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Abstract. We present a novel definition of privacy in the framework of offline (retroactive) database
query auditing. Given information about the database, a description of sensitive data, and assumptions
about users’ prior knowledge, our goal is to determine if answering a past user’s query could have led
to a privacy breach. According to our definition, an audited property A is private, given the disclosure
of property B, if no user can gain confidence in A by learning B, subject to prior knowledge con-
straints. Privacy is not violated if the disclosure of B causes a loss of confidence in A. The new notion
of privacy is formalized using the well-known semantics for reasoning about knowledge, where logi-
cal properties correspond to sets of possible worlds (databases) that satisfy these properties. Database
users are modeled as either possibilistic agents whose knowledge is a set of possible worlds, or as
probabilistic agents whose knowledge is a probability distribution on possible worlds.
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2:2 A. EVFIMIEVSKI ET AL.

1. Introduction

Today, privacy protection has become a popular and even fashionable area of
database research. This situation is, of course, quite natural, given the importance
of privacy in our social life and the risks we face in the digital world. These risks
were highlighted by numerous recent reports of personal data theft and misappro-
priation, prompting many countries to enact data protection laws [Australia 1998;
Canada 2000; U.S. Congress 1996; E.U. Parliament 1995]. However, the current
state of scientific knowledge still does not allow the implementation of a compre-
hensive privacy solution that guarantees provable protection. In fact, the notion of
privacy itself has many definitions and interpretations, some focused on theoretical
soundness, others on practical usefulness. This article attempts to reduce the gap
between these two aspects by exploring more flexible yet sound definitions.

One typical privacy enforcement problem, called query auditing, is to determine
if answering a user’s database query could lead to a privacy breach. To state the
problem more accurately, we assume that the auditor is given:

—The database at the time of the user’s query, or some partial knowledge about
that database;

—A description of information considered sensitive, often called the privacy policy
or the audit query;

—Assumptions about the user’s prior knowledge of the database, of the audit
query/privacy policy, and of the auditor’s privacy enforcement strategy if it
exists;

—The user’s query, or a range of queries.

The auditor wants to check whether answering a given query could augment the
user’s knowledge about some sensitive data, thereby violating the privacy of that
data. This problem has two extensions: proactive privacy enforcement by means
of online auditing [Kenthapadi et al. 2005], and retroactive (offline) auditing.1

In the proactive (online) privacy enforcement scenario, users issue a stream
of queries, and the database system decides whether to answer or to deny each
query. The denial, when it occurs, is also an “answer” to some (implicit) query
that depends on the auditor’s privacy enforcement strategy, and therefore it may
disclose sensitive data. The strategy has to be chosen in advance, before the user’s
queries become available. A strategy that protects privacy for a specified range of

1 The term “offline” in data privacy auditing is ambiguous. We suggest to separate the following three
concepts:

Online proactive auditing. The auditor receives the user’s queries one by one, and must decide
on the spot whether to answer the query or to refuse it, before the user submits the next query. Both
the user and the auditor know the past queries and answers before they choose their next query or
response.

Offline proactive auditing. The auditor receives all queries at once, and then decides which queries
to answer and which to refuse. The user still learns which queries were refused, and may take
advantage of this. But the user cannot choose future queries based on the past responses.

Offline retroactive auditing. The database receives queries one by one and answers all of them;
no refusals. Much later, the auditor goes back and identifies all queries that could have leaked
sensitive information. The user never learns which queries were identified as leaky (unless at criminal
proceedings).
The last concept, offline retroactive auditing, is the one studied in this article.
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queries represents a solution to this auditing problem. An in-depth discussion of
online auditing can be found in Kenthapadi et al. [2005] and Nabar et al. [2006]
and papers referenced therein.

In the retroactive (offline) scenario, the users issue their queries and receive
the answers; later, an auditor checks if a privacy violation might have occurred.
The audit results are not made available to the users, so the auditor’s behavior
no longer factors into the disclosure of data, and this considerably simplifies the
problem. This also allows for more flexibility in defining sensitive information:
while in the proactive case the privacy policy is typically fixed and open to the
users, in the retroactive case the audit query itself may be sensitive, for example,
based on an actual or suspected privacy breach [Agrawal et al. 2004; Motwani et al.
2008]. Retroactive auditing is the application that motivates this article, although
our framework turns out to be fairly general.

To further illustrate this, suppose Alice asks Bob for his HIV status. Assume
that Bob never lies and considers “HIV-positive” to be sensitive information, while
“HIV-negative” is for him OK to disclose. Bob is HIV-negative at the moment;
can he adopt the proactive strategy of answering “I am HIV-negative” as long as
it is true? Unfortunately, this is not a safe strategy, because if he does become
HIV-positive in the future, he will have to deny further inquiries, and Alice will
infer that he contracted HIV. The safest bet for Bob is to always refuse an answer.2

For the retroactive scenario, suppose that Bob contracted HIV in 2006. Alice,
Cindy and Mallory legitimately gained access to Bob’s health records and learned
his HIV status, but Alice and Cindy did it in 2005 and Mallory did in 2007. Bob
discovers that his disease is known to the drug advertisers, and he initiates an audit,
specifying “HIV-positive” as the audit query. The audit will place the suspicion on
Mallory, but not on Alice and Cindy.

