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Abstract: The spectrum of a first-order sentence o is the set of cardi-
nalities of its finite models. Jones and Selman showed that a set C of numbers
(written in binary) is a spectrum if and only if C is in the complexity class NEXP
(nondeterministic exponential time). An alternative viewpoint of a spectrum is
to consider the spectrum of ¢ to be the class of finite models of the existential
second-order sentence 3Qo(Q), where Q is the similarity type (set of relational
symbols) of o. A generalized spectrum is the class of finite models of an exis-
tential second-order sentence 3Qo (P, Q), where o is first-order with similarity
type P U Q, with P and Q disjoint. Let C be a class of finite structures with
similarity type P, where C is closed under isomorphism. If P is nonempty, we
show that C is a generalized spectrum if and only if the set of encodings of
members of C is in NP. We unify this result with that of Jones and Selman by
encoding numbers in unary rather than binary, so that C is a spectrum if and
only if C is in NP. We then have that C is a generalized spectrum if and only if
the set of encodings of members of C is in NP, whether or not P is empty. Using
this connection between logic and complexity, we take results from complexity
theory and convert them into results in logic.

‘We now mention some of our other results. We show that P = NP if and only
if the following apparently much stronger condition holds: there is a constant k
such that if 7" is a “countable” function (a standard notion in automata theory),
then every set recognizable nondeterministically in time 7" can be recognized de-
terministically in time 7% (analogous to Savitch’s Theorem for nondeterministic
vs. deterministic space complexity). We show that there is a spectrum S such
that {n : 2" € S} is not a spectrum. In fact, we show that there is such a
spectrum S definable using only a single binary relation symbol. This contrasts
with the simple result that if S is a spectrum, and if p is a polynomial, then
{n : p(n) € S} is a spectrum. Let us say that a generalized spectrum S is
complete if the following condition holds: the complement of every generalized
spectrum is a generalized spectrum if and only if the complement of S is a
generalized spectrum. We show that there is a complete generalized spectrum
defined by 3Qo (P, Q), where Q consists of a single unary relation symbol, and
where P consists of a single binary relation symbol. W show that if we define a
complete spectrum similarly, then there is a complete spectrum definable using
only a single binary relation symbol. These latter two results are best possible,
in terms of minimizing the arity and the number of relation symbols.
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1. Introduction. A finite structure is a nonempty finite set, along with
certain given functions and relations on the set. For example, a finite group is
aset 4, along with a binary function <: 4 X 4 — 4. If o is a sentence of
first-order logic, then the spectrum of o is the set of cardinalities of finite
structures in which ¢ is true. For example, let ¢ be the following first-order
sentence, where f is a “unary function symbol”:

o Vx(f(x) # x) A VxVy(f(x) =y f () = x).

Then the spectrum of ¢ is the set of even positive integers. For, if ¢ is true
about a finite structure Y = (4;g), where A4 is the universe and g: 4 — 4
(g is the “interpretation™ of f), then ¥ must look like Figure 1, where

a — b means g(a) = b.

ay « *a,
4y —*a,

ag * *ag
L]

FIGURE 1
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So, the finite structure Y has even cardinality. And conversely, for each even
positive integer #n, there is a way to impose a function on n points to make ¢
be true about the resulting finite structure.

As a more interesting example, let ¢ be the conjunction of the field
axioms—for example, one conjunct of ¢ is

VxVyVz(x « (y +2)=x°y +x+2).

Then the spectrum of o is the set of powers of primes.

In 1952, H. Scholz [21] posed the problem of characterizing spectra, that
is, those sets (of positive integers) which are the spectrum of a sentence of first-
order logic. It is well known that every spectrum is recursive: For, assume that
we are given a first-order sentence ¢ and a positive integer n. To determine if
n is in the spectrum of ¢, we simply systematically write down all finite struc-
tures (up to isomorphism) of cardinality n of the relevant type, and test them
one by one to see if o is true in any of them. It is also well known that not
every recursive set is.a spectrum: We simply form the diagonal set D such that
n € Diff n is not in the nth spectrum (the details are easy to work out).

In 1955, G. Asser [1] posed the problem of whether or not the comple-
ment of every spectrum is a spectrum. For example, it is not immediately clear
how to write a first-order sentence with spectrum the numbers which are not
powers of primes.

Note that the spectrum of the sentence (1) is the set of positive integers n
for which the following so-called “existential second-order sentence™ is true
about some (each) set of n points:

I (Yx(f() # x) AVxVp(f(x) =y £ () = x)).

This suggests a generalization, which is due to Tarski [23]. Let o be an exist-
ential second-order sentence (we will define this and other concepts precisely
later), which may have not only bound but free predicate (relation) and function
variables. Then the generalized spectrum of o is the class of structures (not
numbers) for which ¢ is true. Let us give some examples. The first few ex-
amples will deal with finite structures with a single binary realtion. We can think
of these as finite directed graphs.

1. The class of all k-colorable finite directed graphs, for fixed k > 2. A
(directed) graph % = (4; G) is k-colorable if the universe 4 of U can be
partitioned into k subsets 4,,***,A4; such that ~ Gab holdsif a and b
are in the same subset of the partition. This class is a generalized spectrum, via
the following existential second-order sentence, in which @ is a binary predicate
symbol which represents the graph relation, and C,, *** , C;, are unary predicate
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symbols (/\ K¢, abbreviates ¢y A+ ++ A\ ¢ similarly for WE,9):

3¢, === 3C, (Vx ( ))'E/ c,x>/\ v::(ml ~(c,x/\c,x)>
=1

i

k
AVxvy <Qxy — ‘/X} ~(Cx A\ C,y))>-
) 2. The class of finite directed graphs with a nontrivial automorphism. This
class is a generalized spectrum, via the following existential second-order sentence,
in which Q is as before, and f is a unary function symbol:

I Axfx) #x) AVxVp(f ) =f(y) = x =)
AVxVy(Q@xy + OF BV ().

3. The class of finite directed graphs with a Hamilton cycle, A cycle isa
finite structure {4; R), where A is a set of n distinct elements a oo a,
for some n,and R = {{, a;,,): 1<i<n} U {(a,, a,)}. A Hamilton
cycle of A =(A4;G) isacycle {(4; H), where H CG. This class is a general-
ized spectrum, via the existential second-order sentence 3 < ¢, where < is a binary
‘predicate symbol, and where o is the following first-order sentence (which we trans-
late into English for ease in readability):

“< is a linear order” A “if y is the immediate successor
of x in the linear order, then Qxy™ A *if x is the min-
imum element of the linear order and y the maximum,

then Qyx.”

Our final example is a class of finite structures with a binary function °.
4. The class of nonsimple finite groups. This class is a generalized spectrum,

N (“the structure is a group™ A “N is a nontrivial normal subgroup”).

We can ask the generalized Scholz question, as to how to characterize gener-
alized spectra, and the generalized Asser question, as to whether the complement of
every generalized spectrum is a generalized spectrum. Of the examples given, it is easy

‘to see that the non-2-colorable finite directed graphs form a generalized spectrum. It
is an open question as to whether the complement of any of the others is a general-
ized spectrum.

It turns out to be possible to characterize spectra and generalized spectra
precisely, in terms of time-bounded nondeterministic Turing machines. The con-
cept of a Turing machine is due, of course, to Turing [24]. The concepts of
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nondeterministic and multi-tape machines are due to Rabin and Scott [17]. The
classification by time complexity is due to Hartmanis and Stearns [12], and by
tape complexity, to Hartmanis, Lewis and Stearns {11].

In §§2 and 3, we give definitions and background material. Nothing there
is new.

In §4, we show the essential equivalence of generalized spectra and non-
deterministic polynomial-time recognizable sets. This supplements the known
equivalence of spectra and nondeterministic exponential time recognizable sets of
positive integers, which is probably due to James Bennett (unpublished); it was
also shown by Jones and Selman [15].

In §5, we show, by analyzing our proof of the automata-theoretic charac-
terization of spectra, that many (all?) spectra are the spectrum of a sentence
which has at most one model of each finite cardinality.

In §6, we make use of the automata-theoretic characterization of spectra
to show that if spectra are not closed under complement, then a class of candidates
for counterexamples suggested by Robert Solovay is sufficient.

In §7, we consider Cook’s [7] and Karp’s {16] notions of polynomial-com-
pleteness and reducibility. We generalize to exponential-completeness, and we
directly produce (without making use of Cook’s or Karp’s results) a polynomial-
complete set and an exponential-complete set. This was also done by Book [4];
his sets are similar to ours. We show that completeness implies a certain com-
plement-completeness; using this fact, along with our automata-theoretic char-
acterization of generalized spectra, we show that results in Karp’s paper [16]
(developed by Karp, Tarjan, and Lawler) give us specific exaniples of generalized
spectra whose complements are generalized spectra iff the complement of every
generalized spectrum is a generalized spectrum. In particular, we show that the
class of finite directed graphs with a Hamilton cycle is such a “complete™ gen-
eralized spectrum. Also, we find a complete generalized spectrum defined using
only one “extra” (existentialized) unary predicate symbol: This is a best pos-
sible result. By making use of automata theory and a result about spectra in the
author’s doctoral dissertation [9], it is shown that there is a complete spectrum
defined using only one binary predicate symbol: This is a best possible result.

