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Abstract: The spectrum of a first-order sentence σ is the set of cardi-
nalities of its finite models. Jones and Selman showed that a set C of numbers
(written in binary) is a spectrum if and only if C is in the complexity class NEXP
(nondeterministic exponential time). An alternative viewpoint of a spectrum is
to consider the spectrum of σ to be the class of finite models of the existential
second-order sentence ∃Qσ(Q), where Q is the similarity type (set of relational
symbols) of σ. A generalized spectrum is the class of finite models of an exis-
tential second-order sentence ∃Qσ(P,Q), where σ is first-order with similarity
type P ∪Q, with P and Q disjoint. Let C be a class of finite structures with
similarity type P, where C is closed under isomorphism. If P is nonempty, we
show that C is a generalized spectrum if and only if the set of encodings of
members of C is in NP. We unify this result with that of Jones and Selman by
encoding numbers in unary rather than binary, so that C is a spectrum if and
only if C is in NP. We then have that C is a generalized spectrum if and only if
the set of encodings of members of C is in NP, whether or not P is empty. Using
this connection between logic and complexity, we take results from complexity
theory and convert them into results in logic.

We now mention some of our other results. We show that P = NP if and only
if the following apparently much stronger condition holds: there is a constant k
such that if T is a “countable” function (a standard notion in automata theory),
then every set recognizable nondeterministically in time T can be recognized de-
terministically in time T k (analogous to Savitch’s Theorem for nondeterministic
vs. deterministic space complexity). We show that there is a spectrum S such
that {n : 2n ∈ S} is not a spectrum. In fact, we show that there is such a
spectrum S definable using only a single binary relation symbol. This contrasts
with the simple result that if S is a spectrum, and if p is a polynomial, then
{n : p(n) ∈ S} is a spectrum. Let us say that a generalized spectrum S is
complete if the following condition holds: the complement of every generalized
spectrum is a generalized spectrum if and only if the complement of S is a
generalized spectrum. We show that there is a complete generalized spectrum
defined by ∃Qσ(P,Q), where Q consists of a single unary relation symbol, and
where P consists of a single binary relation symbol. W show that if we define a
complete spectrum similarly, then there is a complete spectrum definable using
only a single binary relation symbol. These latter two results are best possible,
in terms of minimizing the arity and the number of relation symbols.
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1. Introduction. A finite structure is a nonempty finite set, along with 
certain given functions and relations on the set. For example, a finite group is 
a set A, along with a binary function 0: A X A + A. If u is a sentence of 
first-order logic, then the spectrum of a is the set of carclinalities of finite 
structures in which a is tine. For example, let u be the following i%&or&r 
sentence, where f is a “unary function symbol”: 

(1) Wf(x) +x)/l VwJ(f(x) =Y &f(Y) = 4. 

Then the spectrum of o is the set of even positive integers. For, if u is tsue 
about a finite structure PI = C&g), where A is the universe and g: A + A 
@ isthe “interpretation” of j), then % must look like Figure 1, where 
a-b means g(u)=b. 

al -a 2 

ua -a 4 

US -a 6 . 
. 
. 
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So, the finite structure p1 has even cardinality. And conversely, for each even 
positive integer n, there is a way to impose a function on n points to make 0 
be true about the resulting finite structure. 

As a more interesting example, let u be the conjunction of the field 
axioms-for example, one conjunct of u is 

VxVyVz(x l (y + 2) = x l y + x l z). 

Then the spectrum of u is the set of powers of primes. 
In 1952, H. Scholz [21] posed the problem of characterizing spectra, that 

is, those sets (of positive integers) which are the spectrum of a sentence of fust- 
order logic. It is well known that every spectrum is recursive: For, assume that 
we are given a fust-order sentence u and a positive integer n. To determine if 
n is in the spectrum of u, we simply systematically write down all finite struc- 
tures (up to isomorphism) of cardinality n of the relevant type, and test them 
one by one to see if u is true in any of them. It is also well known that not 
every recursive set ka spectrum: We simply form the diagonal set D such that 
n E D iff n is not in the nth spectrum (the details are easy to work out). 

In 1955, G. Asser [l] posed the problem of whether or not the comple- 
ment of every spectrum is a spectrum. For example, it is not immediately clear 
how to write a first-order sentence with spectrum the numbers whichare nut 
powers of primes. 

Note that the spectrum of the sentence (1) is the set of positive integers n 
for which the following so-called “existential second-order sentence” is true 
about some (each) set of n points: 

~fW(fW f x) AVXVY(fW = Y *f(v) = 4). 

This augests a generalization, which is due to Tarski [23]. Let (I be an exist- 
ential second-order sentence (we will define this and other concepts precisely 
later), which may have not only bound but free predicate (relation) and function 
variables. Then the generalized spectrum of u is the class of structures (not 
numbers) for which u is true. ht us give some examples. The first few ex- 
amples will deal with ftite structures with a single binary realtion. We can think 
of these as finite directed graphs. 

1. The class of all k-colorable finite directed graphs, for fixed k > 2. A 
(directed) graph 91~ 01; G) is A-aolomble if the universe A of 8 can be 
partitioned into k subsets A,, l l l , A, such that N Gzb holds if a and b 
are in the same subset of the partition. This class is a generalized spectrum, via 
the following existential second-order sentence, in which Q is a binary predicate 
symbol which represents the graph relation, and C,, l l l , C, are unary predicate 
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2. lie class of finite directed graphs with a nontrivial automorphism. This 
class is a generalized spectrum, via the following existential second-order sentence, 
in which Q is as before, and f is a unary function symbol: 

3f (Wf (4 + 4 AWy(f (4 = f (Y) - * = Y) 

AVxVy(@v * Qf(x)f (y))). 

3. T&he class of file directed graphs with a Hamilton cycle. A cycle is a 
finite structure <A; R >, where A is a set of n distinct elements a,, l l l a,, 
for some n, and R = {la,, a,+ , ): 1 6 i < n} U {(a,, a,)}. A Hamilton 
cycle of 8=(A;G) isacycle (A;H),where HCG. Thisclassisageneral- 
ized spectrum, via the existential second-order sentence 3 < u, where <isa binary 
predicate symbol, and where a is the following fhtmder sentence (which we trans- 
late into English for ease in readability): 

“< is a linear order” A “if y is the immediate successor 
of x in the linear order, then Q.Y~” A “if x is the min- 
imum element of the linear order and y the maximum, 
then QYX” 

Our fmal example is a class of finite structures with a binary function Q. 
4. l7re class of nonsimple fmite groups. This class is a generalized spectrum, 

via 

3N (“the structure is a group* A “N is a nontrivial normal subgroup”). 

We can ask the generalized Scholz question, as to how to characterize gener- 
alized spectra, and the generalized Asser question, as to whether the complement of 
every generalized spectrum is a generalized spectrum. Of the examples given, it is easy 
to see that the non-2urlorable finite directed graphs form a generalized spectrum. It 
is an open question as to whether the complement of any of the others is a general- 
ized spectrum. 

It turns out to be possible to characterize spectra and generalized spectra 
precisely, in terns of time-bounded nondeterministic Turing machines. The con- 
cept of a Turing machine is due, of course, to Turing [24]. The concepts of 
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nondeterministic and multi-tape machines are due to Rabin and Scott [17]. The 
classification *by time complexity is due to Hartmanis and Stearns [ 121, and by 
tape complexity, to %rtmanis, Lewis and Stearns Ill]. 

In 6 $2 and 3, we give definitions and background material. Nothing there 
is new. 

ln $4, .we show the essential equivalence of generalized spectra and non- 
- deterministic polynomial-time recognizable sets. This supplements the known 

equivalence of spectra and nondeterministic exponential time recognizable sets of 
positive integers, which is probably due to James Bennett (unpublished); it was 
also shown by Jones and Selman [15]. 

In 55, we show, by analyzing our proof of the automata-theoretic charac- 
terization of spectra, that many (ah?) spectra are the spectrum of a sentence 
which has at most one model of each finite cardinality. 

In $6, we make use of the automata-theoretic characterization of spectra 
to show that if spectra are not closed under complement, then a class of candidates 
for counterexamples suggested by Robert Solovay is sufficient. 

In $7, we consider Cook’s [7] and Karp’s [ 161 notions of polynomial-com- 
pleteness and reducibility. We generalize to exponential-completeness, and we 
directly produce (without making use of Cook’s or Karp’s resulta) a polynomial- 
complete set and an exponential-complete set. This was also done by Book [4] ; 
his sets are similar to ours. We show that completeness implies a certain com- 
plement-completeness; using this fact, along with our automata-theoretic char- 
acterization of generalized spectra, we show that results in Karp’s paper 116) 
(developed by Karp, Tarjan, and Lawler) give us ape&c examples of generalized 
spectra whose complements are generalized spectra iff the complement of every 
generalized spectrum is a generalized spectrum. In particular, we show that the 
class of ftite directed graphs with a Hamilton cycle is such a “complete” gen- 
eralized spectrum. Also, we fmd a complete generalized spectrum defined using 
only one “extra” (existentialized) unary predicate symbol: This is a best pos- 
sible result. By makhrg use of automata theory and a result about spectra in the 
author’s doctoral dissertation 191, it is shown that there is a complete spectrum 
defined using only one binary predicate symbol: This is a best possible result. 

