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Abstract. Any notion of “closeness” in pattern matching should have the property that if A is close to B, and 
B is close to C, then A is close to C. Traditionally, this property is attained because of the triangle inequality 
(d(A,  C) I d(A,  B)  + d ( B ,  C), where d represents a notion of distance). However, the full power of the triangle 
inequality is not needed for this property to hold. Instead, a “relaxed triangle inequality” suffices, of the form 
d(A,  C) 5 c(d(A, B )  + d(B,  C)), where c is a constant that is not too large. In this paper, we show that one of 
the measures used for distances between shapes in (an experimental version of) IBM’s QBIC’ (“Query by Image 
Content”) system (Niblack et al., 1993) satisfies a relaxed triangle inequality, although it does not satisfy the triangle 
inequality. 
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1. Introduction 

Traditionally, databases have been used to store and 
retrieve textual and numerical information. More re- 
cently, applications such as multimedia have led to the 
development of database systems that can handle im- 
ages. One such system is the QBIC (“Query by Image 
Content”) system (Niblack et al., 1993), developed at 
the IBM Almaden Research Center. An experimental 
version of the QBIC system (henceforth in this paper 
called simply “QBIC”) can search for images by var- 
ious visual characteristics such as color, shape, and 
texture. While the result of a query to a traditional 
database is usually some specific set of items (e.g., the 
names of all employees in the computer science de- 
partment), the result of a query to a database of images 
might not be so well-defined. Consider, for example, a 
query that should return all items that look like a tree; 
such a query could be entered by having the user draw 

the desired tree-like shape on a screen, or by extracting 
the shape from a visual scene. Questions of the form 
“Does the shape D in the database look like the query 
tree shape Q?’ do not have definite yeslno answers 
(unlike questions of the form “Is employee E in the 
computer science department?”). Rather, the answer 
to such a question is more reasonably given as a nu- 
merical “distance” that measures how well the shape D 
matches the shape Q. The answer to the query could 
then be an ordered list of shapes from the database, 
ordered by how closely they match the query shape 
Q. This raises the issue of how to define a measure of 
“distance” between shapes. 

There is an extensive literature about various ways to 
define distances between shapes. These include meth- 
ods based on turning angles (Arkin et al., 1990; Mc- 
Connell et al., 1991), on the Hausdorff distance (Hut- 
tenlocher et al., 1992), on various forms of moments 
(Kim and Kim, 1997; Taubin and Cooper, 1991), and 
on Fourier descriptors (Jain, 1989). 
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Mehtre et al. (1997) and Mumford (1991) discuss 
and compare various approaches. Scassellati et al. 
(1994) compare methods on the basis of how well they 
correspond to human perceptual distinctions. In Sec- 
tion 2, we discuss a particular distance measure be- 
tween shapes, that is one of the measures used in the 
QBIC system. Intuitively, it measures how well the 
boundary of one shape matches the boundary of the 
other, allowing either boundary to stretch when doing 
the matching. A variation of this method provided the 
best overall results in the Scassellati et al. study. 

Let us reconsider the problem we mentioned earlier, 
where Q is a shape, and where we wish to obtain an or- 
dered list of shapes from the database, ordered by how 
closely they match Q. Let us say that as in the QBIC 
system, we wish to see the best 10 matches, and then 
upon request the next best 10 matches, and so on. This 
is a computationally expensive process, for several rea- 
sons. For a given shape D in the database, computing 
the distance between Q and D may well be expen- 
sive in itself for example, for the distance measure 
used in QBIC that is discussed in Section 2, a dynamic 
programming algorithm is used that has quadratic com- 
plexity. Furthermore, even if we wish to see only the 
best 10 matches, we may have to compute the distance 
between Q and every shape D in the database: this is 
because there is no obvious indexing mechanism that 
can be used. 

A potential avenue for speeding up the search is to 
preprocess the database, clustering shapes according to 
their distance amongst themselves. Then, for example, 
if we have found that Q is far from the database shape 
D1, and if the preprocessing tells us that D1 is close to 
another database shape D2, we might be able to infer 
that Q is sufficiently far from 0 2  that we do not need 
to actually compute the distance between Q and Dz.  
Similarly, if Q is close to D1, and if the preprocess- 
ing tells us that D1 is far from D2, we might be able 
to infer that Q is sufficiently far from Dz. For this to 
work, we must be able to relate the distance between 
Q and D2 to the distance between Q and D1 and the 
distance between D1 and D2, for example, by the tri- 
angle inequality. The triangle inequality for a distance 
measure d states that, for all A, B,  and C,  

d(A,  C )  F d ( A ,  B )  + d(B,  C) .  

In considering similarity measures between shapes, 
Arkin et al. (1990) say that such a measure should be 
a metric. In particular, they say: 

The triangle inequality is necessary since with- 
out it we can have a case in which d(A, B )  and 
d(B,  C )  are both very small, but d(A, C )  is very 
large. This is undesirable for pattern matching 
and visual recognition applications. 

The theme of this paper is that we agree completely 
that a distance measure d where d(A,  B )  and d(B, C) 
are both very small, but where d(A,  C) is very large, 
is certainly undesirable. Instead, we want a distance 
measure d to have the property that if A is close to 
B, and B is close to C,  then A is close to C. But to 
obtain this property, it is not necessary that d satisfy 
the triangle inequality. Instead, it is sufficient for d to 
satisfy a “relaxed triangle inequality” of the form 

(1) C )  5 4 4 A I  B )  + d(B, C ) ) ,  

where c is a constant that is not too large. We show 
that a measure used for distances between shapes in 
the QBIC system satisfies a relaxed triangle inequality, 
although it does not satisfy the triangle inequality. 

What if we are in a scenario where a relaxed tri- 
angle inequality holds? Recalling the situation de- 
scribed above, where we know distances d(Q,  01) and 
d(D1,Dz) and we want to conclude something about 
d(Q,  Oz), if d satisfies (1) and is symmetric we can 
infer the bounds 

d ( Q ,  0 2 )  2 (l/c),d(Q, 0 1 )  - d(D1,D2) 
d ( Q ,  0 2 )  1 ( l / c ) .d (D~ ,  Dz)  - d ( Q ,  01) 

d(Q, 0 2 )  I c(d(Q, 0 1 )  + W i t  D2)). 

The first two inequalities correspond to the situations 
described earlier, where we conclude that Q is suffi- 
ciently far from D2, without actually computing this 
distance. The third inequality corresponds to a situa- 
tion where we conclude that Q is sufficiently close to 
Dz, by knowing that Q is close to D1, and that D1 
is close to Dz. We note that this last case might not 
provide useful information in a system such as QBIC, 
where we want to know, in the case of close matches, 
just how close the match is (because the results are pre- 
sented in sorted order based on closeness of match). 