In §8, we make use of the polynomial-complete set which we constructed
in the previous section to show that if the classes of sets which are polynomial-
time recognizable by deterministic and nondeterministic Turing machines are the
same, then the following apparently much stronger condition holds: There is a
constant k such that essentially any set that can be recognized nondeterministically
in time T can be recognized deterministically in time T*. We then generalize this
result in various ways. We conclude §8 by an analogy with Post’s problem.
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In §9, we make use of a tape-complexity argument similar to one used by
Bennett [2] to show that there is a spectrum S such that {n: 2" € §} is not
a spectrum. By making use of a zesult in [9], we then show that there is such a
spectrum § defined using only one binary predicate symbol. We also show that
our techniques give a new proof of a theorem of Book {3], that the two
classes of sets recognizable nondeterministically in polynomial time or in exponen-
- tial time respectively are different. .

In §10, we exhibit an example of a polynomial-complete set which is rec-
ognized by a nondeterministic two-tape Turing machine in real time. The exist-
ence of such a set follows immediately from theorems of Hunt [14], and of Book
and Greibach [5]. :

2. Notions from logic. Denote the set of positive integers {1,2,3, -}
by Z%,and theset {0,+++,n—1} by n By the natural numbers we mean
the set Z* U {0} If A isa set, then card A is the cardinality of the set. De-
note the set of k-tuples (ay, *°* ,q,) of members of 4 by 4.

A finite similarity type is a finite set of predicate symbols and function
symbols. Each predicate symbol (function symbol) has a positive integer (natural
number), the degree, associated with it. If a symbol has degree &, then call the
symbol k-ary. We will often call 1-ary symbols unary, and 2-ary symbols binary.
A constant symbol] is a O-ary function symbol. We will denote finite similarity
types by the letters S and T

Assume that S contains the n distinct symbols @,,*** , Q,, written
in some fixed order. Then a finite S-structure ¥ is an (n-+ 1)-tuple
(4; Ry, ***, R,) (where we write a semicolon after the first member), such that
we have the following:

1. A is a nonempty finite set, called the universe (of ), and denoted | ¥ L.

2.If @; is a k-ary predicate symbol, then R; is a subset of A*.

3.If @ isa k-ary function symbol, and k> 0, then R, is a function from
A% into A.

4. If @, is a constant symbol, then R; € 4.

In each case, write R, = fo We will sometimes make use of a graph pred-
icate symbol Q; if Q € S, then, for % to be a finite S-structure, Q% must
be a graph (i.e., irreflexive and symmetric), or, equivalently, a set of unordered
pairs (of members of {¥l). Denote the cardinality of 1] by card ().
Denote the class of finite S-structures by Fin(S); abbreviate Fin({Q,, *** , @,})
by Fin(Q,,-**,Q,).

Assume that S and T are disjoint finite similarity types, that ¥ isa
finite S U Tstructure, and that B is a finite S-structure. Then U is an
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expansion of B (to SUT) if |9 =18l and Q¥ = Q® foreach Q in S.
We write 8 = U T S.

The metamathematical language we will be working in is a set of symbols
~, f\, V, = an infinite number of individual variables u, v, w, x, y, z along
with affixes; the left and right parentheses ( , ); and predicate and function vari-
ables. We do not distinguish between predicate or function symbols and predi-
cate or function varigbles. Except in this section, whenever we refer to a vari-
able, we will always mean an individual variable.

A term is a member of the smallest set T which contains the Q-ary func-
tion variables and the individual variables, and which contains f(t,, =+ ,t.)
for each k-ary function variable f and each #;,*<,¢, in T.

An atomic formula is an expression ¢, =t, or Qf, *=-* t,, where the
t, are terms and Q@ is a k-ary predicate variable. A first-order formula is a
member of the smallest set which contains each atomic formula, and which con-
tains ~ ¢,, (¢, A\ ¢,), and Vx¢, (for each individual variable x), whenever it
contains ¢, and ¢,. A second-order formula is a member of the smallest set
which contains each atomic formula, and which contains ~ ¢,, (¢, \ ¢,), Vx¢,
(for each individual variable x) and VQ¢, (for each predicate or function vari-
able Q) whenever it contains ¢, and ¢,.

The formulas ¢, \/ ¢,, 3Ix¢, (3x # »)p, Ix¢ (read “there exists exactly
one x such that ¢”), and so on, are defined in the usual way, e.g., ¢, V ¢, is
~C~¢, AN~¢y). If T={0,,°*+,0,} is a finite similarity type, then 3T¢
is 3Q, *+* 30,¢. If ¢ is a first-order formula, then 3T¢ is called an exist-
ential second-order formula.

If x;,++-,x,, are individual variables, then we will sometimes write x
as an abbreviation for the m-tuple (x,, ***, x,, ), when this will lead to no
confusion. We may write Vx¢ for Vx, <++ Vx,¢.

The notion of a variable being a free varizble is understood in the usual
way. Let S be a fixed finite similarity type. An S-formula isa (first- or
second-order) formula all of whose free predicate and function variables are in S.
A sentence is a formula with no free individual variables. A formula is
quantifier-free if it contains no quantifiers (V or 3).

Assume that U is a finite S-structure, and that ¢ is a first- or second-
order S-sentence. Then U J= 0 means that o is true in Y ; we say that U
is a model of o. For a precise definition of truth, see [22]. We note that the
equality symbol = is always given the standard interpretation. We define Mod 0
to be the class of all finite S-structures which are models of o.

Assume that S and T are disjoint finite similarity types, and that
A CFin (S). Then A is an S-spectrum, or an (S, T)-spectrum, if there is
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a first-order S U Tsentence o such that A = Mod,, 3To. This is simply Tarski’s
[23] notion of PC, in the special case where we restrict to the class of finite
structures. A generalized spectrum is an S-spectrum for some S. A monadic
generalized spectrum is an (S, T)-spectrum where T is a set of unary predicate
symbols. A spectrum is an S-spectrum for S empty;if A is a spectrum, then
we identify {n: (n) € A}C Z* with A. In this case, if A = {n: (n) = 3To}, then
we call A the spectrum of a.

3. Notions from automata theory. When A is a finite set of symbols, then
A* is the set of strings or words, that is, the finite concatenations a, " a,”
*++"a, of members of A. The length of a=a;” +++""a, is n (written
len(@) =n). If k€Z*, then len(k) is the length of the binary representation
of k; this corresponds to a convention that we will always represent positive
integers in binary notation. If a set S CA* for some finite set A4, then S is
a language.

An m-tape nondeterministic Turing machine M is an 8-tuple (K, T, B, Z, 8, q,,
4 4. 9z, where X is a finite set (the states of M); I is a finite set (the zape symbols
of M); B is a member of S (the blank); Z is a subset of (I — {B}) (the input symbols
of M); q,, q 4, and q 5 are members of K (the initial state, accepting final state, and
rejecting final state of M, respectively); and & is a mapping from (K—{g 4, qg ) X '™
to the set of nonempty subsets of K X (['— {B})™ X {L, R}™ (the table of tran-
sitions, moves, or steps of M)

If the range of & consists of singletons sets, that is, sets with exactly one
member, then M is an m-tape deterministic Turing machine.

We may sometimes call M simply a machine,

An instantaneous description of M isa (2m + 1)tuple I =
(g al, ==~ , o™iy, ==~ ,i,), where g €K, where o/ € T~ {B})*, and
where 1 <j; <len(a/) +1,for 1 <j<m Wesay that M isin state q, that
a/ is the nonblank portion of the jth tape, and that the jth tape head is scan-
ning (aj),-l., the i;th symbol of the word o/ (or that M is scanning (o )’i on
the jth tape); we also say that the jth tape head is scanning the i;th tape square.

Let I'=(q";al’,++=, a™;ij, -, i’ ) be another instantaneous de-
scription of M. We say that 1—,, I' if q #q,, q # qg, and if there is
s=(p;a,,*=* ,48,:T,*==,T,) in 8(@; (u’),l,'" . (n"’),m) such that
p=q', and, for each j, with 1 <j<m:

1. (a"),l =a,.

2. (@) = (@), for 1<k<len @), if k+ i.

3. len(¢/") = len(a/) unless i = len(a’) + 1; in that case, len(a/') =
len(a’) + 1.
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4, If T,=L,thcn i #1.