In $8, we make use of the polynomial-complete set which we constructed 
in the previous section to show that if the classes of sets which are polynomiai- 
time recognizable by determinis tic and nondetewmnistic -ring machines are the 
same, then the following apparently much stronger condition holds: There is a 
constant k such that essentially any set that can be recognized nondeterministicaily 
in time T can be recognized deterministically in time Tk. We then generalize this 
result in various ways. We conclude 88 by an analogy with Post’s problem. 
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In $9, we make use of a tape-complexity argument similar to one used by 
Bennett [2] to show that there is a spectrum S such that {C 2” E S) is not 
aspectrurr~ Bymakinguseofaresultin[9J,wethenshowthatthereissucha 
spectrum S defined using only one binary predicate symbol. We also show that 
our techniques give a new proof of a theorem of Book [3], that the two 
classes of sets recognizable aondeterministically in polynomial time OT in exponen- 

- tial time respectively are different. 
In $10, we exhibit an example of a polynomial-complete set which is rec- 

ognized by a nondeterministic two-tape Turing machine in real time. The exist- 
ence of such a set follows immediately from theorems of Hunt [ 141, and of Book 
and Greibach [S] . 

- 2. Notions from logic. Denote the set of positive integers {l, 2,3, l l l ) 
by Z+,andtheset CO,*** ,n- 1) by n. By the natumf numbers we mean 
the set Z+ U (0). If A is a set, then card A is the cardinality of the set. De- 
note the set of k-tuples ((I~, l l l , Q&) of members of A by Ak. 

A fiite simihity type is a finite set of predicate symbols and function 
symbols. Each predicate symbol (function symbol) has a positive integer (natural 
number), the degree, associated with it. If a symbol has degree k, then call the 
symbol k-ary. We will often call I-ary symbols ulloty, and 2-ary symbols binary. 
A constant symbol is a O-ary function symbol. We will denote finite similarity 
types by the letters S and 5 

Assume that S contains the n distinct symbols Q, , l l l , Q,, , written 
la some fixed or&r. Then a fiite S-structure P( is an (n -I- i)tuple 
(A;R,, l ** , R,) (where we write a semicolon after the first member), such that 
we have the following: 

1, A is a nonempty finite set, called the universe (of 91), and denoted I 8 1. 
2 If Qi is a k-ary predicate symbol, then R, ‘Is a subset of A&. 
3. If Qr is a k-ary function symbol, and k > 0, then R, is a function from 

Ak into A. 
4. If Qi is a constant symbol, then R, EA. 

In each case, write R, = QF We will sometimes make use of a graph pred- 
iazte symbol Q; if Q E S, then, for p1 to be a finite S-structure, Qa must 
be a graph (i-e., h-reflexive and symmetric), or, equivalently, a set of unordered 
pairs (of members of Ml). Denote the cardinality of Ml by card (PI). 
Denote the class of finite S-structures by Fin(S); abbreviate Fin ({Qt. l l l , Q,}) 
by FMQ,, l l l s Q,,). 

Assume that S and ‘I are disjoint ftite similarity types, that $!.I is a 
finite S U Fstructure, and that a is a fmite S-structure. Then p1 is an 
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expansion of 8 (to S U s) if lpI/ = 181 and Qa = Q” for each Q in S. 
We write 8 = 91 1 S. 

The metamathematical language we wiIl be working in is a set of symbols 
-, A,v,=; an infinite number of individual variables U, u, w, x, y, z along 
with affutes; the left and right parentheses ( , ); and predicate and function vari- 
ables. We do not distinguish between predicate or function symbols and predi- 
cate or function tibles Except in this section, whenever we refer to a vari- 
able, we will always mean an individual variable. 

A term is a member of the smallest set T which contains the 0-ary func- \ 

tion variables and the individual variables, and which contains f(t,, l l l , ik) 
for each k-aqr function variable f and each tr, l l l , t, in T. 

An atomic formuIa is an expression t, = t, or Qt, * * l t,, where the 
t, are terms and Q is a k-at-y predicate variable. A fust*rder formula is a - 
member of the smallest set which contains each atomic formula, and which con- 
tains - $+, Ml A &I. and VW+ (f or each individual variable x), whenever it 
contains r#+ and ~$a. A second-order formula is a member of the smallest set 
which contains each atomic formula, and which contains * dr, ($r A #a), Vx& 
(for each individual variable x) and VQ$, (for each predicate or function vari- 
able Q) whenever it contains & and #a. 

The formulas $r V #a, 3x4, (3x #y)#, 3!x4 (read “there exists exactly 
one x such that I#?‘), and so on, are defined in the usual way, e.g., 4, V $a is 
- (- qS1 A - 4,). If T= {Q,, l l l , Q,> is a finite similarity type, then 3T4 
is 3Qr l l l 3Q,& If 4 is a first-order formula, then 3Ttj is called an exist- 
ential second-order form& 

If x,, l a* ,xm are individual variables, then we will sometimes write x 
as an abbreviation for the m-tuple (xr, l l l , xm ), when this will lead to no 
confusion. We may write Vxq3 for VI1 l l l Vx,@. 

The notion of a variable being a free vmiable Is understood in the usual 
way. Let S be a fxed finite similarity type. An S-formula isa (first- or 
second-order) formula all of whose free predicate and function variables are in S. 
A sentence is a formula with no free individual variables. A formula is 
quantifier-free if it contains no quantifiers (V or 3). 

Assume that % is a ftite S-structure, and that u is a fust- or second- 
order S-sentence. Then 91 I= u means that u is true in $?l; we say that 5?l 
is LI model of u. For a precise definition of truth, see [U] . We note that the 
equality symbol = is always given the standard interpretation. We define Mod,o 
to be the class of all finite S-structures which are models of u. 

Assume that S and T are disjoint finite similarity types, and that 
A E Fin (S). Then A is an S-spectrum, or an (S, T)-specrrum, if there is 
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a fmt-order S U Tkentence u such that A = Mod, 3Tu. This is simply Tarski’s 
[23] notion of PC, in the special case where we restrict to the class of finite 
structures. Ageneralized spectrum is an S-spectrum for some S. A monadic 
generalized spectrum is an (S, Qspectrum where T is a set of unary predicate 
symbols. A specmrm is an S-spectrum for S empty; if A is a spectrum, then 
we identify {n: (n) E A}2 Z+ with A. In this case, if A = {n: (n) I= 3Tu}, then 
we call A the spectrum of a. 

3. Notions from automata theory. When A is a finite set of symbols, then 
A * is the set of strings or words, that is, the finite concatenations al A a2- 
. . . 

-alI of members of A. The length of a = a, A l l l - a, is n (written 
len(a) = n). If k E Z+, then len(k) is the length of the binary representation 
of k; this corresponds to a convention that we will always represent positive 
integers in binary notation. If a set S CA* for some finite set A, then S is 
a hmguage. 

. 

An m-tape nondeterministic Twing machine M is an 8-tuple <K, I’, B, Z, 6, qO, 
qAs qR), where K is a ftite set (&estates ofJl4); r is a finite set (the tcrpe symbols 
of M); B is a member of S (the blank); z is a subset of (I” - {BJ) (the input symbols 
of M); q,,, qA, and qR are members of K (the initial state.acceptingfutal state, and 
rejecting futal state of M, respectively); and 6 is a mapping from (K-{q, , qR J) X I”” 
to the set of nonempty subsets of K X (I’ - (B})” X {L, R}“’ (the table of tran- 
sitions, moves, or steps of M). 

If the range of 6 consists of singletons sets, that is, sets with exactly one 
member, then M is an m-tape deterministic Turing machine. 

We may sometimes calI M simply a machine. 
An instantanevlus description of M is a (2m + 1)tuple I = 

fq;a’;-- ,d”;i,,--0 , i,,,), where q f K, where ar’f (I’- {B))*, and 
where 1 <$ Glen(ai) -l- 1, for 1 QjGm. We say that M is in state q, that 
ai is the nonblank portion of the jth tape, and that the jth tape head is scan- 
ning (o$, the ijth symbol of the word a’ (or that M is scanning (a’>ii on 
the jth tape); we also say that the jth tape head is scanning the 5th tape square. 

Let r’ = (4’; al’, * -- , d”‘; ii, l 0 l , ik ) be another instantaneous de- 
scription of M. We say that I +M I’ if q f qA, q f qR , and if there is 
S=(p;ulr--- ,um;Tl,~--, T,) in 6(q;(d),l,---.(fP),m) such that 
p = q’, and, for each j, with 1 Q j < m: 

1. (a”+ = a, 
2. (o’)k = (aj)k for 1 < k < len(a’), if k f i,. 
3. len(&) = len(ai) unless i, = len(aj) + 1; in that case, len(aj’) = 

len(aj) + 1. 
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4. If Tj = L, then i, f 1. 
5. Ii T,=R,‘then $=i,+l;if Tj=L,then .$=$-I. 
We say that M prints aI on the jth tape. Note that M cannot print a 

blank (that is, aI f B); so, we say that d is that portion of the jth tape which 
has been visited, or scanned. If T, = R(L), then we say that the jth tape head 
moves ‘to the right (left). Assumption 4 corresponds to the intuitive notion of 
each tape being one-way infinite to the right; thus, if M “orders a tape head to 
go off the left end of its tape,‘* then M halts. It is important to observe that 
it is possible to have I -+M I, and I-M z I with f, f I, ; hence the name 
“nondeterministic.” 

We say I -+G J if there is a fmite sequence I,, . l - ,I, such that 
I1 = r, I” =J,and I,-MI,,, for 1 <i <n. Denote the empty word in . 
Z* by A. If wEZ*,thenlet w=(q,;w,h;*.,A;l,***,l) (w isthe 
input). Call an instantaneous description (q; CK’ , l l l , a”’ ; i, , l l l , i,,,> accept- 
ing (rejecting) if q = qA (q = qR). We say that M accepts w in Z+ if 
i3 -$ I for some accepting I. Denote by A, the set of all words accepted 
by M. We say that M recognizes A,. 