The remainder of the paper has three sections and an 
appendix. In Section 2, we formally define the distance 
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NEM,, one of the measures used in the QBIC system. 
In Section 3, the definition is illustrated by an example. 
In Section 4, we sketch the proof of the relaxed triangle 
inequality; the full proof is given in the appendix. We 
give the definitions and results in greater generality than 
for the specific application to distances between shapes. 
The relaxed triangle inequality for shape distance fol- 
lows immediately from the more general results. We 
also show in Section 4 that the value of the constant c 
we give in the relaxed triangle inequality is essentially 
the best possible within the more general framework. 
However, for the specific application to shape distance, 
some smaller constant might be possible, particularly 
when restricted to shapes meeting some naturalness 
property. In Section 4 we remark on ways that the re- 
laxed triangle inequality might be improved, by using 
extra information contained in the boundary matching 
between two shapes (that is, in addition to the NEM,- 
distance obtained from the boundary matching). An 
example of extra information that could be helpful is 
the amount of stretching done. Such improvements 
may be necessary for the relaxed triangle inequality to 
be useful in practice. 

Even though the technical results in this paper apply 
to a specific distance measure, the results carry a more 
general message: A distance measure should not be 
judged unsuitable simply because it does not satisfy 
the triangle inequality; it might be possible to prove 
that the measure satisfies a relaxed triangle inequality. 
Our specific results give a concrete example of this, 
by proving that a natural measure of distance between 
shapes satisfies a relaxed triangle inequality, although 
it does not satisfy the triangle inequality. 

2. The Distance Measure NEM, 

One intuitively appealing way to measure the distance 
between shapes is to measure how well the boundary of 
one shape matches the boundary of the other, allowing 
either boundary to stretch when doing the matching. 
This measure has been used, for example, in (Corte- 
lazzo et al., 1994) for trademark shapes and in (Mc- 
Connell et al., 1991) for ice floes. As in (Cortelazzo 
et al., 1994), we call this distance measure nonlinear 
elastic matching (NEM). After we define this measure 
formally, we shall show that NEM does not satisfy the 
niceness property we discussed in the introduction: it 
is possible for the NEM-distance between A and B to 
be small, and the NEM-distance between B and C to be 

small, with the NEM-distance between A and C being 
large. That NEMdoes not satisfy the triangle inequality 
was known previously (cf. (Cortelazzo et al., 1994)); 
we show further that it does not even satisfy a relaxed 
triangle inequality. 

Niblack and Yin (1995) defined a modified version 
of NEM, which is essentially one of the methods im- 
plemented in the QBIC system. It is related to a dis- 
tance notion described in (McConnell et al., 1991). 
Niblack and Yin’s definition depends on a parameter r ,  
a positive number, which we call the stretchingpenalty. 
The idea, informally, is that we add to the distance an 
amount equal to r times the amount of stretching that 
was done to make the two boundaries match. Thus, we 
pay a penalty for excessive stretching. Letting NEM, 
denote the modified measure, we show that NEM, sat- 
isfies a relaxed triangle inequality (1) with constant 
c = 1 + O(l/r). Thus, c approaches 1 as r increases. 
As we shall show in Section 3, the version of the NEM- 
distance involving a stretching penalty as described in 
(McConnell et al., 1991) does not satisfy a relaxed tri- 
angle inequality. 

We now consider the definition of NEM,.. Fix some 
stretching penalty r 2 0. (Although we are primarily 
interested in the case T > 0, we allow r = 0 since 
NEMo is equivalent to NEM, so we get the definition 
of NEM as a special case.) Shortly, we shall define the 
distance NEM,(X, Y )  between two sequences 

x = 5 1 , 2 2 , . .  .,z, 

Y = 1 ~ 1 ,  Y Z , .  . . > Yn.  

In general, we allow m # n and we allow the elements 
zi and y j  of the sequences to belong to some metric 
space S with distance metric b. We refer to (S ,  b )  as 
the base. In particular, we assume that b is symmetric 
and satisfies the triangle inequality for all points in S, 
and that b ( s ,  z) = 0 for all 2 E S .  We show that the 
NEA4,-distance satisfies a relaxed triangle inequality 
for any r > 0 and any S that is bounded, i.e., such that 
bsup is finite, where 

bsup = s u p { b ( z , y )  1x7 Y E S } .  

The constant c in the relaxed triangle inequality de- 
pends on r and b,, . In the application to shape match- 
ing, as -we shall now discuss, the elements xi and yj 
represent tangent angles, and b measures the difference 
between two angles. Hence, in this case, S = [0,27r) 
and 

b(z, y) = min{ Iz - yl, 27r - 1% - gyI }, 
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SO bsUp = T .  

We now discuss Niblack and Yin’s approach to shape 
matching. We assume that each shape is given by a sim- 
ple (non-self-intersecting) closed curve in the plane. 
We measure how well a particular point a on the bound- 
ary of one shape matches a particular point b on the 
boundary of another shape as the difference between 
the tangent angle to the boundary at point a and the 
tangent angle to the boundary at point b. Thus, we 
begin by replacing each shape by a sequence of tan- 
gent angles taken at some number n of points spaced 
equally in distance around the boundary of the shape. 
If X = z1,52, . . . , z, is the sequence of tangent an- 
gles for the first shape, and Y = y ~ ,  y2,. . . , yn is the 
sequence of tangent angles for the second shape, then 
the NEM,-distance between the shapes is taken to be 
the NEM,-distance (which we shall define shortly) be- 
tween the sequences X and Y. The NEM,-distance 
between two shapes depends on the “starting points” 
on the boundaries of the two shapes (that is, where 
the comparisons begin). Ideally, the distance between 
two shapes should be taken as the min of the distance 
over all possible starting points. In fact, Niblack and 
Yin (1995) focus on this issue of starting points, based, 
for example, on the shape’s moments. In this paper, 
we shall not consider this issue: we will assume that 
the starting points are given. It is easy to see that our 
results on the existence of a relaxed triangle inequal- 
ity would continue to hold even if we were to define 
the distance by taking the min of the distance over all 
possible starting points. In the QBIC system, there is 
a fixed number of points, equally spaced around the 
boundary of the shape, and so the starting point deter- 
mines the sequence. Other papers consider notions of 
distance that depend only on the shapes. For example, 
in (Arkin et a]., 1990), where a distance function is 
given for polygonal shapes, this distance function does 
not depend on any other parameters such as auxiliary 
points taken along the boundary. 

