
, Appeared in Proc. IFIP 2.6 3rd Working Conference on Visual Database Systems
(VDB-3), 1995.

Querying Multimedia Data from Multiple
Repositories by Content: the Garlic1 Project

W. F. Cody, L. M. Haas, W. Niblack, M. Arya, M. J. Carey, R Fagin, M. Flickner, D. Lee, D.
Petkovic, P. M. Schwarz, J. Thomas, M. Tork Roth, J. H. Williams and E. L. Wimmers

IBM Almaden Research Center

Abstract: We desaibe Gartic, an objea-aieated multimedia middlewim query
system. Garlic ambles existing data managaneac compotmts, such as a rela-
tional database oca full text search engine, to be mtegmed into an extensible
infarmatian management system that a commos1 interface and user
access tools. We focus in this paper on how QBIC, animagtreVieval system that
providcs cunmt-based image queries, can be integrated into Garlic. This resuits
in a system in which a singk cluery can combint visual aad noavisual data using
type-sjxdic SeaFCh techniques, eaabling a new bnxd of multimedia applica-
tions.

1 Introduction
Many applications today require access to a broad range of datatypes. A patient's medical folder contains
MRI scans (image), lab reports (text), doctors' dictated notes (audio), and address and insurance informa-
tion (record-oriented database data). A geographic information system needs maps, satellite images, and
data about roads, buildings, and populations. In many of these areas, specialized software has emerged to
allow key damypes to be queried efficiently, or to support type-specific predicates. For example, there are
special systems for fmgerpeint recognition, for finding specilk molecular structures, and to locate areas that
overlap or that contain a specific object on a map. The expanding role of multimedia data in many other
application domains has similarly resulted in special purpose systems that provide content based search of
their data. Since multimedia data is largely visual and hard to describe precisely, it will be inmasingly im-
portant to support content based searches that can be specified visually "by example" and that allow for de-
grees of similarity in the answer set.

The iecreasing diversity of datatypes and the need for special-purpose data servers is ocuming even in tra-
ditional application areas like i n (e.g., to manage videos of damaged property), catalog sales (e.g.,
to manage collections of photos for product spreads) and advertising (e-g., to manage shots of magazine
ads). In these traditional applications, this new data must be managed in coordination with the large amounts
of business data and text data that are already managed by a variety of information systems. In the current
environment, developing a multimedia application requires the developer to deal with different interfaces
for several different data systems, while worrying about how to locate the right system to handle each part
of the query, how to optimize the accesses to the various data systems and how to combine the results into
a meaningful f m for the user. All these tasks are inhibitors to the creation of modern multimedia applica-

-- 1. Gaflii is not an acronym. Most members of the team really like garlic, and enjoy our laborarory's proximity to the
Gilroy garlic fields!

t

tions that exploit the rich data environment we live in.

Garlic is an objectaiented multimedia middleware system that is designed to address this problem. Garlic
allows existing data management components, such as a relational DBMS, a full text search engine, or a
face recognition system, to be integrated into an extensible information management system. Applications
can access any of the data in the underiying data sources through a common, nonprocedural interface, and
can exploit the specialized query capabilities of those sources. A single query can access data in several re-
positories, using the type-specific predicates they support. Garlic also provides a powerful queryhmwse a p
plication that includes type-specific query interfaces in a uniform query framework.

In this paper, we show how Garlic enables applications that need content-based search of visual (and non-
visual) data stored in separate specialized se~~m. ?he paper is organized as follows. In the next section, we
describe related work. An overview of Garlic is glven in Section 3. Section 4 shows how visual data can be
incorporated into Garlic. It introciues an image retrieval system supporting content-based image queries
(QBIC). desaibes the steps and the decisions involved in integrating QBIC into Garlic, and then shows how
queries combining visual and nonvisual predicates can be procesed. At the end of this section we briefly
describe a Query/sn>wse application and show how it allows visual data to be browsed and quexied in con-
junction with other data reachable through Garlic (Section 4.4). We summarize our contributions and dis-
cuss future work in Section 5.

2 Related Work
The multimedia area is expanding at a rapid pace. It includes work on hypermedia systems, specialized serv-
ers (e.g., video sewers), image and document management tools, interactive games, authoring tools, script-
ing languages, and so forth. In the personal computer industry, a large number of small-scale multimedia
software packages and products have emerged due to the availability and affordability of CD-ROM tech-
nology. Several companies are offering “multimedia database,’ products. These products combine the func-
tionality of a DBMS (typically based on a relational or object-oriented model) with the abillty to store
images, text, audio, and even short video clips. These systems store and manage all their data, arad typically
provide keyword search for pre-annotated multimedia data. It is not clear that these systems can scale to
large volumes of data.

Mainline database vendors have only recently started to pay attention to multimedia data The lllustra ob-
jed-relational DBMS 1261 provides media-specific class libraries (DalaBlades(tm)) for storing and manag-
ing multimedia data, IBM, Sybase, Oracle and others can store image, video and text in their databases, but
support for searching these types by content is just starfing to appear. IBMs new UltiMedia Manager is the
first product to offer content-based image query (based on QBIC [191 technology) in conjunction with stan-
dard relational search Garlic differs from these systems in that it aims to leverage existing intelligent re-
positorks, such as text and image management systems, rather than requiring all multimedia data to be
stored within and searched by a single DBMS. Garlic’s open approach should enable it to take advantage
of continuing advances in multimedia storage and search technology. It should also be more effective for
legacy environments, where multimedia data collections (such as document or image libraries) and business
data already exist in forms that cannot easily be migrated into a new DBMS.

Content-based retrieval of data is highly type-specific. Years of research have produced a solid technology
base for content-based retrieval of documents through the use of various text indexing and search techniques A

2

[22]. Similarly, simple spatial searches are well-supported by today’s geographic information systems
([29], [30], e.g.). Content-based retrieval of visual data is still in its infancy. Although a few specialized
commercial applications exist (such as fingerprint matching systems), most content-based image retrieval
systems are university and research prototypes. Examples include [20], [121, and [24]. Further, with the ex-
ception of simple approaches like attacbing attributes to spatial objects, or associating user-provided key-
words with images, these component search technologies remain largely isolated from one another.