If i3-* M I for some accepting (rejecting) I, then we say that M, with 
w as input, eventually enters the accepting (rejecting) final state, and halts. 

Intuitively speaking, there are three ways that a word w in Y’ may be 
not accepted by M: M, with w as input, can eventually enter the rejecting fina 
state qR ; or M can order a tape head to go off the left end of its tape; or M 
can never halt. 

Assume that M is a multi-tape nondeterministic Turingmachbe, w f A,, 
and t is a positive integer. We say that M accepts w within t steps if, for 
some n < t, 

ia 

Let s be a positive integer. Then M accepts w within space s if for 
some positive integer n, (2) holds and, for each I,, 1 < k < n + 1, if Ik = 
(q;d,-*=,am;il,*~~ ,im,),then i,<s for l<p<m 

Let T: N + N and S: N + N be functions. We say that M operates 
in time T (tape s), or M rewgn&es AM in time T (tape 5’) if, fix each natual 
number I and each word w in A, of length I, the machine M accepts w 
within T(Z) steps (space S(1)). We say that A is recognizable (rwn)determin- 
&tiuzZl~ in time T, or tape S, if there is a multi-tape (non)determlniitic Turing 
machine M that operates in time T, or tape S, such that A = A,,,,. 
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We will now defme some well-known, important classes. Let P (NP) be 
the class of sets A for which there is a positive integer k such that A is recog- 
nizable (non)deterrninistically in time Ikik, These are the (non)dererrninisric 
polynomial-time recognizable sets. 

Let PI (NP*) be the class of sets A for which there is a positive integer 
& such that A is recognizable (non)deterministicaliy in time 1~2~. These 
are the (non)deterministic exponenrirrl-time recognizable sets. If the positive 
integer n has length 2 in binary notation, then 2’-’ <n < 2’. Therefore, a 
set A of positive integers is in PI (NPI) iff there is a multi-tape (non)detennin- 
istic Turing machine M, and a positive integer k such that A = A, and M 
accepts each n in A within nk steps. So in some sense, PI and NP, are 
also classes of polynomial time recognizable sets. 

We say that a set A is recognizable in real time if A is recognizable in 
time I * 2 + 1. We use I + 1 instead of 1, so that the machine zan tell when 
it reaches the end of the input word. 

We have defmed Turing machines which recognize sets rather than compute 
functions. It is clear how to modify our deftitions to get the usual notion of a 
function f computable by a deterministic one-tape Turing machine &it is also 
clear what we mean by M computes the value of f at w within t steps. If 
f: A --+ B, where A and B are languages, and if T: N + N, then we say that 
M computes f in time T if, for each natural number 1 and each word w in 
A of length I, the machine M computes the value of f at w within r(Z) 
steps. We defme II to be the class df functions which are computable by a one- 
tape dekrministic Turing machine in polynomiaI time. Functions are generally 
considered easy to compute if they are in If; Cobham 163 was the first to single 
out this class. We define I’$ to be the class of functions f which are comput- 
able by a one-tape determinis& Turing machine in exponential time, and for 
whichthenisaconstant c suchthat len(f(w))<c-len(w) for& w in 
the domain of f. 

We now state without proof two theorems, which were essentially proved in 
[12]. The proofs can also be found in [13, pp. 139-140 and 1431. 

THEOREM 1. If A is recognized by a one-tape (twn)determinis~ic Turing 
machine in time T, if lim inf,+,T(Z )/I2 = m, and if c > 0 is arbitrary, then 
A is recognized by a one-tape (non)deterministic lking machine in time I t+ 
max(r+ 1,cT). 

THEOREM 2. If A is remgnized by an m-tape (non)dererministic 7king 
machine in time T, and if lim inf,+, T(l)/1 = 00, then A is recognized by a one- 
tape (non)determirGstic luring machine in time T2. 
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- 

It follows from Theorem 2 that the concepts of polynomial and exponential 
time are invariant, whether we consider one-tape or multi-tape machines. 

A function T is aunfable if there is a positive integer c and a two-tape 
deterministic Turing machine that operates in time CT which, for each natural 
number 1 and each word of length I as input (on the first tape), halts (by 
entering a fmal state) with a string of at least T(Z) tallies on its second tape 
(a tally is a one). This is slightly broader than the usual definition, but more 
convenient for us to use. We will make use of the fact that I - Zk is count- 
able for each positive integer k; for, lk can be calculated in a polynomial of 
len(1) time, which is less than 1 for sufficiently large L 

A linear-bounded automaton is a one-tape deterministic Turing machine 
that operates in tape I c--* I + 1. We denote by pz those subsets of Z+ 
whose characteristic functions are in the Grzegorczyk class E2 [lo]. The class * -. 
E2 is the smallest class which contains the successor and multiplication functions, 
and is closed under explicit transformation, composition, and limited recursion. 
We are interested in the class E: precisely because of the following theorem. 

THEOREM 3 @ITCH& [ 181). A set of positive integers is recognizable by 
u iintxr-boundeduuiorna&~ iff it is in f: _ 

We will make use of the following well-known simple theorem, which we 
state without proof. 

THEOREM 4, The chses E: , P, and P, are closed under complement. 

A function S: N-+ N is said to be constructible if there is a one-tape 
deterministic Turing machine which operates in tape S, but not in tape S’, 
if s’(l) < S(Z) for some 1. We conclude this section by stating a theorem which 
is essentiahy proved in [ll]. The proof can also be found in [13, pp. 150-1511. 

THEOREM 5. Assume that S is a constructible tape function with 
S(l) > log,1 for each natural number I. lIten there is a set which is recognizable 
by a one-tape deterministic Twkg machine in tape S, but which is not recogniz- 
able in tape S’ for any function S’ with lim lnfi,,S’(Z)/S(l) = 0. 

4. Gewralized spectra and automata. In this section, we will prove the 
theorem (Theorem 6) which Interrelates spectra and generalized spectra with 
automata. 

Let S be a faed finite similarity type which (for convenience) contains 
only predicate symbols, and let P,, l l l , P, be the predicate symbols in S 
in some fured order. Let I: = {O, 1, #}. 

Assume that 91 = (11, l l l , n}; S,, l l l , S,> is a finite S-structure. and 
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that Pr (and hence S,) is m,-ary (1 < i 6 r). For each i, define 6, to be the 
word in {0,13* of length a”” such that if (cr, --* , c,,,) is the kth member 
of (l,*‘*,n}m’ in lexicographical order, then the &th digit of b, is 1 if 
s,c, l l l Cm, and 0 otherwise (1 < k 6 nm’). Let e(a), the encoding of 
%,betbeword a#br #b, #*** #b, in II*, where a is the binary repre- 
sentation of n. If A is a class of finite S-structures, then let E(A) = 
{e(B): (3n EZ+) (WI = Cl, l l l , n) and p1 E A)). 

THEOREM 6. Assume that A S. Fin(S), and that A is closed under iso- 
morphism 

1. If S f pl, then A is an S-specrnrm iff E(A) E N?? 
2. If S = pl, then A is a spectrum iff E(A) E NPl . 

Note. We can combine these last two statements by saying that A is an 
S-spectrum (S = fl or S + #) iff there is a positive integer k and there is a 
nondeterministic multi-tape Turing machine which recognizes E(A), and which 
accepts each e(a) in E(A) within nk steps, where I ?ll = { 1, l l l , n3. 

PROOF. Assume that A is an S-spectrum (possibly S = Id.) Then, for 
some positive integers t and k, some set 7 of t new k-ary predicate symbols, 
and some first-order S U T-sentence u = Q,xr l l l Q,,,x,&, where 4 is 
quantifier-free and each Qr is Q or 3, we have A = Mod,3To. This is be- 
cause of well-known techniques of simulating (k - 1)ary functions and (k - 1) 
ar>’ relations by k-axy relations, and because each first-order sentence is equivalent 
to a sentence with all quantifiers out front (so-called ‘prenex normal form”). 

We will informally describe a (t + m -I- 2)tape nondetermi&ticTuring 
machine M which recognizes E(A). The first tape is the input tape. The ma- 
chine M first tests to see if the input is of form o # b, # b, # l l l # b,, with 
u in (0, I)* and starting with a 1, with r the number of (predicate) symbols 
in S, and with each bt in {O, 13* and of the proper length; to test for proper 
length, M uses its last tape as a “counter.” If the input is not of the proper 
form, then M rejects. If the input is of the proper form, then say the input is 
@I), and I %I = 11, l l l , n). On each of the 2nd through (t + 1)st tapes, M 
then nondeterministically prints a string of nk O’s and l’s, by using the last tape 
as a counter; these correspond to “guesses” for the interpretations of the pred- 
icate symbols in 7. Let PI’ be the obvious expansion of PI to S U T. 

Next, on the (t + i -I- 1)st tape, M systematically prints each possibility 
(I~ for xI (1 G i G m), where (I, runs between 1 and IL There are nm 
possibilities for the m-tuple (a,, l l l , urn). For each given such possibility, M 
caneasily testtoseeif #(ur;** , a,,,) holds in PI’, where it again makes use 
of the last tape as a work tape. It is easy to see how to arrange the logic to test 
whether Y’ l= u. 
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So M recognizes E(A), and there is a nonnegative polynomial p 
such that M accepts each e(B) in E(A) nondeterministically within P(n) 
steps, where 181= 11, l ** , n). Let 1 be the length of the input e(B). If 
S = a, then n ls approximately 2’. If S # p/, then 1 is approximately rnk 
(in each case, “appmximately” means up to a fixed constant factor). So if 

- S = @ then E(A) can be recognized nondeterministically in time I * ~(2% 

and hence E(A) E NP,. If S # a, then E(A) can certainly be recognized non- 
deterministically in time 1 -p(Z), and hence E(A) E Nl? 