When we say that NEM, satisfies a relaxed tri- 
angle inequality NEM,(A, C) 5 c(NEM,(A, B )  + 
NEM,(B, C)), we mean that the constant c does not 
depend on the length of the sequences A, B ,  C. In the 
application to shape matching, this means that c does 
not depend on the number of sample points. Specifi- 
cally, we show that c = (1 + T / ~ T )  works if the same 
number of sample points is used for all shapes. If the 
number of sample points varies from shape to shape, 
we still obtain a relaxed triangle inequality, but with 
the larger constant c = (1 + T / T ) .  (One can imag- 

ine weaker versions of the concept of a relaxed trian- 
gle inequality where the “constant” c might depend on 
the dimensionality of the space from which the points 
A, B,  C are drawn. However, for NEM, there is no 
need to weaken it in this way.) 

(m, n)-mapping is a set 
We return to the definition of NEMT(X,Y). An , 

M &  {1,2 ,..., m} x {1,2 , . . . ,  n}, 

where we call each pair (i, j )  E M an edge, satisfying 
the following conditions: 

1. Every number in { 1,2, . . . , m} is the first compo- 
nent i of some edge ( i ,  j )  E M ;  

2. Every number in { 1 , 2 ,  . . . , n} is the second com- 
ponent j of some edge (i, j )  E M ;  and 

3. No two edges “cross”, that is, there do not exist 
i, i’,j ,j’ with i < i’, j < j ’ ,  and (2, j ’ ) ,  {i’ , j )  E 
M .  

An (m, n)-mapping M is minimal if no proper sub- 
set of M is an (m,n)-mapping. Note that in 
any minimal mapping, there cannot be three edges 
{z , j ) ,  ( i ’ , j ) ,  ( i’ , j’) ,  since the subset obtained by re- 
moving the edge ( i ’ , j )  is a mapping. For example, 
Figure 1 shows a minimal (9,9)-mapping. We some- 
times refer to an (m, n)-mapping simply as a mapping 
when m and n are clear from context or unimportant. 

An edge (2, j )  E M is a stretch-edge (of M )  if either 
(i - 1, j )  E M or (i, j - 1) E M .  For an edge (i, j )  in 
the mapping M ,  define s-cost((i,j), M ) ,  the stretch- 
cost of (i, j )  with respect to M ,  as 

For example, in the mapping shown in Figure 1, the 

stretch-edges and each has stretch-cost T ,  while the 
other edges have stretch-cost 0. 

Define d-cost((i, j ) ,  X ,  Y ) ,  the distance-cost of 
(i, j )  with respect to the sequences X ,  Y ,  as 

edges (2,3), (3,5), (5,6), (6,6), (7,s) and (9,9) are 
, 

. 

d-cost((i , j) ,X,Y) = b(zi,yj) .  

The stretch-cost and the distance-cost of the mapping 
M ,  the latter with respect to the sequences X ,  Y ,  are 
defined by summing the respective costs of all edges in 
M ;  that is 
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1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

Fig. 1. 
ping is 6r. 

A minimal (9,g)mapping. The stretch-cost of this map- 

d-cosr(M, X, Y) = C d-cost(e, X, Y ) .  
eEM 

The (total) cost of M is given by 

cost(M, X ,  Y )  = s-cost(M) + d-cost(M, X ,  Y ) .  

Finally, 

NEMr(X, Y) = 

min{ cost(M, X ,  Y )  I M is an (m, n)-mapping }. 

In the sequel, we abbreviate d-cost(M, X, Y )  by 
d-cost(M) and cost(M, X, Y) by cost(M) whenever 
the sequences X and Y are clear from context. Simi- 
larly, for an edge e in a mapping M ,  we may abbreviate 
s-cost(e, M) by s-cost(e) when M is clear. 

Clearly the value of NEM, ( X ,  Y) does not change if 
we minimize over only the minimal (m, n)-mappings. 
It is also easy to see that NEM,. (X, Y )  = NEM,. (Y, X) 
for all X and Y ,  because for any (m, n)-mapping M ,  
the set of edges obtained by reversing the first and sec- 
ond components of each edge in M gives an (n, m)- 
mapping M’ having the same stretch-cost and the same 
distance-cost as M .  

Although this definition of NEM,(X, Y) involves a 
search over a number of mappings that grows exponen- 
tially in the minimum of m and n, it is well known that 
functions such as NEM,.(X,Y) can be computed in 
time O(mn) by dynamic programming (see, for exam- 
ple, (McConnell et al., 1991; Cortelazzo et al., 1994; 
Niblack and Yin, 1995)). The algorithm iteratively 
computes the quantities D ( i , j ) ,  where D ( i , j )  is the 
NEM,.-distance between the length-i prefix of X and 
the length-j prefix of Y. The values of D(i ,  j )  can be 
computed by D(1,l) = b(z1, y1) and, for i , j  > 1, 

. 

D(i ,  1) = qzi, y1) + D(i  - 1,l) + T 

D ( 1 , j )  = b(z1, Y j )  + q 1 , j  - 1) + T 

Then NEM,(X, Y) = D(m,  n). 

3. AnExample 

We now illustrate the definitions with a simple exam- 
ple. Another purpose of the example is to show that the 
NEM-distance, where the stretching penalty T is 0, does 
not satisfy a relaxed triangle inequality, and to show 
that the NEM,-distance does not satisfy the triangle in- 
equality for a small enough positive T. (In Section 4, 
we give a lower bound on the constant c in the relaxed 
triangle inequality for NEM,; since in particular this 
lower bound is bigger than 1 for every r,  this shows 
that for every T ,  the NEM,-distance fails to satisfy the 
triangle inequality.) The example in this section also 
shows that the version of the NEM-distance involving 
a stretching penalty as described in (McConnell et al., 
1991) does not satisfy even a relaxed triangle inequal- 
ity. Thus, it is important how the stretching penalty 
r enters into the distance calculation: the method of 
(Niblack and Yin, 1995), where T is additive, gives a 
relaxed triangle inequality, whereas that of (McConnell 
et al., 1991), where T is multiplicative, does not. 

Consider the three shapes shown in Figure 2. Note 
that each shape consists of five “short” line segments 
and three “long” line segments. (Although the shapes 
in Figure 2 were chosen to be polygons for simplic- 
ity, the NEM,.-distance can be applied to more general 
shapes whose boundaries are curved.) The first step is 
to convert each shape into a sequence of tangent angles 
by placing sample points around the boundaries. To 
simplify the example suppose that, for each shape, one 
sample point is placed on each short line segment, lc 
sample points are placed along each of the two long 
line segments that are paa of the top of the shape, and 
m sample points are placed along the long line segment 
forming the bottom of the shape. The total number of 
sample points is therefore n = 2k+m+5. In each case 
we mark the starting point with an arrow, and we move 
clockwise around the shape. These sample points give 
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Fig. 2. Three shapes used to illustrate distances between shapes. 

the following sequences of tangent angles: 
k k - m c?? 77r 771 37r /-*-, 7r A :  0 , -  ,... , Z , O , q  ,..., - , O , - , T ,  . . . ,  T , -  

4 4 2  2 
m k k - 7r 77r - 37r /-A-, 7r 

B : 0 , . . .  1 0 , ~ 1 0 , ~ , 0 ,  ..., O , T , T  , . . .  , X , T  

m k k - ?T 37r - 37r ,---. 7r 

2 2 
c : 0 ,..., o , 2 ’ o , T , o  , . . . ,  01-,7r ,... , 7 r , - .  

