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Ronald Fagin 
John H. Williams 

A Fair Carpool Scheduling Algorithm 

We present a simple carpool scheduling algorithm in which no penalty is assessed to a carpool member who does not ride on any 
given day. The algorithm is shown to be fair,  in a certain reasonable sense. The amount of bookkeepinggrows only linearly with 
the number of carpool members. 

1. Introduction 
Suppose that N people, tired of spending their time and 
money in gasoline lines, decide to form a carpool. We present 
a scheduling algorithm for determining which person should 
drive on any given day. We want a scheduling algorithm that 
will be perceived as fair by all the members so as to 
encourage their continued participation. We begin by pre- 
senting three algorithms (Scheduling Algorithms 1-3 
below) and discussing their flaws. We then present the 
algorithm (Scheduling Algorithm 4) that we propose. We 
assume for now that on any given day at  most one car is the 
“carpool car.” This assumption is relaxed later. 

Scheduling Algorithm I (simple rotation) The simplest 
scheme, and the one most often used, is simply to rotate 
driving, e.g., in alphabetical order. Thus, if there are N 
members of the carpool, then person i is responsible for 
driving on the ith day and every N driving days thereafter. 
This scheme has the obvious advantage that it is simple to 
describe and it is easy to determine who drives next. The 
difficulty with this scheme arises when one or more people do 
not participate in the carpool on a particular day. If the 
designated driver has to stay out on the day that he is 
supposed to drive, then he will have to swap days with 
someone else. After a few such occurrences, it may become 
difficult to determine who is to drive the next day. If a 
non-driver misses one or more days, should he be expected to 
drive in his normal rotation? If so, he may soon perceive the 
carpool to be more of a burden than a blessing and drop out 
altogether. 

Just as big a problem as the person who cannot drive on his 
scheduled day is the person who must (for personal reasons) 
drive on someone else’s day but could otherwise participate in 
the carpool (for example, a person who is going to work as 
usual but needs to have his car in order to go to the bank to 
deposit the money he has saved by carpooling). We want a 
scheduling algorithm that will always be tolerant of excep- 
tional conditions and that will never discourage participa- 
tion. In particular, we want an algorithm that is robust, in 
the following sense: A person can drive on a day that the 
algorithm says someone else should drive, and it is then easy 
to see how to get “back in synch” later. 

Scheduling Algorithm 2 (simple tokens) In order to cor- 
rect the deficiencies of simple rotation, we might adopt the 
following procedure. Each time a person R rides with a driver 
D # R, then R pays D one “ride token.” Of course, the 
tokens would not actually need to be handled; each person’s 
current token holding could simply be recorded somewhere, 
and that record could be updated daily. Then the algorithm 
for determining who drives next would be to choose, from 
among the people participating that day, the person with the 
smallest holding of tokens. 

When we formally define fairness, in Section 3, we shall 
see that this scheduling algorithm is not fair in our sense. In 
the worst case, some carpool member may be forced to drive 
far more than his “fair share,” as we shall see. We now 
briefly mention a few intuitive reasons why this algorithm is 
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Figure 1 Books for Scheduling Algorithm 3. 

Date I Don John Phyllis Ron 

Figure 2 Books for Scheduling Algorithm 4. 

not fair. (1) It is certainly quite advantageous to drive on 
days when many people are participating (since the driver 
gets one ride token from each of the other participants). If a 
carpool member were unlucky enough to be the designated 
driver on several “bad” (sparsely attended) days, then he 
might decide that the algorithm is not fair, and might even be 
driven to drop out of the carpool. (2) On a “good” day (a day 
in which there are many participants), if two carpool partici- 
pants A and B were tied for the lowest score, then both A and 
B would want very much to drive, and some tie-breaking 
scheme would have to be devised. (3) Finally, this algorithm 
is not robust in the sense we have defined: If A were a carpool 
member, if it were not A’s turn to drive according to the 
algorithm (that is, A did not have the lowest score among the 
participants on that day), and if A insisted on driving his car 
on that day for personal reasons, then the other carpool 
members would be quite unhappy if this were a “good” day. 