In legal practice, retroactive law enforcement has shown to be better suited to the
complex needs of our society, although proactive measures are used too, especially
in simple or critical situations. For example, a valuable item can be protected from
theft by lock and key (a proactive measure) or by the fear of being caught and
jailed (a retroactive measure). If it is simple to fence off the item and distribute the
keys to all authorized users, or if the item has extraordinary value, then proactive
defense is the best option, but in less clear-cut cases this would be too cumbersome
or intrusive. After all, even an authorized user might steal or lose the item, and
even a stranger sometimes should be able to gain access to it, for example, in an
emergency. Healthcare [Agrawal et al. 2002] is one area where the complexity of
data management is just too high to hope for a fully proactive solution to privacy.
The importance of retroactive disclosure auditing in healthcare has been recognized
by the U.S. President’s Information Technology Advisory Committee [PITAC
2004], which recommended that healthcare information systems have the capability
to audit who has accessed patient records. We believe in coexistence and importance
of both auditing approaches.

1.1. PRIVACY DEFINITIONS IN QUERY AUDITING. The art of encryption and
cryptanalysis goes back to antiquity, but the scientific maturity of privacy theory

2 If Alice pays Bob for answers, he can balance privacy and profit by tossing a coin and answering
“I am HIV-negative” only if the coin falls heads.
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was made possible only in modern times by mathematical modeling of the
eavesdropper’s knowledge. One of the first such models was proposed by Shannon
[1949], who introduced the notion of perfect secrecy. Shannon suggested to repre-
sent the adversarial knowledge by a probability distribution over possible private
data values: prior distribution before the cryptogram is revealed, and posterior
distribution after the adversary sees the cryptogram (but not the key). Perfect
secrecy corresponds to the situation where the posterior distribution is identical
to the prior, for every possible cryptogram. This general idea has been later
adapted and extended to many privacy frameworks and problems, including query
auditing.

Denote by � the set of all possible databases, and by A and B two properties of
these databases; each database ω ∈ � either has or does not have each property.
Assume that the actual database satisfies both A and B. Suppose that property A is
sensitive, and property B is what user Alice has learned by receiving the answer to
her query. Was the privacy of A violated by the disclosure of B? This depends on
what Alice knew before learning B; for example, if she knew “B ⇒ A” (but did
not know A), then B of course revealed to her that A is true. On the other hand,
if Alice already knew that A is true, then B could no longer reveal A and may be
waved through by the auditor.

Miklau and Suciu [2004] applied Shannon’s model to this problem and declared
A to be private given B if and only if, for all probability distributions P over �
that might describe Alice’s prior knowledge about the database, we have

P[A | B] = P[A]. (1)

Unfortunately, if no constraints are placed on P , no pair (A, B) of nontrivial
properties (A, B �= ∅ or �) will satisfy this privacy definition. To see this, take a
database ω1 ∈ �− B, then take another database ω2 ∈ � so that ω1 ∈ A ⇔ ω2 /∈ A.
This is possible since neither A nor B equals ∅ or �. Assign the probability
P(ω1) = P(ω2) = 1/2 and P(ω) = 0 everywhere else; if the actual database,
which must have a nonzero probability (see why in Remark 2.3), is ω∗ /∈ {ω1, ω2},
assign P(ω1) = P(ω2) = P(ω∗) = 1/3. We have P[A | B] �= P[A], because the
(prime) denominator in P[A] cannot appear in P[A | B].

Miklau and Suciu [2004] considered a quite limiting, yet popular, constraint:
that Alice treats all database records r ∈ ω independently, that is, P is a product
distribution:

P(ω) = ∏
r∈ω P[r ] × ∏

r /∈ω(1 − P[r ]).

Under this constraint, they prove that property A is private given the disclosure
of B if and only if they share no critical records (Theorem 3.5 in Miklau and
Suciu [2004]). A database record is called “critical” for A (for B) if its presence
or absence in some database may decide the truth value of A (of B). This can
be a real record r that belongs to the actual database (r ∈ ω∗), or an imagi-
nary record r /∈ ω∗ made up from an arbitrary combination of attribute values.
For many properties A and B that, in practice, have nothing to do with each
other, we can make up an imaginary record r and a pair ωA and ωB of imaginary
databases such that inserting r into ωA (into ωB) flips the truth value of A (of B).
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For example, if

A � ∃X PATIENTID (Bob, X ) & DISEASE (X, HIV+)
B � ¬ ∃Y PATIENTID (Chris, Y ) & DISEASE (Y, HIV+)
ω∗ = {PATIENTID (Diana, 123), DISEASE (123, Flu)}

then A and B share a critical record r = DISEASE (123, HIV+) even though patient
#123 is Diana, all patients are HIV-negative, and Bob is not even registered at the
hospital. The imaginary databases are

ωA = {PATIENTID (Bob, 123)}; ωB = {PATIENTID (Chris, 123)}.
One can see that, even with prior knowledge restricted to product distributions,
very few practical queries would get privacy clearance: perfect secrecy appears too
demanding to be practical.

