from f, and 
the state of nature is the same in g and g’, then g = g’. The next lemma fob 
lows easily from this characterization. 

Lemma 3.7. Assume that it is common knowledge in f how the state of nature 
determines the agents’ knowledge. Assume also that h is reachable from f .  Then 
it is common knowledge in h how the state of nature determines the agents’ 
knowledge. 

structure that guarantees that it characterizes the agents’ knowledge. 

Proposition 3.8. Assume that it is common knowledge in the knowledge struc- 

The next proposition gives us a simple sufiicient condition on a knowledge 
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ture f how the state of nature determines the agents’ knowledge. Then f charac- 
terizes the agents’ knowledge. 

ProoJ By Theorem 3.4, it suffices to show that if h is reachable from f, then h 
characterizes the agents’ w-knowledge. Theorem 3.3 tells us that to show this, 
we need only show that for each agent i and each knowledge structure 
g = (go,  91,. . . ) # h such that h -i g, some finite prefix w of g is i-uniquely 
extendible w.r.t. h. Let w be the prefix <go). By Lemma 3.7, it is common 
knowledge in h how the state of nature determines the agents’ knowledge. 
Therefore, if g’ is a knowledge structure such that h -i g‘, and g’ has prefix w, 
then g’ = g. Hence, w is i-uniquely extendible w.r.t. h, as desired. 

The interest in Proposition 3.8 comes from the fact that the way an agent 
determines what states are possible (or, in the case of belief structures, the way 
an agent determines how to assign probabilities) clearly ultimately depends on 
circumstances external to the agent, including perhaps what the agent has 
observed, the agent’s upbringing, and a myriad of other influences. In many 
applications, the most natural way to model the state of nature will capture 
these external circumstances, and therefore it is common knowledge how the 
state of nature determines the agents’ knowledge. The following simple exam- 
ple, based on the coordinated attack problem discussed in [HM90] (and later 
modified as the electronic mail game by Rubinstein [Rub89]), may clarify this. 

Example 3.9. There are three agents, 1, 2, and 3. Consider a fact p such as 
“the price of IBM stock is over $100”. Suppose agents 1 and 3 discover 
whether or not p holds, and agent 2 does not. If p does not hold, then nothing 
happens. If p holds, then agents 1 and 2 start to communicate about p over an 
unreliable channel. First agent 1 tells agent 2 that p holds. If agent 2 receives 
the message, he sends an acknowledgment. If agent 1 receives the acknowl- 
edgment, he acknowledges the acknowledgment, and so on. If at any point a 
message is not received, there is no further communication. There is never any 
communication between agent 3 and the other two agents. We consider the 
system at some time after agent 1 discoversp. We also assume that agent 3 has 
no idea how much time has passed, so that, ifp holds, he has no upper bound 
on the number of messages that may have been received by agents 1 and 2. 
We can thus take S to consist of p (the state where the negation p of p holds) 
and pairs of the form (p, k), k 2 0; intuitively, these are the states where p 
holds, k messages were received by 1 and 2, and a (k + 1)“ message was sent 
by the recipient of the k* message (or by agent 1 if k = 0), but not received. 

In this situation, it is common knowledge how the state of nature de- 
termines the agents’ knowledge. Intuitively, this is because once we know how 
many messages have been received, we can determine each agent’s knowledge. 
For example, suppose that the state of nature is ( p ,  2), so that p holds and two 
messages have been received (thus far) between 1 and 2 (i.e., 2 received 1’s 
initial message, and 1 received 2’s acknowledgment). Then at the first level, 
agent 1 considers the states (p ,  2) and ( p ,  3) possible (since agent 1 does not 
know whether his acknowledginent to agent 2’s last message was received by 
agent 2) and 2 considers the states (p ,  1) and (p, 2) possible (since agent 2 does 
not know whether agent 1 received the last acknowledgment he sent). Agent 3 
considers all states of the form (p, k), k 2 0 possible, since he knows p holds, 
but has no idea how many messages have passed between agents 1 and 2. It is 
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not hard to see how we can continue this construction in a unique way, level 
by level. Since it is common knowledge how the state of nature determines the 
agents’ knowledge, it follows from Proposition 3.8 that each knowledge 
structure that arises in this scenario characterizes the agents’ knowledge. 

Before leaving this example, let us consider what knowledge the agents 
have in each of the knowledge structures that arise in this scenario. Let E be 
the set of states of nature of the form ( p ,  k ) ;  intuitively, E corresponds to the 
event that “p holds”. In (the knowledge structure that corresponds to) the 
state ( p ,  0), agent 1 knows E but agent 2 does not know that agent 1 knows E; 
in the state (p, l), agent 2 knows that agent 1 knows E, but agent 1 does not 
know that agent 2 knows that agent 1 knows E; and so on. Thus, for none of 
these states does common knowledge of E ever hold between agents 1 and 2, 
where agents 1 and 2 are said to have common knowledge of E if both 1 and 2 
know that both 1 and 2 know . . . that E holds (cf. the discussion of the coor- 
dinated attack problem in [HM90]). Now consider agent 3. Informally, in 
every state agent 3 certainly knows that agents 1 and 2 do not have com- 
mon knowledge of E (since they never attain common knowledge of E when 
communicating over an unreliable channel). He considers it possible, how- 
ever, that agents 1 and 2 have arbitrarily deep knowledge of E (since agent 3 
considers all the states (p, 0), (p, l) ,  ( p ,  2), . . . possible). More precisely, if fS is 
the knowledge structure associated with a state s E S, then in the unique ex- 
tension (f”, f:) of fS to an o + 1-world (the extension is unique because fS 
characterizys the agents’ knowledge), fi( 3) consists of every knowledge 
structure fS for s’ E S. Thus, agent 3 knows that E is not common knowledge 
among the other two agents, and considers it possible that they have arbi- 
trarily deep knowledge. 

While in simple examples it does seem reasonable to include enough in- 
formation in the state of nature so that it is common knowledge how the state 
of nature determines the agents’ knowledge, in more complicated examples 
this becomes a serious modeling problem. For example, even if we accept that 
the sum total of an agent’s upbringing, together with hereditary factors and all 
the agent’s experience and observations, completely determines the agent’s 
knowledge, it is not clear that we want to include all this information in the 
state of nature when modeling, say, a simple game. Once we leave it out, 
however, the knowledge structure may no longer adequately model the agents’ 
knowledge, as the following example shows. 

Example 3.10. Suppose we consider the same situation as in Example 3.9, but 
change the description of the state of nature. Instead of the state of nature 
describing not only whether p is true, but also how many messages arrive, 
suppose we simply take the state of nature to describe whether or not p is true. 
Thus, there are only two states of nature, p and p ,  Essentially, all the states of 
nature of the form (p, k) have been collapsed to one state, p .  Thus, there are 
two 1-worlds, ( p )  and <p),  which we denote q - 1  and w1,0, respectively. 
(The first component of-the subscript represents the length of the world; the 
reason for the choice of the second component should become clearer shortly.) 
We construct the k-worlds for k 2 2 inductively. There are three 2-worlds: 

W,-I  = (p,fi>, where h ( 1 )  = h(3) = {(B)} and fi(4 = { < P ) , ( B ) } .  
This is the world where p is true. Both agents 1 and 3 know this, and 2 does 
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not (since 1 sends no messages in this case, and 2 considers it possible that p 
is the case and 1’s message did not arrive). 

is the world where p is true, but 1’s message to 2 does not arrive. 

where p is true, and 1’s message to 2 does arrive. 

W , O  = <P,A’), where f;’(l) = A’(3) = {<P>} and A’@) = {<P>, <a>). This 

w2,l = ( p , f , ” ) ,  where A”( 1) = h’‘(2) = A”(3) = { { p ) } .  This is the world 

Notice that w2, -1  corresponds to the unique 2-world in the previous example 
where the state of nature is p ;  w2,o corresponds to the unique 2-world where 
the state of nature is (p, 0); and w2,l can be viewed as the result of “collaps- 
ing” all the 2-worlds where the state of nature is (p, k’) for k’ 2 1. 

