. Appeared in Proc. IFIP 2.6 3rd Working Conference on Visual Database Systems
(VDB-3), 1995.

Querying Multimedia Data from Multiple
Repositories by Content: the Garlic! Project

W. E. Cody, L. M. Haas, W. Niblack, M. Arya, M. J. Carey, R. Fagin, M. Flickner, D. Lee, D.
Petkovic, P. M. Schwarz, J. Thomas, M. Tork Roth, J. H. Williams and E. L. Wimmers
IBM Almaden Research Center

Abstract: We describe Garlic, an object-orieated multimedia middleware query
system. Garlic enables existing data management components, such as a rela-
tional database or a full text search engine, to be integrated into an extensible
information management system that presents a common interface and user
acocess tools. We focus in this paper on how QBIC, an image retrieval system that
provides content-based image quesies, can be integrated into Garlic. This results
in a system in which a single query can combine visual and noavisual data using
type-specific search techniques, enabling a new breed of multimedia applica-
tions.

1 Introduction

Many applications today require access to a broad range of datatypes. A patient’s medical folder contains
MRI scans (image), 1ab reports (text), doctors’ dictated notes (audio), and address and insurance informa-
tion (record-oriented database data). A geographic information system needs maps, satellite images, and
data about roads, buildings, and populations. In many of these areas, specialized software has emerged to
allow key datatypes to be queried efficiently, or to support type-specific predicates. For example, there are
special systems for fingerprint recognition, for finding specific molecular structures, and to locate areas that
overlap or that contain a specific object on a map. The expanding role of multimedia data in many other
application domains has similarly resulted in special purpose systems that provide content based search of
their data. Since multimedia data is largely visual and hard to describe precisely, it will be increasingly im-
portant to support content based searches that can be specified visually “by example” and that allow for de-
grees of similarity in the answer set.

The increasing diversity of datatypes and the need for special-purpose data servers is occurring even in tra-
ditional application areas like insurance (e.g., to manage videos of damaged property), catalog sales (e.g.,
to manage collections of photos for product spreads) and advertising (e.g., to manage shots of magazine
ads). In these traditional applications, this new data must be managed in coordination with the large amounts
of business data and text data that are already managed by a variety of information systems. In the current
environment, developing a multimedia application requires the developer to deal with different interfaces
for several different data systems, while worrying about how 1o locate the right system to handle each part
of the query, how to optimize the accesses to the various data systems and how to combine the results into
a meaningful form for the user. All these tasks are inhibitors to the creation of modern multimedia applica-

1. Garlic is not an acronym. Most members of the team really like garlic, and enjoy our laboratory’s proximity to the
Gilroy garlic fields!

tions that exploit the rich data environment we live in.

Garlic is an object-oriented multimedia middleware system that is designed to address this problem. Garlic
allows existing data management components, such as a relational DBMS, a full text search engine, or a
face recognition system, to be integrated into an extensible information management system. Applications
can access any of the data in the underlying data sources through a common, nonprocedural interface, and
can exploit the specialized query capabilities of those sources. A single query can access data in several re-
positories, using the type-specific predicates they support. Garlic also provides a powerful query/browse ap-
plication that includes type-specific query interfaces in a uniform query framework.

In this paper, we show how Garlic enables applications that need content-based search of visual (and non-
visual) data stored in separate specialized servers. The paper is organized as follows. In the next section, we
describe related work. An overview of Garlic is given in Section 3. Section 4 shows how visual data can be
incorporated into Garlic. It introduces an image retrieval system supporting content-based image queries
(QBIC), describes the steps and the decisions involved in integrating QBIC into Garlic, and then shows how
queries combining visual and nonvisual predicates can be processed. At the end of this section we briefly
describe a Query/Browse application and show how it allows visual data to be browsed and queried in con-
junction with other data reachable through Garlic (Section 4.4). We summarize our contributions and dis-
cuss future work in Section 5.

2 Related Work

The multimedia area is expanding at a rapid pace. It includes work on hypermedia systems, specialized serv-
ers (e.g., video servers), image and document management tools, interactive games, authoring tools, script-
ing languages, and so forth. In the personal computer industry, a large number of small-scale multimedia
software packages and products have emerged due to the availability and affordability of CD-ROM tech-
nology. Several companies are offering “multimedia database” products. These products combine the func-
tionality of a DBMS (typically based on a relational or object-oriented model) with the ability to store
images; text, audio, and even short video clips. These systems store and manage all their data, and typically
provide keyword search for pre-annotated multimedia data. It is not clear that these systems can scale to
large volumes of data.

Mainline database vendors have only recently started to pay attention to multimedia data. The Hllustra ob-
ject-relational DBMS [26] provides media-specific class libraries (DataBlades(tm)) for storing and manag-
ing multimedia data. IBM, Sybase, Oracle and others can store image, video and text in their databases, but
support for searching these types by content is just starting to appear. IBM's new UltiMedia Manager is the
first product to offer content-based image query (based on QBIC [19] technology) in conjunction with stan-
dard relational search. Garlic differs from these systems in that it aims to leverage existing intelligent re-
positories, such as text and image management systems, rather than requiring all multimedia data to be
stored within and searched by a single DBMS. Garlic’s open approach should enable it to take advantage
of continuing advances in multimedia storage and search technology. It should also be more effective for
legacy environments, where multimedia data collections (such as document or image libraries) and business
data already exist in forms that cannot easily be migrated into a new DBMS. -

Content-based retrieval of data is highly type-specific. Years of research have produced a solid technology

base for content-based retrieval of documents through the use of various text indexing and search techniques -

-~

{22]. Similarly, simple spatial searches are well-supported by today’s geographic information systems
([29], [30], e.g.). Content-based retrieval of visual data is still in its infancy. Although a few specialized
commercial applications exist (such as fingerprint matching systems), most content-based image retrieval
systems are university and research prototypes. Examples include [20], [12], and [24]. Further, with the ex-
ception of simple approaches like attaching attributes to spatial objects, or associating user-provided key-
words with images, these component search technologies remain largely isolated from one another.

