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Abstract: An equivalence is shown between functional dependency statements of a relational database, where “+” has the meaning 
of “determines,” and implicational statements of propositional logic, where “.$” has the meaning of “implies.” Specifically, it is shown 
that a dependency statement is a consequence of a set of dependency statements iff the corresponding implicational statement is a con- 
sequence of the corresponding set of implicational statements. The database designer can take advantage of this equivalence to reduce 
problems of interest to him to simpler problems in propositional logic. A detailed algorithm is presented for such an application. Two 
proofs of the equivalence are presented: a “syntactic” proof and a “semantic” proof. The syntactic proof proceeds in several steps. It 
is shown that I )  Armstrong’s Dependency Axioms are complete for dependency statements in the usual logical sense that they are 
strong enough to prove every consequence, and that 2) Armstrong’s Axioms are also complete for implicational statements in proposi- 
tional logic. The equivalence then follows from 1) and 2). The other proof proceeds by considering appropriate semantic interpreta- 
tions for the propositional variables. The Delobel-Casey Relational Database Decomposition Theorems, which heretofore have 
seemed somewhat fortuitous, are immediate and natural corollaries of the equivalence. Furthermore, a counterexample is demonstrat- 
ed, which shows that what seems to be a mild extension of the equivalence fails. 

Introduction 
T h e  concept of functional dependencies [ I ]  is one of the 
few in the database area that is both intuitively simple 
and yet complex enough that an advanced development 
is possible (see, for example, [2-61).  Functional de- 
pendencies are  important tools for database design: in 
fact, in one approach to  database design [6], they are 
essentially the only input. 

Because of their importance and intuitive simplicity, 
there is considerable interest in studying their prop- 
erties. I n  this paper, it is shown that in some ways func- 
tional dependencies behave precisely the same as a 
certain well-studied subset of propositional logic. In 
particular, it is possible t o  take advantage of artificial 
intelligence research in the area of theorem-proving by 
directly converting results in that area into results about 
functional dependencies. 

In this paper, we refer to functional dependencies by 
the name “dependency statements.” This is done for 
several reasons. The  first is to  emphasize the analogy 
with implicational statements, defined soon. T h e  second 
is that there is some confusion as to  exactly what func- 
tional dependencies are. Codd [ 11 considers them t o  be 
statements, or sentences, that can either hold or not hold 
for a given database relation. However, Bernstein [6] 
defines a functional dependency to  be a “time-varying 
function.” Some practical distinctions resulting from the 
two different definitions are  discussed in [ 71. By using 
the name “dependency statements,” we emphasize their 
role as simple sentences, which can hold for certain data- 
base relations and not hold for others. 534 

We now give Codd’s definition. Assume that 9 is a 
database relation, and that each column of 9 has a 
unique “column name.” If A,, .. ., A,, B,, ..., Br are 
among the column names of 9 (they need not be 
distinct), then we say that A,, . . ., A, determine B,, . . ., 
B, (or B,, . . ., B, depend on A,, . . -, A,) if whenever two 
tuples (that is, rows) of 9’ agree in columns A,, . . ., A,, 
then they also agree in columns B,, . . ., B,. ( T w o  tuples 
agree in a column if their entries under that column are 
the same.) We write {A,, . . ., A,} -+ { B,, . . ., B,}, or, 
more simply, A, . . . A, + B, . . . B,., and we call each 
such statement a dependency statement. For conve- 
nience, we assume throughout this paper that we are 
dealing with static (i.e., time-invariant) relations, al- 
though only trivial modifications are called for to  deal 
with time-varying relations, such as  would occur in ac- 
tual relational databases. Our  approach in this paper is 
to hold fixed a dependency statement or  a set of depend- 
ency statements and then to derive properties of the 
collection of all relations 9 for which the given depen- 
dency statements hold. 

With each column name A we associate a distinct 
propositional (i.e., Boolean) variable A. With each de- 
pendency statement A,  . . . A, --j B, . . . B, we associate 
the propositional statement A, A .  A A, 3 B, A .  . . A B,, 
or, as  we shall write it, A; . .  A, * B, .. . Br. We call 
each such statement an implicational statement of prop- 
ositional logic. (We write + instead of the more usual 
+ t o  prevent confusion with the dependency symbol.) It 
is clear that the correspondence is one-one and onto; 
thus, for each implicational statement there is also a cor- 
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responding dependency statement. Let t be a truth as- 
signment, that is, a mapping that assigns to each propo- 
sitional variable either the value 0 (false) or 1 (true), 
The propositional statement A, . . . A,,, .$ B, . . ‘ B, has 
truth value 0 under truth assignment t if each of A,, . . ., 
A,,, has the truth value 1 under t and at least one of B,, 
. . ., B, has truth value 0; otherwise, it has truth value 1. 

Before we can state the main result in this paper, we 
need to define some concepts. Assume that DEP is a set 
of dependency statements and a is a single dependency 
statement. When we say that “a is a consequence of 
DEP,” we mean that a holds for every relation that obeys 
each dependency statement in DEP. That is, a is a con- 
sequence of DEP iff there is no “counterexample” rela- 
tion 92 such that each dependency statement in DEP is 
true in 92 but such that a is false in 92. An example might 
be helpful. Let DEP be the set (AB --* C, AC --* D} of 
dependency statements, and let a be the dependency 
statement AB + D. We will show that a is a conse- 
quence of DEP. Let 9 be arbitrary. Assume that DEP 
holds for 9; we will show that a holds for 9. To show 
that a holds for 9, we assume that the two tuples TI and 
T, of 9 agree in columns A and B; we must show that 
TI and T, agree in column D. Since TI and T, agree in 
columns A and B, and since the dependency statement 
AB + C holds for 92, we know that TI and T, agree in 
column C. Since T, and T, agree in columns A and C, 
and since the dependency statement AC - D holds for 
9, we know that TI and T, agree in column D, which 
was to be shown. 

Now let DEP be a set of implicational statements of 
propositional logic, and let cy be a single implicational 
statement. (We use the name DEP for a set of implica- 
tional statements since, later on, we think of DEP as be- 
ing the set of implicational statements that correspond to 
the set DEP of dependency statements.) When we say 
that “a is a logical consequence of DEP,” we mean that 
cy has truth value 1 for every truth assignment that gives 
truth value 1 to each implicational statement in DEP. 
That is, a is a logical consequence of DEP ifF there is no 
counterexample truth assignment t such that each impli- 
cational statement in DEP has truth value 1 under I but 
such that cy has truth value 0 under t. 