For k > 2, we have a similar phenomenon. There are precisely k + 1 dis- 
tinct k-worlds, which we denote wk,- l ,  w k , ~ ,  . . . , q k - 1 ,  where wk,-1 corre- 
sponds to the unique k-world in the previous example where the state of na- 
ture is p; w k j  (for 0 < j < k - 1) corresponds to the unique k-world in the 
previous example where the state of nature is (p, j ) ;  and Wk,&-l is the result 
of collapsing all k-worlds (p, j) with j 2 k - 1 in the previous example. 
Notice that if k 2 2, j 2 0, and wkJ = cfo,.. then fk-,(3) = 
{ w k - l , ~ , .  . . , wk-l,+2}; if the state of nature is p, agent 3 has no idea how 
many messages passed between agents 1 and 2. If 0 I j < k - 1, and j is even 
(which means that agent 1’s last message is in transit or was not delivered), 
then fkPI(1) = {wk-~,~,wk-.l!,+l}, since agent 1 does not know whether or 
not his last message was delivered, and fkP1(2) = {wk-1,,-1,wk-l,j}. The sit- 
uation is similar if j is odd. Finally, if j = k - 1, then fk-l(l) = fk-1(2) = 

We can denote the knowledge structures that arise in this example as 
f-1 , fo ,  f 1, . . . . The knowledge structure f-1 has as prefixes the worlds w,, -1, 
for j = 1,2,3,. . . , and corresponds to the unique knowledge structure in the 
previous example where the state of nature is p. The knowledge structure f, 
has as prefixes the worlds Wk,k-l for 1 I k I j and Wk,j for k > j ,  and corre- 
sponds to the knowledge structure in the previous example where the state 
of nature is ( p , j ) .  Notice that the knowledge structure f, with prefixes 
w1,0, w2,1, w3,2,. . . does not arise in this situation (although it is easy to check 
that f, is indeed a well-defined knowledge structure). Intuitively, f, corre- 
sponds to the situation where infinitely many messages passed between agents 
1 and 2, a situation that is commonly known to be impossible. In f,, the 
event E (where p holds) is common knowledge among agents 1 and 2. In- 
tuitively, it is because f, is commonly known to be impossible that agent 3 
knows that agents 1 and 2 do not have common knowledge of E. Never- 
theless, none of the knowledge structures where p holds that arise in this 
example capture the fact that f, is (commonly known to be) impossible. 
Consider any knowledge structure f, with j 2 0, and let f;‘ = (f,,f,) be the 
one-step no-information extension of fj. It is not hard to see that f, E f,(3), 
so that in f;, agent 3 does not know that agents 1 and 2 do not have common 
knowledge of E. Of course, there is another extension fj = <f,,L> off, such 
that f, # Z(3).  This shows -that fj does not characterize the agents’ w- 
knowledge. This provides the example that we promised after Theorem 3.4 of 
a knowledge structure that does not characterize the agents’ w-knowledge. By 
contrast, the knowledge structure that arises in Example 3.9 does characterize 
the agents’ knowledge. 

{ wk-I, k-2). 
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Remark 3.11: Proposition 3.8 can be strengthened in a number of straight- 
forward ways. One is as follows: We say that it is common knowledge how level 
k determines the agents’ knowledge if whenever w = (go , .  . . , gk,  . . . , g,) and 
w’ = (96, . . . , g L , . .  . , g:) are reachable from f, and their prefixes (go,. . . , gk) 
and (96,. . . , gL) are identical, then w = w’. Then Proposition 3.8 still holds 
when we replace “it is common knowledge how the state of nature determines 
the agents’ knowledge” by “for some k, it is common knowledge how level k 
determines the agents’ knowledge.” 

We can further strengthen Proposition 3.8 by further weakening the hy- 
potheses: Let f be a knowledge structure, and let k be a fixed natural number. 
We say that agent i knows in f that level k determines the agents’ knowledge if 
whenever g = (go, g1 . . . ) and g’ = (gh, gf , . . . ) are knowledge structures 
such that (a) f - ig,  (b) f -ig‘, and (c) the prefixes (go , . .  . , g k )  and 
(g& . . . , g i )  are identical, then g = g’. Intuitively, this says that level k com- 
pletely determines the knowledge structure, among those knowledge structures 
that agent i considers possible. We say that it is common knowledge in f that 
level k determines the agents’ knowledge if in every knowledge structure 
reachable from f, every agent knows that level k determines the agents’ 
knowledge. Assume for now that f is a knowledge structure where for some k, 
each agent knows that level k determines the agents’ knowledge. It turns out 
that this condition is not sufficient to guarantee that f completely characterizes 
the agents’ knowledge, even if k = 0, that is, even if each agent knows that the 
state of nature determines the agents’ knowledge. Nevertheless, we can show 
that this assumption (that for some k, each agent knows that level k de- 
termines the agents’ knowledge) is sufficient to guarantee that the knowledge 
structure characterizes the agents’ o-knowledge. Note that such knowledge 
structures f provide an example, as promised before Proposition 3.2, where the 
knowledge structure characterizes the agents’ o-knowledge but not the agents’ 
knowledge. I f f  is a knowledge structure where for some k, it is common 
knowledge that level k determines the agents’ knowledge, then f characterizes 
the agents’ knowledge. This is because every knowledge structure reachable 
from f then characterizes the agents’ w-knowledge, and so by Theorem 3.4, it 
follows that f characterizes the agents’ knowledge. 

Notice that the definition of common knowledge that level k determines 
the agents’ knowledge is different from our earlier definition of common knowl- 
edge how level k determines the agents’ knowledge. It is common knowledge 
in f that level k determines the agents’ knowledge if in every knowledge 
structure g reachable from f, every agent knows that level k determines 
the agents’ knowledge. It is possible, however, that there are two different 
knowledge structures g and g’, both reachable from f, that have the same 
prefix through level k. This cannot happen if it is common knowledge how 
level k determines the agents’ knowledge. It is not hard to show that “com- 
mon knowledge how” implies “common knowledge that”. H 

4. An alternative view of -adequacy 

How does the characterization of knowledge in knowledge structures relate to 
the characterization of beliefs in belief structures? To answer this question, we 
now provide another necessary and sufficient condition for when a knowledge 
structure characterizes the agents’ knowledge. This time, we consider when it 
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is the case that there is enough information in a knowledge structure to deter- 
mine what other knowledge structures each agent considers possible. 

Let f = < f o , f i ,  f2,. . . > be a knowledge structure. What are the possibil- 
ities for the set 9' of knowledge structures that agent i considers possible? 
That is, what are the possible values of f,(i) for extensions (f, f,) off  to an 
(a+ 1)-world? If f characterizes the agents' knowledge, then 8 would be 
precisely f"' = {g I f -i g}. On the other hand, if agent i has more information 
than is described in f, then he might consider only some proper subset of f-' 
possible. Notice that if w E h ( i )  for some k, so that agent i considers w pos- 
sible, then 9 should contain some knowledge structure f '  such that w is a 
prefix off'. We say that a set 9 of knowledge structures is a coherent set of 
possibilities for agent i at f if 

P1. f E 8. 
P2. 9' E f"'. 
P3. If w E fk(i) for some k > 0, then there is a knowledge structure f' E 8 

such that w is a prefk off'. 

Condition P1, which is analogous to the correctness condition K1, says that 
the agent considers f as a possibility. Condition P2, which is analogous to 
condition K2, says that the agent has at least as much information as is 
contained in f. Condition P3, which is analogous to condition K3, is an 
extendibility condition. 

Let 9 be a set of knowledge structures, and let f and f '  be members of 8. 
It is easy to see that 8 is a coherent set of possibilities for agent i at f iff 9' is a 
coherent set of possibilities for agent i at f'. Therefore, we say that 9 is a co- 
herent set of possibilities for agent i if it is a coherent set of possibilities for 
agent i at f, for every f E 8. 

As expected, agent i always has at least one coherent set of possibilities at 
f, namely f - I .  

Lemma 4.1. f"' is a coherent set ofpossibilities for agent i at f. 