In the database community, much research has been done in the area of heterogeneous distributed database
systems (also known as multidatabase systems). These systems aim to enable applications that span multiple
DBMS. Surveys of the relevant work can be found in [7] and [10]. Commercial middleware products now
exist for providing uniform access to data in muitiple databases, relational and otherwise, and to structured
files, usually through the provision of a unified relational schema. Models with object-oriented features
have been employed in projects such as [21], 5], [8] and others. What distinguishes Garlic from these ef-
forts is its focus on providing an object-oriented view of data residing not only in databases and record-
based files, but also in a wide variety of media-specific data repositories with specialized search facilities.
With the exception of the Papyrus [5] and Pegasus [23] projects at HP Labs, we are aware of no other efforts
that have tried to address the problems involved in supporting heterogeneous, multimedia applications.

3 Garlic Overview

Figure 1 depicts the overall architecture of the Garlic system[4]. At the leaves of the figure are a number of
data repositories containing the data that Garlic is intended to integrate. Examples of potential data reposi-
tories include relational and non-relational database systems, file systems, document managers, image man-
agers, and video servers. Repositories will vary widely in their ability to support content-based search, from
a video server which can simply retrieve by video name, to a relational DBMS with its powerful query lan-
guage. While Garlic will accommodate (i.e., provide access to) more limited servers, we are particularly
interested in enabling a richer style of query for a broader range of datatypes. Thus we focus on repositories
that provide content-based querying of multimedia datatypes, and on the technology needed to incorporate
them into Garlic, in such a way as to exploit their special abilities.

One special repository shown in Figure 1 is the Garlic complex object repository. This repository, provided
with Garlic, is used to hold the complex objects that most Garlic applications need to relate together legacy
information from different systems, or to create new multimedia objects. For example, an advertising agen-
cy that had information about its clients in a relational database, stills of ads in an image server, video clips
on a video server and financial reports in a document manager might build Garlic complex objects repre-
senting the ad campaigns to link all of this information together.

Above each repository is a repository wrapper. A repository wrapper serves two purposes. First, it exports
to Garlic a description of the data types and collections of data that live in that underlying repository. This
description is basically a schema for that repository instance, expressed in the Garlic Data Model (4] (a vari-
ant of the ODMG-93 object model [3]). It also describes to Garlic the search capabilities of this repository
type -~ what predicates it supports. Second, the wrapper translates data access and manipulation requests
(i.e., queries) from Garlic's internal protocols to the repository’s native protocol. Initially, wrappers will
have 1o be created by hand; eventually, we plan to provide tools to ease the task of wrapper generation.

Query processing and data manipulation services, especially for queries where the target data resides in ™~

C++ i A
Application Query/Browser
Garlic Garlic
Query Services & Metadata
Runtime System
/ : s0®
Repository Repository Reposito .o Repost
Wrapper Wrapper Wrapper Wrapper
Cox;tplex Data - -
o i : ool .
Repository Repository Repository epository

Figure 1. Garlic System Architecture

more than one repository, are provided by the Garlic Query Services and Runtime System component
shown in Figure 1. This component presents Garlic applications with a unified, object-oriented view of the
data accessible by Garlic. This view may be a simple union of all of the repository wrapper schemas, or it
may involve subsetting or restructuring of those schemas. Garlic Query Services processes users’ and ap-
plications’ queries, updates and method invocation requests against this view. Queries, expressed in an ob-
ject-oriented extension of SQL called GQL, are broken into pieces, each of which can be handled by a single
wrapper. This process relies on Garlic metadata that describes both the unified Garlic schema and the indi-
vidual wrapper schemas. The subqueries are initiated by the Garlic Runtime System and the results are com-

bined and returned to the user.

Garlic applications interact with the Query Services and Runtime System through Garlic’s object query lan-
guage and a C++ application programming interface (API). One particularly important application, which
is also shown in Figure 1, is the Garlic Query/Browser. This component of Garlic will provide end users of
the system with a friendly, graphical interface that supports interactive browsing, navigation, and querying
of Garlic databases.

4 Querying Visual Data in Garlic

In this section, we focus on how queries involving visual data can be handled in Garlic. We start by describ- __
ing one particular image repository that we are integrating; the QBIC repository provides the ability to

4

search for images by various visual characteristics such as color, texture or layout. We then discuss the de-
sign of a wrapper for this repository. Once a wrapper is defined, it is possible to query data in this repository
through Garlic. The advantage of Garlic, however, is its ability to handle queries spanning data in visual and
other repositories. We illustrate this with an example involving three repositories. Finally, we describe the
Garlic query/browser application, and show how it could be used in the same example.

4.1 Query by Content of Image Data -- the QBIC Repository

QBIC [19] is a research prototype image retrieval system that uses the content of images as the basis of que-
ries. The content used by QBIC includes the colors, textures, shapes, and locations of objects (€.g., a person,
flower, etc.) or specified areas (e.g., the sky area) in images, and the overall distribution and placement of
colors, textures, and edges in an image as a whole. Queries are posed graphically/visually, by drawing,
sketching, or selecting examples of what is desired. A sample QBIC query is “Find images with a generally
green background that have a red, round object in the upper left corner”, where the image predicates (red,
round, ...) are specified graphically using color wheels and drawing tools, by selecting samples, and so on.

QBIC is a stand-alone system. It has two main components, database population, which prepares a collec-
tion of images for query, and database query. Each component has its own user interface and engine. In this
section, we describe these two components, and in the next, consider the issues involved in making QBIC’s
collections and query function accessible to Garlic.