Conversely, assume that E(A) is in NP or NP,, depending on whether 
S # Ed or S = @. Assume that S T {P,, l l l , P,}, where P, is mpy, for 
1 < i < r. It will be convenient to define a slightly modified (r + I)-tape non- 
deterministic Turing machine M, by changing the definition of an input. If x 
is an (r + 1)tuple b,, l ** ,a,+t), then let f= (4e;a,, l **,ar+,;l;a* ,l); 
we say that M accepts the (r + I)-tuple x if .Y+G I for some accepting 
instantaneous description I. 

- 

It is clear that there ls a positive integer k and a modified (r i- I)-tape 
nondeterministic Turing machine M which accepts precisely those (r + I)- 
tuplesb’, b,,**- ,b> such that i #b, # b, #* l l #b, isin E(A), where 
12’ is the string I written backwards, and such that M accepts such an input 
within nk steps, where n is the number represented by u ln binary notation. 
We can assume that k > mart (nr,: 1 < i G r}. It is clear that lf M accepts 
b’,bl, l l l , b,) within nk steps, then it accepts b’, b, , l l l , b,) within 
space k. n ,wewillmakeuseofthlsfact. 

Introduce the set T of the following new symbols. The symbol < is a 
binary predicate symbol, which represents a linear order; cr and cs are con- 
stant symbols, which represent respectively the minimal and maximal members 
of the linear order; 0, 1, and E are constant symbols, which represent respeo- 
tively the zero, one and blank tape symbols; 4o, qA, and qR are constant sym- 
bols, which represent respectively the initial state, accepting final state, and reject- 
ing final state; S is a unary function symbol, which represents successor in the 
linear order < ; S, ls a 2k-ary predicate symbol, where 

means that y is the successor of x ln the lexicographical ordering; 4 is a 
k-ary function symbol, where q(t 1, l l * , tJ is the state that the machine is in 
at time t; ur is a 2k-ary function symbol, for 1 6 i Q r + 1, where 
u,(f,,*** ,tk;Xl,**-, xk) is the tape symbol printed on square x of the 
ith tape at time t; H, is a 2k-ary predicate symbol, for 1 < I 4 r + 1, where 
H,(t; x) means that, at time t, the ith tape head is scanning square x on the 
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ith tape; and G is a binary function symbol, where G(x, r’) is the ith digit from the 
righi in i&e binary eon of x, if we think of the binary representation of 
the positive integers less than or equal to n (the cardinality of the tmiveme) as 
being given by a word of length n, which starts out with a series of blanks, fol- 
lowed by the usual binary representation. 

Wethinkofthek-tuple (cr,***, c,) as representing the fti time unit 
(and the first tape square on each tape); if S, (x; y), then y is the next time 
unit (next tape square) after x. Thus, the k-tuple (ca, l l l , c,) represents the 
Ah time unit (&I tape square). 

Assume that I’ contains g tape symbols. We represent these by cr. S(c,), 
mc,n l l l , s(gml)(cl), where c, represents the zero, S(cr) represents the 
one, and sc2)(c,) represents the blank. For ease in readability, we have intro- 
duced the symbols 0, 1, and B, which will denote the same elements (in a model) 
as cr. S(c,), and Z#2)(c,) respectively. Assume that K contains p states. We 
represent these by cr , l l l , S@“)(c,) where, for ease in readability, we have 
qo, qA, and qR denoting the same elements as cl, S(c,), and s<2)(c,) respec- 
tively. 

lxt v1 be the conjunction of the following sentences: 

o=cl, 40 = Cl, 
1 = a&, 4A = S(cJ9 
B = S(‘)(c,), qR = S(2)(c,). 

Let a, bethesentence “<isalinearorder,cr isminin&~~isrnax- 
hnal, and S is successor, except S(c2) = cr.” 

Let ua be the sentence which says that S,(x; y) holds iff y is the suc- 
cessor of x in lexicographical order, except that S, (ca, l l l , c, ; cr. l l l , cr) 
holds Thus, u3 is the conjunction of the following k +2 -: 

‘vx, l *- Vx,3!y, l ** 3!yks1(x1, l ** ,xk;yl, l a* ,Yk), 

VXI l *- vXk(XkfC2 -,s,(x,, l ** ,xk;x,,*** ,xk,~,sxk)), 

vxi 
l l l VXk((Xk =c2Axk-l #c,) 

- sltx,, --- , xk; Xl, aa- , +-2&y-~. c,)), 

The conjunction a4 of the following sentences defmes G to be what we 
said we wanted: 
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G(cl, cl) = 1, 
w + C,)G(C~. 4 = a 
(Vx + c,)Vy(((3z <y)(G(x, z) = 0 vG(x, z) = B)) 

- tasx, A = c(x, UN), 

(Vx # c+y((( 3z <y)(G(x, z) = 1 A G(x, J’) = 0)) 

- (G(Sx, 3’) = l)), 

(Vx f +J’Y(~(VZ <u)(G(x, z) = 1 A ‘3(x, Y) = 1)) 

- (GW, u) = O)), 

0’~ # c2)W(((Vz <y)(G(x, z) = 1 A G(x, u) = B)) 

- (G(Sx, y) = 1)). 

The conjunction us of the following sentences gives selfexplanatory in- 
formation about q and the Hi: 

dc,, l *- 41) =4ap 

dc,, l l ’ f cz) = QA, 

r+l 

/?A vt, l l l vr, xx1 l l l 3!x&(t; x), 

I=1 

r+l 
/x\ H,(cl,*** ,c,;c,,*-• ,cJ. 
i=l 

The conjunction ua of the next two sentences iuitializes the first tape so 
that it starts with the binary representation of n (the cardinal@ of the universe) 
running backwards, followed by blanks: 

V~(u,(c,, l l l , cl; cl, l l l , cl, x) = Gtc,, 41, 

4 
l a* vxk(-(xl =c,A**dlx,~, =cl) 

-(u&,,= l *,c*;x,, l ** ,x,)=B)). 

The conjunction u, of the following sentences initializes the 2nd tbmgh 
(r + 1)st tapes such that the (i + 1)st tape starts out with a string of O’s and 
l’s which represents P,, followed by blanks (1 < i <r): 
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The sentence ua says that after the machine enters a final state, nothing 
ever changes. Here u represents the next time unit after t: 

vtvu -(tl =c2 A***A tk 
( = c2) As, (t; 4 A Gl(t) = 4A v 4w = 4R 1 

- 
( 
(4(u) = 4wA vcc 

( 

r-i-1 
!I! (u,(u; x) = u#; x)) 
= ) 

r+l 

A vx fi w&G x) *H,(t; x)) 
1 

- 

The sentence u,, is a conjunction of sentences which describe the table of 
tranSitiQnS of M, c&y by entry. Jkisume that 8(b; e,, l -- , err+ *) = 

is,, l ** , sW}, that we are representing the state b by $d)(c,), and that we 
are representing the tape symbol e, by SUfr’(c,), for 1 6 i <r. Then one con- 
junct of u9 is &e following sentence: 

veilvx; --- vx; -0- vxy --- yiy 
. 

=c2A-A tk =c2)Asl(t;u) 

r+l 

where @ tells the transition which is possible, according to So, for 1 4 i 4 IV. 
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Specifically, assume that s, is (a; b, , l l l , b,, I ; T,, l l l , T,, 1 ), where we 
am representing the state a by S(m)(~l), where we are representing the symbol 
b, by S”&,), for 1 <i < t + 1, and where each 7’, is either R or L. Let 
I= {I: q=R},and J= {j: T, = t}. Then $J, is the conjunction of the fol- 
lowing formulas, where in the last conjunction we include the restriction that no 

_ tape head go off the left end of its tape: 

4(u) = S(m)(c,), 

r+l 
M\ Vz( - (zl = x{ A l l l A Zk = xi) - (uj(u; 2) = vj(t; z))), 

/=l 

r+1 
nr\ u~(u; x’) = Pj)(c,), 
/=I ’ 

,l$iY’(S,(X4 Y9 - qu; Y’)), 

Ifn>max(cardT’,cardK),thenan S-structure 9l withcard(Yl)=n 
is in A iff 91 l= 37(&&o,). It is well known that each Tinite modification’* 
of an S-spectrum is an S-spectrum. Therefore, A is an S-spectrum. 0 

Apparently, James Bennett was the fust to prove part 2 of Theorem 6, al- 
though he did not publish it. The fmt published proof (a different proof from 
ours) is by Jones and Selman [IS]. Part 1 is new. 

It is fairly easy to prove from Theorem 6 that 

(3) 
the class of (generalized) spectra is closed under complement 
lff AT, (NP) is closed under complement. 

This is because then are not only simple ways to encode finite structures 
into strings of symbols, but also ways to “encode” strings of symbols Into ftite 
structures. We will not demonstrate this, because (3) follows easily from our 
work on complete sets ln $7. 

We know from Theorem 4 that Pr (P) is closed under complement. So 
if NP, = Pr (NP = P). then NP, (AT) is closed under complement, and 
hence the class of (generalized) spectra is closed under complement. It is a 
famous open problem in automata theory as to whether NP = P; the evidence 
seems to be strongly against it. We remark that it is well known that NP = P 
implies that NP, = PI, and that lf NP is closed under complement, then so is 
NP, ; these results follow, for example, by an obvious modification of an argument 
by Savitch [20, p. 1861. 
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From Theorem 6, we see that spectra and generalized spectra are very broad 
classes. Most sets of positive integers that occur in number theory, such as the 
primes, the Fibonacci numbers, and the perfect numbers, are easily seen to be 
members of PI, and a fortiori of NP,. It is immediate from Theorem 6(2) that 
a set of positive integers is in NP, iff it is a spectrum. 