Proox Condition P1 holds, since f yf. Condition P2 holds, since f-' G f"'. 
Condition P3 follows immediately from Theorem 3.1. 

If there is only one coherent set of possibilities at f for each agent i, then we 
might expect that f characterizes the agents' a-knowledge. The following 
result shows that this is indeed the case. 

Theorem 4.2. The knowledge structure f characterizes the agents' o-knowledge 
iffthere is only one coherent set ofpossibilities at f for each agent i. 

Proox Assume that there is only one coherent set of possibilities at f = 
Vo,fi,. . .) for each agent i. Let (fo,fi,. . . ,f,) be an (a+ 1)-world that 
extends f. It follows easily from the consistency conditions on (a + 1)-worlds 
that f,(i) is a coherent set of possibilities at f, for each agent i. So by as- 
sumption, f,(i) is uniquely determined by f, for each agent i. Therefore, by 
definition, the knowledge structure f characterizes the agents' o-knowledge. 

Conversely, assume that there are two distinct coherent sets of pssibil- 
ities at f = cfo,l;, . . . ), for some agent i. Let us denote these two distinct 
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coherent sets by 8 and 8'. Define f, by letting f,(i) = 8, and f,(j) = f-j 
for j # i. Similarly, define fk by letting fk( i )  = 8', and f : ( j )  = f-j for j # i. 
It is straightforward to verify that (&,A, .  . . , f , )  and (fo,h, .  . . , f : )  
are distinct extensions of f. Therefore, f does not characterize the agents' 
w-knowledge. 

Thinking in terms of coherent sets of possibilities gives us some insight into 
why belief structures do characterize the agents' beliefs. We say that a set 8 of 
knowledge structures is limit closed if a knowledge structure g = (go ,  91, . . . ) 
is in 8 whenever, for all k, there is a knowledge structure g k  E 8 such that 
(go,. . . , gk) is a prefix of g k .  Thus, 8 is limit closed if, whenever every finite 
prefix of a knowledge structure appears in 8, then the whole knowledge 
structure appears in 9. 

The next result shows that f yi is limit closed. A coherent set of possibilities 
need not, however, be limit closed in general. As the next result shows, if it is 
limit closed, then it must in fact be f %i. 

Proposition 4.3. 9' is a limit-closed coherent set of possibilities for agent i at f 
IflS = f";. 

Proofi By Lemma 4.1, f"; is a coherent set of possibilities for agent i at f. To 
show that it is limit closed, let g = (go ,  91,. . . ) be a knowledge structure such 
that for all k, there is a knowledge structure g k  E f"' where ( g o , .  . . , gk) is a 
prefix of g k .  We want to show that f w i g .  Since f -i gk, we have fk(i) = gk(i). 
Since this is true for every k, it follows that f -i g .  So g E f"', as desired. 

For the converse, suppose that 8 is a limitclosed coherent set of possibil- 
ities for agent i at f. Since B E fy i  by condition P2, we need only show that 
f"' c 8. Assume that g = (go, 91, . . . ) E f"', that is, f -i  g .  We want to show 
that g E 8. By K1, for all k we have ( g o , .  . . , gk) E gk+l (i) .  Since f -i g ,  we 
must have gk+l ( i )  = fk+l ( i ) .  Hence, for all k, we have (go,. . . , gk) E fk+l(i). 
It follows from P3 that for every k, there is a knowledge structure g k  E 8 such 
that (go,. . . , gk) is a prefix of g k .  Since B is limit closed, we have that g E 8, 
as desired. 

Proposition 4.3 tells us that if every coherent set of possibilities for each 
agent i at f is limit closed, then there is only one coherent set of possibil- 
ities, namely f"'. It then follows from Theorem 4.2 that f characterizes the 
agents' a-knowledge. Combining Theorem 3.4, Lemma 4.1, Theorem 4.2, 
and Proposition 4.3, we immediately get the following characterization of 
adequacy. 

Theorem 4.4. A knowledge structure f characterizes the agents' knowledge iy 
for every knowledge structure g reachable from f and each agent i, every coher- 
ent set of possibilities for i at g k limit closed. 

Limit closure can be viewed as a continuity condition and, as we have 
shown, it is essentially this continuity that is necessary for knowledge struc- 
tures to characterize the agents' knowledge. Since the results of [BE79, MZ851 
show that all belief structures characterize the agents' beliefs, we would expect 
there to be some continuity condition implicit in the construction of belief 
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Structures. As Lipman [Lip911 observed, the A operator used in constructing 
belief structures can be viewed as a continuous operator. As we now show, 
this continuity arises from the fact that probability measures are assumed to 
be countably additive. (We remark that the view of countable additivity as a 
continuity condition is quite standard.) Limit closure says that if all finite 
prefixes of a knowledge structure are considered possible, then so is the 
knowledge structure itself. Analogously, it follows from countable additivity 
that the probabilities of the finite prefixes of a belief structure determine the 
probability of the belief structure. 

We now show that without countable additivity of probability measures, it 
would not necessarily be the case that such (modified) belief structures 
completely characterize the agents' beliefs. In particular, we give an example 
where the probability measure is only finitely additive, rather than countably 
additive, and where the resulting belief structure does not completely charac- 
terize the agents' beliefs. The definition of belief structures remains un- 
changed, except that we now allow probability measures that are only finitely 
additive, and not necessarily countably additive. 

Example 4.5. Our example is a variant of Example 3.10. Again we have two 
possible states of nature, p and p ,  and three agents, 1,2, and 3. Agents 1 and 3 
find out whether or notp is true, while 2 does not. Initially, agent 2 considersp 
and p equally likely. I f p  is true, then agents 1 and 2 start to communicate. 
Suppose that it is common knowledge that agents 1 and 2 assign probability 
1/2 to the (k + 1)" message arriving, given that k messages have arrived, while 
agent 3 assigns probability 1 to the (k + 1)" message arriving, given that k 
messages arrive. Intuitively, agent 3's beliefs are incompatible with those of 
agents 1 and 2. Moreover, we assume (quite unrealistically!) that (it is com- 
monly known that) the time for the k* message to arrive is 1/2k. Thus, all 
communication has ended by time 1. We now consider the agents' beliefs at 
time 1. 

In a fashion analogous to Example 3.10, we can construct finite prefixes of 
belief structures by induction on length. In fact, there is a one-to-one corre- 
spondence between the prefixes of length k of belief structures that now arise 
and the k-worlds that we constructed in Example 3.10. Again, there are two 
prefixes of length 1, namely (p) and (p), which we now denote UI,- . I  and u1,o 
respectively. There are three possible prefixes of length 2, analogous to the 
three 2-worlds in Example 3.10. More generally, for all k 2 1, there are pre- 
cisely k+ 1 prefixes of length k that form a support for all the probability 
measures that arise; we denote these u ~ , - I ,  V k , o , .  . . , Uk,k-l. Suppose uk,j = 
<bo, . . . ,bk-l). If j = -1, then bk-l(l) and bk-1(3) both assign probability 1 
to uk-1,-1, while bk-1(2) places probability 1/2 on each of uk-l , - l  and u k - l , ~ .  
If 0 I j I k - 1, then bk-1(3) places probability 1 on uk-1,k-z (recall that 
agent 3 assigns probability 1 to every message arriving). If 0 I j < k - 1 and j 
is even, then bk-l(l) places probability 1/2 on each of u k - ~ , ,  and uk-l , j+l ,  
while bk-1(2) places probability 1/2 on each of u k - ~ , ~ - l  and 11k-1,~. The situa- 
tion is similar i f j  is odd. Finally, if j = k - 1, then b k - l (  1) and bk-l(2) both 
place probability 1 on uk-1,k-i. 