5. f Ty=R then i; =i+ 1;if T;=L, then i{=i—1.

We say that M prints 4; on the jth tape. Note that M cannot print a
blank (that is, a; # B); so, we say that o is that portion of the jth tape which
has been visited, or scanned. If T; = R(L), then we say that the jth tape head
moves to the right (left). Assumption 4 corresponds to the intuitive notion of
each tape being one-way infinite to the right; thus, if M “orders a tape head to
go off the left end of its tape,” then M halts. It is important to observe that
it is possible to have /—,, I, and /-, I, with I, # I,; hence the name
“nondeterministic.”

We say [ -—*;, J if there is a finite sequence 7,, *+<, [, such that
I =11 =Jand I;—, I, , for 1 <i<n Denote the empty word in
Z* by A. If wEZ* thenlet w={qg;w, A, =<+, A;1,°++,1) (w is the
inputr). Call an instantaneous description (q;a!, «++, a™;i ", i,) accept-
ing (rejecting) if q =q, (g =qg). We say that M accepts w in Z* if
W——*;, I for some accepting I Denote by A,, the set of all words accepted
by M. We say that M recognizes A,;.

If W—*:, I for some accepting (rejecting) I, then we say that M, with
w as input, eventually enters the accepting (rejecting) final state, and halts.

Intuitively speaking, there are three ways that a word w in T* may be
not accepted by M: M, with w as input, can eventually enter the rejecting final
state qp;or M can order a tape head to go off the left end of its tape; or M
can never halt.

Assume that M is a multi-tape nondeterministic Turing machine, w €Ay,
and ¢ is a positive integer. We say that M accepts w within t steps if, for
some n<{,

there are instantaneous descriptions ;,~*<, I,
@ such that I, =w, [, isaccepting, and I, =+, I, .,
for 1<k<n

Let s be a positive integer. Then M accepts w within space s if for
some positive integer 7, (2) holds and, for each I, 1 <k<n+1,if I, =
(g;al,=ss,a™;iy,«++,i,), then i,<s for 1<p<m

Let T: N— N and S: N— N be functions. We say that M operates
in time T (tape S), ot M recognizes Ay, in time T (tape S) if, for each natuzal
number [ and each word w in A4,, of length I, the machine M accepts w
within T(!) steps (space S(/)). We say that A is recognizable (non)determin-
istically in time T, or tape S, if there is a multi-tape (non)deterministic Turing '
machine M that operates in time T, or tape S, such that 4 = A4,,.
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We will now define some well-known, important classes. Let P (WP) be
the class of sets A for which there is a positive integer &k such that A4 is recog-
nizable (non)deterministically in time Ié—1*. These are the (non)deterministic
polynomial-time recognizable sets.

Let P, (NP,) be the class of sets A for which there is a positive integer
& such that A4 is recognizable (non)deterministically in time / «— 2%/, These
are the (non)deterministic exponential-time recognizable sets. If the positive
integer n has length 1 in binary notation, then 2'~1 <n < 2'. Therefore, a
set A of positive integers is in P, (WP,) iff there is a multi-tape (non)determin-
istic Turing machine M, and a positive integer k such that 4 =A4,, and M
accepts each n in A within n* steps. So in some sense, P, and NP, are
also classes of polynomial time recognizable sets.

We say that a set 4 is recognizable in real time if A is recognizable in
time /I + 1. Weuse I+ 1 instead of I, so that the machine-can tell when
it reaches the end of the input word.

We have defined Turing machines which recognize sets rather than compute
functions. It is clear how to modify our definitions to get the usual notion of a
function f computable by a deterministic one-tape Turing machine JM; it is also
clear what we mean by M computes the value of f at w within t steps. If
f:A~— B, where A and B are languages, and if T: N — N, then we say that
M computes f in time T if, for each natural number ! and each word w in
A of length [, the machine M computes the value of f at w within T'(/)
steps. We define Il to be the class of functions which are computable by a one-
tape deterministic Turing machine in polynomial time. Functions are generally
considered easy to compute if they are in II; Cobham [6] was the first to single
out this class. We define II; to be the class of functions f which are comput-
able by a one-tape deterministic Turing machine in exponential time, and for
which there is a constant ¢ such that len(f(w)) <c < len(w) foreach w in
the domain of f.

We now state without proof two theorems, which were essentially proved in
[12]. The proofs can also be found in [13, pp. 139—140 and 143].

THeOREM 1. If A is recognized by a one-tape (non)deterministic Turing
machine in time T, if lim inf,, ,T(I)/I> = o, and if ¢> O is arbitrary, then
A is recognized by a one-tape (non)deterministic Turing machine in time 1+
max (I + 1, cT).

THEOREM 2. If A isrecognized by an m-tape (non)deterministic Turing
machine in time T, and if lim inf,_, ,T()/l = oo, then A is recognized by a one-
tape (non)deterministic Turing machine in time T2.




52 RONALD FAGIN

It follows from Theorem 2 that the concepts of polynomial and exponential
time are invariant, whether we consider one-tape or multi-tape machines.

A function T is countable if there is a positive integer ¢ and a two-tape
deterministic Turing machine that operates in time ¢T which, for each natural
number ! and each word of length ! as input (on the first tape), halts (by
entering a final state) with a string of at least 7(!) tallies on its second tape
(a tally is a one). This is slightly broader than the usual definition, but more
convenient for us to use. We will make use of the fact that I > I¥ is count-
able for each positive integer k; for, I¥ can be calculated in a polynomial of
len(I) time, which is less than ! for sufficiently large L

A linear-bounded automaton is a one-tape deterministic Turing machine
that operates in tape I +> 7+ 1. We denote by E2 those subsets of Z+
whose characteristic functions are in the Grzegorczyk class E2 [10]. The class
E? is the smallest class which contains the successor and multiplication functions,
and is closed under explicit transformation, composition, and limited recursion.
We are interested in the class E,f precisely because of the following theorem.

THEOREM 3 (RITCHIE [18]). A set of positive integers is recognizable by
a linear-bounded automaton iff it is in E2 .

We will make use of the following well-known simple theorem, which we
state without proof.

THEOREM 4. The classes E,f, P,and P, are closed under complement.

A function S: N—+ N is said to be constructible if there is a one-tape
deterministic Turing machine which operates in tape S, but not in tape S,
if S()<S() for some L We conclude this section by stating a theorem which
is essentially proved in [11]. The proof can also be found in [13, pp. 150—151].

THEOREM 5. Assume that § is a constructible tape function with
S(I) > log,! for each natural number . Then there is a set which is recognizable
by a one-tape deterministic Turing machine in tape S, but which is not recogniz-
able in tape S’ for any function S' with lim inf,,.S'()/SU) = 0.

4. Generalized spectra and automata. In this section, we will prove the
theorem (Theorem 6) which interrelates spectra and generalized spectra with
automata.

Let S be a fixed finite similarity type which (for convenience) contains
only predicate symbols, and let P, <, P, be the predicate symbols in S
in some fixed order. Let X = {0, 1, #}.

Assume that A = ({1, -+ ,n}; S,,*++,S,) isa finite S-structure, and
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that P, (and hence S)) is mgary (1 <i<r). Foreach i, define b, to be the
word in {0, 1}* of length a™! such that if (¢ , <=~ €y is the kth member
of {1,+++,n}™ inlexicographical order, then the kth digit of b, is 1 if
S;¢y ** ¢, and O otherwise (1 <k <n™!). Let e(¥), the encoding of
Y, be the word a #b, #b, #+-- #b, in IT* where a is the binary repre-
sentation of n. If A isa class of finite S-structures, then let E(A)=

{e@): QnezZ) (U = {1, ,n} and UE A)}

THEOREM 6. Assume that A C Fin(S), and that A is closed under iso-
morphism,

1. If S+, then A isan S-spectrum iff E(A) € NP.

2. If S=4,then A isa spectrum iff E(A) €ENP,.

Note. We can combine these Jast two statements by saying that A is an
S-spectrum (S =& or S # &) iff there is a positive integer k¥ and there is a
nondeterministic multi-tape Turing machine which recognizes E(A), and which
accepts each e(Y) in E(A) within n* steps, where || = {1,+++,n).

PROOF. Assume that A isan S-spectrum (possibly S = @) Then, for
some positive integers ¢ and k, some set T of ¢ new k-ary predicate symbols,
and some first-order S U T-sentence o = Q,x, *** Q,,X,,$, where ¢ is
quantifier-free and each Q; is V or 3, we have A = Mod_,3To. This is be-
cause of well-known techniques of simulating (k¥ — 1)-ary functions and (k — 1)-
ary relations by k-ary relations, and because each first-order sentence is equivalent
to a sentence with all quantifiers out front (so-called “prenex normal form”).