4.1.1 QBIC Database Population

The QBIC database population step is a one-time process that prepares images for later query. The images
are loaded or imported into the system, and several utility operations are performed -- preparing a reduced
100x100 “thumbnail”, converting each image to a common system palette and storing available text infor-
mation. An optional but important step is “object/area identification” in which objects or areas in an image
-- a car, a person, swatch of background texture -- are identified. This may be done manually, semi-auto-
matically, or fully automatically, depending on the nature of the images and the objects they contain. For
unconstrained natural scenes and general photo clip art, objects are usually identified manually by outlining
with a mouse, or by using semi-automatic tools such as flood-fill algorithms for foreground/background
identification, or spline-based edge tracking to refine a rough user outline. Automatic methods such as back-
ground removal can be used in constrained cases such as images of museum artifacts on generally uniform
backgrounds, or images of industrial/commercial parts in a fixed position and under controlled lighting. In
any case, the result of object/area identification is a set of outlines or, more generally, bit masks (to allow
for disconnected and overlapping areas) defining objects and areas in the images.

For each object/area and for each image as a whole, a set of numeric features are computed that characterize
properties of image content. These features are listed in Table 1, and described briefly below.:.

Average and Histogram Color. QBIC computes the average Munsell [17] coordinates of each object and
image, plus a k element color histogram (k is typically 64 or 256) that gives the percentage of the pixels in .
each object/image in each of the k colors.

Texture: QBIC’s texture features are based on modified versions of the coarseness, contrast, and direction-

ality features proposed in [25). Coarseness measures the scale of the texture (pebbles vs. boulders), contrast
describes the vividness of the pattern, and directionality describes whether or not the image has a favored -

TABLE 1. QBIC Features

Objects Images

Average color Average color

Histogram color Histogram color

Texture Texture

Shape Positional edges (sketch)
Location Positional color (draw/paint)

direction or is isotropic (grass versus a smooth object).

Shape: QBIC has used several different sets of shape features. One is based on a combination of area, cCir-
cularity, eccentricity, major axis orientation and a set of algebraic moment invariants. A second is the turn-
ing angles or tangent vectors around the perimeter of an object, computed from smooth splines fit to the
perimeter. The result is a set of 64 values of turning angle. All shapes are assumed to be non-occluded planar

shapes allowing each shape to be represented as a binary image.
Location: The location features are the x and y centroid of the object.

Positional edge (sketch): QBIC implements an image retrieval method similar to the one described in
[91.[12] that allows images to be retrieved based on a rough user sketch. The feature needed to support this
retrieval consists of a reduced resolution edge map of each image. QBIC computes a set of edges using a
Canny edge operator, and then reduces this to a 64 x 64 edge map, giving the data on which the retrieval by
sketch is performed.

Positional color (draw): Positional color or “draw” features are computed by gridding the image into a
number of roughly square subimages and, for each subimage, computing a partial color histogram that cap-
tures the main colors in the subimage, texture parameters for the subimage, etc. The set of computed fea-
tures, one for each subimage, is the draw feature.

4.1.2 QBIC Image query

Once the set of features for objects and images has been computed, queries may be run. Queries are initiated
by a user in an interactive session by graphically specifying a set of image and object properties and request-
ing images “like” the query specification. For example, images may be requested that contain objects whose
color is similar to the color of an indicated object, or a color selected from a color wheel. Full image queries
are based on the global set of color and texture features occurring in an image. For example, images may be
retriecved that are globally similar, in tecms of color and/or texture, to a given image, or, using a menu-based
color or texture “picker”, a user can select a set of colors and textures and request images containing them
in selected proportions. Sample pickers for various features are shown below.

All retrievals on image features are based on similarity, not exact match, and similarity (or inversely, dis-
tance) functions are used for each feature or feature set. Most of the similarity/distance functions are based
on weighted Euclidean distance in the corresponding feature space (e.g. three dimensional average Munsell
color, three dimensional texture, or 20 dimensional shape). Special similarity measures are used for histo-
gram color, turning angle shape, sketch and positional color, as described in [19]. These measures can be
used individually or in a weighted combination. Also, “multi-queries” can be formed, querying on multiple
objects, each with multiple properties, and on multiple image attributes, as in a query for an image with a

TSN

red, round object, a green fish-shaped object, and a blue background.

Example queries are shown in Figures 2, 3, 4, and 5. In all cases, the returned results are ranked, and are
shown in order with the best result in the leftmost position, next best in the next position, and so on. Each
image returned is displayed as a reduced “thumbnail”. The thumbnails are active menu buttons that can be
clicked on to give a list of options. The options include: initiate the query “Find images like this one”, dis-
play the similarity value of this image to the query image, display the (larger) full scale image, place the
image in a holding area for later processing, or perform as user defined image operationf or comparison .

Figure 2. Example shape query. Left: Freehand sketch of shape. Right: Query results
showing first six returned items.

Figure 3. Example color histogram query. Left: Color selection show 15% yellow, 13% blue.
Right: Query results showing first six returned items.

4.2 Wrapping a QBIC Repository

In this section is to show how QBIC can be integrated into Garlic. The goal of this integration is to enable
applications to exploit QBIC's special facilities for image search in conjunction with other kinds of search
on other types of data. So far, we have not thought about integrating QBIC’s database population compo-
nent. Thus, in this section we discuss integration of the two pieces of the database query component of
QBIC: the query formation interface and the query engine.

Figure 4. Example query by sketch. Left: Freehand drawn sketch. Right: Query results
showing the first six returned items.

Figure 5. Example ‘mult?”’ query. Left: A visual query specification for a scene containing a red,
round object (the red icon) on a green background (the green icon, where the rectangular box
indicates a scene attribute). Right: The query results showing the first siz returned items.