Scheduling Algorithm 3 (subsets) The next scheduling 
algorithm to be described does turn out to be fair in our sense; 
the problem, as we shall see, is the amount of bookkeeping 134 

required. This algorithm records, for each of the 2N 
- (N + 1 )  nontrivial subsets of carpool members (subsets of 
two or more), the number of times that each member of the 
subset has driven that particular group of people. For exam- 
ple, if there are four people named Don, John, Phyllis, and 
Ron in the carpool, then the books at  a given point might look 
like Fig. 1 (where, for example, a tally is entered under 
Phyllis in the Don-Phyllis-Ron table on a day in which only 
Don, Phyllis, and Ron participate in the carpool and Phyllis 
drives). If the table is as in Fig. 1, then on the next day in 
which the only participants are Don, Phyllis, and Ron, the 
driver should be the person (in this case, Ron) with the least 
number of tallies in the Don-Phyllis-Ron table. With this 
method, it is clear that a person is not penalized for non- 
participation on any day. It is intuitively clear that this 
algorithm is fair, since it is essentially simple rotation applied 
separately to each of the 2N - (N + 1) nontrivial subsets. 
Further, it is clear that this algorithm is robust in our sense. 
Unfortunately, the bookkeeping for this algorithm becomes a 
nightmare (if the number N of people is, say, four or more) 
because the size of the book grows exponentially with the size 
of the carpool. Further, this scheduling algorithm neglects 
certain trade-offs. For example, Phyllis and John appear 
together in four of the tables in Fig. 1 ,  but Scheduling 
Algorithm 3 makes no attempt to trade off rides in the tables 
in which Phyllis and John appear together. In fact, in Fig. 1, 
Phyllis has driven more times than John in each of the four 
tables in  which they both appear. 

2. The proposed scheduling algorithm 
We now give our proposed scheduling algorithm. 

Scheduling Algorithm 4 (fair carpool scheduling algo- 
rithm) We begin by defining U to be a value that, intui- 
tively, represents the total cost of a trip. It is convenient to 
take U to be the least common multiple of 1, 2, .-., m, where 
m is the largest number of people who ever ride together a t  a 
time in the carpool. In the running example we shall give, we 
assume that this number m is taken equal to the total number 
N of members of the carpool, which in turn is assumed to be 
4. Thus, U is taken to be the least common multiple of 1 ,2 ,  3, 
and 4; that is, Uis 12. As drawn in Fig. 2, the books consist of 
a single table, with one column for the date and one column 
for each carpool participant. Each day that the carpool 
drives, a new row is entered into the table. The table is 
initialized with a row of all 0’s (the first row of the table in 
Fig. 2). If, on a given day, there are k participants in the 
carpool and A is the driver, then the A entry is increased by 
U ( k  - l ) /k  units (that is, the entry for that day in the A 
column is U(k - l ) / k  more than the A entry in the previous 
row), and the entries of the riders who do not drive are each 
decreased by U / k .  For example, in Fig. 2, the first day of the 
carpool was May 1 ,  and John was the driver. On that day, 
Phyllis and Ron rode in John’s car. Thus, John gained 8 
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units, and Phyllis and Ron each lost 4 units. On the next day, 
May 2, all four carpool members participated, and Ron was 
the driver. (The algorithm says that either Phyllis or Ron 
should be the driver on May 2, since they are tied for the 
lowest score, with -4 units each.) Since Ron drove, he 
gained 9 units, and each of the others lost 3 units. On the next 
day, May 3, only Don and Phyllis participated. Since Phyllis 
had a lower score than Don (-7 versus -3) ,  she was the 
driver. She gained 6 units and Don lost 6 units. Note that by 
choosing U as we have (in this case, U = 12), every entry of 
the table is an integer. 

. 
An intuitive way to view this scheduling algorithm is that 

the “cost” of driving is taken to be U units, and this cost is 
divided equally among each of the participants. So, if  there 
are k participants, then the cost to each participant is U / k .  
Thus, each of the participants who is not the driver “pays” 
U l k  units to the driver. 