In the database community, much research has been done in the area of heterogeneous distributed database
systems (also known as multidatabase systems). These systems aim to enable applications that span multiple
DBMS. Surveys of the relevant work can be found in [7] and [lo]. Commercial middleware products now
exist for providing uniform access to data in multiple databases, relational and otherwise, and to structured
files, usually through the provision of a unified relational schema Models with objed-onented feaaueS
have been employed in projects such as (21] , [5] , (81 and others. What distinguishes Garlic from these ef-
forts is its focus on providing an object-oriented view of data residing not only in databases and record-
based files, but also in a wide variety of media-specific data repositories with spwialized seazch facilities.
With the exception of the Papyrus [q and Pegasus [23] projects at HP Labs, we are aware of no othex efforts
that have tried to address the problems involved in supporting heterogeneous, multimedia applications.

3 Garlic Overview
Figure 1 depicts the overall architecture of the Garlic system[4]. At the leaves of the figure are a number of
data repositories containing the data that Garlic is intended to integrate. Examples of potential data repsi-
tones include relational and non-relational database systems, file systems, document managers, image man-
agers, and video servers. Repositories will vary widely in their ability to support content-based search, from
a video servex which can simply retrieve by video name, to a relational DBMS with its powerful query lan-
guage. While Garlic will accommodate (i.e., provide access to) more limited servers, we are particularly
interested in enabling a richer style of query for a broader range of datatypes. Thus we focus on repositories
that provide content-based querying of multimedia datatypes, and on the technology needed to incorporate
them into Garlic, in such a way as to exploit their special abilities.

One special repository shown in Figure 1 is the Garlic complex object repository. ?his repository, provided
with Garlic, is used to hold the complex objects that most Garlic applications need to relate together legacy
information firom different systems, or to create new multimedia objects. For example, an advertising agen-
cy that had infomation about its clients in a relational database, stills of ads in an image server, video clips
on a video server and financial reports in a document manager might build Garlic complex objects repre-
senting the ad campaigns to link all of this information together.

Above each repository is a repository wrapper. A repository wrapper serves two purposes. First, it exports
to Garlic a description of the data types and collections of data that live in that underlying repository. This
description is basically a schema for that repository instance , expressed in the Garlic Data Model [4] (a vafi-
ant of the ODMG-93 object model 131). It also &scribes to Garlic the search capabilities of this repository
type - what predicates it supports. Second. the wrapper translates data access and manipulation requests
(i-e., queries) from Garlic’s internal protocols to the repository’s native protocol. Initially, wrappen will
have to be created by hand; eventually, we plan to provide tools to ease the task of wrapper generation

Query processing and data manipulation services, especially for queries where the target data resides in ”’

3

QuerylBrowser

4

Garlic Garlic

Quuysavices& Metadah 4
RmtimeSystem

Repository
Reooritory *.a Repository Reposirory

wrapper wrappa wrappa w-

Repository Repository Repository

Figure 1. Garlic System Architecture

more than one repository, are provided by the Gariic Query Services and Runtime System component
shown in Figure 1. This component presents Garlic applications with a unified, object-oriented view of the
data accessible by Garlic. This view may be a simple union of all of the repository wrapper schemas, or it
may involve subsetling or restructuring of those schemas. Garlic Query Services processes users’ and ap
plications’ queries. updates and method invocation requests against this view. Queries, expressed in an ob-
ject-oriented extension of SQL called GQL, iue broken into pieces, each of which can be handled by a single
wrapper. This process relies on Garlic rnetadata that describes both the unified Garlic schema and the indi-
vidual wrapper schemas. The subqueries are initiated by the Garlic Runtime System and the results are com-
bined and returned to the user.

Garlic applications interact with the Query Services and Runtime System through Garlic’s objed query lan-
guage and a C+t application programming interface (API). One particularly important application, which
is also shown in Figure 1, is the Garlic Query/Browser. This component of Garlic will provide end users of
the system with a friendly, graphical interface that supports interactive browsing, navigation, and querying
of Garlic databases.

4 Querying Visual Data in Garlic
In this section, we focus on how queries involving visual data can be handled in Garlic. We start by describ-
ing one particular image repository that we are integrating; the QBIC repository provides the ability to

4

search for images by various visual ChafxteriStiCS such as color, texture or layout. We then discuss the de-
sign of a wrapper for this repository. Once a wrapper is defined, it is possible to query data in th is repository
through Garlic. The advantage of Garlic, however, is its ability to handle queries spanning data in visual and
other repositories. We illustrate this with an example involving three repositories. Finally, we describe the
Garlic queryhrowser application, and show how it could be used in the Same example.

4.1 Query by Content of Image Data -0 the QBIC Repository
QBIC [191 is a research prototype image retrieval system that uses the content of images as the basis of que-
ries. The content used by QBIC includes the colors, textures, shapes, and locations of objects (e.g., a person,
flower, etc.) or spedEed areas (e.g., the sky area) in images, and the overall distribution and placement of
colors, textures, and edges in an image as a whole. Queries are posed graphically/visually, by drawing,
sketching, or selecting examples of what is deshxl. A Sample QBIC query is "Fhd images with a generally
green background that have a red, round object in the upper left comer", where the image predicates (red,
m d , ...) are specified graphically using color wheels and drawing tools, by selecting samples, and so on.

QBIC is a stand-alone system. It has two main components, database population, which prepares a collec-
tion of images for query, and database query. Each component has its own user interface and engine. In this
section, we desaibe these two components, and in the next, considex the issues involved in making QBIC's
collealons and query function accessible to Garlic.