QBIC’s specialized query engine was developed as a stand alone system with its own user interface for que-
rying image data. This architecture is similar to many systems on the market which provide content-based
querying of particular datatypes (e.g., text, images, maps, molecular structures). To integrate this type of
system into Garlic the user interface components must be separable from the search components. In an in-
creasing number of these systems the search engine is accessible through published application program-
ming interfaces (APIs), making integration as a repository feasible. However, the query formation interface
is not usually accessible through an AP1. Thus there may be different levels of integration with Garlic. If
a specialized user interface is not separable from the callable search engine, the system can either be inte-
grated as a monolith with no exploitation of Garlic’s ability to provide cross repository queries or to inte-
grate and synchronize presentation of results, or the search engine can be integrated as a repository and other
user interfaces exploited for query formation. One drawback of this latter approach is the loss of the familiar
interface that a particular system provided. However, we believe the benefits of a closer integration with
Garlic (and consistency of user interface when accessing multiple similar repositories) will outweigh the
costs for most applications that need Garlic functionality. Thus, we are trying to borrow or develop good
general query interfaces for specific types, including image.

Since QBIC, unlike most systems, actually has not only a separable but an accessible query formation in-
terface, we take advantage of its generality to integrate it with the Garlic query/browser (Section 4.4) as the
basis of our general image query interface. The search engine will be “wrapped” so that it presents itself to

Garlic as an image database manager with an object-otiented schema. In the next two subsections we dis-
cuss some of the issues involved and choices made in this integration process.

4.2.1 Integrating the QBIC Query Formation Interface

The QBIC pickers provide intuitively appealing and general mechanisms for users to specify colors, tex-
tures, and other image features. Because of this, we have chosen to integrate them so that they may be used
to query non-QBIC image databases. The QBIC query formation functions will be packaged as a shared li-
brary, and the functions will interact with the user in the same way that they do in QBIC today.

It must be possible to use the feature specification structures in this library to query images in differeat re-
positories with different computations for the same feature (e.g., different shape feature vectors for the same
shape). Thus, QBIC pickers will not compute a feature vector but will capture the user specification in a
small image (e.g. a 100 x 100 color distribution) which can be input to the feature computation functions in
any image database supporting query by content for the same feature. This also eliminates the need for client
machines to have implementations for potentially expensive feature computations. The cost is that “image
literals” must now be handled by Garlic’s Query Services. These literals will be carefully passed “around”
the system in order to minimize copying and query cost. (Similar mechanisms are used to handle long fields
in relational databases today (15]).

Another requirement is that it must be possible to integrate the resulting image query within the complete
user query being built by the Query/Browser. The QBIC query formation functions will therefore capture
the logical expression of the user’s query in a text form with references to the image literals discussed above.
The text form will be a subset of the Garlic Query Language which can be pieced into the full GQL query
that the Query/Browser will submit to Garlic Query Services.

The thumbnails available from QBIC in response to an image query will be displayed by the query/browser
using the image display tools available at the client. These tools must support “drag and drop” protocols
so that the returned images can be moved into QBIC’s query formation functions to exploit the “query by

example” paradigm.

4.2.2 Wrapping the QBIC Query Engine

Typical information servers, whether general purpose or domain specific (e.g., Lotus Notes, Excalibur’s
Electronic Filing System or ACR/NEMA DICOM Medical Image Servers), organize the data they manage
under a schema that presents a model of that data to the user. Document systems compose a document from
pages and then organize the documents into folders, filedrawers, cabinets, etc. Medical image servers or-
ganize tomographic images into series, series into studies and studies into sections of a patient folder. Al-
though instances of these data objects and data collections can be added, the object and collection types in
each schema are fixed by the underlying system. Furthermore, the systems support several levels of search
capability through a published API. We believe this model of an information server is representative of an
increasing segment of the information server market. Trends in industry standardization of domain-specific
data models and in marketplace standardization of general purpose information and data management Sys-
tems will further support this model. Therefore, most repository wrappers in Garlic will bridge the gap be-
tween Garlic’s object-oriented model and a fixed schema in a similar modeling discipline.

However, QBIC is a research prototype, and does not have a published data schema or APIs. Instead of de-~-

scribing the data stored, QBIC’s file-based data organization is oriented around handling image and feature
vector data structures. To integrate QBIC into Garlic so that Garlic can exploit QBIC’s data and search ca-
pability, the QBIC wrapper must present an object-oriented schema to Garlic, and be able to map this sche-
ma down to the file structures and call interfaces currently provided by the QBIC search engine. It is a virtue
of Garlic’s architecture that even in this case integration is possible.

The query engine wrapper has two parts: a model of the data in QBIC and of the predicates QBIC can apply,
and code that translates between GQL queries and QBIC'’s call interfaces and returns results to Garlic. The
model for QBIC’s image data must express the relationships between, raw base images, scenes that have
outlined objects in them, and thumbnails of the raw images as well as of the images with outlined objects.
Although these data objects are stored as bitfiles or as records in data files in QBIC, the QBIC wrapper pro-
vides Garlic with a more integrated view. This view allows navigational access from one object to its related
objects through the Query/Browser, the use of image feature queries over particular collections in a type
safe manner and the incorporation of QBIC data (as Garlic objects) into Garlic complex objects (e.g., ad-
vertising campaigns, or resumes) without copying the large data objects into Garlic.

Interface definitions satisfying these requirements are given in Figure 6 There are three key interfaces
(classes), one for full QBIC scenes, one for outlined objects within a scene, and the third containing the ac-
tual image (BasePixellmage). A QBICScene has pointers to the raw image and a thumbnail (both instances
of BasePixellmage). It also has a set of pointers to objects outlined in that scene. These objects are repre-
sented by the OutlinedObjects interface. Again, each outlined object has pointers to the raw image, and to
a thumbnail of that image in which the object is outlined. OutlinedObjects also point back to the QBICScene
they occur in. Finally, the BasePixellmage class provides exactly the information needed to interpret the
image bits faithfully, including width, height, and pixel size. Appropriate methods are provided with each
interface definition to allow searching and manipulation of these classes. These interface definitions shield
Garlic users from the details of how QBIC keeps track of which image features have been computed for a
given scene, or a given object. It also hides the actual feature values. All of these are managed by the QBIC
repository, but are only accessible to Garlic through the interface methods. .