We will informally describe a (¢ + m + 2)-tape nondeterministic Turing
machine M which recognizes E(A). The first tape is the input tape. The ma-
chine M first tests to see if the input is of form a #b, #b, # <+ #b,, with
a in {0, 1}* and starting with a 1, with 7 the number of (predicate) symbols
in S, and with each b; in {0, 1}* and of the proper length; to test for proper
length, M uses its last tape as a “counter.” If the input is not of the proper
form, then M rejects. If the input is of the proper form, then say the input is
e(Y), and |U| = {1, * <+ ,n}. On each of the 2nd through (¢t + 1)st tapes, M
then nondeterministically prints a string of #* 0’s and 1°s, by using the last tape
as a counter; these correspond to *“‘guesses” for the interpretations of the pred-
icate symbolsin T. Let U’ be the obvious expansion of ¥ to SUT.

Next, on the (¢ +i+ 1)st tape, M systematically prints each possibility
a; for x; (1 <i<m), where a; runs between 1 and n. There are n™
possibilities for the m-tuple (a,, **+,a,). For each given such possibility, M
can easily test to see if ¢a,, ***,a,,) holdsin ', where it again makes use
of the last tape as a work tape. It is easy to see how to arrange the logic to test
whether U’ = 0.



54 RONALD FAGIN

So M recognizes E(A), and there is a nonnegative polynomial p
such that M accepts each &) in £{A) nondeterministically within p(n)
steps, where [¥|= {1, *++,n}. Let ! be the length of the input e(¥). If
S =, then n is approximately 2'. If S # g, then [ is approximately tm*
(in each case, “approximately” means up to a fixed constant factor). So if
S = 2 then E(A) can be recognized nondeterministically in time 7+—s p(2'),
and hence E(A) ENP,. If S # &, then E(A) can certainly be recognized non-
deterministically in time I+—sp(l), and hence E(A) € NP.

Conversely, assume that E(A) isin NP or NP,, depending on whether
S#& or S=¢. Assume that S = {P,, **+, P}, where P; is myary, for
1 <i<r. It will be convenient to define a slightly modified (r + 1)-tape non-
deterministic Turing machine M, by changing the definition of an input. If x
isan (r + I)-tuple €@, ,a,,,), thenlet X =(qq5a,°*",aq, 41, , 1)
we say that M accepts the (r + 1)-tuple x if X —*;, I for some accepting
instantaneous description L

It is clear that there is a positive integer k and a modified (r + 1)-tape
nondeterministic Turing machine M which accepts precisely those {r + 1)-
tuples (', b, *= , b, such that a #b, # by #--+ #b, isin E(A), where
@' is the string a written backwards, and such that M accepts such an input
within n* steps, where n is the number represented by @ in binary notation.
We can assume that k > max {m,: 1 <i<r}. It is clear that if M accepts
@',by,***,b,) within n* steps, then it accepts ',b,,*+*,b,) within
space n*; we will make use of this fact.

Introduce the set T of the following new symbols. The symbol < isa
binary predicate symbol, which represents a linear order; ¢; and ¢, are con-
stant symbols, which represent respectively the minimal and maximal members
of the linear order; 0, 1, and B are constant symbols, which represent respec-
tively the zero, one and blank tape symbols; q,, ¢4, and qp are constant sym-
bols, which represent respectively the initial state, accepting final state, and reject-
ing final state; S is a unary function symbol, which represents successor in the
linear order <; §; isa 2k-ary predicate symbol, where

s](xla MR T3 ST vyk)

means that y is the successor of x in the Jexicographical ordering; q is a
k-ary function symbol, where q(r,, **~ , ;) is the state that the machine is in
at time t; v, is a 2k-ary function symbol, for 1 <i <r + 1, where

v(ty, o * , txi Xg, ***, X;) is the tape symbol printed on square x of the
ith tape at time t; H, isa 2k-ary predicate symbol, for 1 <i<r + 1, where
H{t; x) means that, at time ¢, the ith tape head is scanning square x on the
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ith tape;and G is a binary function symbol, where G(x, §) is the ith digit from the
Tight in the binary representation of x, if we think of the binary representation of
the positive integers less than or equal to n (the cardinality of the universe) as
being given by a word of length n, which starts out with a series of blanks, fol-
lowed by the usual binary representation.

We think of the k-tuple (c,,***,c,) asrepresenting the first time unit
(and the first tape square on each tape);if S;(x;y), then y is the next time
unit (next tape square) after x. Thus, the k-tuple {,, ***,c,} represents the
n*th time unit (n*th tape square).

Assume that T' contains g tape symbols. We represent these by ¢, S(c,),
S(S(cy)), o, s¢ _l)("x)» where c, represents the zero, S(c,) represents the
one, and S(z)(cl) represents the blank. For ease in readability, we have intro-
duced the symbols 0, 1, and B, which will denote the same elements (in a model)
as ¢y, S(c,), and s )(c,) respectively. Assume that K contains p states. We
represent these by ¢,,°°, S(""‘)(c,) where, for ease in readability, we have
4o 94 and qg denoting the same elements as ¢;, S(c,), and S?)(c;) respec-
tively.

Let o, be the conjunction of the following sentences:

0=c,, Qo =Cy»
l = S(C])) QA = S(cl))
B= S(z)(cl): qr = S(z)(cl)-

Let o, be the sentence “<is a linear order, ¢, is minimal, ¢, is max-
imal, and S is successor, except S(c,) =c¢,.”

Let o, be the sentence which says that S,(x;y) holds iff y is the suc-
cessor of x in lexicographical order, except that S,(c,, ***,€53¢€,*** ,€Cy)
holds. Thus, 05 is the conjunction of the following k +2 sentences:

Vxl ese kaalyl eve B!yksl(xl’ coe ’xk;yl"'. ,yk)’
Vxy ooe Wxp(x, #0y —8,(x;, =00 s X5 Xg, 200, X gy SX,)),
Vxg ooe Vx((x, =, Axp_y #¢5)

S Xy X Xgy 0y X0 SK_ 14 €4)),

*ew e
Sl(cz’ ) ,cz;cl, coe ’cl).

The conjunction o, of the following sentences defines G to be what we
said we wanted:
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G(cy, c) =1,
(Vx #¢,)Glcy, x) = B),
(Vx # e )Vp((3z <¥XG(x, z)= 0V G(x, z) = B))
— (G(Sx, y) = G(x, ¥))),
(Vx # e ))Vy(((3z <yXG(x, 2) =1 AG(x, y)=0)
— (G(Sx, y) = 1)),
(Vx# c)Vy(((Vz <) G, 2) = 1 AG(x, y) = 1))
— (G(Sx, y) = 0)),
(Vx # c,)Vy((Vz <y)G(x, 2) = 1 \G(x, ) = B))
— (G(Sx, ) = 1))

The conjunction o4 of the following sentences gives self-explanatory in-
formation about ¢ and the H;:

Q(Cp °e= ,C‘) =4p»

Q(c2a e 902) =qA:

r+1

m th see Vtk 3!xl s e E!XkH,(t; x)’
i=1

r+1

{X\l H((Cp e, 01iCyy ,Cl)-

The conjunction o4 of the next two sentences initializes the first tape so
that it starts with the binary representation of n (the cardinality of the universe)
running backwards, followed by blanks:

Vx(vl(cl, see cl;cl’ e, cl’ x) = G(02, x))’
Vxl cse ka(~(xl =CIA”'Axk-—1 =cl)
_—’(vl(cli' AT SR ST "xk) =B)).

The conjunction o, of the following sentences initializes the 2nd through
(r + 1)st tapes such that the (/ + 1)st tape starts out with a string of 0’s and
I’s which represents P,, followed by blanks (1 <i<r):
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r
QVxl sse me‘(Pfxl ccox’ni

q(vi"‘l(cl’ b 'cl;cl’ e )cll xl! b sxm‘) = 1)))

,
{)(\l Vx; == me‘(~ Pix; e X,

_’(v“'l'l(cl’ ese ,cl;cl’ ees ’cl' xl’ cse ’xm[) =O)),

r
{X\Vxl e oo ka(~(xl =c‘ A.‘.Axk—m‘=cl)
=1 )
= (e, e X000, X)) = B)).