As an example, let DEP be the set { AB 3 C, AC .$ D} 
of implicational statements of propositional logic, and let 
cy be the statement AB .$ D. Then cy is a logical conse- 
quence of DEP, because if t is one of the 24 = 16 possi- 
ble truth assignments to (A, B, C, D) , and if it happens 
that each statement in DEP has truth value 1 under truth 
assignment t ,  then it is easy to verify that so does a. 

We can now state and discuss the main result in this 
paper, which establishes an equivalence between de- 
pendency statements and implicational statements. The 
proof is deferred until Section 3. 

Equivalence Theorem Assume that DEP is a set of de- 
pendency statements and a is a single dependency state- 
ment. Let DEP, a be, respectively, the corresponding set 
of implicational statements and single implicational 
statement. Then a is a consequence of DEP iff cy is a 
logical consequence of DEP. 

We can now see the practical and theoretical utility of 
the Equivalence Theorem. As a first example, let DEP, 
as before, be the set {AB -+ C, AC - D} of dependen- 
cy statements, and let a be the dependency statement 
AB - D;  let DEP be the corresponding set { A B J  C, AC 
.$ D} of implicational statements and a the implicational 
statement AB 3 D. In this case, we have shown, by two 
quite different proofs, that 

1. a is a consequence of DEP 
and that 
2. cy is a logical consequence of DEP. 

It is not surprising that the proofs of 1 and 2 are quite 
different since they deal with completely different uni- 
verses of discourse. According to the Equivalence Theo- 
rem, 1 and 2 above are either both true or both false. ( In  
this case, they are both true.) So, if a database designer 
were confronted with the problem (Problem 1) as to 
whether 1 holds in a particular case of interest (he might 
be normalizing relations [ 13 or determining keys, and 
many dependency statements might be involved), he 
could instead solve the perhaps easier problem (Prob- 
lem 2)  as to whether 2 holds in propositional logic. He  
can solve Problem 2 by whatever means he finds easiest 
(such as by using truth tables, by using a theorem- 
prover, etc.) , and he is automatically guaranteed (by 
the Equivalence Theorem) to get the correct answer to 
Problem 1. 

Let us look at a specific example (involving a new 
DEP and a) in which the database designer might solve 
Problem 1 by instead solving Problem 2 and using the 
tools of propositional logic. Assume that he is examining 
a relation 9 with exactly four columns, A, B, C, D,  and 
for which the only dependency statements that hold are 
those in the following set DEP (and its consequences) : 

AB - D 

B C - A  

BC - D 

C D - A  

C D - B  

He is trying to decide whether AB is a key of 92. Since 
he already knows that AB -+ A, AB - B, and AB -+ D, 
he needs to determine whether or not AB -+ C. Let a be 
the dependency statement AB -+ C. He wants to solve 
Problem 1, that is, to know whether a is a consequence 535 
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536 

of DEP. By the Equivalence Theorem, he can instead 
solve Problem 2 ,  that is, to determine whether a is a log- 
ical consequence of DEP, where, of course, a is AB .$ C, 
and DEP is 

AB+ D 

B C ~  A 

B C ~  D 

C D ~  A 

C D ~  B 

Let t be the truth assignment that assigns truth value 1 
to A, B, and D, and truth value 0 to C. It is very simple 
to check that each implicational statement in DEP has 
truth value 1 under t ,  whereas a has truth value 0 under 
t .  So, since we have exhibited a counterexample to truth 
assignment t such that each statement in DEP has truth 
value 1 under t but such that (Y has truth value 0 under t ,  
it follows that the answer to Problem 2 is “No, a is not a 
logical consequence of DEP.” Hence, by the Equiva- 
lence Theorem, the answer to Problem 1 is “No, a is not 
a consequence of DEP,” and so AB is not a key. 

In addition to the truth-table method, there are fast, 
special-purpose theorem-provers for solving Problem 2 .  
It  follows from the Equivalence Theorem that these 
theorem-provers can be used directly as efficient means 
to solve Problem 1. In Section 2, we apply such a spe- 
cial-purpose theorem-prover to give an efficient solution 
to Problem 1. Thus, one of the practical benefits of the 
Equivalence Theorem is that we can take advantage of 
artificial intelligence research that has gone towards 
finding efficient solutions to Problem 2 to obtain directly 
efficient solutions to Problem 1.  

In Sections 3 and 4, we present two proofs of the 
Equivalence Theorem. The first (syntactic) proof pro- 
ceeds in several steps. It is shown that 1 )  Armstrong’s 
Dependency Axioms (see Section 3) are complete for 
dependency statements. By complete, we mean that a is 
a consequence of DEP if€ there is a proof (in a finite 
number of steps) of a from DEP by applying Arm- 
strong’s Axioms. Further, we show that 2 )  Armstrong’s 
Axioms (when converted, as above, by replacing each 
occurrence of -+ by 3) ,  are complete for implicational 
statements of propositional logic. We then show that the 
Equivalence Theorem follows from 1 )  and 2 ) .  

Our other proof of the Equivalence Theorem is se- 
mantic in nature. It proceeds by considering appropriate 
interpretations for the propositional variables. 

In Section 5, we show that what seems to be a mild 
extension of the Equivalence Theorem fails. This some- 
what surprising failure shows the subtlety of the Equiva- 
lence Theorem. Thus, those who feel that the Equiva- 
lence Theorem is “obvious” might also feel that the mild 

extension is only slightly less obvious, although, in fact, 
it is false! 

In Section 6, we show that the important, widely ref- 
erenced Decbmposition Theorems of Delobel and Casey 
[ 41 follow immediately from our Equivalence Theorem. 
Perhaps the main contribution of this paper is to present 
new proofs of these theorems. Furthermore, we feel that 
our Equivalence Theorem as we state it is more enlight- 
ening than the statement of the Delobel-Casey Theo- 
rems. 