A number of recent papers studied ways to relax condition (1) and make it
approximate. They follow the same principle: for certain pairs (ρ1, ρ2) of numerical
bounds, ρ1 < ρ2, require that

P[A] � ρ1 ⇒ P[A | B] � ρ2,

where P is a prior knowledge distribution. This idea is behind the definition of
ρ1-to-ρ2 privacy breach in Evfimievski et al. [2003]; Kenthapadi et al. [2005] use
a slightly different version as part of their definition:

1 − λ � P[A | B] / P[A] � 1/(1 − λ)

The Sub-Linear Queries (SuLQ) framework developed in Blum et al. [2005], Dinur
and Nissim [2003], and Dwork and Nissim [2004] has a more sophisticated version
with nice theoretical characteristics:

Pr
[

log
P[A | B]

1 − P[A | B]
− log

P[A]

1 − P[A]
> ε

]
� δ. (2)

Conceptually, they all require that no user can gain much confidence in the au-
dited property A by learning the disclosed property B, subject to prior knowledge
constraints.

Perhaps surprisingly, however, all papers known to us, in their proofs if not
in their definitions, do not make any distinction between gaining and losing the
confidence in A upon learning B. For example, the SuLQ results remain in force
if the privacy definition of Blum et al. [2005] is changed by placing the absolute
value sign “|...|” over the difference in (2). In Dwork and Nissim [2004], the “|...|”
appears in the definition explicitly.

It turns out that taking advantage of the gain-vs.-loss distinction yields a remark-
able increase in the flexibility of query auditing. To bring it into focus, we shall put
aside the approximate privacy relaxations and replace Eq. (1) with inequality

P[A | B] � P[A] (3)

That is, we call property A private given the disclosure of property B when (3)
holds for all distributions P that are admissible as a user’s prior knowledge. One
might call this “semiperfect secrecy,” for it has the same sort of “absolute” form as
perfect secrecy. This and related notions are the subject of this article.
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2:6 A. EVFIMIEVSKI ET AL.

Let us illustrate its flexibility with a simple example of Alice (a user) and Bob
(a patient). The hospital’s database ω has two records: r1 = “Bob is HIV-positive”
and r2 = “Bob had blood transfusions.” The sensitive property A is the presence
of r1, that is, the fact that Bob is HIV-positive. The property B that Alice queries and
learns is “r1 ∈ ω implies r2 ∈ ω,” in other words, that “if Bob is HIV-positive, then
he had blood transfusions.” We make no constraints on Alice’s prior knowledge
distribution, other than a nonzero probability of the actual database. Could the
disclosure of B violate the privacy of A? Look at the following table of possible
worlds:

r2 ∈ ω r2 /∈ ω

r1 ∈ ω A is true A is true �
r1 /∈ ω A is false A is false

For Alice, learning B has the effect of ruling out the cell marked with a �, while
leaving the other cells untouched. Whatever the cells’ prior probabilities are, the
odds of A can only go down: P[A | B] � P[A]. Thus, A is private with respect
to B, even though A and B share a critical record r1, and regardless of any possible
dependence among the records.3

A closely related phenomenon was noticed in the 1940’s by the mathematician
George Pólya in the context of his studies of how mathematicians solve their
problems. He wrote a popular and highly acclaimed book, recently reissued, about
problem solving [Pólya 1957], followed by more in-depth monographs Pólya [1954,
1968]. Pólya observed the following rule of plausible reasoning:

If A then B B is true

A more credible
,

where “more credible” means that P[A | B] � P[A]. It is easy to show in the same
manner that the rule holds regardless of one’s prior knowledge.

1.2. SUMMARY OF RESULTS. This article studies a notion of database privacy
that makes it illegal for users to gain confidence about sensitive facts, yet allows
arbitrary confidence loss. We begin in Sections 2 and 3 by introducing two novel
privacy frameworks that implement the above concept for two different knowledge
representations: possibilistic and probabilistic. We outline some properties of our
privacy definitions that are relevant to the problem of testing privacy, and give
necessary and sufficient conditions for privacy with no restrictions on the user’s
prior knowledge.

Section 4 delves deeper into the possibilistic model. For certain important cases,
notably when the constraints on a user’s prior knowledge are intersection-closed
(i.e., not violated by a collusion of users), we give necessary and sufficient criteria
for testing possibilistic privacy, which also reduce the complexity of this problem.

Sections 5 and 6 focus on the more complex probabilistic model, over the set
{0, 1}n of Boolean vectors that represent subsets of database records. Section 5 stud-
ies two probabilistic prior knowledge constraints: bit-wise independence (product
distributions) and log-supermodularity. The bit-wise independence constraint was

3 Note that if Bob proactively tells Alice “If I am HIV-positive, then I had blood transfusions,” a
privacy breach of A may occur, because Alice may learn more than just B. For example, Alice then
learns that Bob is thinking about his HIV status.
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used also in Miklau and Suciu [2004], so our work can be viewed as an extension
of theirs. Log-supermodularity is chosen to provide a “middle ground” between
bit-wise independence and the unconstrained prior knowledge. We give simple
combinatorial necessary criteria and sufficient criteria for privacy under the log-
supermodular and the product distribution constraints.