Let angles(S) denote the sequence of tangent angles 
associated with the shape S,  where S is A, B, or C. 

Consider first NEM, where the stretching penalty r 
is 0. In Figure 2, NEM(A,  B )  = 0: the small triangular 
protrusion in shape B is stretched to perfectly match 
the large triangular protrusion in shape A, and the short 
horizontal segments to the left and right of the large 
triangular protrusion in shape A are stretched to exactly 
match the long horizontal segments to the left and right 
of the small triangular protrusion in shape B; the rest 
of the boundaries of shapes A and B match exactly 
without any stretching. For future reference, call this 
mapping the stretch mapping. For example, the stretch 
mapping begins 

(1 ,  I), . . . l(1, k ) ,  (2, k: + I ) ,  . . . l  

( k  + 1, k + l), ( k  f 2, k + 2), 

Since a total of four short line segments of length 1 are 
stretched to match four long line segments of length 
k ,  this mapping contains 4(k - 1) stretch-edges. But 
since r = 0, the stretch-cost is 0. The distance-cost 
is 0 because each angle in angles(A) is mapped to 
the same angle in angles(B).  The NEM-distance be- 
tween shapes B and C is small (although not zero): 
in this case, the small triangular protrusion in shape B 
does not match the small square protrusion in shape 
C, although this mismatch occurs only in a small part 
of the boundary, so the distance is small. Specif- 
ically, N E M ( B , C )  = 2(7r/4) = 7~12. The upper 
bound N E M ( B ,  C) 5 7r/2 is shown by the no-stretch 
mapping containing edges ( i , i )  for 1 5 i 5 n. 
However, NEM(A,  C) = k7r/2. The lower bound, 
NEM(A,  C) 2 k 1 ~ / 2 ,  holds because the angles 7r/4 
and 7 ~ 1 4 ,  occurring a total of 2k times in angZes(A), 
differ by at least 7r/4 from every angle occurring in 
angles(C). The upper bound, NEM(A,  C) 5 k7r/2, is 
shown by the no-stretch mapping. Since NEM(A,  C) 
increases as k increases, whereas NEM(A,  B )  and 
N E M ( B ,  C) are constant independent of k ,  the NEM- 
distance does not satisfy a relaxed triangle inequality 
(where the constant c is independent of the number of 
sample points). 

It is instructive to see why the example of Figure 2 
does not cause the relaxed triangle inequality to fail for 
NEM,, like it does for NEM. For NEM,., it is no longer 
true that the distance between A and B is zero; it is not 
even “small”. If we do much stretching to make the 
triangular protrusions match at many points, then the 
distance includes a large term due to a large multiple 
of the stretching penalty. If, on the other hand, we do 
little stretching, then the distance includes a large term 
due to mismatch of tangent angles at many points. If 
we believe for aesthetic reasons that shapes A and B 
are not “close”, then another advantage of NEM, over 
NEM (in addition to the advantage that NEM, satisfies 
a relaxed triangle inequality whereas NEM does not) is 
that NEM, better fits our aesthetic idea of “closeness” 
of shapes. Although NEM, satisfies a relaxed triangle 
inequality (as sketched in Section 4 and shown in the 
appendix), the shapes in Figure 2 show that it does 
not satisfy the triangle inequality if r < 7r/8. First, 
N E M , ( A , B )  5 4(k - 1). is shown by the stretch 
mapping; the distance-cost of this mapping is still 0 
as above, but its stretch-cost is now 4(k - 1 ) ~ .  As 
above, N E M T ( B ,  C) 5 n/2 is shown by the no-stretch 
mapping. But NEM,(A,  C) 2 k7r/2, by the same 
argument given above for NEM. Using these bounds, 

I 

, 
’ 

. 
’ 
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itiseasytocheckthatNEM,(A, C) > NEM,(A, B)+ 
NEM,(B, C) if r < ~ / 8 .  

Finally, we note that the version of the NEM-distance 
involving a stretching penalty as described in (Mc- 
Connell et al., 1991) does not satisfy a relaxed triangle 
inequality. In this version, the stretching penalty r 
multiplies the distance-cost of a stretch-edge, instead 
of being added to it. So we need r > 1 in order that 
r impose a penalty. More formally, for sequences X 
and Y, a mapping M between them, and an edge (i, j )  
in M ,  define cost ' (( i , j) ,M,X,Y) = r .  b(z i ,y j )  if 
( i , j )  is a stretch-edge of M ,  or b(zi,y,) otherwise. 
Let cost'(M, XI Y )  = CeEM cost'(e, M ,  XI Y). Let 
NEM,!(X, Y) be the minimum cost' of a mapping be- 
tween X and Y .  The shapes in Figure 2 show that 
if r > 1, then NEM,! does not satisfy a relaxed trian- 
gle inequality. The reason is that NEM:(A, B )  = 0, 
as shown by the stretch mapping. The distance-cost 
of all edges is 0 in the stretch mapping between A 
and B, so multiplying by r does not increase the 
cost. It is still true, as described above for NEM, that 
NEM,!(B, C) = 7r/2 and NEM,!(A, C) 2 h / 2 .  So a 
relaxed triangle inequality does not hold for NEM,!. 

4. The Relaxed Triangle Inequality 

In this section we show that NEM, satisfies a relaxed 
triangle inequality if r > 0 and if b,, is finite. We 
consider first the case of equal-length sequences. 

Theorem 1. For any base ( S ,  b), any real r > 0, 
any integer n > 0, and any three sequences X, Y, Z of 
length n, 

Proof sketch: We outline the main steps of the proof. 
A full proof is given in the appendix. 