We now show that for each row, the checksum (the sum of 
the entries) is zero. For example, on May 2, the entries are 
-3 ,  5, -7, and 5, which add to 0. This property provides a 
redundancy check on the arithmetic. 

Proposition I 
In  each table generated by Scheduling Algorithm 4, the 
checksum of each row is zero. 

Proof When k people participate, one of them (the driver) 
gains U(k - l ) / k  units, the other k - 1 participants each 
lose U / k  units, and the values of the nonparticipants are 
unchanged. Thus, the net gain or loss is 0, and since the table 
is initialized to all O’s, the checksum is always 0. 0 

We now show that the entries in the table are bounded for 
each N (where N is the number of members of the carpool). 
We shall make use of this result later, in  our proof of 
fairness. 

The schedule of arrivals is a finite sequence (S,, S,, ..., 
Sn),  where S, is the set of participants in  the carpool on day i 
(or as we may also say, at time i). Intuitively, the schedule of 
arrivals tells who participated in the carpool, day by day. For 
example, the schedule of arrivals (ABC,  BD,  ACD),  where 
ABC is an abbreviation for [A ,  B, C}, etc., corresponds to 
persons A, B, and C participating in the carpool (riding in the 
carpool car) on the first day, persons B and D participating 
on the second day, and so on. 

Theorem 2 
Let N ,  the number of members of the carpool, be fixed. Then 
there is a number M such that, for each schedule of arrivals, 
the table derived by applying Scheduling Algorithm 4 con- 
tains no entry larger than M. 

Proof Assume that the theorem is false; .we shall derive a 
contradiction. Find N such that, for each M, there is a table 
T (which can be derived by applying Scheduling Algorithm 4 
to some schedule of arrivals) with an entry larger than M. 

Define the sequence a,. ..., a, recursively by letting a, = 

0, and a,, , = 1 + ia,, for 1 I i < N. Let M be a,U. Let T be 
a table (that is derived by applying Scheduling Algorithm 4) 
with an entry larger than M .  Let us call the top row (with all 
zeros as entries) of table Trow 0, the next row of the table 
row I, and so on. If the N entries of row t are b, L b, L ... 
2 b,, then define s,(i) to be b,. Thus (with ties properly 
accounted for), s,(i) is the ith largest entry of row t .  We think 
of row t as containing the scores of members of the carpool 
just after the carpool has driven on time t (that is, the scores 
after time t but before time t + 1). 

Since table T contains an entry larger than M ,  we know 
that s l ( j )  > M ,  for some t and j .  Hence, sI( 1) > M, since 
s,(l) 2 s l ( j ) .  Let t ,  be the least t such that s,(l) > M. We 
now show that there are t,, ..., t,, where t ,  > t ,  > ... > t,, 
such that for each i (1 5 i i N), 

s,(i) > M - a,U. ( 1 )  

We already know that ( I )  holds when i = I ,  since a, = 0. 
Assume inductively that we have found t ,  > t ,  > ... > t ,  

such that s > M - apU for 1 5 p 5 i; in particular (when p 
= i) we see that ( I )  holds. We must find t , + ,  < t ,  such that 

‘P 

s,,+, ( i  + 1) > M - a,+, U. (2) 

Now s r ( j )  2 s,(i) when 1 I j  I i .  Hence, 

s,(l) + ... + s,(i) 2 is f ( i ) .  

s,(l) + ... + s,(i) > iM - ia,U. 

(3) 

By ( I )  and ( 3 ) ,  it follows that when t = t , ,  we have 

(4) 

Let k be the least value o f t  such that (4) holds. Note for 
later use that k > 0, since s o ( j )  = 0 for eachj. We now show 
that 

s k ( i )  > M - ia,lJ. ( 5 )  

I f i  = I ,  then k = t , ,  by definition of t ,  (since a, = 0). So, if i 
= I ,  then (5) holds. We now show that (5) holds if i > 1. We 
know that k I t , ,  since, as we showed, (4) holds when t = t,. 
Since k 5 t ,  < t , ,  it follows by minimality o f t ,  that s k ( j )  
i M, for 1 I j I N. In particular, 

s k ( j ) i M , f o r l s j 5 i -  1. ( 6 )  

By (4), with t = k ,  and by (6), it follows that (5) holds, 
which was to be shown. 