In Section 6, we study more general families � of distributions over {0, 1}n that
can be described by the intersection of a finite number of polynomial inequalities
in a finite number of real-valued variables. We prove that even for certain very
restricted �, deciding whether a set B ⊆ {0, 1}n violates the privacy of a set
A ⊆ {0, 1}n with respect to distributions in � cannot be done in polynomial time,
unless P = NP.

We overcome this negative result in two ways. First, using some deep results
from algebraic geometry, we show that in certain interesting cases, such as when
� is the family of product distributions, there are provably efficient algorithms
for deciding privacy. Second, we describe the sum-of-squares heuristic, introduced
in Shor [1987], Shor and Stetsyuk [1997], and Parrilo [2000], and its application
for deciding privacy for any �. The heuristic has been implemented and works
remarkably well in practice [Parrilo and Sturmfels 2001].

2. Worlds and Agents

Epistemology, the study of knowledge, has a long and honorable tradition in phi-
losophy, starting with the early Greek philosophers. Philosophers were concerned
with questions such as “What does it mean to say that someone knows something?”
In the 1950’s and 1960’s [Hintikka 1962; Kripke 1963; van Wright 1951], the focus
shifted more to developing an epistemic logic, a logic of knowledge, and trying
to capture the inherent properties of knowledge. Here there is a set � of possible
worlds, one of which is the “real world” ω∗. An agent’s knowledge is a set S ⊆ � of
worlds that the agent considers possible. Since we are modeling knowledge rather
than belief, we require that ω∗ ∈ S. If F is a (possible) fact, and A ⊆ � is the set
of possible worlds where F is true, then we say that the agent knows F if and only
if S ⊆ A.

More recently, researchers in such diverse fields as economics, linguistics, ar-
tificial intelligence, and theoretical computer science have become interested in
reasoning about knowledge [Fagin et al. 1995]. The focus of attention has shifted
to pragmatic concerns about the relationship between knowledge and action. That
is our focus: the effect of an action, such as the disclosure of certain information,
on the knowledge of an agent.

Worlds. Let � be a finite set of all possible databases. We shall call a database
ω ∈ � a world, and the entire � the set of all possible worlds. The actual world,
denoted by ω∗, represents the real database. Every property of the database, or
assertion about its contents, can be formulated as “ω∗ ∈ A” where A ⊆ � is the
set of all databases that satisfy the property. A subset A ⊆ � that contains ω∗ shall
be called a knowledge set.

Agents. We shall think of database users as agents who know something about
the worlds in � and who try to figure out which ω ∈ � is the actual world ω∗.
An agent’s knowledge can be modelled in different ways; we shall consider two
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2:8 A. EVFIMIEVSKI ET AL.

approaches. In a possibilistic agent, knowledge is represented by a set S ⊆ � that
contains exactly all the worlds this agent considers possible. In particular, ω∗ ∈ S.
Here every world is either possible or not, with no ranking or score assigned.
In a probabilistic agent, knowledge is represented by a probability distribution
P : � → R+ that assigns a nonnegative weight P(ω) to every world. We denote
the sum

∑
ω∈A P(ω) by P[A], requiring that P[�] = 1 and P(ω∗) > 0; by R+ we

denote the set of all non-negative real numbers.
We say that a possibilistic agent with knowledge S knows a property A ⊆ �

when S ⊆ A. We say that A is possible for this agent when S ∩ A �= ∅, that is,
when the agent does not know �− A. For a probabilistic agent with distribution P ,
to know A means to have P[A] = 1, and to consider A possible means to have
P[A] > 0.

A function Q whose domain is � shall be called a query; if its range is {0, 1}
then Q is a Boolean query. For a given actual world ω∗, each query Q corresponds
to the knowledge set associated with the query’s “actual” output: {ω ∈ � | Q(ω) =
Q(ω∗)}.

The Auditor. There is a special “meta-agent” called the auditor whose task is to
analyze the queries disclosed to the users and determine which of these disclosures
could breach privacy. The auditor may or may not have complete information about
the actual world ω∗. For example, if the query disclosure occurred several years
ago, the record update logs may provide only a partial description of the database
state at that moment. Even more importantly, the auditor does not know what
the user’s knowledge of the database was at the disclosure time. We characterize
the auditor’s knowledge by specifying which pairs of a database ω and the user’s
knowledge S (or P) the auditor considers possible. Let us formally define the
auditor’s knowledge about a user:

Definition 2.1. (Possibilistic case) A possibilistic knowledge world is a pair
(ω, S), where ω is a world and S is a knowledge set, which satisfies ω ∈ S ⊆ �.
The set of all possibilistic knowledge worlds shall be denoted as

�poss := {(ω, S) |ω ∈ S ⊆ �}.
�poss can be viewed as an extension of �. For a given user whose knowledge

is S∗ ⊆ �, the pair (ω∗, S∗) ∈ �poss is called the actual knowledge world. The
auditor’s knowledge about the user is defined as a nonempty set K ⊆ �poss of
knowledge worlds, which must include the actual knowledge world. We refer to K
as a second-level knowledge set.