4.1.1 QBIC Database Population
The QBIC database population step is a one-time process that prepares images for later query. "he images
are loaded or imported into the system, and several utility operations are performed -- preparing a reduced
lOOxl00 "thumbnail", converting each image to a common system palette and Storing available text infor-
malion An optional but important step is ''object/area identifkxtion" in which objects or areas in an image
- a car, a person., swatch of background ternre -- are identified. This may be done manually, semi-auto-
matically, or N l y automatically, depending on the nature of the images and the objects they contain For
unconstrained natural scenes and general photo clip art, objeds are usually identified manually by outlining
with a mouse, or by using semi-automatic tools such as flood-Ell algorithms for foreground/background
identification, or spline-based edge tracking to refine a rough user outline. Automatic methods such as back-
ground removal can be used in constrained cases such as images of museum artifacts on generally uniform
backgrounds, or images of industrial/co~rual parts in a fixed position and under controlled lighting. In
any case, the result of objdat-ea identification is a set of outlines or, more generally, bit masks (to allow
for disconnected and overlapping areas) defining objects and areas in the images.

For each objdarea and for each image as a whole, a set of numeric features are computed that characterize
Properties of image content. These features are listed in Table 1, and described briefly below.:.

Average and Histogram Cukx QBIC computes the average Munsell[171 coordinates of each objed and
image, plus a k element color histogram (k is typically 64 or 256) that gives the percentage of the pixels in .
each objecthmage in each of the k colors.

Texture: QBIC's texture features are based on modified versions of the coarseness, contrast, and direction-
dity featwes propsed in [25]. ~atseness measures the scale of the texture (pebbles vs. boulders), contrast
describes the vividness of the pattern, and directionality describes whether or not the image has a favored - -