So far all the measures that have arisen have had finite support. In this case 
there is no distinction between finitely and countably additive measures. The 
difference arises when we consider complete belief structures. We have belief 
structures b-1, bo, bl, . . . , b, that are the obvious analogues to f-1, fo, f l  , . . . , 
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f,. Suppose j 2 0. Is there a unique extension of bj of length o + l? If we 
consider only countably additive probability measures, then the results of 
[BE79, MZ851 tell us that there is. In fact, it is easy to see directly that this is 
so. For suppose that (bj,b,) is such an extension. Recall that when we con- 
sidered extensions of fj, what caused problems was f ,(3).  But if we consider 
countably additive measures, then b,(3) is determined. Since agent 3 is certain 
that all messages arrive, b,(3) places probability 1 on the belief structure b,, 
since it must place probability 0 on b, for j # 00, by the consistency con- 
straints. This is no longer the case if we move to finitely additive measures. 
For each u E [0,1], we now show that there is a finitely additive measure that 
places probability 0 on bj for all j # co and probability a on b,. This follows 
from the well-known result that there exists a finitely additive probability 
measure on the integers that assigns probability 0 to each finite subset. For 
completeness, we sketch the proof here. 

Given a set U, ajilter 9 on U is a nonempty set of subsets of U such 
that 

1. 0 $ % 7  

2. 9 is closed under finite intersections, so that if A, B E %, then A n B E 9, 
3. % is closed under supersets, so that if A E % and A c B, then B E %. 

An ultrutlter on U is a filter that is not a proper subset of any other filter. It is 
easy to show that if % is an ultrafilter on U and if A E U ,  then either A or its 
complement is in 9, but not both [BS74, Lemma 3.11. It is also easy to see 
that if u E U ,  then P,, = {A c U : u E A} is an ultraf3ter on U. Ultrafilters of 
the form 9,, are called principal ultra$lteers. It is well-known that every infinite 
set has a nonprincipal ultrafilter [BS74, Lemma 3.81, that is, an ultrafilter 
where no member is a singleton set. 

Let % be a nonprincipal ultrafilter on the set B = {b-1, b, bl, . . .}. We 
define a function pa on Bt = B u {b,} as follows. If A E Bt, then 

ifb,$A, a n d A 6 9 ,  Io 
{:-a i fb ,$AandAEF,  

pa(A)  = 
if b, E A and A - {b,} 4 F, 

b if b, E A  and A -  {b,} E F .  

We leave it to check that pa is indeed a finitely additive probability measure. 
Clearly pa({bm}) = u and pa({bj}) = 0 for j # co. Finally, it is easy to see 
that there is an extension (bj, b;} of bj such that bE(3) = pa. In particular, it 
follows that if we consider finitely additive probabilities, then the first o levels 
of a belief structure do not characterize the agents’ beliefs. 

5. Adequacy revisited 

We have seen that, in general, knowledge structures do not characterize the 
agents’ knowledge. How serious a problem is this? That depends on the events 
we are interested in. As shown in [FHV91], if we are interested only in com- 
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mon knowledge of events, then knowledge structures are indeed adequate, 
even if they do not characterize the agents’ knowledge. But having the same 
common knowledge is not the same as having the same information. For 
more complicated events, we need to go further out in the hierarchy. These 
questions are addressed in [FHV91] in a logbtheoretic framework; we re- 
consider them here in an event-based setting, Our results also give us a better 
understanding of the relationship between Aumann structures and knowledge 
structures. 

One way to approach the adequacy issue is to consider an Aumann struc- 
ture with .F(S), the set of knowledge structures over S, the set of states of 
nature, as its state space. (Brandenburger and Dekel pD93] use an analogous 
construction, except, for them, the state space of the Aumann structure is the 
set of belief structures over S.) Given, however, that knowledge structures do 
not completely describe the agents’ knowledge, it does not seem right to take 
the state space to be .F(S‘). Instead, we consider a more general framework. 
Let us consider an Aumann structure with state space T such that every state 
t E T is associated with a knowledge structure f‘ E 9 ( S ) .  Intuitively, we can 
think of the knowledge structure f as dehing the agents’ knowledge at state 
t ,  through the first w levels. Let t : T -i 9 ( S )  be the mapping such that 
t ( t )  = f‘. We allow a knowledge structure to be associated with more than 
one state; since, as we have shown, knowledge structures do not in general 
completely characterize the agents’ knowledge, there may be two states of the 
world where the agents’ knowledge through the first w levels are identical, al- 
though the agents’ knowledge differ in the two states. We say that a partition 
x. of T is coherent (with respect to z) if, for every state t E T, the set of 
knowledge structures associated with the states in 3Y;.(t) form a coherent set of 
possibilities for agent i. Intuitively, since the knowledge structures associated 
with the states describe the finite levels of knowledge of the agents, we would 
expect the partitions to respect this knowledge and therefore be coherent. 
We say that A = (T, $1,. . . , Xn) is a coherent Aumann structure based on 
( S ,  T ,  t )  if each of XI , .  . . , Xn is coherent with respect to t. We may still have 
a lot of freedom in defining partitions in a coherent Aumann structure. We 
now examine the effect of defining different partitions. Our goal is to under- 
stand whether defining different partitions of T can affect the knowledge of the 
agents in the resulting Aumann structures. 

Note that there are two state spaces involved in Aumann structures where 
the states are associated with knowledge structures from F ( S ) :  the state space 
S for the knowledge structures and the state space T for the Aumann struc- 
ture. We identify an event E E S with the set of all states t E T such that the 
state of nature in f‘ is in E. 

Let A1 = (T, XI , .  . . , Xn) and A2 = (T, Xi , .  . . , Xk) be two coherent 
Aumann structures based on (S, T, t). Assume E E S. A priori, the event 
C ( E )  could be different in A1 and Az,  since in A1, we use the partition X to 
determine the Ki operator, whereas in A2 we use 3.’. Intuitively, since 
knowledge structures do not characterize the knowledge of the agents, differ- 
ent partitions may result in different common knowledge by the agents. We 
use the notation C A  (and, similarly, KA) when we want to emphasize that we 
are considering the operators C and Ki determined by the partitions in 
Aumann structure A. The next theorem shows that if A1 and A2 are both 
coherent (and use the same association of states to knowledge structures), 
then CAI(E) = C A 2 ( E ) .  
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Theorem 5.1. If A and A2 are coherent Aumann structures based on ( S ,  T ,  7 )  

and E c S then C ‘ ( E )  = CA2(E) .  d 

Proofi This result follows immediately from Theorem 5.2 below. fl 

Theorem 5.1 can be viewed as saying that there is a precise sense in which 
knowledge structures do completely characterize the common knowledge that 
agents have regarding events defined by subsets of S. 

We are often interested, however, not just in common knowledge of events 
defined by subsets of S, but in common knowledge of more complicated 
events. For example, we might be interested in the fact that it is common 
knowledge that agent 3 does not know that a message was sent from agent 1 
to agent 2. If the state space S is defined by events of the form “a message was 
sent from agent i to agentj”, then typically the event “agent 3 does not know 
that a message was sent from agent 1 to agent 2” is not an event in S, so 
Theorem 5.1 does not apply. Furthermore, common knowledge is just one 
aspect of an agent’s information. Agent 1 might know that agent 2 knows that 
a message arrived, without this fact being common knowledge. Nevertheless, 
this could well be an important piece of information. We can strengthen the 
previous result so that it deals with common knowledge of events that are not 
necessarily defined by subsets of S, and also deals with knowledge that is not 
common knowledge. 

Suppose A is a coherent Aumann structure based on (S, T, 7) .  We 
can define the ck-events over S in A, denoted ckA(S), as the result of starting 
with the events defined by subsets of S, and then closing off under com- 
plementation, finite intersection, and the knowledge and common knowledge 
operators. 

Theorem 5.2. If A1 and A2 are coherent Aumann structures based on (S ,  T ,  7 )  
then ckAl ( S )  = ckAz(S). Moreover if E E ckA, ( S )  and i is an agent, then 
@ ( E )  = K p ( E )  and CAI(E) = Cdz(E) .  

Proofi See Appendix B. 