The basic strategy is to take a mapping M x y  be- 
tween X and Y having cost NEM,(X, Y ) ,  and a map- 
ping M y z  between Y and Z having cost NEM, (Y, Z), 
and paste them together in a certain way to obtain a 
mapping M X Z  between X and 2. The method of past- 
ing together allows us to place an upper bound on the 
cost of M X Z  in terms of the cost of M x ~  and M Y Z ,  
thatis,intermsofNEM,(X, Y) andNEM,(Y, 2). And 
once we have an upper bound on the cost of some map- 

ping M X Z  between X and 2, we have an upper bound 
on NEM,(X, 2). As a simple example, suppose that 
the mappings M x y  and MYZ have no stretch-edges; 
i.e., these mappings both consist of the edges (i, i) for 
1 5 i 5 n. Then we take Mxz to also consist of 
edges (i,i) for 1 5 i 5 n. Since the base distance 
b satisfies the triangle inequality (by assumption), it is 
easy to see that the distance-cost of M X Z  is at most 
the sum of the distance-cost of MXY and the distance- 
cost of M y z .  Since the stretch-cost of all three map- 
pings is zero, we actually get the triangle inequality, 
NEM, (X, 2) 5 NEM, (X, Y )  + NEM,. (Y, Z), in this 
case. In general, however, the mappings MXY and 
MYZ can have stretch-edges, and this makes the con- 
struction of M X Z  and the bounding of its cost more 
complicated, and it also means that we do not get the 
triangle inequality in general. 

Let MXY and MYZ be minimal (n, n)-mappings 
such that 

c o ~ t ( M x y )  = NEM,(X, Y) (2) 
cost( M y z )  = NEM, (Y, 2). (3 )  

Since we will be referring to edges in different map- 
pings, for clarity we name the points of X, Y, Z us- 
ing the notation z[i], y[j ] ,  z[k], respectively, for 1 < 
i, j ,  k 5 n. For example, an edge of M ~ Y  has the 
form (z[i], y[j]) for some i and j .  

To prove the relaxed triangle inequality, we con- 
struct a minimal (n, n)-mapping M X Z  and place an 
upper bound on cost(Mxz). Since we want to use 
the fact that b satisfies the triangle inequality to help 
us bound the distance-cost of M X Z ,  we want M X Z  to 
be a minimal (n, n)-mapping with the following "mid- 
point property": For every edge (4, z[k]) E M X Z ,  
there is a "midpoint" y [ j ]  such that ( ~ [ i ] ,  y[j]) E M x y  
and (y[j], z[k]) E MYZ.  Then, thedistance-cost ofthe 
edge (z [ i ] ,  z[k]) is at most the sum of the distance-costs 

The first step is to show that some M X Z  with the 
midpoint property exists. This is done in the appendix 
by describing a construction of one such mapping by 
adding edges one at a time, such that each added edge 
has a midpoint. 

To bound the cost of M X Z ,  it is useful to divide 
the stretch-edges of a mapping into two classes, de- 
pending on which sequence receives the stretching. 
For M X Y ,  the stretch-edge ( ~ [ z ] ,  y[j]) is an X-stretch- 
edge if (z[i - 11, y[j]) E Mxu, or a Y-stretch-edge 
if ( ~ [ i ] ,  y [ j  - 11) E M x y  (since edges cannot cross, 
exactly one of these holds). For M y z ,  the stretch- 

of (4il,Y[jl) and (y[jl, Z [ W .  



226 Fagin and Stockmeyer 

edges are divided similarly into Y-stretch-edges and Z- 
stretch-edges. It is also useful to divide the stretch-cost 
of a mapping into two parts, based on this division of 
the stretch-edges, as follows. Define X-s-cost(Mxy) 
(resp., Y-s-cost(A4xy)) to be T times the number 
of X-stretch-edges (resp., Y-stretch-edges) of M x y  . 
Similarly define Y-s -cos t (My~)  and Z-s-cost(Myz). 
Since X and Y have the same length, the number of 
X-stretch-edges of M x y  equals the number of Y- 
stretch-edges of M X Y .  Therefore, we have the fol- 
lowing equalities involving the stretch-cost s-cost: 

X-s-cost(A4xy) = Y-s-cost(Mxy) 
= s-cost(Mxy)/2. (4) 

Similarly, since Y and Z have the same length, 

Y-s-cost(Myz) = Z-s-cost(Myz) 
= s-cost(Myz)/2.  ( 5 )  

To prove the relaxed triangle inequality, it suffices 
to prove the following two bounds on the stretch-cost 
s-cost and the distance-cost d-cost of M X Z .  

Claim 1. 

s-cost(Mxz) i s-cost(Mxy) + s-cost(Myz). 

The relaxed triangle inequality stated in the theo- 
rem follows by algebraic manipulation from these two 
claims and (2) ,  (3), (4), and (5). 

To justify Claim 1, with each stretch-edge in M X Z  
we associate a distinct stretch-edge in either M x y  or 
M y z .  Clearly such an association (which is given in 
the appendix) suffices to prove Claim 1. 

The final step is to justify Claim 2.  Since we know 
that M X Z  has the midpoint property, we would like 
to use the fact that b satisfies the triangle inequal- 
ity. A complication is shown by the situation in Fig- 
ure 3 where the distance-cost of ( ~ [ i ] ,  yb]) contributes 
t times to the distance-cost of M X Z .  The key ob- 
servation in handling this complication is that each of 
the t - 1 contributions of d-cost((z[i], yb])) after the 
first contribution can be "balanced" by a Z-stretch- 
edge of MYZ that contributes T to the stretch-cost of 
M y z .  There is a symmetric case where an edge in 

z [k]  z[k+l] z[k+t-2] z[k+t-1] 

Fig. 3. 
tributes t times to the distance-cost of M X  z . 

MYZ contributes several times to the distance-cost of 
M X Z ,  and the symmetric case is handled similarly, us- 
ing X-stretch-edges of MXY for the balancing. For 

0 

A situation where the distance-cost of (z[ i] ,  y[j]) con- 

more details, see the appendix. 

Remark. We suggest two ways that the relaxed tri- 
angle inequality might be improved. First, Claims 1 
and 2 and (2) ,  (3), (4), and (5) actually give the poten- 
tially tighter bound 

+ ~ ( s - c 0 s t ( M x y )  2T + s-cost(Myz)) 

where MXY and MYZ are any mappings with 
NEM,(X,Y) = cost(Mxy) and NEM,(Y,Z) = 
cost(Myz). Therefore, in the application to image 
databases mentioned in the introduction, it might be ad- 
vantageous in the clustering of database shapes to keep 
track of the stretch-cost of mappings as well as their to- 
tal cost. It is easy to modify the dynamic programming 
algorithm to compute, together with the minimum to- 
tal cost of a mapping, the minimum stretch-cost of a 
mapping among the mappings having minimum total 
cost. 

Second, in the proof of Claim 2, we use b,, as 
an upper bound on the distance-cost of any edge in 
Mxy and M Y Z .  Therefore, another way to improve 
the relaxed triangle inequality in practice would be to 
replace the gross upper bound b,,  by the actual max- 
imum distance-cost of edges in MXY and M y z .  This 
would require computing and storing these maximum 
distance-costs during the clustering preprocessing. 