We know that k is the least value o f t  such that (4) holds, 
and that, as noted, k > 0. Therefore, 135 
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( 7 )  

We now show that (7) implies that 

sk-,(i + 1 )  + U > sk(i) .  (8) 

Now (7) says that the sum of the i biggest scores strictly 
increases between rows k - 1 and k. How can this happen? 
Let A be the driver of the carpool a t  time k. Thus, A has the 
lowest score in row k - 1 among those who participate in the 
carpool on day k. It is not hard to see that for the sum of the i 
biggest scores to strictly increase between rows k - 1 and k, 
it is necessary that 

I .  A’s score in row k - 1 is sk- , ( j )  for somej  > i ;  that is, A’s 
score is one of the lowest N - i scores in row k - 1, and 

2. A’s score in row k is sk(m) for some m 5 i; that is, A’s 
score is one of the biggest i scores in row k. 

Now the driver’s score increases by less than U when he 
drives. Therefore, A’s score just before he drove [that is, 
s k - , ( j ) ]  differs from his score just after he drove [that is, 
s,(m)] by less than U. Hence, 

(9) 

Now sk-,(i + 1 )  2 s k - , ( j ) ,  since; > i, and so (by adding U 
to both sides), we get 

S k & ,  (i + 1 )  + u 2 S k & ,  (;) + u. (10) 

Further, 

since m I i. Clearly, (8) follows immediately from (9), (lo), 
and ( 1  1). Now (5) and (8) together imply that 

sk&,  (i + 1 )  > M - (ia, + 1)U, 

that is, 

sk-, (i t 1) > M - a,+, U. (12) 

Define t , + ,  to be k - 1. Then (12) tells us that (2) holds. 
Further, t , + ,  < f , ,  since we already showed that k 5 t , .  This 
completes the induction. Hence, (1) holds for each i 
( 1  5 i 5 N). Let t = t,. We see from ( l ) ,  when i = N, that 
sI(N) > M - a,U. But M = aNU, and so 

s,(N) > 0. (13) 

Since s,(i) I s , ( N )  for 1 i i I N, it follows from (13) that 
s,(i) > 0 for each i ( 1  5 i i N). Thus, every entry of row t is 
strictly positive, and so the checksum of row t is strictly 
positive. But this contradicts Proposition 1, which says that 
the checksum of every row is 0. This contradiction completes 
the proof. 0 

Corollary 3 
Let N, the number of members of the carpool, be fixed. Then 
there is a number M’ such that for each schedule of arrivals, 136 

the table derived by applying Scheduling Algorithm 4 con- 
tains no entry whose absolute value is larger than M’. 

Proof Let M be as in Theorem 2, and let T be a table 
derived by applying Scheduling Algorithm 4 to some sched- 
ule of arrivals. By Theorem 2, we know that no positive entry 
in the table can be larger than M. How large in absolute 
value can the smallest entry (the negative entry with the 
biggest absolute value) in the table be? Let r be a row of the 
table. Now no entry of the table can be larger than M ,  and 
there can be at  most N - 1 positive entries in row r (because, 
by Proposition 1, the checksum of row r i s  0). Hence, the sum 
of the positive entries in row r is a t  most (N - 1)M. Since the 
checksum of row r is 0, the absolute value of the sum of the 
negative entries in row r is equal to the sum of the positive 
entries in row r, and so is also at most ( N  - 1)M. Therefore, 
the absolute value of the smallest (“most negative”) member 
of row r is at most ( N  - 1)M. Thus, we can take M ’  to be 
( N  - 1)M. 0 