The sentence 0g says that after the machine enters a final state, nothing
ever changes. Here u represents the next time unit after t:

VtVu<~ (=3 Ao Aty =) AS,GWA @O =2, Va®) = ag)

r+1
- ((q(u) =qt)AVx ({2(\l (v (u; x) = y(t; X)>

r+1
AVx M\ (H(u; x) »H(t; x)>>.
i=1

The sentence 04 is a conjunction of sentences which describe the table of
transitions of M, entry by entry. Assume that 8(b;e,, <~ ,¢,,,)=
{545 ***,9,), that we are representing the state b by S(")(c,), and that we
are representing the tape symbol ¢; by S(f‘)(cl), for 1 <i<r. Then one con-
junct of o4 is the following sentence:

vtVllei -mw in “oe erl+l -ew Vx'k+l

<~(tl =c; Neeo Aty =)\ Sy (t; v)

r+1

A {x\ Ht;x, o . xD) A @t = 59¢,)
=1

r+1

A M @t xh o, xD) =5, )— §’<4 ¢,),
i=1 =

where ¢, tells the transition which is possible, according to s;, for 1 <i<w.
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Specifically, assume that s; is {a;b,,°**,b,.4: Ty, ***, T,4y), where we
are Tepresenting the state a by S(""(c,), where we are representing the symbol
b, by S(d/)(cl), for 1 <j<r+1,and where each T; iseither R or L. Let
I={j:T;= R}land J= {j: T; =L}. Then ¢, is the conjunction of the fol-
lowing formulas, where in the last conjunction we include the restriction that no

- tape head go off the left end of its tape:

q(u) = S™)(c,),

r+i

i/Y\ VZ(~ @2y =x[ A+ Az =x]) — (w5 2) = v(t; 2))),
=1 ;

r+
M v x) =5y, My, &y — B yh),
=1 " jEr

M~ &l =cy A v Axl=¢)) AVy!(S, 675 ¥) — Hu;y')).
I

If n>max(card T, card X), then an S-structure ¥ with card (%) =n
isin A iff ¥ = 3IT(M ] 0). It is well known that each “finite modification”
of an S-spectrum is an S-spectrum. Therefore, A is an S-spectum. O

Apparently, James Bennett was the first to prove part 2 of Theorem 6, al-
though he did not publish it. The first published proof (a different proof from
ours) is by Jones and Selman [15]. Part 1 is new.

It is fairly easy to prove from Theorem 6 that

the class of (generalized) spectra is closed under complement

3
®) iff NP, (NP) is closed under complement.

This is because there are not only simple ways to encode finite structuzes
into strings of symbols, but also ways to “encode™ strings of symbols into finite
structures. We will not demonstrate this, because (3) follows easily from our
work on complete sets in §7.

We know from Theorem 4 that P, (P) is closed under complement. So
if NP, =P, WP = P), then NP, (NP) is closed under complement, and
hence the class of (generalized) spectra is closed under complement. It is a
famous open problem in automata theory as to whether NP = P; the evidence
seems to be strongly against it. We remark that it is well known that NP = P
implies that NP, = P,, and that if NP is closed under complement, then so is
NP, ; these results follow, for example, by an obvious modification of an argument
by Savitch [20, p. 186].
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From Theorem 6, we see that spectra and generalized spectra are very broad
classes. Most sets of positive integers that occur in number theory, such as the
primes, the Fibonacci numbers, and the perfect numbers, are easily seen to be
members of P, and a fortiori of NP,. It is immediate from Theorem 6(2) that
a set of positive integers is in NP, iff it is a spectrum.

THEOREM 7 (BENNETT [2]). Assume that the set A of positive integers
is in Ei. Then A and A are spectra.

PrOOF. By Theorem 3, A4 is recognizable by a linear-bounded automaton.
So, by an easy, standard argument of counting the number of possible instantane-
ous descriptions, it follows that 4 € P,. So A4 € NP,, and hence A is a spec-
trum. Since Ei is closed under complement (Theorem 4), also A€ Ei ChC
NP,;hence 4 isa spectrum. O

It is an open problem as to whether there is any spectrum not in EZ .

Let BIN be the set of all spectra definable using only one graph predicate
symbol. Obviously, if § € BIN, then S is definable using only one binary
predicate symbol. The following result is proved in the author’s doctoral dis-
sertation [9].

THEOREM 8. For each spectrum S, there is a positive integer & such that
{n*:n€ S} isin BIN.

We could not hope for it to be true that for each spectrum 8, there is a
positive integer k such that {n*:n € S} is definable usiiig only unary predicate
symbols. This is because it is well known that by an elimination-of-quantifiers
argument, it can be shown that each spectrum definable using only unary predicate
symbols is either a finite or a cofinite set of positive integers.

We close this section by using Theorem 8 to show that if certain conjectures
about spectra are false, then a counterexample occurs in BIN.

THEOREM 9. The following two statements are equivalent,
1. NP, = P,.
2. BINC P,.

PrOOF. 1 =2: BIN CNP,, by Theorem 6(2).

2=1: Take § in NP;; we want to show that S € P,. By the usual
encoding arguments, we can assume that § CZ+, By Theorem 8, we can find
a positive integer k such that T = {n*: n €S} isin BIN. Then n €S8 iff
n* € T, for each positive integer n. So cleatly, if T€ P, then SEP,. O

THEOREM 10. The following two statements are equivalent,
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1. If SCZ*, then SENP, iff SEEL.
2. BINCE.

The proof is very similar to the previous proof. O

5. Categoricity. Call a first-order sentence categorical if it has at most
. one model (up to isomorphism) of each finite cardinality.

THEOREM 11. Assume that the set S of positive integers isin P,. Then
there is a categorical sentence with spectrum S.

Proor. If the machine M in the proof of Theorem 6 is deterministic,
then the sentence /M\ 1,0, defined in that proof is categorical. The “finite
modification” which was called for to take care of small values of n is easily
dealt with. 0O

So those naturally-occurring sets of positive integers that we discussed in
the previous section are each the spectrum of a categorical sentence.

COROLLARY 12. If NP, = P,, then each spectrum is the spectrum of a
categorical sentence.

The proof is immediate. O

In the case of S-spectra, let us call a first-order S U T-sentence ¢ (where
S N T= &) S-categorical if, whenever 9 and B are finite S U T-structures
which are models of o,and Y I'S and B I S are isomorphic, then so are
U and 9B.

If A isan S-spectrum, then it does not quite follow, as in Theorem 11,
that if E(A) € P then thereis T and there is an S-categorical S U T-sentence
o such that A =Mod_3Ta. For, there are many different ways to impose the
linear ordering <. However, if structures had a “built-in” linear ordering, then
we could surmount this difficulty. One approach is to consider only finite S-
structures ¥ such that | CZ+. We could let < be a symbol which, like =,
has an invariant interpretation; namely, if a, b € 1Y, where 1 CZ*, then
a<® b iff a is a smaller integer than b. Then the desired result mentioned
above follows.

6. Possible Asser counterexamples. In §1, we gave several simple examples
of generalized spectra whose complements do not seem to be generalized spectra.
These also serve as examples of NP sets which are probably not in P,

It is harder to find candidates for sets which are spectra but whose comple-
ments are not spectra, or which are in NP, but notin P,. This is because, as
we observed, most naturally-occurring sets of positive integers are in P,, and
hence, of course, so are their complements.
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As we shall see in §9, there exists a spectrum S such that {n: 2" € S}
is not a spectrum. This gives us one class of possible counterexamples. In fact,
Bennett [2] shows that {n: 2" + 1 is composite} is a spectrum, and asks
whether {n: 2" + 1 is prime} is a spectrum. We will show that Bennett’s re-
sult follows fairly simply from Theorem 6 (Bennett’s proof is different). We will
answer Bennett’s question (affimmatively) by making use of a very surprising re-
sult by Vaughn Pratt (unpublished). We need the following simple theorem.

THEOREM 13. Assume A CZ*. If AENP then {n:2" + 1€ A}ENP,.

PROOF. Assume that M is a nondeterministic Turing machine which rec-
ognizes A in polynomial time. We will define a nondeterministic Turing machine
M’ which recognizes B = {n: 2" + 1 €A} in exponential time. Given input
n, the machine M’ prints the string that starts and ends with a 1 and has
{(n—1) 0’s in between. This is the number 2" + 1 in binary notation. Then
M' simulates the action of M oninput 2% + 1. It is easy to see that M’
recognizes B nondeterministically in exponential time. O

It is simple to show that C = {n: n is composite} isin NP. For,let M
be a nondeterministic Turing machine which, given input n, “guesses™ a divisor
m of n and then tests it; if m divides n, then M accepts n. Clearlly M
recognizes C nondeterministically in polynomial time. So, from Theorem 13,
{n: 2" + 1 is composite} isin NP,, and hence is a spectrum.

Pratt proved that {n: n is prime} isin NP. From this very interesting
result, it follows immediately from Theorem 13 that {n: 2" + 1 is prime} is
a spectrum.

For each set S of words, define S’ tobe {len(n): n €S). As candidates
for sets in NP, which are not in P,, Robert Solovay (personal communication)
essentially suggested considering sets S’, where S € P. We will now show that
in a certain sense, this class is sufficient for a counterexample. The proof gives
an application to automata theory of the equivalence in Theorem 6.