The interface definitions are exported by the wrapper and copied into Garlic structures used by Metadata
Services to record schema information. They are used by Garlic Query Services during query compiliation
(e.g, to ensure type safe queries) and by users and applications to examine the objects available in a Garlic
database. The wrapper also exports a set of named collections. These collections are assigned identifiers by
Garlic upon import and the wrapper is responsible for maintaining mappings between these identifiers and
the underlying repository entities. For instance, if it is desired to make a set of QBICScenes, called
Wilderness_Shots, available to advertisers, a QBIC server will register the directory containing the thumb-
nail files to Garlic as a collection during the wrapper creation process. QBIC will guarantee that the same
set of features is computed for each Wilderness_Shot scene. Therefore, any feature-based search of the
Wilderness_Shot collection can be assumed to be exhaustive by the user. The QBIC wrapper will map a
Garlic OID for the Wilderness_Shot collection into a reference to this directory, and will map method invo-
cations, such as the maich_image search predicate, into the appropriate calls against the contro! file struc-
tures in the QBIC search engine.

The second part of the wrapper handles queries. The QBIC wrapper is passed that part of a user’s query that
applies to collections that are exported by QBIC. A feature of QBIC is that searches can be performed
against lists of images that are subsets of the exported collections, or against an entire collection. This allows™

10

interface QBICScene : persistent {
relationship BasePixelImage original_image;
relationship BasePixellmage original_image_thumbnail;
relationship set <OutlinedObjects> scene_objects
inverse OutlinedObjects::original_scene;

fuzzybool match_image (in QOBICScene image_srch_arg);
void QBdisplay();

}
interface OutlinedObjects : persistent {
relationship BasePixellmage original_image;
relationship BasePixelImage original_thumbnail_obj;
attribute int[2] upperleft;
relationship BasePixelImage objectmask;
relationship QBICScene original_scene inverse QBICScene: :scene_objects;

void QBdisplay():

1

interface BasePixellmage : persistent {
attribute int image_width;
attribute int image_height;
attribute float pel_size;
attribute char(n] image_bits;
attribute char getpel (in int x, in int y);
attribute char(n] getimage (in int n);
OBdisplay () ;

Figure 6. A Wrapper Schema for QBIC

Garlic Query Services considerable flexibility in choosing how to execute a query (Section 4.3).The query
fragment sent to-QBIC is represented by an abstract parse tree that has all references to Garlic objects bound
to unique identifiers which the wrapper can map to underlying repository entities. Any literals needed to
evaluate the query (e.g., a sketch to be matched) will also be passed. The wrapper creates an iterator, which
provides the answer set (in a relevance sorted order created by QBIC) to Garlic’s Runtime System. After
mapping the Garlic subquery into QBIC entities and function calls, the wrapper relies on the client/server
mechanisms provided by QBIC, e.g., RPC, to remotely execute the appropriate search and return the answer
set. The answer set contains identifiers that can be mapped to Garlic OIDs, can be filtered and/or can have
methods applied to them.

4.3 Queries over Visual (and Other) Data

Once a wrapper is defined for QBIC, QBIC data can be queried through Garlic. But the power of Garlic lies
in its ability to answer queries that span multiple data types in multiple repositories. In this section we will
show how queries in Garlic can combine predicates over visual and other data. To illustrate how queries are
processed, we need both wrapper schemas for each repository and a global Garlic schema. We complete this
set of schemas for a simple subset of our advertising example. We assume that in addition to a QBIC re-
pository with images from magazine ads, the agency also has a text repository that stores financial reports
for each campaign. The conteats of this repository and the commands to create it are indicated in C++ no-
tation in Figure 7. Suppose that the agency wants to correlate their reports with the magazine ads. They can =

11

class Document { make_doc_db /financial/documents
e ' add_doc /financial/reportl.text
public: : add_doc /financial/report2.text

char* title;

char* text;

Date date;

int matches (char* search_expr);

Figure 7. Text Repository Contents

use Garlic complex objects to do this. The wrapper schemas for the text repository and for the complex ob-
jects managed by the Garlic complex object repository are given in Figure 8. (The wrapper for the QBIC
repository was shown in Figure 6). Notice that the text wrapper renames the &tle attribute of Document to
campaign, based on the wrapper designer’s knowledge of the actual documents being stored. Also, note that
there is no magic involving complex objects. Once the complex object schema is defined, the complex ob-
ject repository must be populated. In some cases this can be done through a query, but in our example this
would have to be done by hand (unless there were some information in the document to identify the asso-
ciated images, or vice versa).Finally, one possible Garlic schema for this example is given in Figure 9. This
schema promotes the campaign attribute of the report into the Campaign objects themselves, so that Cam-
paigns now have a name, a set of magazine ads, and a report.
interface Document (extent Document): persistent {

attribute String campaign;

attribute Date date;

attribute String text;

fuzzybool matches(String search_expr):;
void QBdisplay();

Figure 8. (a): Text Wrapper Schema

interface Campaign (extent Campaign): persistent {
attribute String campaign_name;
relationship Set<QBICScene> magazine_ads;
relationship Document report;

Figure 8. (b): Complex Object Repository Schema

The Garlic Query Language extends SQL with additional constructs for traversing paths composed of inter-
object relationships, for querying collection-valued attributes of objects, and for invoking methods within
queries. These extensions are similar to those of other recent object query language proposals (e.g., {2], [13],
[6]), including the ongoing efforts of the SQL-3 committee [14]. To get a flavor of these extensions, con-
sider the following query, written against the Garlic schema of Figure 9:2

2. We are still working out the exact details of our SQL extensions. This example is provided to give the reader a
feeling for what we intend, and should not be taken too literally!