It  follows from our proof of Theorem 2 that an upper 
bound Mon the size of the biggest entry that can ever appear 
in the table is a#, where N is the number of carpool 
members and where a,  = 0 and ai+ ,  = 1 + ia, ( 1  5 i 5 N). 
This bound is not the best possible. For example, if N = 2, 
then our upper bound is U, whereas it is very easy to see that 
in this case the actual upper bound is only U / 2 .  If N = 3, 
then our upper bound is 2U, whereas a careful examination 
of the possibilities shows that the actual upper bound is 
(5/6)U.  Let us define the functionfby lettingf(N)U be the 
actual upper bound if there are N carpool members. Thus, 
f(2) = 112 andf(3) = 516. We note thatf(4) = 7/6 and 
f ( 5 )  = 8 / 5 .  We have not foundf(N) exactly for N 2 6 .  

Proposition 4 
The function f is monotone and unbounded. 

Note By monotone, we mean that if N, i N2, then f(N,) 
i f ( N 2 ) .  By unbounded, we meanf(N) gets arbitrarily large 
as N gets large. 

Proof Any score that can be obtained in a carpool with N, 
members can be obtained in a carpool with N2 2 N, 
members: we can simply assume that N2 - N, members of 
the larger carpool never participate. Monotonicity follows 
immediately. 

We now show unboundedness. Let N = 2’, and assume 
that the carpool members are A, ,  ..A, A,. Assume that on the 
first day, the participants are A,  and A,, and the driver is A,;  
on the second day, the participants are A, and A,, and the 
driver is A,; and so on for a total of N / 2  days. Then there is a 
second round that begins on the ((N/2) + I)th day. On the 
first day of the second round, the participants are A,  and A,, 
and the driver is A,; on the next day, the participants are A, 
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and A,, and the driver is A,; and so on. Then there is a third 
round; on the first day of the third round, the participants are 
A ,  and A,, and the driver is A , ;  and so on. This continues for a 
total of L log, NJ rounds, where L XJ is the greatest integer 
not exceeding x. It is straightforward to see that after the 
final round, 4 ’ s  score is r /2  (where N = 2‘). Thus, f(2‘) 
2 r/2. Hence, f is unbounded. 

We close the proof by noting another way of showing 
unboundedness. As before, let A, ,  ..., A, be the carpool 
members. Assume that on the first day, everyone partici- 
pates, and the driver is A,. Assume that on the second day, 
the participants are A, ,  ..., A,_,, and the driver is A,-,, and 
so on. Thus, on the ith day (1 I i I N - l ) ,  the participants 
are A , ,  ..., AN-i+ , ,  and the driver is AN-,+, .  It is clear that 
A,’s score after N - 1 days is - U / N  - U / ( N  - 1) 
- U / ( N  - 2) - ... - U / 2 ,  which gets arbitrarily large in 
absolute value as N increases (and which, in particular, is 
asymptotic to - U log N ) .  0 

It follows from the proof of Proposition 4 that f (N) 
2 (1/2) L log, N J  . D. Coppersmith (private communica- 
tion) has improved this logarithmic lower bound to a linear 
lower bound by using the following argument. Let N be the 
number of members of the carpool. As in the proof of 
Theorem 2, let the scores just after time t be s,( I )  2 s,(2) 2 