We now give the intuition behind a second-level knowledge set K . Assume
K = {(ω1, S1), (ω2, S2), . . .}. Then, the auditor knows that either (i) ω1 is the
actual world and the agent’s knowledge set is S1 (the latter means that the agent
knows that the actual world is contained in S1), or (ii) ω2 is the actual world and the
agent’s knowledge set is S2, or . . . . In particular, the auditor knows that (a) the actual
world is one of ω1, ω2, . . . , and the auditor knows that (b) the agent’s knowledge
set is one of S1, S2, . . . . The second-level knowledge set provides richer knowledge
for the auditor than simply the knowledge of (a) and (b) together, since the second-
level knowledge set ties together choices for the actual world with choices for the
agent’s knowledge set. Note also that if the auditor knows that the actual world is
ω∗, then the second-level knowledge set is of the form {(ω∗, S1), (ω∗, S2), . . .}.
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Our knowledge worlds (ω, S) are similar to the 2-worlds of Fagin et al. [1991], ex-
cept that the 2-worlds of Fagin et al. [1991] would deal not only with the knowledge
that the user has of the world, but also with the knowledge that the auditor has of the
world. Also, our second-level knowledge sets are similar to the 3-worlds of Fagin et
al. [1991], except that the 3-worlds of Fagin et al. [1991] would deal not only with
the knowledge that the auditor has about the user’s knowledge of the world, but also
with the knowledge that the user has about the auditor’s knowledge of the world.

Definition 2.2. (Probabilistic case) A probabilistic knowledge world is a pair
(ω, P) where P is a probability distribution over � such that P(ω) > 0. The set of
all probabilistic knowledge worlds shall be denoted as

�prob := {(ω, P) | P is a distribution, P(ω) > 0}.
The actual knowledge world (ω∗, P∗) ∈ �prob and the auditor’s second-level knowl-
edge set K ⊆ �prob are defined analogously to the possibilistic case.

Remark 2.3. The requirement of ω ∈ S for every pair (ω, S) ∈ �poss and
of P(ω) > 0 for every pair (ω, P) ∈ �prob represent our assumption that every
agent considers the actual world possible. All pairs that violate this assumption are
excluded as inconsistent. Note that a probabilistic pair (ω, P) is consistent if and
only if the possibilistic pair (ω, supp(P)) is consistent, where supp(P) is defined
next.

Definition 2.4. The support set of a probability distribution P over � is the set
supp(P) := {ω | P(ω) > 0}. For a family � of probability distributions over �,
we define a family supp(�) of nonempty subsets of � as follows: supp(�) :=
{supp(P) | P ∈ �}.

Remark 2.5. In practice, it may be computationally infeasible to precisely char-
acterize the auditor’s second-level knowledge and to use this precisely characterized
knowledge in the privacy definitions. Instead, the auditor makes assumptions about
the database and the user’s knowledge by placing constraints on the possible pairs
(ω, S) or (ω, P). These assumptions and constraints are also represented by a
second-level knowledge set, which must contain the auditor’s precise knowledge
set as a subset. From now on, when we talk about the auditor’s knowledge set, we
mean the assumptions, accepted by the auditor, that form a superset of the actual
knowledge set, unless stated otherwise.

Definitions 2.1 and 2.2 allow us to consider an auditor whose assumptions about
the user’s knowledge depend on the contents of the database. For example, the
auditor may assume that, if the hospital database contains record “Bob’s doctor
is Alice,” then Alice knows Bob’s HIV status, but if there is no such record, then
Alice may or may not know it. However, in many situations we can separate the
auditor’s knowledge about the database from the auditor’s assumptions about the
user. We do so by specifying two sets:

(1) A nonempty set C ⊆ � that consists of all databases the auditor considers
possible, with ω∗ ∈ C ;

(2) A family 	 of subsets of � and/or a family � of probability distributions
over �. The possibilistic agent’s knowledge has to belong to 	, and the prob-
abilistic agent’s knowledge has to belong to �.
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2:10 A. EVFIMIEVSKI ET AL.

If the auditor knows the actual database exactly, for example, by reconstructing
its state from the update logs, then C = {ω∗}; if the auditor has no information
about the database or is unwilling to take advantage of it, then C = �. Some
choices for 	 and � will be discussed in the subsequent sections.

When we say that the auditor’s knowledge is represented by C and 	 described
above, we mean that all knowledge worlds (ω, S) with ω ∈ C and S ∈ 	, and
none other, are considered possible by the auditor. However, in most cases the
auditor’s second-level knowledge set cannot be the Cartesian product C × 	,
because it contains inconsistent (ω, S) pairs (see Remark 2.3). The same is true
in the probabilistic case, for C and �. Let us then define a product operation that
excludes all inconsistent pairs:

Definition 2.6. The product of a set C ⊆ � and a family 	 of subsets of �
(a family � of probability distributions over �) is a second-level knowledge set
C ⊗ 	 (C ⊗ �) defined by

C ⊗ 	 := {(ω, S) ∈ C×	 |ω ∈ S} = (C×	) ∩ �poss

C ⊗ � := {(ω, P) ∈ C×� | P(ω) > 0} = (C×�) ∩ �prob

We call the pair (C, 	) or (C, �) consistent if their product C ⊗ 	 or C ⊗ � is
nonempty, because ∅ is not a valid second-level knowledge set.