THEOREM 14. The following three statements are equivalent:
1. NP, = P,.

2. If SEP then S'EP,.

3. If SENP then S' € P,.

ProoF. 3= 2: This is tmmediate, since P TNP.

1=3: Assume that S ENP. Then S' € NP,. For, assume that M
recognizes S nondeterministically in time I +>I¥, for some k. We will con-
struct a machine M’ that recognizes S’ nondeterministically in exponential
time. Given input m, the machine M’ first guesses a number n of length m.



62 RONALD FAGIN

Then M’ simulates M on the input n. Clearly, M’ recognizes S'; M’ accepts
m in ' inroughly m* steps. So S’ ENP, = P,.

2= 1: Assume that 4 € NP,. By the usual encoding arguments, we can
assume that A CZ* (if, instead, 4 C=* for the finite set Z, then we find an
encoding #: £* — Z* for which there is a constant ¢ such that len (t(w)) =
¢+ len(w) foreach w in =*; the details are straightforward). By Theorem 6,
we know that A is a spectrum. Assume for simplicity that 4 = {n: {1} = 3Q0},
where Q is a binary predicate symbol. The general case is similar. Let S be
the following set:

{m: In(len(m) = n? + 1, and if the binary representa-

tion of m is 17 b, and if R is the binary rela-

tion on n which is represented by b in the obvious
way, then (n; R) = 0) }.

We use n? + 1 instead of n® to allow for the possibility of b beinga
string of all 0's.

Then S € P. For, as we saw in the proof of Theorem 6, there is a positive
integer k and a deterministic machine M which can determine whether
(n; R) I= o within n* steps for each n (and R); note that n* is bounded by
a fixed polynomial of the length of m.

Since S € P, it follows by hypothesis that S’ € P;. Now n € 4 iff
(n* + 1) €S, for each positive integer n. So A€ P,. O

In the next section, we will find several specific (generalized) spectra A (A)
such that the class of (generalized) spectra is closed under complement iff 4 A
is a (generalized) spectrum.

7. Complete sets. We will now deal with the notions of reducibility and
completeness, which are due to Cook [7] and Karp [16]. We will show that com-
pleteness implies a complement-completeness (Theorem 15(2)), and we will use this
fact, along with Theorem 6(1) and results in Karp’s paper [16], to find particular
generalized spectra whose complements are generalized spectra iff the complement of
every generalized spectrum is generalized spectrum. In particular, we will show that
the class of directed graphs with a Hamilton cycle is such a “complete” generalized
spectrum; we will also exhibit a monadic complete generalized spectrum. We will then
find a complete spectrum, and will show that the existence of a complete spectrum
implies the existence of a complete spectrum in BIN (which we can actually find).

Assume that T, and Z, are finite sets,and 4 CZ}, BCZ%. B is
reducible (reducible;) 1o A, written B « A (B «, A), if there is a function f:
Zf— Z¥ in I (I1,) such that, foreach x in I}, xE€EB iff f(x)EA.
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Itisclear that @ and o, are transitiv
Aset 4 is NP (NP, )complete if
1. AENP (VP).

2, BxA (B« A) foreach B in NP(NP,).

THEOREM 15. Let A be NP(NP,)complete. Then
1. NP=PWP =P,) if ACP(R)  _
2. NP(NVP,) is closed under complement iff A € NP(NP)).

PROOF. Assume that B C Z*, that B € NP(NVP,)and that Bx 4 (B, A).

Find f in TI(Il,) such that x €B iff f(x) €A, foreach x in Z* Itis
straightforward to check that if A € P(P;), then B € P(P;). Note that x € B
iff f(x) € A hence, if A € NP(NP)), then B ENP (VP,). The other implica-
tions are obvious. O

Part 1 of Theorem 15 (in the NP= P case) is due to Karp. Cook was
the first to show that there exists an NPcomplete set. This set is SAT, the set
of encodings of satisfiable propositional formulas in “‘conjunctive normal form”
/X\i\X/l-A,-,-, where each A;; is a propositional letter or its negation.

THEOREM 16 (Cook [7]). SAT is NPcomplete.

In .[16], SAT is shown to be reducible to certain other sets in NP, which
are thus NPcomplete. We now describe two such sets.

1. HAM is the set of encodings of {Q}-structures that have a Hamilton
cycle, where Q is a binary predicate symbol.

2. HIT is the set of encodings of families of subsets of a set, for which
there is a “hitting set.” If the input is (the encoding of) a finite family
{4y, **+,A,}, where each A; C {s,, ***, s}, then a hitting set is a set
WC {sy,°°-,s} such that WN 4; contains exactly one element for each i

THEOREM 17 (KARP, TARIAN, AND LAWLER {16]). HAM and HIT are
NP-complete.

We can now demonstrate two particular generalized spectra whose com-
plements are generalized spectra iff the complement of every generalized spectrum
is a generalized spectrum. Let Q be a binary predicate symbol, and U a unary
predicate symbol.

THEOREM 18. Let A= {¥ € Fin(Q): U has a Hamilton cycle). Then
the class of generalized spectra is closed under complement iff the complement
of the {Q}spectrum A isa {Q}spectrum.

ProOOF. #: This is immediate.
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<=: This would follow immediately from Theorems 6(1), 15(2) and 17 ex-
cept for one technicality. Namely, if B is an S-spectrum, and if C is the
complement of B in {0, 1, #J*, then C is not quite E(B), but instead is the
union of E(§) and the set D of words in {0, 1, #}* which are not the en-
coding of an S-structure. However, since D is easily (deterministic polynomial-
time) recognizable, it is clear that C € NP iff E(B) € NP, and so there is no

- problem. O

It is very interesting that Theorem 18 is a statement of pure logic that
seems on the surface to have nothing to do with automata theory. However, its
proof is heavily dependent on automata theory.

THEOREM 19. Let A = Mod , 3UVx3!(Qxy A Uy). Then the class of
generalized spectra is closed under complement iff the complement of the
{Q}-spectrum A isa {Q}-spectrum,

Proor. We will show that HIT « E(A). Since E(A) € NP by Theorem
6(1), it follows that E(A) is NP-complete. The proof can then be completed
as in Theorem 18.

Assume that e is an encoding of the family {4,,*<+,4,} of certain
subsets of {s;, ***,s,). We can assume that n >r by repeating the set 4,
as often as necessary. Define a finite {Q)structure ¥, with 3 1= {1, ¢+« n}
such that (i, f) € Q" iff $; €Ay, foreach i and j. Let f be a function
which (in general) maps e onto the encoding of ¥, (and which maps nonen-
codings onto a fixed nonencoding). It is straightforward to check that e € HIT
iff f(e) €E(A), and that f € II; therefore, HIT < E(A). O

Note that A of Theorem 19 is a monadic {Q}-spectrum, that is, a {Q}spectrum
in which all of the “extra” predicate symbols are unary (in this case, there is only
one extra predicate symbol, and it is unary). It is well known that if S is a set of un-
ary predicate symbols, and B is a monadic S-spectrum (that is, all predicate symbols,
“given” and *‘extra,” are unary), then there is a first-order S-sentence ¢ such
that B =Mod 0. Hence E(B) € P, as in the proof of Theorem 6. So Theorem
19 is a best possible result (short of resolving the generalized Asser problem). We
remark that the author proved the following result about monadic generalized
spectra in his doctoral dissertation [9].

THEOREM 20. Let A be the class of nonconnected finite {Q}structures,
where Q 1is a binary predicate symbol (a finite {Q}-structure (A;R) is con-
nected if, for each a, b in A, there is a finite sequence a,,*** , a, of points
in A suchthat a =a, b =a,, and either Raa,,, or Ra, ,a,, for 1 <i<n).
Then A isa monadic {Q}-spectrum, but A is not a monadic {Q}spectrum. In
particular, the class of monadic generalized spectra is not closed under complement.
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We will now produce a “universal” NP set and a “universal” NP, set.
Each will be complete. The technique is similar to that of Book {4}, who also
shows the existence of an NP,-complete set.

Some preliminary remarks are required. If M is a one-tape nondeterminis-
tic Turing machine that operates in time T, then it is easy to see that there is a
constant ¢ and 2 one-tape nondeterministic Turing machine M’ that recognizes
Ay in time cT, such that the range of the function § for M’ (which gives the
table of transitions for M‘) contains only sets with at most two members (in-
tuitively, M’ has at most two options per move). Whenever there are two options
then by some convention we label one the first option and the other the second
option. '

We momentarily restrict our attention to a subclass M of the class of those .
one-tape nondeterministic Turing machines that have at most two options per
move, by making natural restrictions so that M will be countable: We require
that the sets K (of states) and T' (of tape symbols) be subsets of w; it is also
convenient to require that the set T of input symbols be {0, 1}, and that each
machine in M recognize a set of (binary representations of) positive integers. We
assign Godel numbers to machines in the class M in such a way that a tape head
can sweep through the encoding of the Godel number to find out how to simulate
the machine with that Godel number on a given step. One such way involves
essentially letting the Godel number be the concatenation of the entries of the
table of transitions, with the # sign used as a separator. Each tape symbol and
state is encoded by a string in {0, 1}*. For details, see {13, pp. 102—103]. De-
note by T, the machine with GGdel aumber i.