2. An efficient algorithm for determining 
consequence 
Let a be a dependency statement and DEP a set of de- 
pendency statements. Let a, DEP be the corresponding 
implicational statements. By the Equivalence Theorem, 
the problem (Problem 1) as to whether or not g, is a 
consequence of DEP is equivalent to the problem 
(Problem 2 )  as to whether or not a is a logical conse- 
quence of DEP. Now Problem 2 can be converted into 
the well-studied problem of satisfiability of propositional 
Horn clauses [ 8- lo]. A fast algorithm for the Horn 
clause satisfiability problem is the “first-literal unit reso- 
lution procedure,” which is due to Chang [ 11, p. 1301. 
By the Equivalence Theorem, we can exploit Chang’s 
algorithm (which solves Problem 2 )  to obtain an effi- 
cient algorithm to solve Problem 1.  We now explicitly 
describe the resulting algorithm. 

For convenience, we assume that the dependency 
statement a and the dependency statements in DEP 
each have exactly one column name on the right-hand 
side (it is easy to see how to convert problems in which 
this is not the case into problems in which this is the 
case). 

In the first step of the algorithm, we form a set Y of 
strings of symbols. Each string contains three types of 
symbols: column names, negation signs (-), and com- 
mas (,). For each statement A , .  . . A, -+ B in DEP, we 
include in Y the string 

”AI; . ., ”A,, B 

(For those who want a glimpse of what is going on be- 
hind the scenes: This string corresponds to the “Horn 
clause” -Al V .  . . V “A, V B, which is logically equiva- 
lent to the propositional formula A, A .  . . A A,,, + B.) 

If (Y is the dependency statement C, . . . C ,  -+ D, then 
also include in Y the ( k  + I )  strings 

Cl 

Ck 
”D 
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For example, if DEP and a are as in our first example 

D}, and a is AB + D ) ,  then Y contains the five strings 

c 
D 
A 
B 

in the Introduction (that is, DEP is {AB + C, AC + 

-A, -B, C -D 
-A, -C, D 
A 
B 
-D 

We call each column name an “atom,” and we call the 
concatenation of a negation sign with a column name a 
“negative atom.” To get our terminology straight: in 
( l ) ,  there are two strings that are atoms (namely, A and 
B) ,  one string that is a negative atom (namely, -D), 
and three strings that “begin with” negative atoms (the 
first, second, and fifth strings). 

The algorithm proceeds by searching for an atom X 
such that 

a. X is a string in Y ,  
and 
b. There is a string in Y that begins with N X ,  

In our example, there are two atoms X (namely, 
A and B) that satisfy a, and two atoms X (namely, A 
and D )  that satisfy b. The only atom X that satisfies 
both a and b is A. (If there were several atoms X that sat- 
isfied both a and b, the algorithm would now arbitrarily 
select one of them.) In the next step of the algorithm, 
we shorten each string that begins with N X  by erasing 
the leading negation sign, the X, and the comma that fol- 
lows X (if there is such a comma). In ( 1) , where X is A, 
the first two strings are shortened, and we are left with 

-B, C 
-C, D 
A 
B 
-D 

We repeat the procedure by again searching for an atom 
X that satisfies both a and b above. In (2), the only such 
atom is B. After the “shortening” procedure is applied, 
we are left with 

C 
NC, D 
A 
B 
-D ( 3 )  

We again repeat the procedure. In ( 3 ) ,  the only atom X 
that satisfies both a and b is C. After the shortening pro- 
cedure, we are left with 

(4) 

After another iteration (where X is now D)  , we are left 
with 

C 
D 
A 
B 
A 

where A is the empty string. The entire algorithm halts 
either when 1)  the empty string A is generated (as hap- 
pened in this case) or when 2)  there is no atom X that 
satisfies both a and b. If 1 )  occurs first, that is, if the 
empty string A is generated, then a is a consequence of 
D E P  (as in this case). If 2 )  occurs first, then a is not a 
consequence of DEP. 

It  is easy to see that the algorithm must always termi- 
nate, and thereby give an answer. That this algorithm 
gives the correct answer is an immediate consequence of 
Chang’s theorem on Horn clauses and our Equivalence 
Theorem. 

3. Completeness of Armstrong’s Axioms, and the 
Equivalence Theorem 
Armstrong’s Axioms consist of the following three 
schemata: 

( A l )  A ; . . A m + A i , f o r i =  l;.., m. 

(A2) A;. . A, +. B; . . B, iff, for each i, A;. .A,-+ B i .  

(A3) If A; . . A, --* B; . . B,, and B; . . B, + C; . .Cp ,  
thenA;..A,-+C;.. c,. 

Here A,, . . ., A,, B,, - - - ,  Br, C,, . .., C ,  are column 
names. [Actually, Armstrong’s original set of axioms is 
slightly different from this set, but the two sets are 
equivalent, since it is easy to check that this set implies 
each axiom in the original set and that Armstrong’s orig- 
inal axioms imply each of these. It turns out that axioms 
(A 1) - (A3) are more convenient for our purposes than 
Armstrong’s original set, so we use (A1)-  (A31.1 

If DEP is a set of dependency statements, and a is a 
single dependency statement, then by a “proof of a from 
DEP via Armstrong’s Axioms,” we mean a sequence of 
lines (the “proof”), in which every line is a dependency 
statement, and the last line is a. Each line of the proof is 
either a statement in DEP or else is obtained from ear- 
lier lines by an application of the axioms. For example, 
the dependency statement A; . . A, -+ C; . . C, may be 537 
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one line which is obtained from two earlier lines A, . . . 
A, -+ B; . . B, and B; . . B, + C,- . - C ,  by an application 
of axiom (A3). Note that axiom (A2) is really two ax- 
ioms: It  says first that the statement A; . ’A, -+ B; . . B, 
may appear as a line of the proof which is obtained from 
earlier lines A, - . .  A, Bi (i = 1, - * . ,  r ) ;  second, a 
statement A, . - .  A, + Bi may appear as a line of the 
proof which is obtained from an earlier line A,.  * . A, + 

B, . * ‘ B,. Finally, an instance of axiom ( A l )  can appear 
no matter what the previous lines of the proof are, since 
it is “unconditional.” T o  clarify this concept of a proof, 
let us give a proof via Armstrong’s Axioms of AB + D 
from (AB + C,  AC -+ D}. (This is the example we 
used earlier. ) 
1. AB + C (assumption) 

2. AC + D (assumption) 

3. A B + A  (axiomA1) 

4. AB + AC (axiom A2 applied to 3 and 1 )  

5. AB + D (axiom A3 applied to 4 and 2) (6) 
We can now state Armstrong’s Theorem (this was 

Theorem 5 in [2]). Let DEP be a set of dependency 
statements, and let DEP‘ be the set of dependency state- 
ments that can be proved from DEP via Armstrong’s 
Axioms (for convenience, we assume a fixed set of col- 
umn names). We call DEP‘ the closure of DEP. 