' 
* 

* 
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Although the remark above shows that we might get 
a better bound on NEM,(X,  2)  in certain cases, the 
next result shows that the constant (1 + bsup/(2r))  in 
the general relaxed triangle inequality is essentially the 
best possible. The proof is given in the appendix. 

Theorem 2. For any base (S ,  b) with b,, > 0, any 
real r > 0, and any real E > 0, there is an integer n 
and three sequences X ,  Y, 2 of length n such that 

We now give analogues of Theorems 1 and 2 for 
the case of unequal-length sequences. The results are 
similar, except that the constant in the relaxed triangle 
inequality increases to (1 + bSup/r) .  The proofs in the 
unequal-length case are very similar to the proofs in 
the equal-length case. The differences are outlined in 
the appendix. 

Theorem 3. 
and any three sequences X ,  Y, 2, 

For any base (S ,  b), any real r > 0, 

Theorem 4. For any base (S ,  b) with bsup > 0, any 
real r > 0, and any real E > 0, there are three se- 
quences x,  Y, 2 such that 

Appendix 

In this appendix, we prove Theorems 1,2,3, and 4. 

Proof of Theorem 1: 
mal (n, n)-mappings such that 

Let MXY and M y z  be mini- 

cost(Mxy)  = N E M T ( X ,  Y )  (Al) 
cost(Myz) = NEM,(Y, 2). ('42) 

(Here we have abbreviated cost(Mxy, X ,  Y )  by 
c o s t ( M x y )  and cost(Myz, Y, 2) by cost(MyZ), 
since the relevant sequences are clear from the name of 
the mapping. Similar abbreviations are made through- 
out the proof.) Since we will be referring to edges in 
different mappings, for clarity we name the points of 
X ,  Y, 2 using the notation z[i], y[j], z[k], respectively, 
for 1 5 i, j ,  k 5 n. For example, an edge of M x y  has 
the form (z[i], y[j]) for some i and j .  

To prove the relaxed triangle inequality, we construct 
a minimal (n, n)-mapping M X Z  and place an upper 
bound on cost(Mxz). The mapping M X Z  can be any 
minimal (n, n)-mapping with the following "midpoint 
property": If ( 4 2 1 ,  z[k]) is an edge of M X Z ,  say that 
y[j] is a midpoint of (z[Z], z[k]) if (.[ill y[j]) E M x y  
and (y[j],z[k]) E M y z .  A mapping M X Z  has the 
midpoint property if every edge of M X Z  has at least 
one midpoint. 

The first step is to show that some M X Z  with this 
property exists. We show how to construct one such 
mapping by adding edges one at a time, such that 
each added edge has a midpoint. Begin by adding 
(z[l] ,z[l])  to M X Z .  By the definition of a mapping, 
it must be that (z[ l ] ,y[ l ] )  E M x y  and (y[l],z[l]) E 
M Y Z ,  so y[l] is a midpoint of (z[ l ] ,z[ l ] ) .  To de- 
scribe how to continue the edge-adding procedure, let 
(z[i],z[k]) be the edge last added to M X Z ,  and let 
y[j] be a midpoint of (z[i], z[k]), that is, (z[i], y[j]) E 
M x y  and (y[j],z[k]) E M y z .  Consider first the 
case that i < n and k < n. We show that at least 
one of the edges ( ~ [ i  + 11, z[k]), (z[i], z[lc + l]), or 
(z[i  + 11, z [k  + 11) has a midpoint, so it can be added 
to M x z .  

Case I .  (z[i  + l ] ,y [ j ] )  E MXY 

If Case 1 holds, then y[ j ]  is a midpoint of (z[i  + 
11, z[k]), so we can add (z[i  + 11, z[lc]) to M x z .  

Case 2. (y[j], z [ k  + 11) E MYZ.  

IfCase2holds, theny[j] isamidpointof (z[i], z [k+  
11). so we can add (.[ill z [ k  + I]) to M x z .  



228 Fugin and Stockmeyer 

edges and 2-stretch-edges. Define X-s-cost( Mxy ) 
(resp., Y-s-cost(Mxy)) to be r times the number 
of X-stretch-edges (resp., Y-stretch-edges) of MXY. 
Similarly define Y-s-cost(Myz) and Z-s-cost(Myz). 
Clearly, 

s-cost(MxY) = X-s-cost(Mxy) + Y-s-cost(Mxy). 

Since X and Y have the same length, the number of X -  
stretch-edges of MXY equals the number of Y-stretch- 
edges of MXY. Therefore, 

b 

< ' 
Y lil 

/ 
Fig. A . l .  A case in the edge-adding procedure. = s-~ost(Myz)/2.  (A4) 

So suppose that neither Case 1 nor Case 2 holds. Let 
j '  be the smallest integer such that ( x [ i  + 11, y[j']) E 
MXY. Since Case 1 does not hold, since ( ~ [ i ] ,  yb] )  E 
M x y ,  and since edges of MXY do not cross, it follows 
that j '  > j .  See Figure A.l. Similarly, using the fact 
that Case 2 does not hold, if j" is the smallest integer 
such that (y[j"], z[k + 11) E Myz,  then j" > j .  If 
j '  = j " ,  then we can add ( ~ [ i  + 11, z [ k  + 11) to MXZ 
since it has a midpoint y[j']. So say that j ' # j " ,  and 
assume without loss of generality that j' < j " ;  again 
see Figure A.l. By minimality of j " ,  it follows that 
(yb'], z [ k  + 11) 6 Myz.  Since ylj'] must belong to 
someedgeofMyZ,since (y[j'], z[k+l])  # Myz,and 
since edges cannot cross, it must be that ( ~ [ j ' ] ,  z[k]) E 
Myz. So y[j'] is a midpoint of ( ~ [ i  + 11, z[k]), and we 
can add (z[i  + I], z[k]) to Mxz. This completes the 
case that i < n and k < n. The cases where one of i or 
k is equal to n and the other is less than n are similar 
to the above (and simpler), and these cases are left to 
the reader. By continuing the edge-adding procedure 
we eventually reach an (n, n)-mapping MXZ. If the 
mapping Mxz constructed in this way is not minimal, 
then remove edges until a minimal mapping is reached. 

To bound the cost of M x z ,  it is useful to divide the- 
stretch-edges of a mapping into two classes, depend- 
ing on which sequence receives the stretching. For 
M x y ,  the stretch-edge ( ~ [ i ] ,  y[j]) is an X-stretch- 
edge if (x[i  - l] ,y[j])  E MXY, or a Y-stretch- 
edge if (x[ i ] ,y [ j  - I]) E Mxy (since edges can- 
not cross, exactly one of these holds). For Myz,  
the stretch-edges are divided similarly into Y -stretch- 

As we shall show, to prove the relaxed triangle in- 
equality, it suffices to prove the following two bounds 
on the s-cost and the d-cost of MXZ. 