... 2 s , ( N ) .  Define the “figure of merit” just after time t to 
be (N - l )s , ( l )  + ( N  - 2)s,(2) + ... + (O)s , (N) .  We now 
define the schedule of arrivals. On each day, the set of 
participants consists of two members with the same score. If 
there are no two members with the same score, then the 
carpool stops running. If i and j ride together, and i is the 
driver, then i’s score increases by U / 2  and j ’ s  score decreases 
by U / 2 .  The net effect on the figure of merit of increasing 
one value s,(i) by U / 2  and decreasing s,(i + 1)  by U/2 is to 
increase the figure of merit by U/2. Further, it is easy to see 
that the net effect of reshuffling the scores to keep the s,(i)’s 
nondecreasing can only increase the figure of merit further. 
Keep the carpool running until either no two participants 
have the same score, or until the figure of merit has gone 
beyond N 3 U ,  whichever comes first. In  the first case (where 
the carpool is run until no two participants have the same 
score), we know that since all carpool members started with a 
score of 0, and since scores change by U/2 at  a time, the 
scores will be at least U/2 apart. That is, no two scores will 
be closer together in value than U/2. It is not hard to verify 
that this fact, along with the fact that the sum of the scores is 
0, implies that the largest score is at least (N - 1)U/4. In the 
second case (where the carpool is run until the figure of merit 
has gone beyond N 3 U ) ,  it is clear that the largest score is 
greater than NU. So in either case, the largest score is a t  least 
(N - 1) U / 4 ,  which is linear in N,  as promised. Note that 
the linear lower bound is attained even when no more than 
two carpool members ever ride together. Coppersmith also 

shows (by a more detailed analysis) a lower bound of 
(N - I ) U / 3 ,  which is attained even with no more than three 
carpool members ever riding together. 

Coppersmith’s argument, taken together with the proof of 
Theorem 2, shows that (N - 1)/3 If (N) 5 a,, where a ,  
= 0 and a,,, = 1 + ia, (1 5 i I N). There is an exponential 
gap between these lower and upper bounds. It is an interest- 
ing combinatorial problem to tighten these bounds [ I ] .  

We close this section by noting another interesting combi- 
natorial problem. Let us say that a vector (a,, ..., a,), where 
a ,  2 ... 2 ah, is an attainable vector of scores if  there is a 
schedule of arrivals such that, starting with a score of 0 for 
every member of the carpool, and always applying Schedul- 
ing Algorithm 4, there is a time t where the vector (s,( l ) ,  ..., 
s , ( N ) )  of scores is equal to (a,, ..., a,). We conjecture that if  
(a,, ..., a,) is an attainable vector of scores, then so is the 
negation ( -aN, ..., -a , ) .  If  the conjecture is true, then the 
M’ of Corollary 3 and the M of Theorem 2 can, of course, be 
taken to be the same. 

3. Fairness 
In this section, we discuss a concept of fairness and show that 
our scheduling algorithm (Scheduling Algorithm 4) is fair. 
However, we shall see that Scheduling Algorithm 2 (simple 
tokens) is not fair. We shall also see that Scheduling Algo- 
rithm l (simple rotation) is fair (when it can be applied), and 
that Scheduling Algorithm 3 (subsets) is fair (but it requires 
too much bookkeeping). 

To help us understand fairness, let us first consider 
Scheduling Algorithm 3 (subsets). Scheduling Algorithm 3 
is fair in the sense that among the times that person A rides 
precisely with, say, B and C, the driver is person A approxi- 
mately 1/3 of the time (with the obvious generalization that 
A is the driver approximately I l k  of the time that he rides 
with a fixed subset of k - 1 others.) Less restrictively, we 
might consider a scheduling algorithm fair if each person is 
the driver approximately I l k  of the time that he rides with 
k - 1 others (not necessarily a fixed subset of k - 1 
others.) Thus, if the carpool consists precisely of A, B, C, and 
D, then A might be expected to drive approximately 1/3 of 
the time that he rides with precisely two among B, C, and D. 
In other words, let cx be the number of times (through time 
t )  that X is precisely the set of those participating in the 
carpool on that day. Then during thosedays that A rides with 
precisely two among B, C, and D, the number of times that 
we might want A to drive is approximately 

1 
j (cmc + cABD + cAcD) .  

Even less restrictively, assume that through time t, person 
A has participated in the carpool on 6, days when exactly 2 137 
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persons participated in the carpool, on b ,  days when exactly 3 
persons participated in the carpool, and so on. Let us define 
A's ideal number of drives to be the number 

Our notion of fairness is that A should be the driver of the 
carpool car approximately this number of times. 