Armstrong’s Theorem Let DEP be a set of depend- 
ency statements, and DEP’ its closure under Arm- 
strong’s Axioms. Then there is a relation 9 such that 
DEP’ is precisely the set of dependency statements that 
hold for 9. 

We now present the Dependency Completeness 
Theorem. This result was never explicitly stated by 
Armstrong, but, as we will see, it follows very easily 
from the previous theorem. The Dependency Complete- 
ness Theorem says that the following two different con- 
cepts are equivalent: I )  a is a consequence of DEP 
(which means that there is no counterexample relation 9 
such that every dependency statement in DEP holds for 
9, but such that a does not hold for 9) ; and 2) a can be 
proved from DEP via Armstrong’s Axioms. 

Dependency Completeness Theorem Let DEP be a set 
of dependency statements and a a single dependency 
statement. Then a is a consequence of DEP iff a can be 
proved from DEP via Armstrong’s Axioms. 

Proof:+: This is the “easy direction” of the proof, since 
each of Armstrong’s Axioms is a valid statement about 
dependency statements. For example, axiom (A3) is 
valid, since if the first two dependency statements in 
(A3) hold for a relation 9, then also the third dependen- 
cy statement in (A3 ) holds for 9. 538 

j: Assume that a is a consequence of DEP, that is, 
there is no counterexample relation 9’ such that every 
dependency statement in DEP holds for 92 but such that 
a does not hold for 9. We want to show that the axioms 
are powerful enough to prove a from DEP. Let DEP’ be 
the closure of DEP under Armstrong’s Axioms. Clearly 
DEP C DEP‘; we wish to show that a E DEP’. It  fol- 
lows from Armstrong’s Theorem that there is a relation 
9 such that DEP‘ is precisely the set of dependency 
statements that hold for 9. Now DEP holds for 92, and, 
by assumption, whenever DEP holds, then a holds. 
Hence a holds for 9, and so (Y E DEP’, by construction 
of 9. Therefore, a can be proved from DEP via the ax- 
ioms. 0 

We now temporarily turn our attention away from 
dependency statements and work completely in the 
realm of propositional logic, to prove the Implicational 
Completeness Theorem. To prevent notational confu- 
sion, we rewrite Armstrong’s Axioms in propositional 
form. 

(Al ’ )  A ; . . A , j A , , f o r i =  l;.., m. 

(A2’) A; .. A, 3 B; . .B,. iff, for each i, A , . .  . Am* B,. 

(A3‘) If A ; ~ ~ A , . $ B 1 ~ ~ ~ B , . a n d B ; ~ - B , . ~ C ; ~ ~ C p ,  

Here A,, . . ., A,, B,, . . ., B,., C,, . . ., C p  are propositional 
variables. 

Implicational Completeness Theorem Let DEP be a set 
of implicational statements of propositional logic and (Y a 
single implicational statement. Then (Y is a logical conse- 
quence of DEP iff (Y can be proved from DEP via Arm- 
strong’s Axioms. 

Proof:+: Once again, it is easy to verify that each of the 
axioms are valid statements about implicational state- 
ments. For example, axiom (A3‘) is valid, since if the 
first two implicational statements in (A3’) have truth 
value 1 under a truth assignment t ,  then also the third 
implicational statement in (A3‘) has truth value 1 under t. 

j: Assume that (Y is a logical consequence of DEP. We 
want to show that the axioms are strong enough to prove 
(Y from DEP. Assume for definiteness that (Y is A, .  . . A, 
.$ D, . . . Ds. Let PROVE be the set of all propositional 
variables E such that the propositional statement A, . . . 
A, 3 E can be proved from DEP via the axioms. By ax- 
iom (Al ‘ ) ,  we know that A,, . . ., A, € PROVE. Our 
goal is to show that D,, . . ., D, E PROVE, since then 
by axiom (A2’), the implicational statement (Y can 
be proved from DEP via the axioms-we simply put to- 
gether the proofs of the statements A , .  . . A, .$ D, and 
then add a line A, * . . A, .$ D, . . . D, by applying axiom 
(A2‘) ; this is a proof of (Y from DEP via the axioms. 

then A; . . A,,, 3 C; . . C,. 
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Without loss of generality, we just show that D, E 
PROVE. Assume that it is false that D, E PROVE; we 
will derive a contradiction. Consider the following as- 
signment of truth values to the propositional variables: 
Each propositional variable in PROVE is assigned the 
truth value 1 ,  and each remaining propositional variable 
is assigned the truth value 0. We call this particular truth 
assignment the magic truth assignment. In particular, D, 
is assigned the truth value 0 under the magic truth as- 
signment. Furthermore, as we noted, A,, -.., A,,, E 
PROVE, and hence A,, ..., A, are each assigned the 
truth value 1.  Therefore, a has truth value 0 under the 
magic truth assignment. We will show that under the 
magic truth assignment, each implicational statement in 
DEP has truth value 1. Then we will have shown that the 
magic truth assignment is a counterexample truth assign- 
ment (under which every implicational statement in DEP 
has truth value 1 but under which a has truth value 0). 
However, a is supposed to be a logical consequence of 
DEP, and so there is not supposed to be a counterexam- 
ple truth assignment. This is a contradiction. 