Remark 2.7. The product C ⊗ 	 (or C ⊗ �) computes the maximum second-
level knowledge set K ⊆ �poss (or K ⊆ �prob) that is a subset of C × 	 (or
C × �).

The auditor can safely discard from 	 all sets that have empty intersection
with C , and from � all probabilities P that have P[C] = 0, because they do not
allow ω∗ ∈ C as a possibility. In particular, the empty set ∅, if present in 	, is
always discarded.4 In the same way, a world ω ∈ C can be safely discarded if for
all S ∈ 	 (P ∈ �) we have ω /∈ S (P(ω) = 0). When a pair (C, 	) has nothing to
discard in this manner, we shall call it nonexcessive; analogously for (C, �).

Remark 2.8. It is easy to see that the following conditions are equivalent:

(1) Pair (C, 	) is nonexcessive;
(2) π1(C ⊗ 	) = C and π2(C ⊗ 	) = 	, where πi is the projection operation;
(3) ∃ K ⊆ �poss such that C = π1(K ) and 	 = π2(K );
(4) In the bipartite graph with vertices ω ∈ C and S ∈ 	, where (ω, S) is an edge

if and only if ω ∈ S, there are no isolated vertices.

A probabilistic-knowledge pair (C, �) is nonexcessive if and only if the possi-
bilistic knowledge pair

(
C, supp(�)

)
is nonexcessive.

3. Privacy of Knowledge

This section introduces the definition of privacy for the possibilistic and the proba-
bilistic knowledge models. Let A, B ⊆ � be two arbitrary nonempty subsets of �;

4 The empty set may be added to 	 in order to make it ∩-closed: ∀ S1, S2 ∈ 	 : S1 ∩ S2 ∈ 	. See
Section 4.1 for more on ∩-closed knowledge.
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as a shorthand, write Ā = � − A and AB = A ∩ B. Sets A and B correspond
to two Boolean queries on the database ω∗; for example, query A returns “true” if
ω∗ ∈ A and “false” otherwise.

We shall study the following question: When could the disclosure of B violate
the privacy of A? In our model, a positive result of query A is considered private
and needs protection, whereas a negative result (that asserts Ā) is not protected.
Neither the user nor the auditor are assumed to know if A is true, and A may
actually be false. On the other hand, B represents the disclosed fact, and therefore
B has to be true. The auditor knows that B is true; the user transitions from not
knowing B to knowing B.

The user modifies his knowledge when he receives a disclosed query result. The
disclosed knowledge set B ⊆ � tells him that every world in � − B is impossible.
We model the user’s acquisition of B as follows. A possibilistic agent with prior
knowledge S ⊆ �, upon receiving B such that SB �= ∅ (because ω∗ ∈ SB),
ends up with posterior knowledge SB. A probabilistic agent with prior distribution
P : � → R+, upon receiving B such that P[B] � P(ω∗) > 0, ends up with
posterior distribution P(· | B) defined by

P(ω | B) =
{

P(ω)/P[B], ω ∈ B
0, ω ∈ � − B

Notice that the acquisition of B1 followed by B2 is equivalent to the acquisition of
B1 B2 = B1 ∩ B2.

Conceptually, we say that property A is private, given the disclosure of
property B, if the user could not gain confidence in A by learning B. Below, we
shall make this notion precise for the two knowledge models, possibilistic and
probabilistic. From this section on, we shall use pronoun “he” for the user and
“she” for the auditor.

3.1. POSSIBILISTIC PRIVACY. Let us suppose first that the auditor knows every-
thing: the actual database ω∗ such that ω∗ ∈ B, and the actual knowledge set S∗
of the user at the time of the disclosure. In the possibilistic model, the user may
have only two “grades of confidence” in property A: he either knows A (S∗ ⊆ A),
or he does not (S∗ �⊆ A). The user gains confidence when he does not know A
before learning B (i.e. S∗ �⊆ A) and knows A after learning B (i.e. S∗ ∩ B ⊆ A).
Therefore, the privacy of A is preserved if and only if ¬ (S∗ �⊆ A & S∗ ∩ B ⊆ A),
or equivalently, if and only if

S∗ ∩ B ⊆ A ⇒ S∗ ⊆ A. (4)

Now, suppose that the auditor does not know ω∗ and S∗ precisely, but has a second-
level knowledge set K ⊆ �poss such that (ω∗, S∗) ∈ K . Then, the auditor makes
sure that A is private given B by checking condition (4) for all pairs in K . Before
doing so, the auditor must discard from K all pairs (ω, S) such that ω /∈ B,
because they are inconsistent with the disclosure of B. We arrive at the following
possibilistic privacy definition:

Definition 3.1. Set A ⊆ � is called K -private given the disclosure of set
B ⊆ �, for K ⊆ �poss, when

∀ (ω, S) ∈ K : (ω ∈ B & S ∩ B ⊆ A) ⇒ S ⊆ A. (5)

We denote this predicate by SafeK (A, B).
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When the auditor wants to separate her knowledge about the database from her
assumptions about the user’s knowledge, she represents her second-level knowledge
set K as a product C ⊗ 	, where C ⊆ � and 	 is a family of subsets of �. In
this case, we shall use the term “(C, 	)-private” and the notation Safe C,	(A, B),
which is defined as Safe C⊗	(A, B). We use P (�) to denote the power set of �.