We now define a ternary relation ¥, which holds for certain triples i, s, n)
with i and n positive integers, and s in {0, 1}*. For ¥(,s, n) to hold,
it is first necessary for i to be the Godel number of a machine T,. Simulate
the action of T; on the input n, in the following way: If on the kth step in
the simulation, there is an option, then take the first (second) option if the kth
digitin s isa 0(1); if s is not of length at least k, then halt and reject.
Then V(i s, n) holds iff the number n is accepted in this simulation.

Let ¢ be any standard one-one map from (Z*)? onto Z* such that
t€NNI, and t~' € T N 11, and such that each of q, b, and ¢ is
bounded by t(a, b, c). We can now define two sets of positive integers which
are “universal” in the usual sense with respect to NP(NP,) sets.

UNIV = {t(i, a, n): i, a, n €Z* and 3s(len(s) = len(a) and Vi, 5, n))},

UNIV, = {t(i, a, n): i, a, n €Z* and 3s(len(s) =a and VG, s, n))}.
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THEOREM 21. (1) UNIV is NP-complete. (2) UNIV, is NP,-complete.

Proor. UNIV € NP. For, we can define a multi-tape nondeterministic
machine M which, given #(i, g, n) as input, finds i, g, and n, guesses s in
{0, 1}* such that len(s) = len (), and then does the obvious simulation. The
point is that a is so large that the time of simulation is (except for bookkeeping)
equal to the length of a, which is bounded by the length of #(i, a, n); hence,
UNIV € NP. Similarly, UNIV, € NP,, since the time of simulation is roughly
given by a, which is roughly 2!, where I is the length of a.

Assume that B € NP; we want to show that B o« UNIV. By the usual

encoding arguments, we can assume that BCZ *. Find i and k such that T;
recognizes B in time ! ~—>I*. Then n € B iff (i, a, n) € UNIV, where a isa
string of (len(n))* tallies. Clearly the function n ~—>t(i, a, n) isin II. So UNIV
is NP-complete.

Now assume that the set B of positive integersisin NP,. Find i and k
such that T recognizes B, and T, acceptseach n in B within n* steps. Then
n € B iff 1(i, n*,n) EUNIV,. So UNIV, is NP,-complete. O

We are especially interested in part 2 of Theorem 21, which gives us a par-
ticular spectrum whose complement is a spectrum iff the complement of every spec-
trum is a spectrum. We record this in Theorem 22.

THEOREM 22. The class of spectra is closed under complement iff the
complement of the spectrum UNIV, is a spectrum.

The proof is immediate. O

COROLLARY 23. Thereisan NP,-complete set in BIN. Thus, this is an
example of a spectrum A in BIN such that 4 isa spectrum iff the complement of
every spectrum is a spectrum.

Proor. Find & from Theorem 8 such that 4 = {n*: n €UNIV, }isin
BIN. We remark that a simple analysis shows that in this case, k can be taken to be
5. Then n €UNIV, iff n* €4, for each n. Hence UNIV, &, 4,andso 4 is
NP;-complete. O

8. A Savitch-like result. Savitch [20] showed that any set that can be
recognized nondeterministically in tape S can be recognized deterministically in tape
S2. If such a theoremwere true for time bounds—for example, if there were a con-
stant k such that any set that can be recognized nondeterministically in time T
can be recognized deterministically in time T*—then, of course, it would follow
that NP = P and NP, = P,. Itis quite surprising that this strong condition we
are discussing is essentially equivalent to the apparently weaker condition that NP = P.
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We will prove this in Theorem 24. Then we will generalize the result in various ways,
and conclude by an analogy with Post’s problem.

THEOREM 24. The following two statements are equivalent:

1. NP =P

2. There exists a constant k such that, for every countable function T
with T() > 1+ 1 for each 1 and for every language A which is recognized
by a nondeterministic one-tape Turing machine in time T, the language A is
recognized by a deterministic one-tape Turing machine in time T*.

PROOF. 2 = 1: This is immediate, since I > [* is countable for each k.

1= 2: Itissufficient to show that 1 = 2', where 2’ is obtained from 2
by replacing both occurrences of “language A" by “set 4 CZ*.” This is be-
cause of simple interrelationships between machines M which recognize a lang-
uage A and machines M’ which recognize an encoding 4' CZ* of A. The
details are straightforward and nonunique, and are left to the reader.

Let R= (i #a #n: if i,a,and n are the binary representations of
the positive integers 1, 4, and n, then (i, a, n) € UNIV}). Then R € NP, and
30 by hypothesis (and by Theorem 2), there is a constant &' and a one-tape
deterministic machine M, which recognizes R in time I 1 ¥, We can as-
sume that k' > 2. Let k= 2K,

Assume that A4 is recognized by a nondeterministic one-tape machine in
time T, where T is countable and T{/) 1+ 1 foreach L Then as we ob-
served earlier, there is a constant ¢; and a machine 1;0 (with at most two op-
tions per move) which recognizes 4 in time ¢,7. Since T is countable, it is
easy to see that ¢, T is countable. Hence there is a constant ¢, and a deter-
ministic two-tape machine M, which, for each / and each input w of length / on the
first tape, prints at least ¢, 7\/) tallies on its second tape in at most ¢, (/) steps.

We will now describe a 3-tape nondeterministic machine M which recog-
nizes 4. Given input n of length. / on its first tape, M simulates M, to
print a string w of at least ¢, T(!) tallies on its second tape in at most ¢, T(/)

steps. Then M oprints "—o #w #n on its third tape in len(iy) + len(w) +1 + 2

steps. Now M simulates M, with iy #w #7n as input. This takes at most
(len(iy) +len(w)+1+ 2)"' steps. Since T() 21 + 1, since cleatly len(w) <
¢, T(l), and since len(iy) + 2 is a constant, the total number of steps required
is bounded by ((c, + 2)T())* for sufficiently large L Clearly, M recognizes
A. By Theorem 2, the set A is recognized by a one-tape deterministic machine
in time ((c, + 2)T)*. Hence, by Theorem 1, 4 is recognized by a one-tape
deterministic machine in time 7%, 0O

By very similar proofs, we can demonstrate the following two results.
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THEOREM 25. The following two statements are equivalent:

1. NP, =PF.

2. There exists a constant k such that, for every countable function T
with T()> 2! for each 1 and for every language A which is recognized by a
nondeterministic one-tape Turing machine in time T, the language A is recog-

_nized by a deterministic one-tape Turing machine in time T*.

THEOREM 26. The following two statements are equivalent.

1. NP (NP,) is closed under complement.

2. There exists a constant k such that, for every countable function T
with T()>1+ 1 (T() > 2") for each 1 and for every language A which is
recognized by a nondeterministic one-tape Turing machine in time T, the lang-
uage A4 is recognized by a nondeterministic one-tape Turing machine in time T*.

We conclude this section by an analogy with Post’s problem. Definitions
and notation are from Rogers [19]. Post’s problem asks whether there is an
r.e. set C which is not Turing-equivalent to either & or to the halting problem
set K,

Let {WB:x€Z"} be an effective listing of all sets of natural numbers
which are r.e. in B. As Rogers notes, if A and B are r.e., then the assertion
that 4 is not Turing-reducible to B is equivalent to Vx(d # Wf), or equiva-
lently, Vx3y(y €A iff y € WE). If (3 recursive f) (VX)(f(x)EA iff
rx)e Wf), then we say that A is constructively nonrecursive in B.

Many attempts to solve Post’s problem failed, because investigators tried to
find some r.e. set C such that C is constructively nonrecursive in @& and such
that K is constructively nonrecursive in C. Rogers shows thatif 4 and B
are r.e., and if 4 is constructively nonrecursive in B, then B is recursive. Hence,
any such attempt must fail.

In an analogous way, one might wonder whether it is possible that NP = P,
but that all attempts to prove this have failed because investigators have been
searching for some recursive function f which maps the index i of each non-
deterministic Turing machine into an index f(7) of a deterministic machine which
recognizes the same set, such that if the machine with index i operates in poly-
nomial time, then so does the machine with index f(/). We will now show that
if NP = P, then there is such a recursive function f, as long as we restrict our-
selves to machines that operate in a given polynomial time bound, such as mach-
ines that operate in time [ *—* " for fixed r.