5

TABLE 1. QBIC Features
~~~ ~ 

Objects Images 
Average color Average color 
Histogram color Histogram color 
Texture Texture 

shape Positional edges (sketch) 
Location Positional color (draw/paint) 

direction or is isotropic (grass versus a smooth object). 

Shape: QBIC has used several different sets of shape features. One is based on a combination of area, cir- 
cularity, eccentricity, major axis orientation and a set of algebraic moment invariants. A second is the turn- 
ing angles or tangent vectofs around the perimeter of an object, computed from smooth splines fit to the 
~~. "he result is a set of 64 values of turning angle. All shapes are assumed to be non-occluded planar 
shapes allowing each shape to be represented as a binary image. 

Locarion.- The location features are the x and y centroidof the objed. 

PosizionaZ edge (sketch): QBIC implements an image reMeval method similar to the one desaibed in 
[9],[ 121 that allows images to be retrieved based on a mgh usa sketch "he feature needed to support this 
retrieval consists of a reduced resolution edge map of each image. QBIC computes a set of edges using a 
Canny edge operator, and then reduces this to a 64 x 64 edge map, giving the data on which the retrieval by 
sketch is performed. 

Posirional color (draw): Positional color or "draw" features are computed by gridding the image into a 
number of roughly square subimages and, for each subimage, computing a partial color histogram that cap- 
tures the main colors in the subimage, texture parameten for the subimage, etc. 'Ihe set of computed fa- 
tures, one for each subimage, is the draw feature. 

4.13 QBIC Image query 
Once the set of f m  for objects and images has been computed, queries may be mn. Queries are initiated 
by a user in an interactive session by graphically specifying a set of image and object properties and request- 
ing images 'like" the query specification. For example, images may be requested that contain objects whose 
color is similar to the color of an indicated object, or a color selected from a color wheel. Full image queries 
are based on the global set of color and texture features occurring in an image. For example, images may be 
retrieved that are globally similar, in terms of color and/or texture, to a given image, or, using a menu-based 
color or texture "picker", a user can select a set of colors and textures and request images containing them 
in selected proportions. Sample pickers for various features are shown below. 

All retrievals on image features are based on similarity, not exact malch, and similarity (or inversely, dis- 
tance) functions are used for each feature or feature set. Most of the similarity/distance functions are based 
on weighted Euclidean distane in the corresponding feature space (e.g. three dimensional average Munsell 
color, three dimensional texture, or 20 dimensional shape). Special similarity measures are used for histo- 
gram color, turning angle shape, sketch and positional color, as described in [ 191. These measures can be 
used individually or in a weighted combination. Also, 'hnultiqueries" can be formed, querying on multiple 
objects, each with multiple properties, and on multiple image attn'butes, as in a query for an image with a 

I -  

G 



red, round object. a green fish-shaped object, and a blue background. 

Example queries are shown in Figures 2, 3,4, and 5 .  In all cases, the returned results are ranked, and are 
shown in order with the best result in the leftmost position, next best in the next position, and so on. Each 
image returned is displayed as a reduced “thumbnail”. The thumbnails are active menu buttons that can be 
clicked on to give a list of options. The options include: initiate the query “Find images like this one”. dis- 
play the similarity value of this image to the query image, display the (larger) full scale image, place the 
image in 8 holding area for later processing, or perform as user defined image operationf or coniparison . 

Figure 2. Example shape query. Left: Freehand sketch of shape. Right: Query results 
showing first sir returned items. 

Figure 3. Example color histogram query. Left: Color selection show 15% yellow; 13% blue. 
Right: Query results showing first six returned items. 

4.2 Wrapping a QBlC Repository 
In this section is to show how QBlC can be integrated into Garlic. The goal of this integration is to enable 
applications to exploit QBIC’s special facilities for image search in conjunction with other kinds of search 
on other types of data. So far, we have not thought about integrating QBIC’s database population compo- 
nent. Thus, in this section we discuss integration of the two pieces of the database query component of 
QBIC: the query formation interface and the query engine. 

7 



Figure 4. Example query by sketch. Left: Freehand drawn sketch. Right: Query results 
showing the first six returned items. 

Figure 5. Example ‘multi” query. Left: A visual query specification for a scene containing a red, 
round object (the red icon) on a green background (the.green icon, where the rectangular box 

indicates a scene attribute). Right: The query results sliowing the first siz returned items. 

QBIC’s specialized query engine was developed as a stand alone system with its own user interface for que- 
rying image data. This architecture is similar to many systems on the market which provide content-based 
querying of particular datatypes (e.g., text, images, maps, molecular structures). To integrate this type of 
system into Garlic the user interface components must be separable from the search components. In an in- 
creasing number of these systems the search engine is accessible through published application program- 
ming interfaces (APIs), making integration as a repository feasible. However, the query formation interfxe 
is not usually accessible through an APT. Thus there may be different levels of integration with Garlic. If 
a specialized user interface is not separable from the callable search engine. the system can either be inte- 
grated as a monolith with no exploitation of Garlic’s ability to provide cross repository clueries or to inte- 
grate and synchronize presentation of results. or the sexch engine can be integrated as a repository and other 
user interfaces exploited for query formation. One drawback of this latter approach is the loss of the familiar 
interface that a particular system provided. However, we believe the benetits of a closer integration with 
Garlic (and consistency of user interface when accessing multiple similar repositories) will outweigh the 
costs for most applications that need Garlic functionality. Thus, we are trying to borrow or develop good 
general query interfaces for specific types, including image. 

Since QBIC, unlike most systems. actually has not only a separable but an accessible query formation in- 
terface, we take advantage of its generality to integrate it with the Garlic queryhrowser (Section 4.4) as the 
basis of our general image query interface. The search engine will be “wrapped” so that it presents itself to 



Garlic as an image database manager with an object-oriented schema. In the next two subsections we dis- 
cuss some of the issues involved and choices made in this integration process. 

4.2.1 Integrating the QBIC Query Formation Interface 
The QBIC pickers provide intuitively appealing and general mechanisms for users to specify colors, tex- 
tures, and other image features. Because of this, we have chosen to integrate them so that they may be used 
to query non-QBIC image databases. The QBIC query formation functjons will be packaged as a shared li- 