Theorem 5.1 tells us that knowledge structures characterize common 
knowledge that agents have regarding events defined by subsets of S. Theorem 
5.2 tells us even more; knowledge structures in fact characterize knowledge 
and common knowledge of more complicated events, obtained from events 
that are subsets of S and closing under complementation, finite intersection, 
and the knowledge and common knowledge operators. As was suggested in 
Example 3.10, the situation changes when we consider common knowledge 
among coalitions of agents. We can define a coalition common knowledge 
operator CG in Aumann structures, for every coalition G of agents, along the 
same lines as we defined the common knowledge operator. Namely, we define 
the operator OG (“everyone in coalition G knows”) on events by taking 
OG(E)  to be the intersection over i E G of the events Ki(E). The event CG(E) 
is then the intersection of the events OG(E),  OG(OG(E)) ,  and so on. The 
common knowledge operator C is the special case where G is taken to be all 
the agents. 

Given an Aumann structure A 1 as above, we can define the cck-events of S 
in A1, denoted cckAl (S), to be the result of closing off the sets of events also 
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under the coalition common knowledge operators. As Example 3.10 suggests, 
Theorem 5.2 fails if we replace the ckevents by the c c k e ~ e n t s . ~  

We can get an analogue to Theorem 5.2 if we carry the construction of the 
hierarchy somewhat further into the ordinals. That is, we must consider 1- 
worlds, for 1 > o. As we now show, if all we care about are the cckevents, 
then it suffices to take L = w2. 

Let . P 2 ( S )  consist of all 02-worlds over S. We say that B c Sm2(S)  is 
an w2-coherent set ofpossibilities for agent i at f E P 2 ( S )  if, as before, f E B 
and B c f“’, and the obvious extension of P3 to level w2 holds: namely, if 
w E f . ( i )  for some a < w2, then there is an w2-world f’ E B such that w is a 
prefix of f’. We now consider Aumann structures each of whose states 
is associated with a knowledge structure in P ” ( S ) .  We say that A = 
(T, XI ,  . . . , X n )  is an 02-coherent Aumann structure based on (S ,  T ,  z) if each 
of XI, .  . . , Xn is w2coherent (using the obvious definition of 02coherent for 
partitions). 

Theorem 5.3. If A1 and A2 are w2-coherent Aumann structures based on 
(S,  T ,  t) then cckA, ( S )  = cck~*(S) .  Moreover, i f E  E cckA, (S) ,  i f i  is an agent, 
and if G is a group of agents, then K?’(E) = K;’(E) and Cil ( E )  = C,$(E). 

Prooj See Appendix B. 

We remark that it can be shown that we actually need to consider struc- 
tures of length o2 in order to get a result such as Theorem 5.3 (cf. Theorem 
5.14 in [FHV91]); that is, no smaller length suffices. 

The results of this section help explain the apparent inconsistency men- 
tioned in the introduction that, in spite of the connection between knowledge 
structures and Aumann structures in terms of knowledge and common 
knowledge, it still happens that knowledge structures are not an adequate de- 
scription of an agent’s knowledge. The point is that there are richer notions 
than simply knowledge and common knowledge, such as coalition common 
knowledge, that knowledge structures do not capture. 

6. Counterfactual information 

The focus so far has been on the issue of how much knowledge is captured by 
knowledge structures. As we observed in the introduction, however, knowl- 
edge structures also seem to be deficient in another manner, since they capture 
only worlds that are commonly known to be possible, while omitting worlds 
that are merely conceivable (such as ones where Ron Fagin is President). 
Clearly, this deficiency is orthogonal to the issue of the length of the hierarchy; 
it is a function of the definition of knowledge structures, and not of the hier- 

As the proof of Theorem 5.2 in Appendix B shows, the problem lies in the combination of 
complementation and coalition common knowledge. If we did not close off the ck and cck events 
under complementation, then Theorem 5.2 would hold even with coalition common knowledge. 
In particular, if we are interested in a statement that agent 3 knows that it is common knowledge 
between agents 1 and 2 that E holds (as opposed to agent 3 knowing that it is not common 
knowledge between agents 1 and 2 that E holds, as is the case in Example 3.10), then the analogue 
of Theorem 5.2 does hold. 
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archical approach. We now show how a generalization of knowledge struc- 
tures can capture counterfactual information. 

There has been a great deal of work done on modeling counterf‘actuals 
[Lew73]. We present here a somewhat naive version of the standard approach. 
Our goal is not to provide a sophisticated model of counterfactuals, but to 
show that counterfactuals can be dealt with using the hierarchical approach. 

The basic idea is to augment the definition of knowledge assignments. As 
before, a 0th-order extended knowledge assignment fo is a member of S, that is, 
a state of nature (which, intuitively, corresponds to the “real world”). We call 
(fo) an extended 1-world. Assume inductively that extended ~c-worlds have 
been defined for all K with 1 I K < 1. Let U, be the set of all extended K- 
worlds, for K < A. If I I K < A, a Kth-order extended knowledge assignment 
is a pair f, = (f{,f,‘) of functions that associates with each agent i a set 
f { ( i )  E U, of “possible” extended ~-worlds, and a set f ,’(i)  c U, of “con- 
ceivable” extended  w worlds such that f { ( i )  E f : ( i ) .  Intuitively, the conceiv- 
able worlds include not only the possible worlds, but also those that the agent 
does not consider possible (such as a world where Ron Fagin is President). If A 
is a limit ordinal, an extended A-world is a sequence f = (fo, fi, . . . ) of length 
A such that for each K < 1, we have that f, is a Kth-order extended knowledge 
assignment and each K-prefx (i.e., prefix of length K) is an extended K-world. 
If A = 1’ + 1, there are again some consistency conditions that must satisfy, 
which extend the consistency conditions that knowledge worlds are required 
to obey. 

What are the consistency conditions? Since f is now playing essentially 
the same role as f, did before, we require the following analogues of the 
original consistency conditions K1-K3: 

Kl’. f,,I E f:,(i). 
K2’. If (go, 91,. . . ) E $f( i ) ,  then gK(i) = x(i) for all K with 0 < K < A’. 
K3’. If 0 < K < A’, then g E f : ( i )  iff there is some h E f i , ( i )  such that 

g = h<K* 

We also require, as we stated above, that 

K4’. f i f  ( i )  G fit ( i ) .  

What about the analogues of conditions Kl’-K3’ for fit? The analogue of 
condition K1’ holds automatically, since f:,(i) E f i , ( i ) .  We require that the 
following analogue of condition K3’ hold: 

K3”. If 0 < K < A’, then g E f i ( i )  iff there is some h E f ; , ( i )  such that 

The reason we require condition K3” is that we think of each level as giving a 
finer and finer description. We do not necessarily require that the analogue 
of condition K2’ hold. Intuitively, condition K2’ says that the agents are 
introspective, and we do not require an agent to be introspective when con- 
sidering conceivable worlds. Of course, we could easily impose such condi- 
tions on extended knowledge assignments, as well as further conditions to 
capture more sophisticated counterfactual information. 

In this extended setting, we can again ask how far out into the ordinals we 

g = h<K. 
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need to go. And, just as before, this will depend on the events of interest. 
There are cases when o levels suffice, and others where we need to go much 
farther out into the ordinals. 

7. Related results 

There are a number of results of Fagin [Fag941 and Heifetz and Samet [HS93, 
HS98] that are related to ones proved here; we briefly describe them in this 
section. 

It is shown in [FHV91] that for every Aumann structure5 A and state s of 
A, and for every ordinal I, there is a I-world that in a precise sense captures 
the knowledge of the agents through level I at the state s. We say that the state 
s is represented by this A-world. Fagin [Fag941 defines the distinguishing ordi- 
nal of an Aumann structure A to be the least ordinal y such that whenever s 
and t are states of A that are represented by the same y-world, then s and t are 
represented by the same I-world for every A. Heifetz and Samet refer to the 
distinguishing ordinal as the order of the partition space in [HS93] and as the 
rank of the partition space in [HS98]. Roughly speaking, we can think of 
the distinguishing ordinal of A as describing how far out in the knowledge 
hierarchy we need to go to completely describe the knowledge of agents in a 
state of A. 