Claim 1. 

Claim 2. 

d-cost(Mxz) 5 d-cost(Mxy) + d-cost(Myz) 

+b,,(X-s-cost(M~y) r + 2-s-cost(Myz)). 

Before explaining why these two inequalities hold, 
we first show that they lead to the relaxed triangle in- 
equality stated in the theorem. Adding the left and right 
sides of the two inequalities, using that cost(M) = 
s-cost(M) + d-cost(hd) for any mapping Ad, and us- 
ing (Al), (A2), (A3), and (A4), gives 

cost(Mxz) L cosr(Mxy) + COS~(MYZ) 
bs, + -(s-cost(Mxy) + s-cost(Myz)) 

+ cost(Myz)) 

2r 

I (1 + h"")(cost(Mxy) 2r 

= (1 + b""")(NEM,(X, 2r Y) + NEMT(Y, 2)). 

Therefore, 
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as desired. assoc(e) = second(e). Therefore, we cannot have 

The final step is to justify Claim 2. Using the fact 
assoc(e) = assoc(e’). 

that b satisfies the triangle inequality, 

d-cost(Mxz) = c d-cost(e) 

Some additional terminology will be useful in jus- 
tifying the two claims. For each edge e E M X Z ,  
let mid(e) be some midpoint of e; if e has more 
than one midpoint, the choice can be arbitrary. If 
e = ( ~ [ i ] ,  z[k]) and y [ j ]  = rnid(e), then letJirst(e) = 

(4, !/[A) and second(e) = (Y[jl, z“). 

e E M x z  

5 C (d-cost(first(e)) + d-cost(second(e))). 

(A5) 

e E M x z  

If each edge in MXY and M y z  appeared at 

The next step is to justify Claim 1. With each stretch- 
edge in M X Z  we shall associate some stretch-edge 
assoc(e) in either M X Y  or MYZ,  so that assoc is injec- 
tive; that is, for every two distinct stretch-edges e and 
e’ of M X Z  we have assoc(e) # assoc(e’). Clearly 
such an association suffices to prove Claim 1. It turns 
out that assoc(e) is eitherJirst(e) or second(e). Let 
e = (4, z[k]) be a Z-stretch-edge of M X Z ,  so that 
e’ = ( x [ i ] , z [k  - 11) E M X Z .  Let y[j] = mid(e) and 
y[j’] = mid(e’). If j = j ’ ,  then assoc(e) is the 2 -  
stretch-edge second(e) = (y[j], z[k]) in M y z .  If j # 
j ’ ,  then we must have j ’  < j and ( ~ [ i ] ,  y[j ])  must be a 
Y-stretch-edge of M X Y .  In this case, assoc(e) is the 
Y-stretch-edgeJirst(e) = (z[i],y[j]) in M X Y .  If e is 
an X-stretch-edge of M X Z ,  then in a completely sym- 
metric way, either assoc(e) = Jirst(e) andJirst(e) is 
an X-stretch-edge in M x y ,  or assoc(e) = second(e) 
and second(e) is a Y-stretch-edge in MYZ.  It is easy 
to see that ussoc is injective. 

For readers who would like a formal argument, one 
follows. First, if e is an X-stretch-edge of M X Z  and 
e‘ is a 2-stretch-edge of M X Z ,  then we cannot have 
assoc(e) = assoc(e’), since assoc(e) is either an X -  
stretch-edge of M x y  or a Y-stretch-edge of M Y Z ,  
whereas assoc(e’) is either a Y-stretch-edge of M x y  
or a Z-stretch-edge of M y z .  So let e and e’ be distinct 
2-stretch-edges of M X Z  and suppose for contradiction 
that assoc(e) = assoc(e’). (The case where e and e’ 
are both X-stretch-edges is symmetric.) We must have 
either Jirst(e) = Jirst(e’) or second(e) = second(e’), 
and in either case mid(e) = mid(e’). Since e and e’ 
are 2-stretch-edges, it must be thatjrst(e) = jrsf(e’) 
and second(e) # second(e’). Let e = (z[i],z[k]) 
and e’ = (z[i],z[k’]). Since e # e’, it follows 
that k # k’; without loss of generality, assume that 
k > k’. Then by definition of assoc we would take 

most once in the sum in (A5), as either first(.) or 
second(e) for at most one e, then NEM, would sat- 
isfy the triangle inequality since we could conclude 
that d-cost(A4xz) 5 d-cost(Mxu) + d-cost(Myz). 
However, as shown in Figure A.2, the same edge of 
MXY or MYZ can appear several times in the sum. 

z[k] z[k+l] z[k+t-2] z[k+t-l] 

Fig. A.2. 
tributes t times to the distance-cost of Mxz. 

A situation where the distance-cost of (44, yb]) con- 

This figure shows a situation where an edge 
( ~ [ i ] ,  y[j]) in MXY appears t times as Jirst(e) for t 
edges e = (x[i],z[k + 11) for 0 5 1 5 t - 1. There 
is a symmetric case where an edge in MYZ appears 
several times as second(e) for several e’s. We focus 
on the case shown in Figure A.2, the symmetric case 
being handled similarly. The key observation is that 
each of the t - 1 occurrences of ( ~ [ i ] ,  y[j]) after the 
first occurrence can be “balanced” by a 2-stretch-edge 
of M y z .  Break the sum in (A5) into pieces, each piece 
corresponding to a situation like the one shown in Fig- 
ure A.2, or a symmetric situation. Focusing on the 
piece of the sum corresponding to Figure A.2, 
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t -1  

(We used the fact that s-cost((y[j], z [ k  + 11)) = r for 
1 5 1 5 t - 1.) In the symmetric case where an 
edge in MYZ appears several times as second(e), the 
calculation is similar, except that the edges appearing 
as arguments of s-cost in (A6) are X-stretch-edges of 
M X Y ,  rather than 2-stretch-edges of MYZ.  

After each piece of the sum in (A5) is replaced by an 
upper bound of the form in (A6), each edge e in M x y  
or M y z  appears at most once in a term of the form 
d-cost(e), each X-stretch-edge of M X Y  and each Z- 
stretch-edge of MYZ appears at most once in a term of 
the form s-cost(e), and each Y-stretch-edge of M x y  
and each Y-stretch-edge of M y z  does not appear at 
all. From this it is easy to see that Claim 2 holds. 