For each r,let T, be a two-tape nondeterministic machine which, given
input n on its first tape, simulates the action of T, on n for at most
(len(n))" steps, by using its second tape as a clock. If in the simulation T; has
not accepted within (len (2))" steps, then T7 halts and rejects.
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TueoREM 27. The following two- statements are equivalent:

1. NP=P.

2. There exists a constant k and a function f in I1 such that, for each
Godel number i and each positive integer 1, the machine T, ,, i a one-tape
deterministic Turing machine which operates in time 1 v I*", and which rec-
ognizes the same set as T;. Hence, if T, operates (nondeterministically) in
time |« 1", then T, recognizes the same setas T,.

\

Proor. This is clear from the proof of Theorem 24. O

9. A counterexample. We will show that there is a spectrum § in BIN
such that {n: 2" €S} is not a spectrum. By way of contrast, it is easy to see,
because of Theorem 6(2), that for each spectrum § and each polynomial p with
rational coefficients the set {n: p(n) € S} is a spectrum. The fact that there is
a spectrum S such that {n: 2" € S} is not a spectrum is extremely closely
related, both in content and method, to Bennett’s results on higher-order spectra
[2], although he did not specifically state or prove this result. If we analyze
Bennett’s proof, then we see that he essentially proved that there is a spectrum S
and a positive integer k such that {n: 2** €5} isnota spectrum.

We will also show that our techniques give a new proof of a zesult of Book
(3] that NP #NP,.

LEMMA 28. Let A be a spectrum, Then, for some constant k, the set
A s recognized by a one-tape deterministic Turing machine in tape 1 +> 2%,

PROOF. Assume first that 4 = {n: (n) & 3Qo}, where Q is a binary
predicate symbol. Define a one-tape deterministic machine M which, given in-
put n, systematically prints all possible strings in {0, 1}* of length n2, and
tests them one by one to see if the binary relation R on n which the string
represents in the natural way has the property that (n; R) &= 0. M accepts n
iff it finds some such string. If len(n) =1, then n? <2%!. Hence M can be
arranged to operate in tape ! — 23!, Similarly, for each spectrum S there is
a constant k such that A is recognizable in tape I — 2%, O

LEMMA 29. Thereisaset A CZ*t which is recognized by a one-tape
deterministic Turing machine in tape 1 ~> 212, which is not a spectrum.

Proor. This follows from Theorem 5 and Lemma 28, since it is easy to
see that 1 ~— 21 is constructible and that lim inf,,2*"/2> = 0 for each k.

LeMMA 30. Assume that A C Z% is recognized by a one-tape determin-
istic Turing machine in tape | — 212, Then there isa set B in Ei such that
A= {n: 22" €B}.
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PrROOF. Let M be a one-tape deterministic Turing machine that recognizes
A intape I~ 22, Let M, be a one-tape deterministic Turing machine which
operates as follows: Given input wm, the machine M, tests to see if there is a
positive integer n such that m = 22", If not, then M, rejects. If so, then
M, simulates M on input n. Now M, can be designed to be a linear-bounded
automaton. This is because len(22") = 2" + 1, which is bigger than 22'~!
_ (where 1 =len(n)), which is bigger than 2% for sufficiently large L So, by
Theorem 3, the set B which M; recognizes is in E2. Clearly

A={n:22"€B). O

THEOREM 31. There is a spectrum S such that {n: 2" €S} isnota
spectrum. '

Proor. Find 4 from Lemma 29 and B from Lemma 30 such that A4
is not a spectrum, B € {:’i, and A = {n: 22" € B}. By Theorem 7, we know
that B is a spectrum. Let C= {n: 2" € B). Then 4 = {n: 2" € C}. Assume
that it is always true that whenever S is a spectrum, then {n: 2" €S} isa
spectrum. Then C is a spettrum (since B is), and so A is a spectrum (since
C is). But this is a contradiction. O

CoROLLARY 32. Thereis a spectrum T in BIN such that {n: 2" € T}
is not a spectrum.

Proor. Find S from Theorem 31 such that D = {n: 2" €S} is not a spectrum.
Find a positive integer k from Theorem 8 such that T= {n*: n €5} isin BIN. Let
E = {n: 2" €T} Then n €D iff kn € E, for each positive integer n; for, n €D iff
2" €Siff 2" € Tiff kn € E. If E were a spectrum, then £ would be in NP, , and so
clearly D would be in VP, . Hence D would be a spectrum, a contradiction. [

We close this section with some further observations. Theorem 13 of §6
could just as well have been stated as follows:

@) Assume ACZY. If AENP then {n: 2" €A} isin NP,.
We remark that we can use the technique of the proof of Lemma 30 to show
that (4) has a converse:

THEOREM 33. Assume BC Z*. Then BE NP, iff thereis A in NP
such that B = {n: 2" € A}.

Because of Theotem 6(2), we know that Theorem 31 can be restated as

follows:
There isa set A in NP, of positive integers

&) such that {n: 2" € A} is not in NP,.
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Similarly, we can prove the following:

THEOREM 34. Thereisaset A in NP of positive integers such that
{n: 2" €4} isnotin NP.

Finally, we observe that (4) and Theorem 34 combine to give us a theorem
of Book:

THEOREM 35 (Book [3]). NP & NP,.

Proor. From Theorem 34, find aset A in NP of positive integers such
that B = {n: 2" €A} isnotin NP. By (4), we know that BENP,. So
NP # NP,. Of course, NP € NP,. O

Book’s proof depends on a fairly difficult result of Cook [8]. No simple
diagonalization argument seems capable of proving Theorem 35 directly, because
we are dealing with nondeterministic, rather than deterministic, time-complexity
classes. However, a simple diagonalization argument does show that P & P,.

10. A real-time recognizable NP-complete set. We conclude by exhibiting
an NP-complete set REAL which is recognized by a nondeterministic two-tape
‘machine in real time. The existence of such a set is not new: Hunt {14] shows
the existence of an NPcomplete set which is recognizable nondeterministically in
linear time, and Book and Greibach [5] prove that every set recognizable non-
deterministically in linear time is recognizable by a nondeterministic two-tape
Turing machine in real time. However, our set is produced directly, and is fairly
simple. The existence of such a set is a best-possible result, since Rabin and Scott
{17] show that every set which is recognized by a one-tape nondeterministic
Turing machine in real time is recognized by a one-tape deterministic Turing
machine in real time.

Let REAL = {a, #a, #-+** #a,,:r GZ"';a‘ € {0, 1, 2}* for each i;
fen(a) = len(ai) for each i, j;and there exists & in {0, 1}* such that
len(b) = len(a,) for each i, and such that for each odd { there exists &k such -
that the kth member of the string b and the kth member of the string g,
are the same}.

THEOREM 36. REAL is an NP-complete set which is recognized by a two-
tape nondeterministic Turing machine in real time.

PROOF. let M be.a two-tape nondeterministic Turing machine which
works as follows: As a; is being read on the first, or input tape, M nondeter-
ministically prints some & in {0, 1}* on the second tape, such that len(d) =
len(a,); meanwhile, M checks to make sure that, for some k, the kth digit of b



72 RONALD FAGIN

is the same as the kth digit of a,. When M reads # on the input tape and starts read-
inga,, the second tape head runs back over b on the second tape and uses the length
of b to measure the length of a,. If len(a, ) # len(b), then M halts and rejects. If
len(a,) = len(b), then the tape heads are in a position to compare b and a5 digit by
digit. M continues in the obvious way. Clearly, M recognizes REAL in real time.

SAT « REAL: Let 6 be a conjunctive normal form expression, with
clauses C;, *=+, C,, and propositional letters A, <+, 4,. ([f_O = /X\, \)V]-B, ,
then each \)VIBU is a clause.) We can assume that no clause C; contains’
both 4, and ~ A4, forany K, or else that clause can be eliminated. Let Be
be the expression a; #a, # -+ -+ #a,,, where each q; is of length n, where
if i is even, then a, is a string of tallies, and where if i = 2s — 1 is odd, then
for each k (1 <k <n), the kth digit of a; is as follows:

0, if ~ A, appears in the sth clause,
1, if A, appears in the sth clause,
2, otherwise.

For any reasonable encoding e, there exists a constant ¢ such that if the
encoding e(f) of 6 is of length /, then I >c + max(r, n). Now f, has
length 2rn + 2r— 1, which is dominated by 2{%/c + 2ljc— 1. Soif f is the
function which (in general) maps e(f) onto f; (and which maps strings not of
the form e(f) onto a fixed string not in REAL), then it is easy to see that
FE€ (we are assuming that {e(9): § is a formula in conjunctive normal form}
isin P, which is also true for any reasonable encoding €). Most importantly,
it is clear that @ is satisfiable iff B, € REAL. Hence, SAT « REAL. O
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