PROPOSITION 3.2. For a consistent pair (C, 	) such that C ⊆ � and
	 ⊆ P (�), the privacy predicate Safe C,	(A, B) can be equivalently defined as
follows (denoting S ∩ B ∩ C as SBC) :

∀ S ∈ 	 : (SBC �= ∅ & SB ⊆ A) ⇒ S ⊆ A. (6)

PROOF. The following sentences are trivially equivalent:

∀ S ∈ 	 : (SBC �= ∅ & SB ⊆ A) ⇒ S ⊆ A
∀ S ∈ 	 : (∃ ω ∈ SC : ω ∈ B & SB ⊆ A) ⇒ S ⊆ A
∀ S ∈ 	, ∀ ω ∈ SC : (ω ∈ B & SB ⊆ A) ⇒ S ⊆ A
∀ (ω, S) ∈ C ⊗ 	 : (ω ∈ B & SB ⊆ A) ⇒ S ⊆ A.

Thus, we have (6) ⇔ (5) for K = C ⊗ 	.

3.2. PROBABILISTIC PRIVACY. Once again, suppose first that the auditor knows
the actual database ω∗ ∈ B and the actual probability distribution P∗ that represents
the user’s knowledge prior to the disclosure. As opposed to Section 3.1, in the
probabilistic model the user has a continuum of “grades of confidence” in A,
measured by P∗[A]. The user gains confidence whenever his prior probability
of A before learning B, which is P∗[A], is strictly smaller than his posterior
probability of A after B is disclosed, which is P∗[A | B]. Therefore, the privacy
of A is preserved if and only if

P∗[A | B] � P∗[A]. (7)

The conditional probability P∗[A | B] is well-defined since P∗[B] � P∗(ω∗) > 0.
When the auditor does not know ω∗ and P∗, but has a second-level knowledge

set K ⊆ �prob such that (ω∗, P∗) ∈ K , she has to check inequality (7) for all
possible pairs (ω, P) in K . Before doing so, she must discard all pairs (ω, P) such
that ω /∈ B. We obtain the following probabilistic privacy definition:

Definition 3.3. Set A ⊆ � is called K -private given the disclosure of set
B ⊆ �, for K ⊆ �prob, when

∀ (ω, P) ∈ K : ω ∈ B ⇒ P[A | B] � P[A]. (8)

As before, we denote this predicate by SafeK (A, B).

When the auditor’s knowledge can be represented as a product C ⊗ � for some
C ⊆ � and some family � of probability distributions over �, we shall use
the term “(C, �)-private” and the notation Safe C,�(A, B), which is defined as
Safe C⊗�(A, B). In this case the following proposition can be used:

PROPOSITION 3.4. For a consistent pair (C, �) where C ⊆ � and � is a family
of distributions over �, the privacy predicate Safe C,�(A, B) can be equivalently
defined as follows:

∀ P ∈ � : P[BC] > 0 ⇒ P[AB] � P[A] P[B]. (9)
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PROOF. The following sentences are trivially equivalent:

∀ P ∈ � : P[BC] > 0 ⇒ ineq
∀ P ∈ � : (∃ ω ∈ BC : P(ω) > 0) ⇒ ineq
∀ P ∈ �, ∀ ω ∈ C : (P(ω) > 0 & ω ∈ B) ⇒ ineq
∀ (ω, P) ∈ C ⊗ � : ω ∈ B ⇒ ineq,

where “ineq” stands for “P[AB] � P[A] P[B],” which is equivalent to
“P[A | B] � P[A]” as long as the left-hand side of the implication is true. Thus,
we have (9) ⇔ (8) for K = C ⊗ �.

In fact, the definition of privacy given by (9) can be further simplified, for many
families � that occur in practice:

Definition 3.5. For a family � of distributions over �, denote

Safe�(A, B)
def⇐⇒ ∀ P ∈ � : P[AB] � P[A] P[B]. (10)

Notice that Safe�(A, B) is symmetric with respect to A and B, which may not
be the case for Safe C,�(A, B). Let us state the relationship between these two
predicates after the following definition:

Definition 3.6. We shall call a family � ω-liftable for ω ∈ � when ∀ P ∈ �
such that P(ω) = 0 it satisfies the condition

∀ ε > 0 ∃ P ′ ∈ � : P ′(ω) > 0 & ||P − P ′||∞ < ε. (11)

Family � is called S-liftable for a set S ⊆ � when � is ω-liftable for all ω ∈ S.
The norm ||P − P ′||∞ := maxω∈� |P(ω) − P ′(ω)|.