12

interface Campaign (extent Campaign): persistent ({
attribute String campaign_name;
relationship Set<Scene> mag_ads;
relationship Document report;

}

interface Document (extent Document): persistent {
attribute String campaign;
attribute Date date;
attribute String text;
fuzzybool matches(in String search_expr);
void OBdisplay ()

}

interface Scene(extent Scene): persistent {
void OBdisplay();
fuzzybool match_image(in Scene sketch_arg):;

s

Figure 9. Global Garlic Schema

select C.campaign_name, C.report, C.mag_ads

from Campaign C, C.mag_ads A

where (C.report.date > “1989”) and

A.match_image(SKETCH) > .5

This query finds the campaigns and the associated report and magazine ads for those campaigns that ran in
the last five years and which had a magazine ad that resembled a particular image (for example, a user-
drawn sketch). This would be useful for those situations in which the ad executive remembers roughly what
a particular ad looked like and when it was run, but not the details of the campaign. The query illustrates
several of Garlic's object-oriented SQL extensions. First, it contains a number of path expressions. Second,
it contains an invocation of the match_image() method of the Scene object. This method passes QBIC a lit-
eral representing the sketch in an appropriate form for QBIC (this may have been produced visually by a
sketch picker), and returns a number indicating the “‘goodness” of the match. Finally, C.mag_ads in the se-
lect clause illustrates the retrieval of an unflattened set.

To answer this query, Garlic first translates it into an internal representation which reflects the query’s se-
mantics. Each operation is then re-written in terms of the underlying wrapper schemas, using the Garlic
metadata. Next, Garlic decomposes the query into a plan containing a number of smaller queries, each of
which can be answered by a single repository. The plan also specifies how the results of each subquery
should be combined to form the final answer. For example, one possible plan for our query would be to ask
the text wrapper for the oids of reports written after 1989, then ask the complex object repository for the
oids of the magazine ads associated with these reports, then probe QBIC with the list of ad oids to see if
those ads match the sketch sufficiently closely, and finally, get the report title (campaign name) associated
with the document oid of the surviving campaigns. Other plans are certainly possible, and it would be up to
the optimizer to choose among them based on its estimates of cost.

In Garlic’s distributed environment the issue of optimization is very important. The amount of work that
each server does in order to handle its part of the overall query can vary greatly, from efficient range search-
es on a primary key in a relational database, to the costly computation of feature vectors followed by the
computation of an expensive distance measure against an entire collection of images in QBIC. Ideally, Gar- ™

13

lic would sequence the data system accesses in order to exploit parallelism and the special functions that a
server provides (e.g., relevance sorted answer sets) while minimizing potentially wasted time and expense
at the servers and in the Garlic system itself. Optimization will require the specification and use of several
new pieces of information. We need computational models of feature calculations and distance measures in
order to distinquish between the costs of different feature predicates applied within QBIC. Selectivity fac-
tors that can aid in predicting the amount of data returned by a similarity query are also needed. Finally,
models must be created that can reflect the existence of special purpose indexing structures, e.g., multi-di-
mensional indexes for feature vectors, in their estimates of a similarity query’s cost. These will all be cap-
tured in the descriptive part of a repository wrapper for use by Garlic’s Query Services. In addition, Garlic
will maintain information on processor speeds, I/0 rates and communication costs for its installed servers
and networks, in the tradition of relational optimizers.

It is the responsibility of each repository wrapper to convert its individual subplan into a form the underlying
repository can understand - either one or more queries in that repository’s query language, or a sequence
of calls to its native search API. The wrappers will execute their subplans in a demand-driven fashion under
the control of the Garlic runtime system, returning a stream of values to Garlic for any final processing.

This final processing may involve joins, projections or restrictions, as in any middleware database system.
However, Garlic has an additional challenge: to reconcile the different query semantics of its various repos-
itories. While in database management systems data items are returned if and only if predicates are true,
QBIC and other repositories managing multimedia data return data items in order of *“closeness™ to a given
predicate. We are currently developing a set of SQL extensions and query processing algorithms to support
queries that involve both exact and approximate search criteria. This work involves introducing into SQL
the notion of graded sets, in which each object is assigned a number between 0 and 1 for each atomic pred-
icate; this number represents the degree to which the object fulfills the predicate, with 1 representing a per-
fect match. Boolean combinations of predicates can then be handled using the rules for combining
predicates in fuzzy logic [27]. To enable query writers to specify the desired semantics, GQL permits the
specification of the number of matching results to be returned and whether or not rank-ordering (rather than
an attribute-based sort order, or an arbitrary order) is desired for the query’s result set. We are also devising
new query processing algorithms that will produce the best N results efficiently, without materializing every
intermediate result item that matches to any degree at all,

4.4 Visual Query/Browse in Garlic

The purpose of the Garlic Query/Browser component is to provide end users of the system with an easy and
highly visual way to access and manipulate the data in a Garlic database, as the typical end user will not
normally want to write GQL queries. As its name implies, the Query/Browser will provide support for two
basic data access functions, namely querying and browsing. However, unlike existing interfaces to databas-
es, the Query/Browser will allow users to move back and forth seamlessly between querying and browsing
activities, using queries to identify interesting subsets of the database, browsing the subset, querying the
contents of a set-valued attribute of a particularly interesting object in the subset, and so on.