brary, and the functions will interact with the usex in the same way that they do in QBIC today. 

It must be possible to use the feature specification structures in this library to query images in different re- 
positories with different computations for the same feature (e.g., different shape feature vectors for the same 
shape). ’Ihus, QBIC pickers will not compute a feature vector but will capture the user specification in a 
small image (e.g. a 100 x 100 color distribution) which can be input to the feature computation functions in 
any image database supporting query by content for the same feature. 'Ibis also eliminates the need for client 
machines to have implementations for potentially expensive f- computations. The cost is that “image 
literals” must now be handled by Gariic’s Query services. These literals will be carefully passed “around 
the system in order to minimize copying and query cost. (Similar mechanisms are used to handle long fields 
in relational databases today [ 151). 

Another requirement is that it must be possible to integrate the resulting image query within the complete 
user query being built by the QueqVBrowser. The QBIC query formation functions will therefore capture 
the logical expression of the user’s query in a text form with references to the image literals discussed above. 
The text form will be a subset of the Garlic Query Language which can be pieced into the full GQL query 
that the QueryK3rowser will submit to Garlic Query Services. 

The thumbnails available ftom QBIC in response to an image query will be displayed by the query/browser 
using the image display tools available at the client. These tools must support “drag and drop” protocols 
so that the rebmed images can be moved into QBIC’s query formation functions to exploit the “‘query by 
example” paradigm. 

4-22 Wrapping the QBIC Query Engine 
’I)pical information servers, whether general purpose or domain specific (e.g., Lotus Notes, Excalibur’s 
ElecbonicFiling System or ACR/NEMA DZCOM Medical Image Servers), organize the data they manage 
under a schema that presents a model of that data to the user. Document systems compose a document from 
pages and then organize the documents into folders, filedrawen, cabinets, etc. Medical image servers or- 
ganize tomographic images into series, series into studies and studies into sections of a patient folder. Al- 
though instances of these dafa objects and data CoIIeCtions can be added, the object and collection types in 
each schema are fixed by the underlying system. Furthermore, the systems support several levels of search 
capability through a published API. We believe this model of an information server is representative of an 
increasing segment of the information server market, 7Iend.s in industry standardization of domain-specific 
data models and in marketplace standardhation of general purpose information and data nianagenient sys- 
tems will further support this model. Therefore, most repository wrappers in Garlic will bridge the gap be- 
tween Garlic’s objec€-oriented model and a fixed schema in a similar modeling discipline. 

However, QBIC is a research prototype, and does not have a published data schema or APIs. Instead of de- -- 

9 



scribing the data stored, QBIC's file-based data organization is oriented around handling image and feature 
vector data shuctures. To integrate QBIC into Garlic so that Garlic can exploit QBIC's data and search ca- 
pability, the QBIC wrapper must present an object-oriented schema to Garlic, and be able to map this sche- 
madown to the file structures and call interfaces currently provided by the QBIC search engine. It is a virtue 
of Garlic's architecture that even in this case integration is possible. 

The query engine wrapper has two parts: a model of the data in QBIC and of the predicates QBIC can apply, 
and code that translates between GQL queries and QBIC's call interfaces and returns results to Garlic. 'Ihe 
model for QBIC's image data must express the relationships between, raw base images, scenes that have 
outlined objects in them, and thumbnails of the raw images as well as of the images with outlined objects. 
Although these data objects are stored as biffiles or as records in data files in QBIC, the QBIC wrapper pro- 
vides Garlic with a more integrated view. This view allows navigational access from one object to its related 
objects through the QueqdBrowser, the use of image featwe queries over paaicular collections in a type 
safe manner and the incorporation of QBIC data (as Garlic objects) into Garlic complex objects (e.g., ad- 
ve~Wng campaigns, or resumes) without copying the large dataobjects into Garlic. 

Interface &Enitions satisfying these requireme- are given in Figure6 nKre are three key interfaces 
(classes). one fbr full QBIC scenes, one for outlined objects within a scene, and the third containing the ac- 
tual image (BasePklZmage). A QBZC&ene has pointers to the raw image and a thumbnail (both instances 
of BusePixeumage). It also has a set of pointers to objects outlined in that scene. These objects are repre- 
sented by the 0ufliwdObject.s interface. Again, each outlined object has pointers to the raw image, and to 
a thumbnail of that image in which the object is outlined. 0utZinedObject.s also point back to the QBZCkene 
they occur in. Finally, the BasePixeUmage class provides exactly the information needed to interpret the 
image bits faithfully, including width, height, and pixel size. Appr ia te  methods are provided with each 
interface definition to allow searching and manipulation of these classes. 'Ihese interface defmitions shield 
Garlic users from the details of how QBIC keeps track of which image features have been computed for a 
given scene, or a given object. It also hides the actual feature values. All of these are managed by the QBIC 
repository, but are only accessible to Garlic through the interface methods. . 
The interface definitions are exported by the wfapper and copied into GarIic structures used by hktadata 
Services to record schema infomation. They are used by Garlic Query Services during query compiliation 
(e.g, to ensure type safe queries) and by users and applications to examine the objects available in a Garlic 
database. The wrapper also exports asetof namedcollections. 'Ihese collections are assigned identifiers by 
Garlic upon import and the wrapper is responsible for maintaining mappings between these identifiers and 
the underlying repository entities. For instance, if it is desired to make a set of QBICSkem, called 
W&mess-Shoa, available to advertisers, a QBIC server WEll register the directory containing the thumb- 
nail Nes to Garlic as a collection during the wrappet aeation process. QBIC will guarantee that the same 
set of Lames is computed for each Wildemess-Sbz scene. Therefore, any feature-based search of the 
Warness-Shut collection can be assumed to be exhaustive by the user. 'Ihe QBIC wrapper will map a 
Garlic OID for the W&rness_shot oollection into a reference to this diredory, and will map method invo- 
cations, such as the march_image search predicate, into the appropriate calls against the control file struc- 
tures in tfie QBIC search engine. 

The second part of the wfappec handles queries. 'Ihe QBIC wrappt7 is passedthat part of a m ' s  query that 
applies to colleuions that are exported by QBIC. A feature of QBIC is that searches can be performed 
against lists of images that are subsets of the exported collections, or against an entire Coilection This allows" 

10 



interface QBlCScene : persistent { 
relationship BasePixelImage original-image; 
relationship BasePixelImage originaljmage-thumbnail; 