Let B, . . . B, 3 C, . . . C, be an arbitrary statement in 
DEP. We are through if we can show that this implica- 
tional statement has truth value 1 under the magic truth 
assignment. There are two cases to consider: 

Case 2 B,, . . ., B, E PROVE. Hence the implicational 
statements A, . . . A,,, j B, can be proved from DEP via 
the axioms ( i =  1;. ., r ) .  By now applying axiom (A2’), 
we see that the implicational statement A, .  . ‘ A,,, 3 B, . . . 
B, can be proved from DEP via the axioms. Further, 
since the statement B, . . . B, 3 C, . . . C, is in DEP, it fol- 
lows from axiom (A3’) that A,. . . A, 3 C, . . . C,. Then 
by (A2’), the statements A, . . .  A, 3 C, are conse- 
quences of DEP. Hence, Ci E PROVE for each i ,  so 
each Ci is assigned truth value 1 by the magic truth as- 
signment. So, the implicational statement B, . . . B, + C, 
. . . C, has truth value 1 under the magic truth assign- 
ment, as desired. 

Case 2 At least one of B,; . ., B, is not in PROVE. So at 
least one of B,; . ., Br is assigned truth value 0. Hence, 
once again, the implicational statement B, . . . B, j C, . . . 
C, has truth value 1 under the magic truth assignment, 
as desired. 0 

The Equivalence Theorem follows easily from the two 
Completeness Theorems, as we now see. 

Equivalence Theorem Assume that DEP is a set of de- 
pendency statements and a is a single dependency state- 
ment. Let DEP, a be, respectively, the corresponding set 
of implicational statements and single implicational state- 
ment. Then a is a consequence of DEP iff a is a logical 
consequence of DEP. 

Proof Assume that a is a consequence of DEP. By the 
Dependency Completeness Theorem, there is a proof of 
a from DEP using only Armstrong’s Axioms. Hence, 
there is also a proof of a from DEP by using only (the 
propositional form of) Armstrong’s Axioms, since the 
proof can be obtained by a direct translation of the 
dependency proof, in which we replace each column 
name A by its corresponding propositional variable A, 
and in which we replace each occurrence of + by *. For 
example, the proof, in (6) where we showed, via Arm- 
strong’s axioms, that AB + D is a consequence of 
{AB +. C, AC + D}, can be converted into the following 
proof that AB 3 D is a logical consequence of {AB C, 
AC * D}: 

1.  A B + C  

2. A C + D  

3 .  AB+ A 

4, AB + AC 

5. A B ~ D  

(assumption) 

(assumption) 

(axiom A 1 ‘) 

(axiom A2’ applied to 3 and 1 ) 

(axiom A3’ applied to 4 and 2) 

So, by the “easy direction” of the Implicational Com- 
pleteness Theorem, we know that a is a logical conse- 
quence of DEP. We have shown that if a is a conse- 
quence of DEP, then a is a logical consequence of DEP. 
Similarly, if a is a logical consequence of DEP, then a is 
a consequence of DEP. 0 

4. Semantic proof of the Equivalence Theorem 
It would be nice if, given a relation 9, we could find in- 
terpretations for the propositional variables such that, 
for example, the dependency statement AB + C would 
hold iff the propositional statement AB 3 C had truth 
value 1. One such possible interpretation of the proposi- 
tional variables might be to let A mean “the tuple’s entry 
in column A has been assigned.” Then, the statement 
AB 3 C would say “If the tuple’s entry in column A has 
been assigned, and if the tuple’s entry in column B has 
been assigned, then the tuple’s entry in column C has 
been assigned.” However, this seems difficult to formal- 
ize (for example, who assigns the value of an entry of 
the tuple? Where are the quantifiers?). Another possible 
approach is to let A mean “Tuples 1 and 2 agree in col- 
umn A.” Again, there are difficulties-Are tuples 1 and 
2 special tuples? Are they somehow “representative” 
tuples? We now present a semantic proof of the Equiva- 
lence Theorem in which we use this “two-tuple” inter- 
pretation of the propositional variables in a precise way, 
by showing that, roughly speaking, we can restrict our 
attention to two-tuple relations. 

Semantic proof of the Equivalence Theorem Let DEP, 
a, DEP, a be as before. We must show that the following 
are equivalent: 539 
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I .  a is a consequence of DEP. 
2. a is a logical consequence of DEP. 

Define a two-tuple relation to be a relation with exactly 
two tuples (that is, rows). Define “a is a consequence of 
D E P  in the world of two-tuple relations” to mean that a 
holds in every two-tuple relation that obeys each de- 
pendency statement in DEP. That is, a is a consequence 
of DEP in the world of two-tuple relations iff there is no 
counterexample two-tuple relation 9 such that each 
dependency statement in DEP holds for W but such that 
a does not hold for W. To prove that 1 and 2 above are 
equivalent, we show first that 1 is equivalent to 

3. a is a consequence of DEP in the world of two-tuple 
relations. 

Then we show that 2 is equivalent to 3. It  follows that 
1 and 2 are equivalent, as desired. 

We now show that 1 and 3 are equivalent. I t  is clear 
that 1 implies 3. So, we need only show that 3 implies 1. 
Assume not. Let DEP, a: be dependency statements such 
that 3 holds but not 1. Let 9 be a relation (which may 
contain many tuples) such that each statement in DEP 
holds for W but such that a does not hold for 9. There is 
such an 9 since 1 fails. Assume for definiteness that a is 
A; . . A, .--, B; . . B,. Then there are two tuples of 9 such 
that the two tuples agree in columns A,.  . . A,, but dis- 
agree in one of columns B,; * ., B,. Let B be a two-tuple 
relation which contains only these two tuples. I t  is easy 
to verify that each statement in DEP holds for 9 but that 
a does not hold for 9. This contradicts 3. 

We have shown that 1 and 3 are equivalent. We now 
show that 2 and 3 are equivalent. We need the following 
lemma. 

Semantic Lemma Let t be a truth assignment and 9 a 
two-tuple relation, where t and 9 interrelate in the fol- 
lowing special way: For each column name A, the two 
tuples in B agree in column A iff the corresponding prop- 
ositional variable A is assigned truth value 1 by t. Then 
the (arbitrary) dependency statement A; . . A, .--, B, . . . 
B, holds for 9 iff the corresponding implicational state- 
ment A , .  . . A, .$ B, . . . B, has truth value 1 under truth 
assignment t. 