The Query/Browser will support exploration of a Garlic database by allowing users to browse through the
contents of Garlic collections (via next/previous buttons or scrolling) and to traverse relationships by click-
ing on (selecting) objects’ reference attributes. When multiple related objects are being simultaneously dis-
played, synchronous browsing will be implied (a la [18}, [1]). Consider what an advertising executive might -

14

do to find the campaign she wants without writing any GQL. She might start by just browsing through cam-
paigns. Figure 10a shows the screen after she has chosen to browse the Campaign collection. By clicking
on the report field, she can see the associated report (10b). Since the Document interface has a QBdisplay
method, the Query/Browser invokes that method to display the report. (For purposes of this paper, we as-
sume that QBdisplay is a distinguished method, provided to allow the Query/Browser to display objects of
that type). Similarly, selecting mag_ads will show images of the ads (10c), using Scene’s QBdisplay meth-
od. Clicking next on the mag_ads window will browse through the ads for this campaign. Next in the Cam-
paign window (10d) will move to the next campaign, and the report and ads related to that campaign.

The Query/Browser will support querying via a “query-by-graphical-example” paradigm, extending the

Ei&ns I Lampaigns lQ
Coziees -O\ Canres™ | - Do
m //lfl ~Deus —neme’
rogads| —> Mag-ads{ —> |
RAPGF{' 1 —> R‘P"‘{ —
Repert 13 *
Com -0
Mnl 1128
Texdt |
[o él
L :
(0 (o)
(Gampaigns __|Q (Feg-ads_[Q
Compeson | {ill- Dew i
roag-nds { —> : £
'Q‘Pi’f —>)
'f’/"’d J Prviovs sz S
W o p— Nert ! zrafws
Regert | i ' ’
Coampas "ﬁ///- !
Dck‘t,:ﬁ " | /982
Fext i
Bl
Y
5 |
- (0 (c) : 10(d)

Figure 10. Browsing using the query/browser

well-known query-by-example paradigm (28] for use in formulating queries over an object database. Sup-
Pose our account exec, tired of browsing, decides to specify the query we looked at above. She clicks on the
query button in the top corner of the Campaigns window, and then clicks on the fields she wishes to restrict
(Figure 11a). In Figure 11b, she has specified the predicate on reports (date>1989) and has chosen to do a
query by sketch on mag_ads. This results in the appearance of a scene picker, with which she sketches the
scene she remembers (Figure 11c). When she’s done specifying predicates, she selects the DO_IT button t0 —

| Gampaigns Q F Gampaiqns Q
Campasga \clm‘g«i_"l‘—‘
<, . —romeV
fag ads | — (WD
Repaet | _, Report.. |
Mexd] Previous [M ’ Arevious
Repert Q] Report [Q]
Campasgn | 4 Compasgn 4
Dodcj : Ddc,:? >33 D:ro*f
TCx‘f Text
—H(«.-)
mpaigns [|-
Compesen
rog-nds
| Repart_|
lﬂ/fad ,’ch'ou,r
Repert__ Q)
St) oo
e 2 =
— ft{c)

Figure 11. Querying in the Query/Browser

cause the query to execute. She can then browse the results (Figure 11d), with the query’s constraints re-
maining active until explicitly cleared.

In addition to smoothly combining querying and browsing, the Garlic Query/Browser will also provide oth-
er useful features for exploring and manipulating the contents of a heterogeneous multimedia data collec-
tion. First, the objects on the display at any given time will be active objects -- the Query/Browser will
remember their Garlic identities and will provide a graphical means of obtaining a list of their available
methods and requesting that one of the methods be applied to the object of interest (prompting for method
arguments if needed). Second, clicking on “query” followed by a multimedia (e.g., image, audio, video, or
text) attribute of a displayed object will result in the display of a type-specific picker (or set of pickers) to
support the construction of a media-specific predicate on that attribute of the object, as discussed in Section
4.2.1. The Query/Browser will contain a number of such pickers to support the graphical specification of
content-based multimedia predicates. In time, the Query/Browser will become still more sophisticated, sup-
porting the graphical definition of end-user views. Ultimately, we believe that good support for customizing
the browser’s behavior with respect to a given Garlic database and Garlic user may lead to a new paradigm
for visual application development, at least for applications of a “browsy” (i.e., navigational) nature.

16

5 Conclusions, Status and Future Work

We have presented an overview of the Garlic project at the IBM Almaden Research Center, the goal of
which is to build a heterogeneous multimedia information system (MMIS) capable of integrating data from
a variety of traditional and non-traditional data repositories, and allowing query by content of any type of
data. We described the overall architecture for the system, which is based on repositories, repository wrap-
pers, and the use of an object-oriented data model and query language to provide a uniform view of the dis-
parate data types and data sources that can contribute data to a Garlic database. As we explained, a
significant focus of the project is support for repositories that provide media-specific query capabilities. We
described QBIC, a system that provides query by image content, and showed how QBIC could be integrated
into Garlic so that queries might range over data in this and other repositories simultancously. We also de-
scribed exploratory access to Garlic by end users via the Garlic Query/Browser.

‘The Garlic project was initiated in early 1994. Our current target is to have an initial “proof of concept™
prototype running (or at least limping) by the end of 1994. This prototype will be demonstrated by a simple
application involving data that spans a relational DBMS (DB2 C/S), a QBIC repository, and a full text
search engine. The goal of the first prototype is to understand the nature of wrappers, the challenges in-
volved in query translation and processing, and the efficacy of the query/browser as an end-user window
into a collection of multimedia data.

In the longer term, we expect the Garlic project to lead us into new research in many dimensions, including
object-oriented and middleware query processing technologies, extensibility for highly heterogeneous,
data-intensive environments, database user interfaces and application development approaches, and integra-
tion of exact- and approximate-matching semantics for multimedia query languages. There are also many
interesting, type-specific issues, such as what predicates should be supported on image and video data, how
to index multimedia information, how to support similarity-based search and relevance feedback, and what
the appropriate user interfaces are for querying particular media types. We believe that significant challeng-
es exist in each of these areas, and that solutions must be found to meet the emerging demand for large-scale
multimedia data management.