0 

Proof of Theorem 2: For simplicity, suppose there 
are x , y  E S with b(z ,y)  = bsup. (If (S,b) is such 
that the supremum is not achieved, the proof is similar 
since b(x ,y)  can be made arbitrarily close to bsup.) 
For a sequence u and a positive integer p ,  let up denote 
(T, u, . . . , (T where (T is repeatedp times. For sufficiently 
large integers p and q, the three sequences are: 

x = xp+1, (yp,zp)q,  x 
Y = 5, (y”, xpy, zp+l 

2 = y, (y”, xqq, ZP+l.  

First note that NEM,.(X,Y) 5 2pr. This bound 1s 
shown by the mapping MXY that maps the first p + 1 
occurrences of x in X to the first occurrence of x in 
Y, maps the subsequence (yp, xP)q of X to the same 
subsequence in Y ,  and maps the last occurrence of x 
in X to the last p + 1 occurrences of x in Y. There- 
fore, s-cost(Mxu) = 2pr and d-cost(Mxy) = 0. 

Second note that NEM,(Y, 2) 5 bsup. This is shown 
by the mapping MYZ that does no stretching, so that 
S-CoSt(MyZ) = 0 and d-cost(Myz) = b(x, y)  = 
b,,. 

For each fixed p ,  we now show that NEM,(X, 2) = 
2pr  + ( p  + 1)bsUp for all sufficiently large q. The upper 
bound 2 p r  + (p+ l)bsUp is shown by the mapping iden- 
tical to the mapping M X Y  above (except that Y is re- 
placed by 2). The stretch-cost of this mapping is again 
2pr. The distance-cost is now (p+ l)bsUp since the first 
p + 1 occurrences of x in X are mapped to the first oc- 
currence of y in 2. To show that 2pr+ @+ 1) b,, is also 
alowerbound, let M X Z  bean (n,  n)-mapping suchthat 
cost(Mxz)  = NEM,.(X, 2). If s-cost(Mxz) < 2pr ,  
then the mapping does not do enough stretching to align 
the subsequence (yp, x P ) ~  of X with the same subse- 
quence appearing in 2. Therefore, if s-cost(Mxz) < 
2pr, then d-cost(Mxz) 2 qb,,,, so M X Z  cannot have 
minimum cost for large enough q, as its cost would 
exceed the upper bound just shown. So we can as- 
sume that s-cost(Mxz) 2 2pr. Since X begins with 
zP+l  and 2 begins with yP+l, at least p + 1 edges 
in M X Z  must have distance-cost bsup. Therefore, 
NEM,(X,  2) L 2 p r  + ( p  + l)bsup. 

Using the bounds just derived, 

1 

. 

This fraction approaches (1 + bsup/(2r)) as p ap- 
proaches infinity. 0 

Proof of Theorem 3: In the proof of Theorem 1, 
when constructing the mapping M X Z  and proving 
Claims 1 and 2, we did not use that the sequences are of 
equal length, so these parts of the proof are unchanged. 
The only place where we used that the sequences are 
of equal length was in equations (A3) and (A4). How- 
ever, in the present case we have X-s-cost(Mxu) I 

Using these inequalities in place of (A3) and (A4) in 
the calculation following the statement of Claims 1 and 

s-cost(Mxy) and Z-s-cost(Myz) I s-cost(Myz).  . 
2 gives the result. 0 

Proof of Theorem 4: 
Theorem 2, but using the sequences 

The proof is similar to that of 

x = xp+l, (yp,xp)q 
Y = 2, (yP,zP)4 
2 = y, (yP,xP)4. 
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Arguing as before, it can be shown that for q sufficiently 
large, 

N E M T ( X , Y )  5 Pr, 
NEMr(Y7 2) I bsupl 

NEMr(X1-Z) = pr + ( p  + 1)bsup. 

The result follows as before. 0 

Acknowledgements 

We are grateful to Byron Dom, Martin Farach, Myron 
Flickner, Wayne Niblack, Prabhakar Raghavan, and 
Baruch Schieber for helpful discussions and comments. 

Notes 

1. QBIC is a trademark of IBM Corporation. 

References 

Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., and 
Mitchell, J.S.B. 1990. An efficiently computable metric for com- 
paring polygonal shapes. In Proc. First ACM-SIAM Symp. on Dis- 
crete Algorithms, San Francisco, CA, pp. 129-137. 

Cortelazzo, G., Mian, G.A., Vezzi, G., and Zaniperoni, P. 1994. 
Trademark shapes description by string-matching techniques. Pat- 
tern Recognition 27(8): 1005-1 01 8. 

Huttenlocher, D.P., Rucklidge, W.J., and Klanderman, G.A. 1992. 
Comparing images using the Hausdorff distance under translation. 

In Proc. IEEE Con$ on Computer Vision and Pattern Recognition, 
Champaign, IL, pp. 654-656. 

Jain, A.K. 1989. Fundamentals of Digital Image Processing. 
Prentice-Hall: Englewood Cliffs, NJ. 

Kim Y-S. and Kim, W-Y. 1997. Content-based trademark retrieval 
system using visually salient feature. In Proc. IEEE Con$ on 
Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 
pp. 307-312. 

McConnell, R., Kwok, R., Curlander, J.C., Kober, W., and Pang, S.S. 
1991. @-S correlation and dynamic time warping: two methods 
for tracking ice floes in S A R  images. IEEE Trans. Geoscience and 
Remote Sensing 29(6): 1004-101 2. 

Mehtre, B.M., Kankanhalli, M.S., and Lee, W.F. 1997. Shape mea- 
sures for content based image retrieval: a comparison. Znformation 
Processing and Management 33(3):3 19-337. 

Mumford, D. 1991. Mathematical theories of shape: do they model 
perception? In Proc. Con$ on Geometric Methods in Computer 
Vision, San Diego, CA, SPIE volume 1570, pp. 2-10. 

Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., 
Petkovic, D., and Yanker, P. 1993. The QBIC project: querying 
images by content using color, texture and shape. In Proc. Con$ 
on Storage and Retrieval for Image and Video Databases, San 
Jose, CA, SPIE volume 1908, pp. 173-181. QBIC Web server is 
http://wwwqbic.almaden.ibm.com/. 

Niblack, W. and Yin, J. 1995. A pseudo-distance measure for 2D 
shapes based on turning angle. In Proc. IEEE Int. Cont on Image 
Processing, Washington, DC. 

Scassellati, B., Alexopoulos, S., and Flickner, M. 1994. Retrieving 
images by 2D shape: a comparison of computation methods with 
human perceptual judgments. In Proc. Con$ on Storage and 
Retrieval for Image and video Databases I I ,  San Jose, CA, SPIE 
volume 2185, pp. 2-14. 

Taubin, G. and Cooper, D.B. 1991. Recognition and positioning of 
rigid objects using algebraic moment invariants. In Proc. Con$ 
on Geometric Methods in Computer Vision, San Diego, CA, SPLE 
volume 1570, pp. 175-186. 