THEOREM 7 (BENNETT [2]). Assume rhar the set A of positive integers 
isin Ei. lien A and A” are specrra. 

PROOF. By Theorem 3, A is recognizable by a linear-bounded automaton. 
So, by an easy, standard argument of counting the number of possible instantane- 
ous descriptions, it follows that A E PI. So A E NP, , and hence A is a ‘spec- 
trum. Since p2 is closed under complement (Theorem 4), also A” E p* 5 PI E 
NP, ; hence A” is a spectrum. Cl 

It is an open problem as to whether there is any spectrum not in c. 
Let BIN be the set of all spectra defmable using only one graph predicate 

symbol. Obviously, if S E BIN, then S is defmable using only one binary 
predicate symbol. ‘Ihe following result is proved in the author’s doctoral dis- 
sertation [9]. 

THEOREM 8. For each spectrum S. the&is a positive integer k such thar 
{nk:nfS) isin BIN. 

We could not hope for it to be true that for each spectrum S, there is a 
positive integer k such that {nk: n E S) is definable usiiig only uaary predicate 
symbols. This is because it is well known that by an elimination-of-quantifiers 
argument, it can be shown that each spectrum definable using only unary predicate 
symbols is either a fmite or a coftite set of positive integers. 

We close this section by using Theorem 8 to show that if- conjectures 
about spectra are false, then a counterexample occurs in BIN. 

THEOREM 9. ?Re following two sratements are equivalent. 
1. NP, = PI. 
2. BIN2 P,. 

PROOF. 1 r* 2: BIN E NP,, by Theorem 6(2). 
2-l: Take S in JVP,; wewanttoshowthat SEP1. Bytheusual 

encoding arguments, we can assume that S E Z+. By Theorem 8, we can find 
a positive integer k such that T = {nk: nES) isin BIN. Then nES iff 
nk E T, for each positive integer n. So clearly, if T E P,, then S E P,. 0 

THEOREM 10. The following two statements are equivalent. 



60 RONALD FAGIN 

1, If S~Z+,then SENP, iff SEC. 
2 BIlv~E$ 

The proof is very similar to the previous proof. Cl 

5. Categoricity. Cah a first-order sentence mtegorid if it has at most 
one model (up to isomorphism) of each ftite cardinal@. 

THEOREM 11. Assume that the set S of positive fntegers ir in PI. Zlzen 
there is a cute&d sentence wirh spectrum S. 

PROOF. If the machine M in the proof of Theorem 6 is deterministic, 
then the sentence M 9 ,=ro, defined in that proof is categoricaL ‘ihe “finite 
modification” which was called for to take care of small values of n is easily 
dealt with. Cl 

So those naturally-occurring sets of positive integers that we discussed in 
the previous section are each the spectrum of a categorical sentence. 

COROLLARY 12 If AT1 = PI, then each spectrum is the spectrum of a 
artegoriml sentera 

The proof is immediate. 0 
In the case of S-spectra, let us call a first-order S U T-sentence u (where 

S n T= $5) S-mreguriazl‘if, whenever p1 and @ are finite S U T-structures 
which are models of u, and p1 1 S and @ 1 S are isomorphic, then so are 
8 and 9. 

If A is an S-spectrum, then it does not quite follow, as in Theorem 11, 
that if E(A) E P then there is T and there is an S-categorical S U T-sentence 
a such that A = Mod,3Tu. For, there are many different ways to impose the 
linear ordering <. However, if structures had a “built-in” linear ordering, then 
we could surmount this difficulty. One approach is to consider only finite S- 
structures 3 such that I%1 CZ +. We could let < be a symbol which, like =, 
has an invariant interpretation; namely, if a, b E Iti\ where l%i EZ+, then 
a <’ b iff a is a smaller integer than b. Then the desired result mentioned 
above follows. 

6. Possible Asser counterexamples. In 8 1, we gave several simple examples 
of generalized spectra whose complements do not seem to be generalized spectra. 
These also serve as examples of NQ sets which are probably not in R 

It is harder to fmd candidates for sets which are spectra but whose comple- 
ments are not spectra, or which are in NP, but not in Pr. This is because, as 
we observed, most naturally-occurring sets of positive integers are in Pr , and 
hence, of course, so are their complements. 
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As we shall see in $9, there exists a spectrum S such that {n: 2” E Sj 
is not a spectrum. This gives us one class of possible counterexamples. In fact, 
Bennett [2] shows that {n: 2m + 1 is composite) isa spe&um,and asks 
whether {n: 2” i- 1 is prime) is a spectrum. We will show that Bennett’s re- 
sult follows fairly simply from l’heorem 6 (Bennett’s proof is different). We will 
answer Bennett’s question (afknatively) by making use of a very surprising re- 
sult by Vaughn Pratt (unpublished). We need the following simple theorem. 

THEOREM 13. Assume A EZ+. If A E NP, then {n: 2” + 1 E A)E NP,. 

PROOF. Assume that M is a nondetemrinistic Turing machine which rec- 
ognizes A in polynomial time. We will defme a nondeterministic Turing machine 
M’ which recognizes B = {n: 2” i- 1 E A} in exponential time. Given input 
n, the machine M’ prints the string that starts and en& with a 1 and has 
(n - 1) O’s in between. This is the number 2” + 1 in binary notation. Then 
M’ simulates the action of M on input 2n + 1. It is easy to see that M’ 
recognizes B nondeterminkt&Aly in exponential time. 0 

It is simple to show that C = {n: n is composite) is in NR For, let M 
be a nondeterminisk Turing machine which, given input n, “guesses” a divisor 
m of n and then tests it; if m divides n, then M accepts n. Clearly M 
recognizes C nondeterministically in polynomial time. So, from lkorem 13, 
{n: 2” + 1 is composite) is in NP,, and hence is a spectrum. 

Pratt proved that {n: n is prime} is in hrI? From this very interesting 
result, it follows immediately from Theorem 13 that {n: 2n + 1 is prime) is 
a spectrum. 

For each set S of words, define S’ to be {len(n): n E S). As candidates 
for sets in NP, which are not in PI, Robert Solovay (personal communication) 
essentially suggested considering sets S’, where S E I? We will now show that 
in a certain sense, this class is sufficient for a counterexample. The proof gives 
an application to automata theory of the equivalence in Theorem 6. 

THEOREM 14. l’Re folkwing three statements are equivalent: 
1. NP, = PI. 
2. If SERdlen S’E PI. 
3. rf S ENR then S’ E PI. 

PROOF. 3 c* 2: This is immediate, since p CNl? 
1 * 3: Assume that S E NJ? Then S’ E NP,. For, assume that M 

recognizes S nondeterministically in tjme J c--, J ‘, for some k. We will con- 
struct a machine M' that recognizes S’ nondeterministically in exponential 
time. Given input m, the machine M’ first guesses a number n of length m 
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Then M’ simulates M on the input n. Clearly, M’ recognizes S’; M’ accepts 
m in S’ in roughly mk steps So S’ E NP, = PI. 

2 r* 1: Assume that A ENP,. By the usual encodingarguments, we can 
assume that A CZ+ (ii, instead, A C Xc* for the finite set Z, then we find an 
encoding t: IY -+ .Z+ for which there is a constant c such that len(f(w)) = 
c - len(w) for each w in Z*; the details are straightforward). By Theorem 6, 
we know that A is a spectrum. Assume for simplicity that A = {tr: Cn) I= 3Qok 
where Q is a binary predicate symbol. The general case is similar. Let S be 
the following set: 

{m: 3n(Ien(m) = n2 ,+ 1, and if the binary representa- 
tion of m is 1 ̂b, and if R is the binary rela- 
tion on n which is represented by b in the obvious 

way, then (n; R) I= u)}. 

We use n2 + 1 instead of n2 to allow for the possibility of b being a 
string of all 0’s. 

Then S E P. For, as we saw in the proof of Theorem 6, there is a positive 
integer k and a deterministic machine M which can de&ermine whether 
h; R) k CI within nk steps for each n (and R); note that nk is bounded by 
a fried polynomial of the length of m 

Since S E P, it follows by hypothesis that S’ E Pr . Now n f A iff 
(n2 + 1) E S’, for each positive integer n. So A E P,. Cl 

In the next section, we will find several specific (generalized) spectra A (A) 
such that the class of (generalized) spectra is closed under complement iff A” (x) 
is a (generalized) spectrum. 

7. Complete sets. We will now deal with the notions of reducibility and 
completeness, which are due to Cook [7] and Karp [16] _ We will show that com- 
pleteness implies a complement-completeness (Theorem U(2)), and we will use this 
fact, along with Theorem 6(l) and results in Karp’s paper [ 161, to find particular 
generalized spectra whose complements are generalized spectra iff the complement of 
every generalized spectrum is generalized spectrum. In particular, we will show that 
the class of directed graphs with a Hamilton cycle is such a “complete” generalized 
spectrum; we will also exhibit a monadic complete generalized spectrum. We will then 
find a complete spectrum, and will show that &he existence of a complete spectrum 
implies the existence of a complete spectrum in BIN (which we can actually fmd). 

Assume that C, and C, are ftite sets, and A E XT, B C Zz. B is 
reducible (reducibkl) to A, written B a A (B a, A), if there is a function f: 
Cz - Zz in fI (If,) such that, for each x in ZT, x E B iff f(x) EA. 
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It is clear that 0: and ar are transitive. 
A set A is NP (NP,)complete if 
1. A ENQ (Ml). 
2. B a A (B a1 A) for each B in NP(NP,). 