Fagin and, independently, Heifetz and Samet, showed the following result. 
Let y be an infinite ordinal with cardinality K (for example, if y is a countable 
ordinal, then K is No). Then there is an Aumann structure with at most K states 
and with distinguishing ordinal y. For example, if y is a countable ordinal, 
then the corresponding Aumann structure can be taken to have a countable 
state space. Heifetz and Samet prove the result by giving an elegant explicit 
example, the “Sobers-Drunks Example”. This result shows that, in general, 
there is no bound on how far in the hierarchy we have to go to describe the 
agents’ knowledge. 

Describing the agents’ knowledge in a state of an Aumann structure is not 
the same as characterizing it in the sense defined in this paper. Let A be an 
Aumann structure and let s be a state of A. Define the uniqueness ordinal6 of 
the Aumann structure A to be the least ordinal p such that if s is a state of A 
and f is the p-world that represents s, then f characterizes the agents’ knowl- 
edge. A priori, it is not at all clear that such an ordinal p exists. However, 
Fagin and, independently, Heifetz and Samet, showed that indeed, every 
Aumann structure has a uniqueness ordinal. In fact, if y is the distinguishing 
ordinal and p is the uniqueness ordinal, then y I p I y + o. 

Since the distinguishing ordinal may be arbitrarily large, and since the 
uniqueness ordinal is at least as big as the distinguishing ordinal, it follows 
that the uniqueness ordinal may be arbitrarily large. This implies im- 
mediately the result stated (informally) in the introduction that no ordinal 
level of knowledge is sufficiently large to describe completely an agent’s 
uncertainty. 

The paper actually uses Kripke structures rather than Aumann structures, as does [Fag!J4], but 

This is the term used by Fagin. Heifetz and Samet define this notion in terms of “knowledge 
in the S5 case, the results convert easily into results about Aumann structures. 

morphims’’. 
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8. Concluding remarks 

As we have seen, the question of how far we have to extend the hierarchy to 
capture the agents’ knowledge is a somewhat subtle one. Although the results 
of EBE79, MZ851 show that w levels suffice for belief structures, this result 
depends on countable additivity of probability functions, and does not hold if 
we consider knowledge rather than belief defined probabilistically.’ On the 
other hand, our results show that, even if we need to go possibly far beyond w 
levels to (completely) characterize the agents’ knowledge, for many events of 
interest, w (or w2) levels suffice. 

It could be argued that knowledge structures and knowledge worlds as 
defined here are perhaps not the closest non-probabilistic analogue to belief 
structures.’ A somewhat closer analogue would result if we replaced the cor- 
rectness requirement K1 by the much weaker requirement fAt( i )  # a. This 
would result in a notion closer to the traditional philosopher’s notion of be- 
lief.g The arguments given here apply without change to show that countable 
hierarchies still do not suffice if we use this nonprobabilistic notion of belief. 
Indeed, the arguments of [Fag941 show that, in general, we need to again go to 
arbitrarily large ordinals to characterize the beliefs of agents. The key point is 
that without some sort of continuity condition (which probability gives us), or 
states of nature rich enough to determine the agents’ knowledge, or other 
equally strong conditions, we need to go well beyond the first w levels in gen- 
eral to characterize an agent’s knowledge or belief. 

A Proofs for Section 3 

Before we prove Theorems 3.4 and 3.5, we need another lemma. We say that 
two ( A  + 1)-worlds (fo, . . . , h) and (go,. . . , gA) differ on agent i if gA(i) # 

Lemma AS.  Let i and j be distinct agents. Let f and g be A-worlds (not neces- 
sarily distinct) such that f -i g .  Assume that there is a ( A  + 1)-world (g, gA) 
extending g that differs from g+ on agent j .  Then there is a ( A  + 2)-world 
( f t , ~ + l )  extending f+ that diflersfrom F+ = (F)+ on agent i. 

Proofi Suppose g’ = (g, gn) is a (A + 1)-world such that gA(j) is not thej-no- 
information extension of g. Without loss of generality, we can assume that 
gA(i) is g“’. Let f+ = (f,h) and let f++ = (f,fn,h+l). Clearly f+ wig’ .  
Therefore, g’ ~ h + ~ ( i ) ,  since h+l(i) = (ft)“‘. Furthermore, g’ # f+. Define 

show that f’ = (F, f; is a (A + 2)-world. The correctness condition K1 
holds, since g‘ # f+; t ie  introspection condition K2 is immediate; and the 
extendibility condition K3 holds, since g+ is in &+l(i) and has the same A- 
prefix g as g’. Clearly f’ differs from ft+ on agent i. 

fi+l so that 8+1 ( A  = h+r (i) for i z i, and A+1 ( i )  = h+l (i) - k’}. We now 

’ We remark that (Lip911 gives yet another example of a context in which we need to go beyond 
w levels. 
* We thank one of the referees of the paper for bringing this point to our attention. 

for a discussion of these notions. 
Technically, it would satisfy the axioms of the modal logic KD45 rather than S5; see PHMV951 
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We can now prove Theorems 3.4 and 3.5. We prove the results simulta- 
neously. We repeat the statements for the convenience of the reader. 

Theorem 3.4. A knowledge structure f characterizes the agents’ knowledge 
i f  every knowledge structure reachable from f characterizes the agents’ w- 
knowledge. 

Theorem 3.5. A knowledge structure characterizes the agents’ knowledge ir it 
characterizes the agents’ knowledge through the first w + w levels. 

Proof of Theorems 3.4 and 3.5: We shall show that the following are 
equivalent: 

1. f characterizes the agents’ knowledge. 
2. f characterizes the agents’ knowledge through the first w + w levels. 
3. Every knowledge structure g reachable from f characterizes the agents’ 

w-knowledge. 

(1) + (2) is immediate. 
(2) + (3): We shall show that if e and h are knowledge structures with 

e -i h, and if h does not characterize the agents’ (w + k)-knowledge for some 
natural number k, then e does not characterize the agents’ (w + k + 2)- 
knowledge. It follows easily that if g is reachable from f by a path of length 
m and g does not characterizes the agents’ w-knowledge, then f does not 
characterize the agents’ (w + 2m)-knowledge. This is sufficient to prove that 
(2) * (3). 

So assume that e -i h, and h does not characterize the agents’ (w + k)- 
knowledge for some natural number k. Without loss of generality, we can as- 
sume that k is minimal with this property. Since h does not characterize the 
agents’ (w + k)-knowledge, we know that there are two distinct (w + k + 1)- 
worlds hl and hz extending h. Now one (w + k  + 1)-world extending h is 
obtained from h by applying the one-step no-information extension k + 1 
times; without loss of generality, we can assume that hl is this (w + k + 1)- 
world. Since k is minimal, there is an (w + k) world h’ extending h such that 
hl = (h’, ho+k), h2 = (h’, hL+k), and some agent j such that ha+&) # 

Let e’ be e if k = 0, and the result of applying to e the one-step no- 
information extension k times if k > 0. Notice that e‘ - j  h’. We note for later 
use that, therefore, (e’)’ -i (h’)’ = hl .  There are two cases, depending on 
whether or not j = i. 

Assume first that j # i. By Lemma A.l, where the roles of i ,  j,f,.g are 
played by i, j,e’, h’ respectively, it follows that there are two distinct 
(w + k + 2)-worlds extending (el)’. Therefore, e does not characterize the 
agents’ (w + k + 1)-knowledge. Hence, e does not characterize the agents’ 
(w + k + 2)-knowledge, which was to be shown. 

Now assume that j = i. We can assume that there are at least two agents, 
since otherwise, by Proposition 3.2, the knowledge structure is completely 
determined by its first two levels. Let / be some agent other than agent i. We 
apply Lemma A. 1, where the roles of i ,  j, f ,  g are played by 4,  i, h‘, h’ respec- 
tively, and find that (h‘)’ = hl has two extensions to (w + k + 2)-worlds that 
differ on agent f‘. We apply Lemma A.l again, where the roles of i ,  j ,  f, g are 

hL+k(j)- 
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played by i ,  d ,  (el)', (h')' respectively, and find that (e')'' has two extensions 
to (w + k + 3)-worlds that differ on agent i. Hence, e does not characterize the 
agents' (w + k + 2)-knowledge, as desired. 