relationship set <OutlinedObjects> scene-objects 

fuzzybool match-image (in QBICScene image-srch-arg); 
void QBdisplay ( ) ; 

inverse 0utlinedObjects::original-scene; 

... 
1 
interface OutlinedObjects : persistent I 

relationship BasePixelImage original-image; 
relationship BasePixelImage original-thumbnail-obj; 
attribute int[21 upperleft; 
relationship BasePixelImage objectmask; 
relationship QBICScene original-scene inverse QB1CScene::scene-objects; 
void QBdisplay ( 1  ; 
... 

1 
interface BasePixelImage : persistent { 

attribute int image-width; 
attribute int image-height; 
attribute float pel-size; 
attribute char[nl image-bits; 
attribute char getpel (in int x, in int y); 
attribute char[nl getimage (in int n); 
QBdisplay ( ) ; 
... 

1 

Figure 6. A Wtappet Schema for QBIC 

Garlic Query Services considerable flexibility in choosing how to execute a query (Section 4.3).The query 
fi-agment sent to QBIC is repsented by an abstract parse tree that has all refmnces to Garlic objects bound 
to unique identifiers which the wrapper can map to underlying repository entities. Any literals needed to 
evaluate the query (e.g., a sketch to be matched) will also be passed. The wrapper mates an iterator, which 
provides the answer set (in a relevance sorted order created by QBIC) to Garlic’s Runtime System. After 
mapping the Garlic subquery into QBIC entities and function calls, the wrapper relies on the clientlserver 
mechanisms provided by QBIC, e.g., RPC, to remotely execute the appropriate search and return the answer 
set. ?he answer set contains identifies that can be mapped to Garlic ODs, can be filtered and/or can have 
methods applied to them. 

. 

4 3  Queries over Visual (and Other) Data 
Once a wrapper is defined for QBIC, QBIC data can be queried through Garlic. But the power of Garlic lies 
in its ability to answer queries that span multiple data types in multiple repositories. In this section we will 
show how queries in Garlic can combine predicates over visual and other d a k  To illustrate how queries are 
pn>cessed, we need both wrapper &emas for each repository and a global Garlic schema. We complete this 
set of schemas for a simple subset of our advertising example. We assume that in addition to a QBIC re- 
pository with images fiom magazine ads, the agency also has a text repository that stores financial repom 
for each campaign The contents of this repository and the commands to aeate it are indicated in C++ no- 
tation in Hgure 7. Suppose that the agency wants to correlate their reports with the magazine ads. They can 

11 



class Document { 

pub1 ic : 
.... 

char* title; 
char* text; 
Date date; 
int matches (char* search-expr) ; 

1 

make-doc-db /financial/documents 
add-doc /financial/reportl.text 
add-doc /financial/report2.text 

Figute 7. Text Repository Contents 

use Garlic complex objects to do this. The wrappex SdKmas for the text repository and for the complex ob- 
jects managed by the Garlic complex object repository are given in Figure 8. (The wrapper for the QBIC 
repository was shown in Figure 6). Notice that the text wrapper renames the title attribute of Dmunent to 
cumpaign, based on the wrapper designer's knowledge of the actual documents being stored. Also, note that 
there is no magk involving complex objects. Once the complex object schema is defined, the complex ob- 
ject repository must be populated. In some cases this can be &XE through a query, but in our example this 
would have to be done by hand (unless there were some information in the document to identify the asso- 
ciated Images, or vice v e r s a ) F i y ,  one possible Garlic schema for this example is given in Rgure 9. This 
schema promotes the campaign attribute of the report into the Cumpuign objects themselves, so that Cum- 
puigns now have a name, a set of magazine ads, and a report. 

interface Document(extent Document): persistent { 
attribute String campaign; 
attribute Date date; 
attribute String text; 
fuzzybool matches(String search-expr); 
void QBdisplay ( 1  ; 

1 

Figure 8. (a): Text Wrapper Schema 

interface Campaign (extent Campaign): persistent I 
attribute String campaign-name; 
relationship Set<QBICScene> magazine-ads; 
relationship Document report; 

1 

Figure 8. (b): Complex ObJect Repository Schema 

TheGarlicQueryLanguageextendsSQLwithrsdditionalconstructsfortraversingpathscomposedofinter- 
object relationships, for querying collection-valued attributes of objects, and for invoking methods within 
queries. "hew extensions are similar to those of other recent object query laoguage proposals (e.g., [2], [ 13 1, 
[6]), including the ongoing efforts of the SQG3 commiUee [ 141. To get a flavor of these extensions, con- 
sider the following query, written against  ti^ Garlic sctaema of Figure g? 

2 We are still working Out the exact details of our SQL extensions. 'Ihi example is provided to give the reader a 
feeling for wbat we intend, and should not be taka too literally! 

12 



interface Campaign (extent Campaign) : persistent { 
attribute String campaign-name; 
relationship Set<Scene> mag-ads; 
relationship Document report ; 

1 
interface Document (extent Document): persistent { 

attribute String campaign; 
attribute Date date; 
attribute String text; 
fuzzybool matchestin String search-expr); 
void QBdisplay (1  ; 

.... 
I 
interface Scene(extent Scene): persistent t 

void QBdisplay ( ) ; 
fuzzybool match-image (in Scene sketch-arg) ; 

.... 
1 -. 

Figure 9. Global Gartic Schema 

select C.campaign-name, C.report, C.magads 
from Campaign C, C.magads A 
where (C.rep0rt.W > “1989”) and 

A.match-image(SmH) > -5 

This query finds the campaigns and the associated report and magazine ads for those campaigns that ran in 
the last five years and which had a magazine ad that resembled a particular image (for example, a user- 
drawn sketch). This would be useful for those situations in which the ad executive remembers roughly what 
a particular ad looked like and when it was run, but not the details of the campaign. The query illustrates 
several of Garlic’s object-oriented SQL extensions. Fmt, it contains a number of patb expressions. Second, 
it contains an invocation of the mutCh_imageO method of the Scene object This method passes QBIC a lit- 
eral representing the sketch in an appropriate form for QBIC (this may have been produced visually by a 
sketch picker), and returns a number indicating the “goodness” of the match. Finally, Cmug-uds in the se- 
led clause illustrates the retrieval of an unflattened set. 

To answer this query, Garlic first translates it into an internal representation which reflects the query’s se- 
mantics. Each operation is then re-written in terms of the underlying wrapper schernas, using the Garlic 
metadata. Next, Garlic decomposes the query into a plan containing a number of smaller queries, each of 
which can be answered by a single repository. The plan also spedfies how the results of eacb subquexy 
should be combined to form the final answer. For example, one possible plan for our query would be to ask 
the text wrapper for the oh3 of reports written af€er 1989, then ask the complex object repository for the 
o a o f  the magazine ads associated wltb these reports, then probe QBIC with the list of ad oidrto seeif 
those ads match the sketch sufficiently closely, and f a y ,  get the report title (campaign name) associated 
with the document uid of the surviving campaigns. Other plans are certainly possible, and it would be up to 
the optimizer to choose among Uxm based on its estimates of cost. 

In Garlic’s distributed environment the issue of optimization is very important, The amount of work that 