THEOREM 15. Let A be NP(NP,)-complete. i%en 
1. NP= P(NPr = I’,) iff A E P(P& 
2. N?(NP,) is closed under complement iff A” E NP(NP,). 

PROOF. Assume that B C C*, that B E NP (NP,) and that B a A (Ba, A). 
Find f in fl (II,) such that x E B iff f(x) E A, for each x in Xc+. It is 
straightforward to check that if A E P (PI), then B E P (P,). Note that x E B” 
iff f(x) E 2; hence, if A” E NP(NPr), then E E NP (NP,). The other implica- 
tions are obvious. Cl 

Part 1 of Theorem 15 (in the NP= P case) is due to Karp. Cook was 
the first to show that there exists an NPcomplete set. This set is SAT, the set 
of encodings of satisfiable propositional fonulas in “conjunctive normal form” 
&W#ij 9 where each Ay is a propositional letter or its negation. 

THEOREM 16 (COOK p]). SATis NPcompkte. 

In .[ 161, SAT is shown to be reducible to certain other sets in NP, which 
are thus NPcomplete. We now describe two such sets. 

1. HAh4 is the set of encodings of IQ)-structures that have a Hamilton 
cycle, where Q is a binary predicate symbol. 

2 HIT is the set of encodings of families of subsets of a set, for which 
there is a “hitting set.” If the input is (the encoding of) a finite family 
VA,, l ** , A,}, where each A, E {sl, l l l , sJ, then a hitting set is a set 
w_c {Sp’” , sr) such that W n Ai contains exactly one element for each i 

THEOREM~~(KARP, TARIAN, ANDLAWLEX [la)). fL4MandHflme 
N P-complete. 

We can now demonstrate two particular generalized spectra whose com- 
plements are generalized spectra iff the complement of every generalized spectrum 
is a generalized spectrum. Let Q be a binary predicate symbol, and U a unary 
predicate symbol. 

THEOREM~~. Let A- {P( fFin(Q>: ?l IuzsaHizmihoncycZe) Z?%en 
the class of generalized spectra is closed under complement iff the complement 
of the {Qjspectrum A is a (Qj-spectrum. 

PROOF. *: This is immediate. 
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+=: This would follow immediately from Theorems 6(l), 15(2) and 17 ex- 
cept for one technicality. Namely, if 23 is an S-spectrum, and if C is the 
complement of I3 in (0, 1, #)*, then C is not quite E(s), but instead is the 
union of E(s) and the set D of words in (0, 1, #}* which are not the en- 
coding of an S-structure. However, since D is easily (deterministic polynomial- 
time) recognizable, it is clear that C E NP iff E(g) E NP, and so there is no 

- problem. Cl 
It is very interesting that Theorem 18 is a statement of pure logic that 

seems on the surface to have nothing to do with automata theory. However, its 
proof is heavily dependent on automata theory. 

THEOREM 19. Let A = Mod, 31Mx 3!y(eXy A Cry). 77ren the class of 
generalized spectra is closed under complement iff the complement of the 
{Q} -spectrum A is u {Q)-spectrum 

PROOF. We wilI show that HIT a E(A). Since E(A) E NP by Theorem 
6(l), it follows that E(A) is NP-complete. The proof can then be completed 
as in Theorem 18. 

Assume that e is an encoding of the family {A t , l l l , A,,} of certain 
subsets of {s, , l l - , s,}. We can assume that n > r by repeating the set A, 
as often as necessary. Define a finite {Q}structure PI, with 1% i = {I, l ** , n) 
such that (i,]) E Q” iff s, E A,, for each i and I. Let f be a function 
which (in general) maps e onto the encoding of p1, (and which maps nonen- 
codings onto a fmed nonencoding). It is straightforward to check that e E HIT 
iff f(e) E E(A), and that f E II; therefore, HIT Q: E(A). 0 

Note that A of Theorem 19 is a monadic @}-spectrum, that is, a {Qjspectrum 
in which all of the “extra” predicate symbols are unary (in this case, there ls only 
one extra predicate symbol, and it is unaq). It is well known that if S is a set of un- 
ruy predicate symbols, and 8 is a monadic S-spectrum (that is, all predicate symbols, 
“given” and “extra,” are unary), then there is a fmt-order S-sentence u such 
that l3 = Mod,u. Hence E(B) E P, as in the proof of Theorem 6. So Theorem 
19 is a best possible result (short of resolving the generalized Asser problem). We 
remark that the author proved the following result about monadic generalized 
spectra in his doctoral dissertation [9]. 

THEOREM 20. Let A be the class of nonconnected finite {Q&structures, 
where Q is a binary predicate symbol (a finite {Q)-smuzure (A;R) is con- 
nected if, for each a, b in A, there is a finite sequence a,, l l l , a, of points 
in A such that a = aI, b = a,, and either Ra,a,+I or Ra,, ,a,, for 1 <i <n). 
Then A is a monadic (Qj-spectrum, but x is not a monadic (Q)-spectrum. In 
particulm. the ckrss of monadicgeneralized spectra is not closed under complement. 



GENERALIZED FIRST-ORDER SPECTRA 65 

We will now produce a “universal” NP set and a “universal” NP, set. 
Each will be complete. The technique is similar to that of Book [4], who also 
shows the existence of an NP,-complete set. 

Some preliminary remarks are required. If M is a one-tape nondeterminis- 
tic Turing machine that operates in time T, then it is easy to see that there is a 
constant c and a one-tape nondeterministic Turing machine M’ that recognizes 

_ A, in time CT, such that the range of the function 6 for M’ (which gives the 
table of transitions for M’) contains only sets with at most two members (in- 
tuitively, M’ has at most two options per move). Whenever there are two options 
then by some convention we label one the first option and the other the second 
option. 

We momentarily restrict our attention to a subclass M of the class of those . 
one-tape nondeterministic Turing machines that have at most two options per 
move, by making natural restrictions so that M will be countable: We require 
that the sets K (of states) and I’ (of tape symbols) be subsets of w; it is also 
convenient to require that the set Z of input symbols be {O, l), and that each 
machine in M recognize a set of (binary representations of) positive integers. We 
assign Giidel numbers to machines in the class M in such a way that a tape head 
wn sweep through the encoding of the Gijdel number to find out how to simulate 
the machine with that Gijdel number on a given step. One such way involves 
essentially letting the Gijdel number be the concatenation of the entries of the 
table of transitions, with the # sign used as a separator. Each tape symbol and 
state is encoded by a string in (0, l}*. For details, see [13, pp. 102-1031. De- 
note by 7; the machine with G&k1 number i 

We now define a ternary relation V, which holds for certain triples (i, s, n) 
with i and n positive integers, and s in {O, l)*. For V(i, s, n) to hold, 
it is first necessary for i to be the CSdel number of a machine 4. Simulate 
the action of T on the input n, in the following way: If on the kth step in 
the simulation, there is an option, then take the first (second) option if the kth 
digit in s is a 0 (1); if s is not of length at least k, then halt and reject. 
Then V(i, s. n) holds iff the number n is accepted in this simulation. 

Let t be any standard one-one map from (2 +)j onto Z+ such that 
tEnnn, and t-r E II n II,, and such that each of (I, 6, and c is 
bounded by f(u, b, c). We can now define two sets of positive integers which 
are Ymiversal” in the usual sense with respect to NP(NP,) sets 

UNIV = (t(i, II, n): i, a, n E Z+ and 3s(len(s) = Ien and V(i, s, n))}, 

UNIV, = {r(i, a. n): i, a, n E Z+ and 3s(len(s) = II and V(i, s, n))}. 
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THEOREM 21. (1) IZNZV is NP-complere. (2) t3VZVr is NP,-cumpZete. 

PROOF. UNIV f NP. For, we can define a multi-tape nondeterministic 
machine M which, given t(i, cl, n) as input, finds i, a, and n, guesses s in 
{O, l)* such that len(s) = len(u), and then does the obvious simulation. The 
point is that u is so large that the time of simulation is (except for bookkeeping) 
equal to the length of a, which is bounded by the length of t(i, a, n); hence, 
UNIV E NP. Similarly, UNIV, E NP,, since the time of simulation is roughly 
given by a, which is roughly 2’, where I is the length of a. 

Assume that B E NP; we want to show that B a UNIV. By the usual 
encoding arguments, we can assume that B CZ+. Find i and k such that T, 
recognizes B in time 1 ~2~. Then n E B iff t(i, a, n) E UNIV, where o is a 
string of (len(n))k tallies. Clearly the function n c-* t(i. a, n) is in II. So UNIV 
is NP-complete. 

Now assume that the set B of positive integers is in NP,. Find i and k 
such that 7” recognizes B, and T, accepts each n in B within nk steps. Then 
n E B iff t(& nk, n)E UNIV,. So UNIV, is NPr-complete. Cl 

We are especially interested in part 2 of Theorem 21, which gives us a par- 
ticular spectrum whose complement is a spectrum iff the complement of every spec- 
trum is a spectrum. We record this in Theorem 22. 

THEOREM 22. The class of spectra is closed under complement iff the 
complement of the spectrum IJNZV, is a spectrum. 