(3) + (1): Let C be the set of knowledge structures reachable from f. We 
now show that every member of C characterizes the agents' knowledge. If not, 
then let 1 be the minimal infinite ordinal such that there is some g E C that 
does not characterize the agents' A-knowledge. By assumption, 1 > w. Let 
g' = (g, g o , .  . . , g l )  be a (A + 1)-world extending g. Let i be an arbitrary 
agent. We must have go(i) = g-i, or else there would not be a unique exten- 
sion of g to level o. By extendibility, gl(i)  must contain an extension (of the 
appropriate length) of each knowledge structure e E g W i ,  and only such ex- 
tensions. But there is at most one such extension for each e E g-i; this follows 
by definition of A and the fact that e E C (since e y g ) .  So g l ( i )  is uniquely 
determined. Since this is true for each agent i, it follows that g l  is uniquely 
determined, a contradiction. 

The next lemma is a refinement of Theorem 3.3. The proof is obtained in a 
straightforward manner from the proof of Theorem 3.3. 

Lemma A.2. A knowledge structure f characterizes agent i's o-knowledge iy 
for each knowledge structure g # f such that f -i g, some finite prefx of g is 
i-uniquely extendible w. r. t. f. 

We now prove Theorem 3.6, which is a third characterization of knowl- 
edge structures that characterize the agents' knowledge, in the case where the 
state space S is finite. We first need a definition that slightly refines the notion 
of a knowledge structure characterizing the agents' o-knowledge. Let us say 
that a knowledge structure f characterizes agent i's o-knowledge if whenever 
(f, f , )  and (f, fk) are extensions off to an (w + 1)-world, then fm(i)  = fL(i) .  
Intuitively, this says that there is a unique possible value for f , ( i ) .  Clearly, a 
knowledge structure characterizes the agents' o-knowledge 8 it characterizes 
agent i's o-knowledge for each agent i. The next lemma will be useful in our 
new characterization of when a knowledge structure characterizes the agents' 
This lemma is due to R. Simon (personal communication). 

Lemma A.3. Assume that there are onlyJinitely many states. Let f be a knowl- 
edge structure and i an agent. Then fwi  zkjinite IT every member of f-' char- 
acterizes agent i's o-knowledge. 

Proofi Assume first that f"' is finite, and that g E fWi.  We must show that g 
characterizes agent i's w-knowledge. By Lemma A.2, it suffices to show that 
for each knowledge structure h # g such that g -i h (that is, such that h E f-i)7 
some finite prefix of h is i-uniquely extendible w.r.t. g. Since f"' is finite, there 
is some positive integer k such that no two distinct members off"' have the 
same k-prefix. Therefore, if h E f"i7 then the k-prefix of h is i-uniquely ex- 
tendible w.r.t. g. This was to be shown. 

Conversely, assume that f"' is infinite; we must show that some member of 
f"' does not characterize agent i's w-knowledge. Since f"i is infinite and S is 
finite, it follows by a Kiinig's Lemma argument that there is a sequence 
wl ,  w2, w3,. . . of worlds, where for each k 
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1. Wk is a k-world; 
2. wk is a prefix of Wk+l; and 
3. wk has infinitely many distinct extensions to knowledge structures in f yi .  

Let g be the knowledge structure whose k-prefix is Wk for each k. Clearly, 
g E f"'. Since f"' is infinite, there is some member h of f- '  such that h # g. 
We complete the proof by showing that h does not characterize agent i's w- 
knowledge. By Lemma A.2, it sufEces to show that no finite prefix of g is i- 
uniquely extendible w.r.t. h. But this follows almost immediately from the 
definitionofg. H 

Theorem 3.6. Assume that there are only f i i tely many states. A knowledge 
structure f characterizes the agents' knowledge $g"i isfinite for every knowl- 
e&e structure g reachable from f and every agent i. 

Proox Assume first that the knowledge structure f characterizes the agents' 
knowledge, that g is reachable from f ,  and that i is an agent. Then every 
member of g"i is reachable from f .  So by Theorem 3.4, every member of g W i  
characterizes the agents' w-knowledge. So by Lemma A.3, it follows that g"' 
is finite. 

Conversely, assume that g-i is finite for every knowledge structure g 
reachable from f and every agent i. By Lemma A.3, every member of g-i, and 
in particular g itself, characterizes agent i ' s  a-knowledge. This shows that g 
characterizes the agents' w-knowledge for every knowledge structure g reach- 
able from f .  So by Theorem 3.4, it follows that f characterizes the agents' 
knowledge. 

B Prooh for Section 5 

Theorem 5.2. If A1 and A2 are coherent Aumann structures based on (S, T ,  T )  
then ckA,(S) = ckA,(s). Moreover, if E E ckA, (S) and i is an agent, then 
Kt'(E) = K,A'(E) and CAt(E) = CA2(E). 

Proofi We need some preliminary definitions and lemmas. 

Definition B.l. Assume R E T. The k-projection of R, denoted Rk ,  consists of 
all the k-prefixes of the knowledge structures f '  such that t E R, that is, 
R k = { f : k ( t E R } .  

The operation of k-projection maps subsets of T to sets of k-worlds. We 
now define an operation mapping sets of k-worlds to subsets of T. 

Definition B.2. I f B G  wk, let B * = { t E T I f : k E B } .  A set R G T  is a k- 
cyhder set i f R  = B'for some set B E wk. (Note that i f R  is a k-cylinder set, 
then we must in fact have R =  (Rk)*.) We just say cylinder set if we do not 
need to emphasize the k. H 

Lemma B.3. The set of cylinder sets is closed under finite union and com- 
plementation (and hence, finite intersection). 
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Proofi Note that Bt = (B)* (where B is the complement of B). Hence, the 
complement of a cylinder set is a cylinder set. To see that cylinder sets are 
closed under finite unions, first note that k-cylinder sets are closed under ar- 
bitrary union, for fixed k, since (ujs,Bj)* = ujeJB;, where J i s  an arbitrary 
index set and Bj is a k-cylinder set, for all j E J. Next suppose that B is a k- 
cylinder set and C is an mcylinder set, with k I m. Assume that B' c W, 
consists of all the rn-worlds whose prefixes are in B. It is easy to see that 
B* = (B')*. Moreover, B* u C* = (B' u C)*. Thus, the union of a k-cylinder 
set and an rn-cylinder set is a max(k, m)-cyIinder set. H 

Next we show that cylinder sets are also closed under applications of the K j  

operator. 

Lemma B.4. If A1 and A2 are coherent Aumann structures based on (S ,  T ,  z), 
and R E T is a k-cylinder set, then K t '  ( R )  is a (k + 1)-cylinder set. Morever, 
KA'(R) = KA2(R). 

Proofi Suppose A,  = (T, XI, .  . . , Xn). By definition, KA1 (R)  = { t  E TI 
Xj(t)  G R } .  We claim that 

Note first that 

t E KA1(R) iff %(t) c R. (2) 

We now show that 

x.(t) c R iff x(tlk c R ~ .  (3) 

The fact that x(t) c R implies that x(t)k E Rk follows from the general 
fact that if A c B, then Ak c Bk. The opposite implication depends on the 
fact that R is a k-cylinder set. Thus, assume that x.(t)k E Rk, and that 
t' E X ( t ) ;  we must show that t' E R. Since 1' E &(t), it follows that fzk E 
%(t)', and hence f<k E Rk. Since R is a k-cylinder set, it follows, as noted 
earlier, that R = (Rk)* = { t  E TI (f')<k E Rk}. Hence t' E R, as desired. This 
proves (3). Next, we show that 

Since dl is coherent, we have that the set of knowledge structures associated 
with states in &(t) is coherent, and so is a coherent set of possibilities for 
agent i at f'. Then (4) follows fairly easily from properties P2 and P3 of co- 
herency: P2 implies &(t)k -c fi(i) and P3 implies fl(i) _C K ( t ) k .  Finally, (1) 
follows from (2), (3), and (4). Note that (1) already shows that Kt' (R)  is in- 
dependent of the partition &; it immediately follows that K"(R) = K p ( R ) .  
It is also easy to see that { t  E T IfL(i) E Rk} = { (wg, .  . . , wk)  E Wk+t I 
W k ( i )  E Rk}*, showing that KA'(R) is a (k + 1)cylinder set. 
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Although cylinder sets are closed under finite intersection, they are not 
closed under infinite intersection. Thus, even if R is a cylinder set, C A  ( R )  may 
not be. 