Proof of lemma Assume first that the dependency state- 
ment A,. . . A, -+ B, . . . B, holds for 9. We will show that 
the implicational statement A, .  . . A, 3 B; . . B, has truth 
value 1 under the truth assignment t. There are two 
cases, depending on whether or not the two tuples of 9 
agree in all of the columns A,, . . ., A,. 

Case 1 The two tuples of B agree in all of the columns 
A,, . . ., A,. Since the dependency statement A; . . A, -+ 

B, . . . Br holds for 9, it follows that the two tuples agree 
in columns B,; . ., B,. So, by assumption, each of B,; . -, 540 

B, has truth value 1 under truth assignment t. Hence, the 
implicational statement A, . . . A, 3 B, . . . B, has truth 
value 1, as desired. 

Case 2 The two tuples of 9 disagree in at least one of 
the columns A,, - 1 1 ,  A,,,, say in A,. Then A, has truth 
value 0 under truth assignment f. Hence, once again, the 
implicational statement A, . . . A, .$ B, . - . B, has truth 
value 1. 

We have shown that if the dependency statement A, 
. . .  A, -+ B, ... B, holds for 9, then the implicational 
statement A, . . . A, 3 B, * . . B, has truth value 1 under 
the truth assignment t. The converse can be proved by a 
very similar argument. 

This concludes the proof of the lemma. We now con- 
tinue with our proof of the theorem. 

We are trying to show that 2 and 3 are equivalent. We 
show first that 3 implies 2. Assume not. Then a is a come 
quence of DEP in the world of two-tuple relations, but (Y 

is not a logical consequence of DEP. Since (Y is not a log- 
ical consequence of DEP, there is a truth assignment t to 
the propositional variables such that every statement in 
DEP has truth value 1 under t ,  but such that a has truth 
value 0 under t. Define a two-tuple relation 9 for which 
the column names will be those appearing in DEP 
and/or a. The first tuple of 9 has 1 as every entry. The 
second tuple of 9 has 0 as entry in column A if t assigns 
truth value 0 to A; otherwise, this entry is 1 .  This pro- 
cedure is followed for each column name A. It is easy to 
see that t and 9 interrelate as in the hypotheses of the 
Semantic Lemma. Therefore, since every implicational 
statement in DEP has truth value 1 under t, it follows 
from the Semantic Lemma that every dependency state- 
ment in DEP holds for 9. Since a is a consequence of 
DEP in the world of two-tuple relations, it follows that 
also a holds for 9. SO, by the Semantic Lemma again, 
we know that (Y has truth value 1 under t. This is a con- 
tradiction. 

We conclude our proof by showing that 2 implies 3. 
Assume not. Then (Y is a logical consequence of DEP, 
but a is not a consequence of DEP in the world of two- 
tuple relations. Since a is not a consequence of DEP in 
the world of two-tuple relations, there is a two-tuple re- 
lation 9 for which each statement in DEP holds but for 
which a does not hold. Define a new truth assignment t 
as follows. If the two tuples of B agree in column A, 
then t assigns to propositional variable A the truth value 
1, and otherwise 0. This procedure is followed for each 
column name A. Once again, t and B interrelate as in the 
hypotheses of the Semantic Lemma. So, since each 
statement in DEP holds for 9, it follows from the Se- 
mantic Lemma that each statement in DEP has truth 
value 1 under t. Since CY is a logical consequence of DEP, 
also (Y has truth value 1 under t .  So by the Seman- 
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tic Lemma again, a holds for 9’. But this is a contra- 
diction. 0 

Table 1 Counterexample. 

A B 

5. Counterexample to an extension of the 
Equivalence Theorem 
In this section we show that a natural extension of the 
Equivalence Theorem is false. 

Let a and p be dependency statements, and let DEP 
be a set of dependency statements. Recall that when we 
say that “a is a consequence of DEP,” we mean that a 
holds for every relation that obeys each dependency 
statement in DEP. Thus, a is a consequence of DEP iff 
there is no counterexample relation 9 such that each 
dependency statement in DEP holds for 9 but such that 
a does not hold for 9. We similarly define the meaning of 
“a V /3 is a consequence of DEP” to mean that either a: 
or p holds for every relation that obeys each dependen- 
cy statement in DEP. Thus, a V /3 is a consequence of 
D E P  iff there is no counterexample relation 9 such that 
each dependency statement in DEP holds for 9 but such 
that neither a nor /3 holds for B. 

Now let a and /3 be implicational statements, and DEP 
a set of implicational statements. Recall that when we 
say that “a is a logical consequence of DEP,” we mean 
that a has truth value 1 for every truth assignment that 
assigns truth value 1 to each implicational statement in 
DEP. Thus, a is a logical consequence of DEP iff there is 
no counterexample truth assignment t such that each 
implicational statement in DEP has truth value 1 under t 
but such that a has truth value 0 under t. We similarly 
define the meaning of “ a V p is a logical consequence of 
DEP” to mean that either a or p has truth value 1 for 
every truth assignment that assigns truth value 1 to each 
implicational statement in DEP. Thus, a V p is a logical 
consequence of DEP iff there is no counterexample truth 
assignment t such that each implicational statement in 
DEP has truth value 1 under t but such that neither a nor 
/3 has truth value 1 under t. 

Recall that the Equivalence Theorem states that if 
DEP, a ,  DEP, a are as before, then a is a consequence of 
DEP iff a is a consequence of DEP. Consider the follow- 
ing fairly natural generalization. 

Alleged extension of Equivalence Theorem Assume that 
D E P  is a set of dependency statements and a and p are 
a pair of dependency statements. Let DEP, a, p be, 
respectively, the corresponding set of implicational 
statements and pair of implicational statements. Then a 
V /3 is a consequence of DEP ifF a V /3 is a logical conse- 
quence of DEP. 

We now show by example that the alleged extension 
of the Equivalence Theorem is false. Let DEP contain 
only the single dependency statement A +. A (we could 
just as well have taken DEP to be the empty set in this ex- 

0 0 
‘ 0  I 

1 0 

ample, but we choose not to in order to prevent possible 
confusion). Let a be the dependency statement A +. B, 
and let /3 be the dependency statement B + A. It is false 
that a V /3 is a consequence of DEP. That is, there is a 
counterexample relation 9 such that each dependency 
statement in DEP holds for 9 but such that neither a 
nor /3 holds for 9. One such counterexample relation 
9 is exhibited in Table 1 (as the reader can easily 
verify). 