The proof is immediate. 0 

~ROLLARY 23. There is an NP,-complete set in BIN. Thus, this is an 
ewmple of a spectrum A in BZNsuch that A” is a spectrum iff the complement of 
may specbumisu spectrum 

PROOF. Find k from Theorem 8 such that A = {n’: n E UNN, } is in 
BIN. We remark that a simple analysis shows that in this case, k can be taken to be 
5. Then n E UNIV, iff nk EA, for each n Hence UNIV, a1 A, and so A is 
NP, -complete. El 

8. A Savitch-like result. Savitch [20] showed that any set that can be 
recognized nondeterministically in tape S can be recognized deterministically in tape 
9. If such a theoremwere true for time bounds-for example, if there were a con- 
stant k such that any set that can be recognized nondeterministically in time T 
can be recognized deterministically In time p-then, of course, it would follow 
that NP = P and NP, = PI. It is quite surprising that this strong condition we 
are discussing is essentially equivalent to the apparently w&X condition that hT = I? 
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We will prove this in Theorem 24. Then we will generalize the result in various ways, 
and conchrde by an analogy with Post’s problem: 

THEOREM 24. lRe following two staiements are equiaulent: 
1. NP = ?? 
2. ;Ihere exists a constant k such that, for every clountable function T 

with T(Z) > I+ 1 for each 1 and for every Zanguage A which is remgnized 
by a nondetenninistic one-tape lIuing machine in time T, the kangtqe A is 
recvgnized by a deterministic one-tape 7Lring machine in time p. 

PROOF. 2 * 1: This is immediate, since I c--* 1’ is countable for each k 
1 * 2: It is sufficient to show that 1 * 2’, where 2’ is obtained from 2 

by replacing both occurrences of “language A” by “‘set A E Z+.” This is be- 
cause of simple interrelationships between machines M which recognize a lang- 
uage A and machines M’ which recognize an encoding A’ s Z+ of A. The 
details are straightforward and nonunique, and are left to the reader. 

. 

Let R = (7 #a’# E if c a’, and n are the binary representations of 
the positive integers i, a, and n, then t(i, a, n) E UNIV}. Then R E NP, and 
ao by hypothesis (and by Theorem 2). there iso constant k’ and a one-tape 
deterministic machine M, which recognizes R in time 1 ++ Ike. We can as- 
sumethat k’>2. Let k=2k’. 

Assume that A is recognized by a nondeterministic one-tape machine in 
time T, where T is countable and T(I) > I + 1 for each 1. Then as we ob- 
served earlier, there is a constant cr and a machine 7;o (with at most two op- 
tions per move) which recognizes A in time cr T. Since T is countable, it is 
easy to see that c,T is countable. Hence there is a constant c2 and a deter- 
ministic two-tape machine M2 which, for each 1 and each input w of length 1 on the 
fist iape, prints at least c, T(I) tallies on its second tape in at most c,T(l) steps. 

We will now describe a 3-tape nondeterministic machine M which recog- 
nizes A. Given input n of length. J on its first tape, M simulates M, to 
print a string w of at least cr T(1) tallies on its second tape in at most c2 T(r) 
steps. Then M prints Fe # w # Ti on its third tape in len(io) + len(w) + I+ 2 
steps. Now M simulates Mr with c #w #n as input. This takes at most 
(Ien + len (w) + I + 2)k steps. Since T(1) > I+ 1, since clearly len(w) < 
caT(l), and since len(io) + 2 is a constant, the total number of steps required 
is bounded by ((cs +2)7(Z))” f or sufficiently large 1. Clearly, M recognizes 
A. By Theorem 2, the set A is recognized by a one-tape deterministic machine 
in time ((ca + 2)nk. Hence, by Theorem 1, A is recognized by a one-tape 
deterministic machine in tune Tk. •I 

By very similar proofs, we can demonstrate the following two results. 
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THEOREM 25. l%e folIowing two statements are equiwlent: 
1. NP, = PI. 
2 There exists a constant k such that, far every ctnmtuble function T 

with T(1) > 2’ for each I and for every language A which is recognized by a 
nondeterministic one-&ape Ziuing machine in time T, the language A is recog- 
nized by a deterministic one-tape lIuing machine in time 9. 

THEOREM 26. 7Re following two statements are equivalent. 
1. NP (NP,) is closed under complement. 
2. There exists a constant k such that, for every countable function T 

with T(1) > 1 + 1 (T(I) > 2’) f or each 1 and for every hnguage A which is 
recognized by a nondeterministic one-tape Tiuing machine in time T. the lang- 
uage A” is recognized by a nondeterministic one-tape ‘Itaing machine in time p. - 

We conclude this section by an analogy with Post’s problem. Deftitions 
and notation are from Rogers [19]. Post’s problem asks whether there is an 
r.e. set C which is not Turing-equivalent to either pl or to the halting problem 
set x 

Let {IV:: x fi?) be an effective listing of all sets of natural numbers 
which are r-e. in B. As Rogers notes, if A and B are r.e., then the assertion 
that A is not Turing-reducible to B is equivalent to Vx(z f IV,“), or equiva- 
lently, VxJy(y E A iff y E IV,“). If (3 recursive f) (Vx)(f(x)E A iff 
f(x) E Wfl), then we say that A is constructively nonrecursive in B. 

Many attempts to solve Post’s problem failed, because investigators tried to 
find some r.e. set C such that C is constructively nonrecursive in pl and such 
that K is constructively nonrecursive in C Rogers shows that if A and B 
are r.e., and if A is constructively nonrecursive in B, then B is recursive. Hence, 
.any such attempt must Eail. 

In an analogous way, one might wonder whether it is possible that NP = P, 
but that all attempts to prove this have failed because investigators have been 
searching for some recursive function f which maps the index i of each non- 
deterministic Turing machine into an index f(i) of a deterministic machine which 
recognizes the same set, such that if the machine with index i operates in poly- 
nomial time, then so does the machine with index f(i). We will now show that 
if NP = P, then there is such a recursive function f, as long as we restrict our- 
selves to machines that operate in a given polynomial time bound, such as mach- 
ines that operate in time 1 - 1’ for fMed r. 

For each r, let r, be a two-tape nondeterministic machine which, given 
input n on its first tape, simulates the action of 7; on n for at most 
(len(n))’ steps, by using its second tape as a clock. If in the simulation T, has 

not accepted within (len(n))’ steps, then T; halts and rejects. 
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THEOREM 27. Ihe following rwo sraremenrs are equivulenr: 
1. NP= I? 
2. l%ereexisrsaconstmt k undofiuzction fin iI suchthat.foreach 

Gael number i and each positive integer r, the machine Tft,,,j is a one-tape 
dererminisric 7iuing machine which operates in rime 1 - Ikr, and which rec- 
ognizes the same set as T;. Hence, if q operates (nondetemzinisticauy) in 
Trne 1 - 1’. then Tr<r,,, recognizes the sume set as T, 

PROOF. This is clear from the proof of theorem 24. Cl 

9. A counterexample. We will show that there is a spectrum S in BIN 
such that {n: 2” ES) is not a spectrum. By way of contrast, it is easy to see, 
because of Theorem 6(2), that for each spectrum S and each polynomial p with 
rational coefficients the set {n: p(n) E s) is a spectrum. The fact that there is 
a spectrum S such that {n: 2” E S] is not a spectrum is extremely closely 
related, both in content and method, to Bennett’s results on higher-order spectra 
121, although he did not specifically state or prove this result. If we analyze 
Bennett’s proof, then we see that he essentially proved that there is a spectrum S 
and a positive integer k such that in: 2nk ES) is not a spectrum. 

We will also show that our techniques give a new proof of a result of %ook 
[3] that NP hvp,. 

LEMMA 28. Let A be a spectrum, i%en, for some constant k, the set 
A is recognized by a one-tape deterministic I&ring machine in tape 1 J-+ 2k’. 

PROOF. Assume first that A = {n: (n) I= JQuX where Q is a bm 
predicate symbol. Defme a one-tape deterministic machine M which, given in- 
put n, systematically prints all possible strings in (0, I}* of length n*, and 
tests them one by one to see if the binary relation R on n which the string 
represents in the natural way has the property that (n; RI I= u. M accepts n 
iff it fmds some such string. If len(n) = 1, then n2 < 2*‘. Hence M can be 
arranged to operate in tape 1 - 23’. Similarly, for each spectrum S there is 
a constant k such that A is recognizable in tape 1 c-* 2k’. Cl 

LEMMA 29. l%ere is a set A 2 Z+ which is recognized by a one-tape 
de&nninisric Turing machine in tape 1 c--* 2’*, which is not a spectrum. 

PROOF. This follows from Theorem 5 andLemma 28, since it is easy to 
see that I C-, 2r2 is constructible and that lim inf,+,2k’/2’2 =5 0 for each k. 

LEMMA 30. Assume rhar A C .Z+ is recognized by a one-tape determin- 
istic iWing machine in rape 1 e-* 2’*. Then there is a set B in E’+ such rhat 
A = {n: 2*” E B}. 
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PROOF. Let M be a one-tape deterministic Turing machine that recognizes 
A in tape 1 - 212. Let M, be a on e-tape deterministic Turing machine which 
operates as follows: Given input m, the machine Ml tests to see ifthere is a 
positive integer n such that m = 22”. If not, then M, rejects. If so, then 
M, simulates M on input n Now M, can be designed to be a linear-bounded 
automaton. This is because len(2=“) = 2” + 1, which is bigger than 2=‘-’ 

_ (where 2 = len(n)), which is bigger than 212 for sufficiently large 1 So, by 
Theorem 3, the set B which M, recognizes is in pa. Clearly 
A= {n:2=“EB). Cl 

THEOREM 31. ‘Ihere is a spectrum S such that {n: 2” E S} is not a 
spectrum 

PROOF. Find A from Lemma 29 and B from Lemma 30 such that A e 
is not a spectrum, B E ?$ and A = {n: 2=” E B). By Theorem 7, we know 
that B is a spectrum. Let C = (n: 2” E B}. Then A = {n: 2” E c). Assume 
that it is always true that whenever S is a spectrum, then {n’n: 2” ES} is a 
spectrum. Then C is a spebtrum (since B is), and so A is a spectrum (since 
C is). But this is a contradiction. El 

COROLLARY 32. mere is a spectrum T in BIN such that {n: 2” E Tj 
is not a spectrum 

PROOF. Find S from Theorem 3 1 such that D = {n: 2” ES} is not a spectrum. 
Fiid a positive integer k from Theorem 8 such that T = {n’: n ES) isin BIN. Let 
E = {n: 2” E T) Then n ED iff kn E E, for each positive integers&, n ED iff 
2” ES iff 2&” E Tiff kn E E. LfE were a spectrum, then E would be in NP, , and so 
clearly D would be in NP, . Hence D would be a spectrum, a contradiction. Cl 

We close this section with some further observations. Theorem 13 of 86 
uxldjustaswellhavebeenstatedasfollows: 

(4) Assume ACZ?+. If AEN’?? then In: 2” EA) isin NPl. 