6 Acknowledgments

We would like to thank Rakesh Agrawal for his input in the start-up phase of the Garlic project; he contrib-
uted significantly to our vision for both the project as a whole and the query/browser in particular. John
McPherson and Ashok Chandra have been particularly supportive of our efforts throughout; we thank them
for their encouragement and many suggestions. Many others contributed to the definition of the Garlic
project, including: Kurt Shoens, K.C. Lee, Jerry Kiernan, Peter Yanker, Harpreet Sawhney, David Stecle,
Byron Dom and Markus Tresch.

7 References

[1] R. Agrawal, N. Gehani, And J. Srinivasan, “OdeView: The Graphical Interface to Ode”, Proc.
ACM SIGMOD Conference, Atlantic City, NJ, May 1990.

17

(21 E. Bancilhon, S. Cluet, and C. Delobel, “A Query Language for the 02 Object-Oriented Database
System”, Proc. DBPL Conference, Salishan Lodge, Oregon, June 1989,

{3] R. Cattell, ed., “The Object Database Standard: ODMG-93 (Release 1.1)”, Morgan Kaufmann
Publishers, San Francisco, CA, 1994.

[4] Carey et al., Garlic paper

[5] T. Conners, W. Hasan, C. Kolovson, M. Neimat, D. Schneider, and K. Wilkinson, “The Papyrus
Integrated Data Server”, Proc. 1st PDIS Conference, Miami Beach, FL., December 1991.

[6] S. Dar, N. Gehani, and H. Jagadish, “CQL++: A SQL for a C++ Based Object-Oriented DBMS”,
Proc. EDBT Conference, Vienna, Austria, 1992.

{7] A. Elmagarmid and C. Pu, eds., Special Issue on Heterogeneous Databases, ACM Comp. Surveys
22(3), September 1990.

{8] D. Fang, S. Ghandeharizadeh, D. McLeod, and A. Si, “The Design, Implementation, and Evalua-
tion of an Object-Based Sharing Mechanism for Federated Database Systems”, Proc. IEEE Conf. on
Data Eng., Vienna, Austria, April 1993.

[9] K. Hirata and T. Kato, “Query by Visual Example”, Advances in Database Technology EDBT ‘92,
‘Third International Conference on Extending Database Technology, Springer-Verlag, Vienna, Austria,
March 1992.

{10] D. Hsiao, “Federated Databases and Systems: Part I -- A Tutorial on Their Data Sharing”, VLDB
Journal 1(1), July 1992.

[11] M. loka, “A Method of Defining the Similarity of Images on the Basis of Color Information”,
IBM Tokyo Research Lab, Technical Report RT-0030, 1989.

[12] T. Kato, T. Kurita, N. Otsu and K. Hirata, “A Sketch Retrieval Method for Full Color Image
Database”, International Conference on Pattern Recognition (ICPR), IAPR, The Hague, The Nether-
lands, pp. 530--533, September 1992 .

[13] W. Kim, “A Model of Queries for Object-Oriented Databases”, Proc. VLDB Conference,
Amsterdam, the Netherlands, August 1989.

{14] K. Kulkarni, “Object-Oriented Extensions in SQL3: A Status Report”, Proc. ACM SIGMOD
Conf, Minneapolis, MN, May 1994.

[15) Lehman and Lindsay VLDB Long Field MGR

{16] R. McConnell, R. Kwok, J. C. Curlander, W. Kober and S. S. Pang, “%¥ — § Correlation and
Dynamic Time Warping: Two Methods for Tracking Ice Floes in SAR Images”, IEEE Transactions on
Geoscience and Remote Sensing”, 29:6, pp. 1004-1012, November, 1991

[17] M. Miyahara and Y. Yoshida, “Math. Transform of (R,G,B) Color Data to Munsell (H,V,C) Color
Data”, Vis. Comm. and Image Proc., SPIE, Vol. 1001, pp. 650-657, 1988.

(18] A. Motro, A. D’Atri, and L. Tarantino, “The Design of KIVIEW: An Object-Oriented Browser”,
Proc. 2nd Int’]. Expert Database Systems Conference, Tysons Corner, VA, April 1988.

[19] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and P. Yanker: “The
QBIC Project: Querying Images by Content Using Color, Texture and Shape”, Proc. SPIE, San Jose,
CA, February 1993.

{20] A. Pentland, R. Pickard, and S. Scarloff, MIT Media Lab: “Photobook: Tools for Content Based
Manipulation of Image Databases”, Proc. SPIE, San Jose, CA, 1994,

18

[21] R. Rosenberg and T. Landers, “An Overview of MULTIBASE”, in Distributed Databases, H.
Schnoeider, ed., North-Holland Publishers, New York, NY, 1982.

{22] G. Salton, “Automatic Text Processing: The Transformation, Analysis, and Retrieval of Informa-
tion by Computer”, Addison-Wesley Publishers, 1989.

[23] M. Shan, “Pegasus Architecture and Design Principles”, Proc. 1993 ACM SIGMOD Conference,
Washington, DC, May 1993.

[24]1 M. J. Swain and D. H. Ballard”, “Color Indexing”, International Journal of Computer Vision, 7:1,
pp. 11-32, 1991.

[25] H. Tamura, S. Mori and T. Yamawaki, “Texture Features Corresponding to Visual Perception”,
IEEE Transactions on Systems, Man, and Cybernetics, SMC-8:6, pp. 460-473, 1978.

[26] M. Ubell, “The Montage Extensible Datablade Architecture”, Proc. ACM SIGMOD Conference,
Minneapolis, MN, May 1994,

{27] H. J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Bos-
ton, MA, 1990.

(28] M. Zloof, “Query-By-Example: A Data Base Language”, IBM Systems Journal 16(4), 1977.
[29] Understanding GIS -- The ARC/INFO Method, ESRI Inc. (1990).
[30] “SPANS: SPatial ANalysis System”, TYDAC Technologies: Corporate Overview (1990).

19