The corresponding set DEP of implicational state- 
ments contains only the single implicational statement A 
j A. Further, the corresponding a is the implicational 
statement A B, and p is B .$ A. We now show that it 
is true that a V p is a logical consequence of DEP. Assume 
not. Then there is a counterexample truth assignment t 
such that each (in this case, the only) implicational 
statement in DEP has truth value 1 under t but such that 
neither a nor has truth value 1 under t. Since a (that 
is, A 3 B) has truth value 0 under t, this means that t 
assigns truth value 1 to A and truth value 0 to B. But 
then p (that is, B 3 A)  has truth value 1 under t. This is 
a contradiction. 

Thus, we have exhibited DEP, a, p such that 1)  
a V /3 is not a consequence of DEP, although 2) a V p is 
a logical consequence of DEP. Hence, our seemingly 
mild extension of the Equivalence Theorem fails. 

As we now show, our example can also be used to 
prove the following theorem. 

Theorem A There is a set DEP of implicational state- 
ments and a pair a, /3 of implicational statements such 
that simultaneously 

a. a is not a logical consequence of DEP. 
b. j3 is not a logical consequence of DEP. 
c. a V p is a logical consequence of DEP. 

Proof As before, let DEP contain only the implicational 
statement A 3 A (or, even simpler, let DEP be the 
empty set), let a be A 3 B, and let p be B 5$ A. We have 
already shown that c holds. To show that a holds, let t 
be the truth assignment that assigns truth value 1 to A 
and truth value 0 to B. Then t is a counterexample truth 
assignment that assigns truth value 1 to each implica- 
tional statement in DEP but that assigns truth value 0 to 
a. Therefore, a holds. We can similarly show that b 
holds. 0 541 
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By contrast, we have the following theorem about 
dependency statements. 

Theorem B It is impossible that there is a set DEP of 
dependency statements and a pair a, /3 of dependency 
statements such that simultaneously 

a. Q is not a consequence of DEP. 
b. /3 is not a consequence of DEP. 
c. a V /3 is a consequence of DEP. 

ProofAssume that there exist DEP, a, p such that a, b, 
and c all hold simultaneously. Let DEP’ be the closure 
of DEP under Armstrong’s Axioms. By Armstrong’s 
Theorem, there is a relation 9 such that DEP‘ is pre- 
cisely the set of dependency statements that hold for 9. 
Since DEP holds for 9, it follows from c that either a or 
/3 holds for 9. Assume that Q holds for 92; we will derive 
a contradiction. (Similarly, the assumption that /3 holds 
for 9 leads to a contradiction.) Since a holds for 9, it 
follows by definition of W that a is in DEP’. By the 
Dependency Completeness Theorem, DEP‘ is the set of 
dependency statements that are consequences of DEP. 
Therefore, since a is in DEP‘, it follows that (Y is a 
consequence of DEP. This contradicts a. 0 

Under the terminology of Beeri, Fagin, and Howard 
[3], Theorem A shows that Armstrong’s Axioms are 
not “strongly complete” for implicational statements, 
although, by the Dependency Completeness Theorem, 
they are complete for implicational statements. By con- 
trast, Armstrong’s Axioms are strongly complete for 
dependency statements. 

6. The Delobel-Casey Theorems 
In this section, we show that the Delobel-Casey Re- 
lational Database Decomposition Theorems, which 
heretofore have seemed somewhat unexpected and sur- 
prising, are natural consequences of the Equivalence 
Theorem. 

Let A, . . . A, - B, . . . Br be a typical dependency 
statement. The jirst Delobel-Casey transform of this 
dependency statement is the propositional (or Boolean) 
statement A , .  . . A, B,’ +. . . + A,.  . . A, Br’. Here Bi‘ is 
the negation of B,, and “+” is the “logical or” (or Bool- 
ean sum). Thus, this propositional statement has truth 
value 1 iff first, A,, . . ., A, each have truth value 1, and 
second, for some i it happens that B, has truth value 0. If 
DEP is a set of dependency statements, then the first 
Delobel-Casey transform of the set DEP is the proposi- 
tional statement which is the Boolean sum of the first 
Delobel-Casey transforms of each of its members. For 
example, if DEP is {AB -+ CD, C - A}, then the first 
Delobel-Casey transform of DEP is ABC‘ + ABD’ + CA’. 

The first Delobel-Casey Theorem relates the equiva- 
lence of two sets of dependency statements to the equiv- 542 

alence of the corresponding first Delobel-Casey trans- 
forms. We will now look at an example, which is taken 
from Delobel and Casey’s paper [4]. Consider the fol- 
lowing set DEP, of dependency statements: 

P + T  

P H - Y  

P H - N  

H N - P  

H N + Y  

H Y + P  

H Y + N  

The first Delobel-Casey transform of this set is the Bool- 
ean expression BOOL, given by 

PT‘ + PHY’ + PHN‘ + HNP‘ + HNY‘ + HYP‘ + HYN‘. 

By using Karnaugh maps, Delobel and Casey show that 
this Boolean expression BOOL, is equivalent to the 
Boolean expression BOOL, given by 

PT’ + HYT’ + HYTN’ + PTHN’ + NHTY’ + NYTHP‘ + 
NHT‘. 

This expression is the first Delobel-Casey transform of 
the following set DEP, of dependency statements: 

P - T  

HY-+T 

HYT - N 

PTH- N 

NHT - Y 

NYTH + P 

N H - T  

The First Delobel-Casey Theorem tells us that be- 
cause BOOL, and BOOL, are equivalent Boolean 
expressions, it follows that the sets DEP, and DEP, are 
equivalent sets of dependency statements (DEP, and 
DEP, are said to be equivalent if each statement 
in DEP, is a consequence of the set DEP, and each 
statement in DEP, is a consequence of the set DEP,) . 

First Delobel-Casey Theorem Let DEP, and DEP, 
be sets of dependency statements and let BOOL, and 
BOOL, be the first Delobel-Casey transforms. Then 
DEP, is equivalent to DEP, iff BOOL, is equivalent 
to BOOL,. 