Definition B.5. A set R E T is closed iff R can be written as an arbitrary inter- 
section of cylinder sets. 

Note that all cylinder sets are trivially closed. The following lemma shows that 
the set of closed subsets of T is closed under certain operations. (Note that in 
this lemma we use the coalition common knowledge operator CG, which is 
defined immediately after Theorem 5.2.) 

Lemma B.6. Let A1 and A2 be coherent Aumann structures based on (S ,  T ,  z). 

(a) If J is an arbitrary index set, and if Rj is a closed subset of T for each j in J, 
then n j E J R j  is also closed. 

(b) If R is a closed subset of T, then K t ' ( R )  9 C i l  ( R )  are both closed; 
moreover KA'(R) = K p ( R )  and C i ' ( R )  = CG2(R).  

Pro03 Part (a) is immediate from the fact that closed subsets are (arbitrary) 
intersections of cylinder sets. For part (b), suppose that R is a closed subset of 
T. Then R = njBj ,  where each Bj is a cylinder set. It is easy to check that 
Kt' ( R )  = K t '  ( njB, )  = n j K t '  (B,). (The final equality is a general fact, that 
does not depend on each Bj being a cylinder set; see part (1) of Lemma B.7 
below.) By Lemma B.4, we know that KA' (Bj) is a cylinder set for all j; hence 
KA'(R) is closed, as desired. Moreover, Lemma B.4 tells us that K,!'(Bj) = 
K p ( B j )  for allj, and hence KA'(R) = K t Z ( R ) .  Since O,$(R) = n , , , K p ( R )  
and C,$(R) = n k ( O $ ) k ( R ) ,  for h = 1,2, it easily follows (using part (a)) that 
C i ' ( R )  is closed and that @ ( R )  = C$(R).  

Notice that Lemma B.6 already suffices to prove Theorem 5.1. If we could 
only extend Lemma B.6 to show that closed sets were closed under com- 
plementation, we could then easily prove Theorem 5.2, even for events formed 
using the operator CG for an arbitrary subset G of agents. The complement of 
a closed set is not, however, necessarily a closed set. In fact, Example 3.10 
shows that Theorem 5.2 is false if we can use the operator CG for any arbitrary 
subset G of agents. 

Nevertheless, because it allows only C rather than CG for arbitrary G, 
Theorem 5.2 is true. To prove it, we need a collection of sets that is closed 
under complementation, finite intersection, and the application of C and K i .  
Before we define the appropriate notion, we collect a number of well-known 
general properties of the knowledge and common knowledge operators, the 
first of which we already used in the course of proving Lemma B.6. We leave 
the proof of these properties to the reader. 

Lemma B.7. The following properties hold in all Aurnann structures: 

1. K i ( n , , , E j )  = n,, , K i ( E j )  for an arbitrary index set J. 
2.  C c ( n j ,  ,E j )  = n,, ,CG(E,) for an arbitrary index set J. 
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3. CG(CG(E>) =CG(E) 
4. Kj(C(E) u E') = C(E)  u Ki(E') 
5. CG(CG(E) u E') = CG(E) u &(El) 

Note that part (4) of Lemma B.7 is the only one that holds for C but not 
for CG (if i is not in G). The failure of part (4) for CG is the reason that The- 
orem 5.2 fails for coalition common knowledge. 

Since Ki(0)  = 0 and C ( 0 )  = 0, we obtain as a special case of parts 
(4) and (5) of Lemma B.7 (taking E ' =  0) that Ki(C(E)) = C(E) and 
C(C(E))  = C(E) .  

Definition B.8. A subset D E T is a fixedpoint set if in every coherent Aumann 
structure A based on ( S ,  T ,  7) ,  we have CA(D)  = D. A subset E G T is safe f i t  
has the form f i j = l  (Dj u Rj), where DI , . . . , Dk are fixedpoint sets and R1 , . . . , 
Rk are cylinder sets. U 

k 

Safe sets give us what we need. 

Proposition B.9. If A ,  and A2 are coherent Aumann structures based on 
( S ,  T ,  r ) ,  and E, El,  and E2 are safe, then so are El n E2, E, KA'(E), and 
C A 1 ( E ) .  Moreover, KA1(E) = KF(E)  and CAI(E) = CA2(E) .  

Proo$ Lemma B.3 says that cylinder sets are closed under finite union and 
complementation. By parts (3) and (5) of Lemma B.7, so are fixedpoint sets. 
Straightforward manipulation, using standard properties of complementation 
and union, shows that safe sets are also closed under finite union and com- 
plementation. 

(Dj u Rj) is a safe set. By parts (1) and (4) of Lemma 
B.7, KA'(E) = n ; = l K S 1 ( D j ~  Rj) = n ; = l ( D j ~ K t ' ( R j ) ) .  By Lemma B.4, 
K C 1  (Rj) is a cylinder set if R, is, so safe sets are closed under application of 
Ki  I .  Moreover, since KS1(Rj) = K 2 ( R j ) ,  we have KA'(E) = Kt*(E) .  Finally, 
note that by parts (2) and (5 )  of Lemma B.7, CAI(,?) = o k l ( D j  u CA1(Rj)) .  
By Lemma B.6 and part ( 5 )  of Lemma B.7 (taking E' = a), it follows that 
CAI (Rj)  is a fixedpoint set. So CAI (E)  is a fixedpoint set, and hence a safe set. 
Thus, safe sets are closed under application of CAI. Moreover, since CA1(Rj)  
= CA2(Rj) by Lemma B.6, we have CAI(E) = CA2(E) .  

in CkA, (5') is clearly safe. 

Suppose E = 

W 

Theorem 5.2 follows immediately from Proposition B.9, because every set 
W 

Theorem 5.3. If A1 and A2 are w2-coherent Aumann structures bared on 
( S ,  T ,  7 )  then CCkA, ( S )  = CCkA2(S). Moreover, i f E  E cckA,(S), f i  is an agent, 
and if G is a group of agents, then Kt ' (E)  = K?(E) and C$l(E) = C$(E).  

Pro08 The proof is very similar to that of Theorem 5.2, but much simpler, so 
we just sketch the details here. Given an association of states in T with w2- 
worlds, we define what it means for a set R c T to be a I-cylinder set in the 
obvious way, for an arbitrary I < m2, and take an extended cylinder set to be 
a I-cylinder set for some I < w2. The same arguments as in Lemma B.3 show 
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that extended cylinder sets are closed under finite union and complementa- 
tion. Indeed, extended cylinder sets are also closed under a limited form of 
countable union and intersection: if Rj is a +cylinder set and there exists 
I' < o2 such that A, < A' for j = 1,2,3,. . . , then n . R j  and UjRj are also 
extended cylinder sets. The argument in Lemma B.4 sdows that extended cyl- 
inder sets are closed under the application of Ki and that KAI (R) = KP(R) for 
an extended cylinder set R. Moreover, these arguments can be extended to 
show that extended cylinder sets are closed under the application of CC and 
that C$(R) = C$(R)  for an extended cylinder set R. For if R is a lcylinder 
set for A < 02, then (O$)k(R) is a (A +k)-cylinder set. Since I+ k < 
A + w < w2, it follows by our earlier observation that Czl(R) = n k ( O $ ) k ( R )  
is an extended cylinder set. Thus, every set in cck(A1) is an extended cylinder 
set, and the result follows. 

The proof of Theorem 5.3 uses the fact that whenever I <  02, then 
I + o < 02. In fact, co2 is the least ordinal /3 such that whenever 1 < p, then 
1 + w < /3. It is because of our use of this property that we cannot replace w2 
by any smaller ordinal in Theorem 5.3. 
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