each server does in or& to handle its part of the overall query can vaq greatly, from effldent range search- 
es on a primary key in a relational database, to the costly computation of feature vedors followed by the 
computation of an expensive distance measure against an entire collection of images in QBIC. Ideally, Gar- a 

13 



lic would sequence the data system accesses in order to exploit parallelism and the special functions that a 
server provides (e.g., relevance sorted answer sets) while minimizing potentially wasted time and expense 
at the servers and in the Garlic system itself, Optimization will require the specification and use of several 
new pieces of information. We need computational models of feature calculations and distance measures in 
order to distinquish between the costs of different feature predicates applied within QBIC. Selectivity fac- 
tors that can aid in predicting the amount of data returned by a similarity query are also needed. Finally, 
models must be created that can reflect the existence of special purpose indexing structures, e.g., multi-di- 
mensional indexes for feature vectors, in their estimates of a similarity query’s cost. These will all be cap- 
tured in the descriptive part of a repository wrapper for use by Garlic’s Query Services. In addition, Garlic 
will maintain information on processor speeds, YO rates and communication costs for its installed servers 
and networks, in the tradition of relational optimizers. 

It is the responsibility of each repository wrapper to convert its individual subplan into a form the underlying 
repository can understaad - either one or more queries in that repository’s query language, or a sequence 
of calls to its native search API. The wrappers will execute their subplans in a demandaven fashion under 
the control of the Gartic runtime system, returning a stream of values to Garlic for any final processing. 

This final processing may involve joins, projections or ~ ~ c t i o n s ,  as in any middleware database system. 
However, Garlic has an additional challenge: to reconcile the different query semantJcs of its various repos- 
itories. While in database management systems data items are returned if and only if predicates are true, 
QBIC and other repositories managing multimedia data return data items in order of “closeness“ to a given 
predicate. We are currently developing a set of SQL extensions and query promsing algorithms to support 
queries that involve both exact and approximate search criteria ’Ihis work involves introducing into SQL 
the notion of graded sets, in which each object is assigned a number between 0 and 1 for each atomic pred- 
im; this number represents the degree to which the object fulfills the predicate, with 1 representing aper- 
fed match. Boolean combinations of predicales can then be handled using the rules for combining 
predicates in fuzzy logic [27]. To enable query writers to specify the desired semantics, GQL permits the 
specification of the number of matching results to be fehrmed and whether or not rank-ordering (rather than 
an attribute-based sort order, or an arbitrary order) is desired for the query’s result set. We are also devising 
new query processing algorithms that will produce the best N results efficieatly, without materializing every 
intermediate result item that matches to any degree at all. 

4.4 Visual QueryBrowse in Garlic 
ThepurposeoftheGarlicQuery/Browsercomponentistoprovideendusersof~systemwithaneasyand 
highly visual way to access and manipulate the data in a Garlic database, as the typical end user will not 
normally want to write GQL queries. As its name implies, the Query/l3rowser will provide support for two 
basic data access functions, namely querying and browsing. However, unlike existing interfaces to databas- 
es, the Query/Browser will allow users to move back and forth seamlessly between querying and browsing 
activities, using que.ries to identify interesting subsets of the database, browsing the subset, querying the 
contents of a set-valued attribute of a particularly interesting object in the subset, and so OIL 

?he Query/Browser will support exploration of a Garlic database by allowing users to browse through the 
contents of Garlic collections (via next/previous buttons or scrolling) and to traverse relationships by click- 
ing on (selecting) objects’ reference attributes. When multiple related objects are being simultaneously dis- 
played, synchronous browsing will be implied (a la [lS], [l]). Consider what an advertising executive might 

14 



do to find the campaign she wants without writing any GQL. She might start by just browsing through cam- 
paigns. Rgure 1Oa shows the screen after she has chosen to browse the Gunpaign collection. By clicking 
on the report field, she can see the associated report (lob). Since the llmunenf interface has a QBdispZny 
method, the QueryBrowser invokes that method to display the report. (For purposes of this paper, we as- 
sunie that QBdisplizy is a distinguished method, provided to allow the QueryBrowser to display objects of 
that type). Similarly, selecting nwg-ds will show images of the ads (lOc), using Scene's QBdisplny meth- 
od. Clicking nexf on the nzug-& window will browse through the ads for this campaign. Next in the Cm-  
puign window (1Od) will move to the next campaign, and the report and ads related to that campaign. 

'The QueryBrowser will support querying via a "query-by-graphical-example" paradigm, extending the 

f 0 In-) 

Figure 10. Browsing using tbe query/browser 

well-known query-byexample paradigm I281 for use in formulating queries over an object database. Sup- 
pose our account exec, tired of browsing, decides to specify the quexy we looked at above. She clicks on the 
query button in the top corner of the Cizmpaigns window, and then clicks on the fields she wishes to restrict 
( Figure 1 la). In Figure 1 lb, she has specified the predicate on z p m  (date>l989) and has chosen to do a 
query by sketch on mug-&. 'This results in the appearance of a scene picker, with which she sketches the 
scene she remembers (Figure 1 lc). When she's done specifying predicates, she selects the DO-JT button to - 
15 



I ’  7 

Figure 11. Querying in the Query/Browser 

cause the query to execute. She can then browse the results (Figure 1 Id), with the query’s constraints re- 
maining active until explicitly cleared. 

In addition to smoothly combining querying and browsing, the Garlic Query/Browser will also provide oth- 
er useful features for exploring and nianipulating the contents of a heterogeneous multiniedia data collec- 
tion. Fist, the objects on the display at any given time will be active objects -- the Query/Browser will 
remember their Garlic identities and will provide a graphical means of obtaining a list of their available 
methods and requesting that one of the methods be applied to the object of interest (prompting for method 
arguments if needed). Second, clicking on “quexy” followed by a multimedia (e-g., image, audio, Video, or 
text) attribute of a displayed object will result in the display of a type-specific picker (or set of pickers) to 
support the construction of a media-specific predicate on that attribute of the object, as discussed in Section 
4.2.1. The Query/Browser will contain a number of such pickers to support the graphical specification of 
content-based multimedia predicates. In time, the QueryBrowser will become still more sophisticated, s u p  
porting the graphical definition of end-user views. Ultimately, we believe that good support for customizing 