Proof Let DEP, be the set of implicational statements 
which correspond to DEP, as before, in which we replace 
each column name A by its corresponding propositional 
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variable A, and in which we replace each occurrence of + 
by *. Similarly, define DEP,. I t  is straightforward to 
check that the conjunction of the implicational state- 
ments in DEP, is equivalent to the negation of BOOL,; 
similarly for DEP, and BOOL,. It follows easily that 
BOOL, is equivalent to BOOL, iff DEP, is equivalent to 

Note In 2 above, when we say that one propositional 
statement logically implies a second, we mean that the 
second statement has truth value 1 for every truth assign- 
ment that assigns truth value 1 to the first propositional 
statement. 

DEP,. So, to prove the theorem, we need only prove that 
DEP, is equivalent to DEP, iff DEP, is equivalent to 
DEP,. But this follows from the Equivalence Theorem, as 
we will show. Actually, we will only show that if DEP, is 
equivalent to DEP,, then DEP, is equivalent to DEP,; the 
proof of the converse is very similar. Assume that DEP, 
is equivalent to DEP,. T o  show that DEP, is equivalent to 
DEP,, we must show that each implicational statement in 
DEP, is a logical consequence of DEP, and that each 
implicational statement in DEP, is a logical consequence 
of DEP,. Without loss of generality, we will only show 
that each implicational statement in DEP, is a logical 
consequence of DEP,. Let (Y be an arbitrary implicational 
statement in DEP,; we must show that (Y is a logical con- 
sequence of DEP,. Let a be the dependency statement in 
DEP, which corresponds to the implicational statement 
(Y in DEP,. Since DEP, is equivalent to DEP,, it follows 
that a (like every other dependency statement in DEP,) 
is a consequence of DEP,. So, by the Equivalence Theo- 
rem, (Y is a logical consequence of DEP,, which was to 
beshown. 0 

We now discuss the second Delobel-Casey Theorem. 
Assume that K,, . . ., K, are some (or all) of the column 
names of relation 92. We say that {K,, ..., K,} (or, 
more simply, K, . . . K,) is a key of 9 if no two distinct 
tuples of 9 agree in all of the columns K,, . . ., K,. Thus, 
K, . . . K, is a key iff K, . . . K, -+ A for each column 
name A. (We are tacitly assuming that the same tuple 
does not appear twice in relation 9.) For convenience, 
we are allowing the possibility that a proper subset of a 
key be a key (our definition of key corresponds to Bern- 
stein’s [6] definition of “superkey.”) 

If D,, . . ., D, are all of the column names of 9, and if 
DEP is a set of dependency statements (involving only 
column names D,, . . ., D,), then by the second Delobel- 
Casey transform of DEP, we mean the propositional 
statement which is the Boolean sum of D, . . . D, and the 
first Delobel-Casey transform of DEP. For example, if 
DEP is {AB -+ CD, C -+ A}, and A, B, C,  D are all of 
the column names of 9, then the second Delobel-Casey 
transform of DEP is ABCD + ABC‘ + ABD ‘ + CAI. 

Second Delobrl-Casey Theorem The following are 
equivalent: 

1. It is a consequence of DEP that K; . . K, is a key. 
2. The propositional statement K, . . . K, logically im- 

plies the second Delobel-Casey transform of DEP. 

Proof Statement 1 is equivalent to the assertion that the 
dependency statement K, . . . K, + D, . . . D, is a conse- 
quence of DEP, where D,, . . ., D, are all of the column 
names. Hence, by the Equivalence Theorem, 1 holds iff 
the implicational statement K, . . . K, + D, . . . D, is a 
logical consequence of the set DEP (of propositional 
statements) which corresponds to DEP. What about 2? 
It is straightforward to verify that the second Delobel- 
Casey transform of DEP is logically equivalent to the 
propositional statement /3 3 D, . . . D,, where /3 is the 
conjunction of the propositional statements in DEP. So, 
2 says that y logically implies the statement /3 9 6, 
where y is K, . . . K,, where P is the co~unc t ion  of the 
statements in DEP, and where 6 is D, . . . D,. In general, 
“ y  logically implies the statement /3 3 6” holds iff “P 
logically implies the statement y 3 6”; this can easily 
be verified by considering each of the Z3 = 8 possible 
truth assignments to ( P ,  y, 6).  But in this case, as 
we showed, the sentence “P logically implies the state- 
ment y 3 6,” i.e., “DEP logically implies the statement 
K, . . . K, 3 D, . . . D,,” is equivalent to 1. So 1 and 2 
are equivalent. 

We close this section with remarks on earlier proofs of 
the Delobel-Casey Theorems. Delobel and Casey’s orig- 
inal proofs are somewhat involved and contain case-by- 
case examination of the effect of the “star algorithm” for 
generating prime implicants of disjunctive Boolean for- 
mulas. Armstrong [2] gave another proof in which he 
interprets the propositional variable A corresponding to 
column name A as a certain Boolean function of Bool- 
ean functions. Hopefully, our proof eliminates some of 
the mystery. 

7. Multivalued dependency statements 
The main result of this paper is that the relational data- 
base concept of “determines” (where the dependency 
statement A + B is read “A determines B”) has some 
of the same formal properties as the propositional con- 
cept of “implies.” We remark that the author has defined 
another natural kind of relational database dependency, 
called “multivalued dependency” [ 121, which has quite 
different formal properties (although the dependency 
statements dealt with in the present paper turn out to be 
a special case). A complete axiomatization for multival- 
ued dependency statements is given in Beeri, Fagin, and 
Howard [3]. Of course, this axiomatization is different 
from that given by Armstrong’s Axioms. 543 
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8. Summary 
We have demonstrated an equivalence between depend- 
ency statements (or functional dependencies) of a rela- 
tional database o n  the one hand and of implicational 
statements of propositional logic on the other hand. We 
have exploited this equivalence to prove the Delobel- 
Casey Relational Database Decomposition Theorems. 
This equivalence may also be of use to a database de- 
signer, who can use the tools of propositional logic to 
answer questions about dependency statements. We 
have presented a detailed algorithm for such an applica- 
tion. Furthermore, we have demonstrated an example 
that shows that an apparently mild extension of the 
equivalence fails. 
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