We are now ready to give our formal definition of fairness. 
We say that a carpool scheduling algorithm is fair i f  for each 
N (where N is the number of members of the carpool), there 
is a number P such that whatever the schedule of arrivals, it 
is the case that a t  each time t and for each carpool member 
A, the number of times that A has actually driven differs 
from his ideal number of drives in absolute value by no more 
than P. 

We shall show that our scheduling algorithm is fair. We 
first prove a simple proposition. 

Proposition 5 
Let x be the number of times that A has actually driven 
through time t, and let y be A's ideal number of drives 
through time t. Then the number (x - y ) U  is A 's  entry in 
row t of the table in Scheduling Algorithm 4. 

Proof We prove the proposition by induction on t. It is 
obviously true for t = 0, since every entry in row 0 is 0, and in 
this case x = y = 0. Assume inductively that the statement 
of the proposition is true for t = m; we shall show that it 
holds for t = m + 1. Let x, be the number of times that A has 
actually driven through time t, let y, be A's ideal number of 
drives through time t, and let A, be A's entry in row t of the 
table. By inductive assumption, the number (x,,, - y,)U 
equals A, (that is, A's entry in row m of the table). We must 
show that the number ( x m + ,  - y,+,)Uequals A,,, (that is, 
A's entry in row m + 1 of the table). Assume that there are k 
participants in the carpool at (on the day corresponding to) 
time t + I .  There are two cases, depending on whether A is 
the driver at time m + 1. 

Case1 
andy,+, = y, + ( l / k ) .  Hence, 

Ais thedr ivera t t imem+ l . T h e n x m + ,  = x ,  + I ,  

- Y,+l)U = ( x ,  - Y,)U + U(k ~ l ) /k .  (15) 

But by assumption, 

(x, - Y,)U = A, (16) 

Since A is the driver a t  time m + 1, it follows from 
Scheduling Algorithm 4 that 

A,+, = A,,, + U(k - l ) /k .  (17) 

It follows from (15), (16). and (17) that (x ,+ ,  - y,+,)U 
= A,,,, which was to be shown. 

Case 2 A is not the driver a t  time m + 1. Then x,,,+~ = x,, 
and Y,,, = Y, + ( I / k ) .  Hence, (x,,,+, - Y,+,)U 
= (x, - y,)U - U/k. As in Case 1, it follows easily that 
(x,+, - ~ , + ~ ) U i s  A's entry in row m + 1. 0 

The next theorem discusses the fairness or unfairness of 
the scheduling algorithms we have discussed. We are most 
interested in the result that Scheduling Algorithm 4 is fair. 

Theorem6 
Scheduling Algorithm 1 (when it applies), Scheduling Algo- 
rithm 3, and Scheduling Algorithm 4 are fair, but Schedul- 
ing Algorithm 2 is not fair. 

Proof Recall that a carpool scheduling algorithm isfair if 
for each N (where N is the number of members of the 
carpool), there is a number P such that whatever the 
schedule of arrivals, it is the case that a t  each time t and for 
each carpool member A, the number of times that A has 
actually driven differs from his ideal number of drives in 
absolute value by no more than P. 

Scheduling Algorithm 1 (simple rotation) is fair (when it 
applies) Of course, Scheduling Algorithm 1 is very lim- 
ited, since it is not even defined unless every carpool member 
participates in the carpool on every day. If so, then it is easy 
to see that the desired number P above can be taken to be I .  

Scheduling Algorithm 2 (simple tokens) is not fair As- 
sume that there are 6 carpool members A, B, C, A' ,  B', and 
C', and that the schedule of arrivals is (AA', ABC, AB, AC, 