the browser’s behavior with respect to a given Garlic database and Garlic user may lead to a new paradigm 
for visual application development, at least for applications of a ”browsy” (i.e., navigational) nature. 



5 Conclusions, Status and Future Work 
We have presented an overview of the Garlic project at the IBM Almaden Research Center, the goal of 
which is to build a heterogeneous multimedia information system (MMIS) capable of integrating data from 
a variety of traditional and non-traditional data repositories, and allowing query by content of any type of 
data. We described the overall architecture for the system, which is based on repositories, repository wrap  
pers, and the use of an objea-oriented data model and query language to provide a uniform view of the dis- 
parate data types and data sources that can contribute data to a Garlic database. As we explained, a 
significant focus of the project is support for repositories that provide media-specific query capabilities. We 
desaibed QBIC, a system that pvides query by image content, and showed how QBIC could be integrated 
into Garlic so that queries might range over data in this and other repositorfes simultaneously. We also de- 
scribed exploratory access to Garlic by end users via the Garlic Query/Browser. 

The Garlic project was initfated in early 1994. Our current tar8t is to have an initial “pmf of concept” 
pmtotype running (or at least limping) by the end of 1994. ’Ihis prototype will be demonstrated by a simple 
application involving data that spans a relational DBMS @B2 US), a QBIC repository, and a full text 
search engine. ?he goal of the first pmtotype is to understand the nature of majprs, the challenges in- 
volved in query translation and pmcessing, and the efficacy of the query/browser as an end-user window 
into a oollection of multimedia data 

In the longer term, we expect the Garlic project to lead us into new research in many dimensions, including 
object-on’ented and middleware query processing technologies, extensibility for highly heterogeneous, 
data-intensive environments, database user interfaces and application development approaches, and integra- 
tion of exact- and approximate-matching semantics for multimedia query languages. There are also many 
interesting, type-specific issues, such as what predicates should be supjmrted on image and video data, how 
to lndex multimedia information, how to supprt similarity-based search and relevance feedback, and what 
the appropriate user interfaces are for querying particular media types. We believe that significant challeng- 
es exist in each of these areas, and that solutions must be found to meet the emerging demand for large-scale 
multimedia data management, 

6 Acknowledgments 
We would like to thank m e s h  Agrawal for his input in the start-up phase of the Garlic pjed; he contrib- 
uted significantly to our vision for both the project as a whole and the queqhrowser in particular. John 
McPherson and Ashok chandra have been particularly supportive of our efforts throughout; we thank them 
for their ewxwragement and many suggestions. Many others contributed to the demtion of the Garlic 
project, including: Kurt Shoens, KC. Lee, Jeny K i e v  Peter Yanker, Harpreet Sawhney, David Steele, 
Byron Dom and Markus Tresch 

7 References 
I13 R Agrawal, N. Gehani, And J. Srinivasan, ‘‘odeview: ’Ihe Graphical Interface to ode”, Proc. 
ACM SIGMOD Conference, Atlantic City, NJ, May 1990. 

17 



(21 E Bancilhon, S. Cluet, and C. Delobel, “A Query Language for the 0 2  Object-Oriented Database 
System”, Roc. DBPL Conference, Salishan Lodge, Oregon, June 1989. 

(31 R Cattell, ed., ‘’”be Object Database Standard: ODMG-93 (Release 1. l)”, Morgan Kaufmarm 
Publishers, San Francisco, CA, 1994. 

[4] Carey et al., Garlic paper 

[S] T. Comers, W. Hasan, C. Kolovson, ht,. Neimat, D. Schneider, and K Wilkinson, “The F‘apyrus 
Integrated Data Server”, pn>c. 1st PDIS Conference, Miami Beach, FL, December 1991. 
[6] S. Dar, N. Gehani, and H. Jag- “CQL++: A SQL for a C++ Based Object-Oriented DBMS”, 
Roc. EDBTConference, Vienna, Austria, 1992. 

[71 A. Elmagarmid and C. Pu, eds., Spedal Issue on Heterogeneous Databases, ACM a m p .  Surveys 
22(3), September 1990. 
(81 D. Fang, S. Ghamieharizadeh, D. McLmd, and A. Si, ‘The Design, Implementation, and Evalua- 
tion of an Object-Based Sharing Mechanism for F3xhted Database Systems”, PrOc, lEEJE Conf. on 
Data bg., Vienna, Austria, April 1993. 

[9] K. Hirata and T. Kato, ‘‘Query by Visual Example”, Advances in Database Rchnology EDBT 92, 
’Ihird International Conference on Extending Database ’kchmlogy, Springer-Verlag, Vienna, Austria, 
March 1992. 

[lo] D. Hsiao, “Federated Databases and Systems: Part I -- A ’Ibtorial on Their Data Sharing”, VLDB 
Journal 1( I), July 1992. 

[ 11 J M. Ioka, “A Method of Defining the Similarity of Images on the Basis of Color Information”, 

[ 121 T. Kato, T. Kurita, N. Otsu and K. Hirata, “A Sketch Retrieval Method for Full Color Image 
Database”, International Conference on Pattern Recognition (KPR), IAPR, The Hague, ”he Nether- 
lands, pp. 530-533, September 1992. 

[ 131 W. Kim, “A Model of Quesies for Object-Oriented Databases”, Proc. VLDB Conference, 
Amsterdam, the Netherlands, August 1989. 

[14] K. Kulkami, “Object-Orientea Extensions in SQL3: A Status Report”, Proc. ACM SIGMOD 
Cod, M i ~ t ~ p l i s ,  MN, May 1994. 
1151 Lehman and Lindsay VLDB Long field MGR 

El61 R. McConnell, R. Kwok, J. C. Curlander, W. Kober and S. S. Pang, ‘‘Y - S Correlation and 
Dynamic The  Warping: ’Avo Methods for ”tacking Ice Floes in SAR Images”, IEEE Transactions on 
Geoscience and Remote Sensing”, 29:6, pp. 1004-1012, November, 1991 

[171 M. Miyahara and Y. Yoshida, “Math ?tansform of (RG,B) Color Data to Munsell (H,VC) Color 
Data”, Vis. Comm. and Image Roc., SPIE, VoL 1001, pp. 650-657,1988. 

[I81 A. Mom, A. D’Atri, and L. lkantm * , ‘Ihe Design of KIVIEW: An Object-orented Browser“, 
Roc. 2nd Int’l. Expert Database Systems Conference, ”)sons Comer, VA, April 1988. 

[19] W. Niblack, R. Barber, W. Equjtz, M. Fl ickr ,  E. Glasman, D. Petkovic, and I? Yanker: ‘ m e  
QBIC Project Querying Images by Content Using Color, Texture and Shape”, Proc. SPIE, San Jose, 
CA, February 1993. 
(201 A. Pentland, R. pickard, and S. Scarloff, h4IT Media Lab: “Photobook Tools for Content Based 
Manipulation of Image Databases”, Roc. SPIE, San Jose, CA, 1994. 

IBM Tokyo Research Lab, Rchnical Report RT-0030,1989. 

18 



I211 R Rosenberg and T Landers, “An Overview of MULTIBASE?’, in Distributed Databases, H. 
Schneider, ed., North-Holland Publishers, New York, NY, 1982. 

[22] G. Salton, “Automatic Text Processing: The ?fansformation, Analysis, and Retrieval of Informa- 
tion by Computer”, Addison-Wesley Publishers, 1989. 

[23] M. Shan, “Pegasus Architecture and Design Principles”, FWc. 1993 ACM SIGMOD Conference, 
Washington, DC, May 1993. 

1241 M. J. Swain and D. H. Ballard“, “‘Color Indexing“, International Journal of Coniputer Vision, 7: 1, 

1251 H. Tamura., S. Mori and T. Yamawaki, ‘Texture Features Corresponding to Visual Perception”, 
EEE ’Ifansaaions on Systems, Man, and Cybernetics, SMC-8:6, pp. 460473,1978. 

[26] M. Ubell, ‘The Montage Extensible Datablade Architecbure ”, Roc. ACM SIGMOD Conference, 
Minneapolis, MN, May 1994. 

(271 H. J. Zhmermann, Fuuy Set Theory and its Applications, Kluwer Academic Publishers, Bos- 
ton, MA, 1990. 

[BJ M. Zloof, “Query-By-Example: A Data Base Language”, IBM Systems Journal 16(4), 1977. 

[29] Understanding GIS -- The ARUINFO Method, ESRI Inc. (1990). 

1301 “SPANS: Spatial ANalysis System”, TYDAC Technologies: Corporate Overview (1990). 

p ~ .  11-32,1991. 

19 