We remark that we can use the technique of the proof of Lemma 30 to show 
that (4) has a converse: 

THEOREM 33. Assume B C i?. Then B E N P, iff there is A in NP 
such that B= {nn: 2” EA]. 

Because of Theorem 6(2), we know ihat Ykeorem 31 can be restated as 
follows: 

(5) 
mere is a set A in NP, of positive integers 
such thut {n: 2” E A} is not in NP,. 
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Shnilarly, we can prove the following: 

THEOREM 34. There is 5 set A in NP of positive integers such that 

{n: 2” EA} is not in NQ. 

Finally, we observe that (4) and Theorem 34 combine to give us a theorem 
of Book: 

- THEOREM 35 (BOOK 131). iIT EAT,. 

PROOF. From Theorem 34, find a set A in NP of positive integers such 
that B = {n: 2” E A} is not in N?? By (4), we know that B E NP,. So 
NP # NP,. Of course, NP C NP,. 0 

Book’s proof depends on a fairly difficult result of Cook [8]. No simple 
diagonalization argument seems capable of proving Theorem 35 directly, because 
we are dealing with nondeterministic, rather than deterministic, time-complexity 
classes. However, a simple diagonalization argument does show that P 5 P,. 

. 

10. A real-time recognizable NP-compiete set. We conclude by exhibiting 
an NP-complete set REAL which is recognized by a nondeterministic two-tape 
machine in xeal time. The existence of such a set is not new: Hunt [14] shows 
the existence of an Npcomplete set which is recognizable nondeterministically in 
linear time, and Book and Greibach [S] prove that every set recognizable non- 
deterministically in linear time is recognizable by a nondeterministic two-tape 
Turing machine in real time. However, our set is produced directly, and is fairly 
simple. The existence of such a set is a best-possible result, since Rabin and Scott 
[17] show that every set which is recognized by a one-tape nondeterministic 
Turing machine in real time is recognized by a one-tape deterministic Turing 
machine in real time. 

Let REAL= {aI #a, #*a* #az,:rEZ+;aiE {O,l, 23* foreachi; 
ien(frJ = len(q for each i ~;andthere%ists 5 In {o, 1). suchthat 
len(b) = len (u,) for each I, and such that for each odd i there exists k such 
that the kth member of the string. b and the kth member of the string al 
are the same}. 

THEOREM 36. REAL is an NP-complete set which is recognized by a two- 
&ape nondeterministic ?king machine in red time. 

PROOF. Led M beatwo-tapenondeterminis&Turingmnehinewhich 
works as follows: As or is being read on the first, or input tape, M nondeter- 
ministically prints some b in {0, 1). on the second tape, such that len(b) = 
len(or); meanwhile, M checks to make sure that, for some k, the kth digit of b 
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is the same as the kth digit of 0,. WhenM reads # on the input tape and starts read- 
ing+ the second tape head runs back over b on the second tape and uses the length 
of b to measure the length of a,. If len(ua) # len(b), then M halts and rejects. If 
led = Ien( then the tape heads are in a position to compare b ando, digit by 
digit. M continues in the obvious way. Clearly, M recognizes REAL in real time. 

SAT a REAL: Let 0 be a conjunctive normal form expression, with 
clauses Cl, l - - 

- 
, C,, and propositional letters At , l ** , A,. (If 6 = nc\, WiB,], 

then each W, B,, is a clause.) We can assume that no zause C, contains’ 
both A, and cy A, for any k, or else that clause can be eliminated. Let &, 
be the expression aI # a2 # l l l #a,,, where each aI is of length n, where 
if i is even, then ui is a string of tallies, and where if i = 2s - 1 is odd, then 
for each k (1 6 k < n), the kth digit of af is as follows: 

I 

0, if -A, appears in the sth clause, 
1, if A, appears in the sth clause, 
2, otherwise. 

For any reasonable encoding e, there exists a constant c such that if the 
encoding e(0) of 8 is of length I, then I Z c 4 max(r, n). Now & has 
length 2m+2r-l,whichisdominatedby 212/c+21/c-L Soif’f isthe 
function which (in general) maps e(0) onto & (and which maps strings not of 
the form e(6) onto a fuced string not in REAL.), then it is easy to see that 
f f II (we are assuming that {e(O): 8 is a formula in conjunctive normal form) 
is in P, which is also true for any reasonable encoding e). Most importantly, 
it is clear that 6 is satisfiile iff /& f REAL. Hence, SAT 4: REAL Cl 

Bibliography 

1. G. Asser, Das Rep&entantenproblem im Pnidikutenkalkiil de? emten Stufe mit 
Identiillt. 2. Math Lqik Grundlagcn Math. 1 (1955). 252-263. MR 17. 1038. 

2. J. If. Bennet& On specjm. Doctoral D-on, Princeton University. Princeton. 
N. J., 1962. 

3. R V. Book, On bnguages accepted in polynomial ttme, SIAM J. Comput. 1 (1972). 

281-287. 
4. -, Computing complex&y classes (submitted for publication). 

5. R V. Book and S. Greibach, Quasi-~alrime languages, Math Systems Theory 4 

(1970). 97-111. MR 43 #1772. 

6. A. Cobham, The intrinsic computazional difflcu!ty of functions, Logic, Methodology, 

and Philos. (Proc. 1964 Internat. Congress). North-Holland, Amatadam, 1965. pp. 24-30. 

MR 34 #737& 

7. S. Cook, The complexfty of theorem-pro&g procedures, Conference Record of 

Third ACM Sympoa. on Theory of Computing, 1970, pp. 151-158. 



GENERALIZED FIRST-ORDER SPECTRA 73 

8. S Cook. A hierarchy for nondeterministic ffme complexity, Rot. Fourth ACM 

Sympm. on Theory of Computing, 1972, pp. 187-192. 

9. R Fagin, Contibutiona ?o the wm&l ihcory of fialocs&ac~ DoctoraI I%uezta- 

Uon, University of California, Berkeley, Calif., 1973. 

10. k Grtegorczyk, Some classes of recur&e functions, Rozprawy Mat. 4 (1953). 
pp. 145. MR IS. 667. 

- 11.1. Hartmanis, P. M. Lewis II and R. E. Steams, ii&m&r&s of memory fhntted 
computarions, IEEE Conference Record on Switching Circuit Theory and Logical Design, Ann 

Arbor, Mich., 1965, pp. 179-190. 

12. J. Hartmanis and R. E. Steams, On the computational complexity of algotithms, 
Trans. Amer. Math. Sot. 117 (196S), 285-306. MR 30 #1040. 

13. J. E. Hopcroft and I. D. Ullman, Formal languages and their relation fo automata, 
Addison-Wesley, Reading, Mass., 1969. MR 38 #S533. 

14. H. B. Hunt III, On the tfme and tape complexity of languages, Technical Report 

73-156, Cornell Univ., Ithaca, N. Y., Jan. 1973. 

IS. N. D. Jones and A. L. Selman. Iking machInes and fhe specfm of first-order 
form&s wifh equality, Proc. Fourth ACM Sympoa. on Theory of Computing, 1972, pp. 

157-167. 

16. FL M. Karp, Reducibility among combinatodal problems, Technical Report 3. 

University of C&for&, Berkeley. April 1972; ALso in Camp&x@ of comprctcr compul- 
ffons (ed. R E. Miier et al.), Plenum Preaa, New York, 1972. 

17. M. 0. Rabin and D. Scott, Finite automata and their decision problems, IBM 

J. Res. Develop. 3 (1959), pp. 114-125; Also in ieque&aI machines: selecledpapers (ed. 

E. F. Moore), Addison-Wedey, Reading, Mass., 1964, pp. 63-91. MR 21 # 2559. 

18. R. W. Ritchie, Classes of predictably computable funcfions, Trans. Amer. Math. 

Sot. 106 (1963), 139-173. MR 28 #2045. 

19. J-3. Rogen, l%eory of nxursfve functions Md @fictive computability, McGraw-Hill, 

New York, 1967. MR 37 #61. 
20. W. J. Savitch. Relationships between nonderermfnirtfc and deterministic mpe 

COmpkihm. J. Comput. Systems ScL 4 (1970). 177-192. MR 42 #16OS. 
21. H. SchoIz, J. Symbolic Logic 17 (1952). 160. 

22. J. It.. Shoenlleld, h&zhemaiicol logic, Addiw~WcsIey. Reading. Mama., 1967. 

MR 37 #1224. 

23. A. Tarski, Confriburfons lo tl:e theory of mdoek I, II, NederL Akad. Wetenach. 

Rot. Ser. A. 57 = Indag. Math. 16 (1954), 572-588. MR 16, 554. 
24. A. M. Turing. On computable numben wirh an appficatfon to the Ennchefdungs 

prob&m, Proc. London Math Sot. (2) 42 (1936). 230-265; correction. Ibid. (2) 43 (1937) 

344-546. 

Z J. WATSON RESEARCH CENTER. IBM 


	title
	genspec