ABC, AB, AC, A'B'C', A'B', A'C'), where the sequence 
ABC, AB, AC, A'B'C', A'B', A'C' repeats over and over a 
total of m times after the initial AA' (and so the number of 
days is 6m + 1 .) We shall show that there is no number P as 
defined above that works for every m. On the first day, when 
AA' is the set of carpool participants, either A or A' is the 
driver. Assume without loss of generality that A '  is the 
driver; otherwise, everything we now say holds when we 
replace A, B, C by (respectively) A', B', C'. We leave to the 
reader the simple verification that under Scheduling Algo- 
rithm 2 it follows that on each of them days the set of carpool 
participants is precisely ABC (respectively, AB or AC), the 
driver is always A (respectively, B or C.) Now there are 
exactly 2m + 1 days that A participates in the carpool when 
precisely 2 people participate (namely, A and one of A', B, or 
C), and there are exactly m days that A participates in the 
carpool when precisely 3 people participate (namely A, B, 
and C). Thus, A's ideal number of drives is (1/2)(2m + 1)  
+ (1/3)m, which equals (4/3)m + (1/2). The number of 
times that A actually drives is m + 1. The difference between 
ideal and actual is ( m / 3 )  - (1/2), which is not bounded by 
any fixed number P (as m gets large.) This was to be shown. 

A'B'C', A'B', A'C', ABC, AB, AC, A'B'C', A'B', A'C', ..., 
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Scheduling Algorithm 3 (subsets) is fa i r  It is easy to see 
that Pcan be taken to be equal to the number of subsets that 
contain a given member A ,  that is, Pcan  be taken to be 2 N - ’ ,  
where N is the number of carpool members. 

Scheduling Algorithm 4 is fa i r  As in the statement of 
Proposition 5, let x be the number of times that A has 
actually driven through time t ,  and let y be A’s ideal number 
of drives through time 1. By Proposition 5,  the number 
(x - y ) U  is A’s entry in row t of the table. By Corollary 3 ,  we 
can find a positive number M’ (which depends only on N ,  the 
number of members of the carpool) such that no entry in the 
table is larger in absolute value than M’. Thus, I (x - y )  U I 
I M‘. Hence, I (x - y )  I 5 M‘/U.  So, we can take P to be 
M ’ / U .  0 

4. Further observations 
As well as being both fair and manageable, our carpool 
scheduling algorithm (Scheduling Algorithm 4) has some 
additional attractive features. First, although it will always 
determine whose turn it is to drive on a particular day, it is 
robust in the presence of deliberate imbalance. Thus a person 
could drive (or not drive) for several days in a row if he 
needed to, regardless of whether the scheduling algorithm 
says he should or should not drive, and the imbalance would 
eventually be eliminated. (It is beyond the scope of this paper 
to make this last sentence precise. One meaning is that after 
the driving table is artificially made imbalanced, the entries 
will remain bounded from then on, as in Theorem 2, provided 
the scheduling algorithm is faithfully adhered to from then 
on.) 

Second, the “ride units” of the method can become a 
commodity that can be bought and sold. This can also allow 
for “carpool members” who never drive at  all. Thus, if A does 
not have a car but wishes to participate in the carpool, if B is 
a carpool participant (with a car), and if  A and B can agree 
on a fair market value for a ride unit, then B can sell ride 
units to  A, a n d  A need never drive. (In effect, B is “driving 
for” A , )  In fact, the group for which this scheme was 
developed had such a participant. His name being Don and 
twelve being the least common multiple of the possible subset 
sizes of the carpool, the “ride unit” became affectionately 
known as the Duodecadon. 

Finally, although we derived this scheduling algorithm on 
the assumption that there would be only one official carpool 
car on any one day, that assumption turned out to be 
superfluous! In fact, there can be as many carpool cars as 
there are people driving. Each driver of a car containing k 
participants gets credited with U(k  - I ) / k  units, a n d  each 

rider who does not drive in such a car gets debited U / k  units 
in some master (perhaps company-wide!) record. Note that a 
person driving alone gets 0 units, or no change to the record. 
I n  this generalized scheduling algorithm, an arbitrary group 
of people, who had never previously carpooled with one 
another, could decide to ride to work together, and it would 
make perfect sense for them to ask, “Whose turn is it to drive 
today?” 
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Note 
I .  After this paper went to press, Coppersmith lowered the upper 

bound to (N - l ) / 2 .  Thus we now know that (N - 1)/3 S j ( N )  
I ( N  - l ) / 2 .  
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