PROPOSITION 3.7. For every consistent pair (C, �) and for all A, B ⊆ � such
that BC �= ∅ (since ω∗ ∈ BC), we have:

Safe�(A, B) ⇒ Safe C,�(A, B);
Safe C,�(A, B) & � is C-liftable ⇒ Safe�(A, B). (12)

PROOF. Trivially, the definition (10) for Safe�(A, B) implies the characteri-
zation (9) for Safe C,�(A, B). To prove implication (12), assume that (9) holds,
but Safe�(A, B) does not hold, and arrive at a contradiction. Take some ω ∈ BC
and P ∈ � such that P[AB] > P[A] P[B], to violate (10). By (9), we must have
P[BC] = 0, so in particular P(ω) = 0. However, since ω ∈ C and � is C-liftable,
we can use condition (11) and pick P ′ ∈ � that is close enough to P to still have
P ′[AB] > P ′[A] P ′[B], yet already P ′(ω) > 0 and P ′[BC] > 0, violating (9).

3.3. PROPERTIES OF PRIVACY

Conservative Assumptions. It is easy to see from Definitions 3.1 and 3.3 that
SafeK (A, B) and K ′ ⊆ K imply SafeK ′(A, B), in both the possibilistic and the
probabilistic models. As a special case, if C ′ ⊆ C , 	′ ⊆ 	, and �′ ⊆ �,
then Safe C,	(A, B) ⇒ Safe C ′,	′(A, B), and Safe C,�(A, B) ⇒ Safe C ′,�′(A, B).
Therefore, the auditor may assume less than she actually knows (i.e., consider more
knowledge worlds possible) and still catch all privacy violations, at the expense of
restricting more queries.
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Disclosing Less Knowledge. In the possibilistic model, for all second-level
knowledge sets K ⊆ �poss that the auditor might have, for all private proper-
ties A ⊆ � and for all sets B, B ′ ⊆ � we have:

SafeK (A, B) & SafeK (A, B ′) ⇒ SafeK (A, B ∪ B ′). (13)

This immediately follows from (5) once we observe that ω ∈ B ∪ B ′ implies one
of ω ∈ B or ω ∈ B ′. Moreover, if the auditor has excluded from K all pairs
(ω, S) such that ω /∈ B, then the condition “SafeK (A, B ′)” is not necessary in (13):
∀ B, B ′ ⊆ �

π1(K ) ⊆ B & SafeK (A, B) ⇒ SafeK (A, B ∪ B ′).

In other words, in the possibilistic model it is always safer when less information has
been disclosed. However, in the probabilistic model, even the privacy preservation
under union (13) does not hold. Take, for example, � = {1, . . . , 6}, K = {1}⊗{P}
where P = uniform distribution, A = {1, 2, 3, 4}, B = {1, 2, 6} and B ′ = {1, 3, 6};
then we have:

P[A] = P[A | B] = P[A | B ′] = 2/3 < 3/4 = P[A | B ∪ B ′].

Both SafeK (A, B) and SafeK (A, B ′) hold, but SafeK (A, B ∪ B ′) does not hold.

Probabilities Refine Possibilities. If P : � → R+ is a probability distribution that
represents a user’s knowledge, then its support set supp(P) is the set of all worlds
that this user considers possible. More generally, every second-level probabilistic
knowledge set K ⊆ �prob can be converted into the possibilistic knowledge set

K ′ = {(ω, supp(P)) | (ω, P) ∈ K }.
It is easy to check directly by verifying Definition 3.1 that

∀ A, B ⊆ � : SafeK (A, B) ⇒ SafeK ′(A, B). (14)

Indeed, for every (ω, S) in K ′ such that ω ∈ B and S ∩ B ⊆ A, take (ω, P) ∈ K
such that S = supp(P). We have P[A | B] = 1 because A has all the support
of P that lies inside B, and we have P[A | B] � P[A] because SafeK (A, B),
(ω, P) ∈ K , and ω ∈ B (see Definition 3.3). Therefore, P[A] = 1 too, implying
S = supp(P) ⊆ A.

Equation (14) gives a useful necessary condition for SafeK (A, B). Also, as
we shall see in Section 5, it helps to understand K -privacy better by focusing
our attention on the important aspects of the auditor’s probabilistic knowledge
assumption.

For the simplified privacy predicate Safe�(A, B) introduced in Definition 3.5,
where � is a family of probabilities, we can make (14) slightly stronger and write,
for 	 = supp(�):

∀ A, B ⊆ � : Safe�(A, B) ⇒ Safe�,	(A, B) & Safe�,	( Ā, B̄). (15)

First, Safe�(A, B) ⇒ Safe�,�(A, B) by Proposition 3.7, which in turn implies
Safe�,	(A, B) by (14); and second, Safe�(A, B) ⇔ Safe�( Ā, B̄) due to the
following proposition:
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PROPOSITION 3.8. For all A, B ⊆ � and for all probability distributions P
over �, we have:

P[A] P[B] − P[AB] = P[AB̄] P[ ĀB] − P[AB] P[ Ā B̄]

= P[ Ā] P[B̄] − P[ Ā B̄]. (16)

PROOF. The first equality can be obtained as follows:

P[A] P[B] − P[AB] · 1

= (
P[AB] + P[AB̄]

)(
P[AB] + P[ ĀB]

) − P[AB]
(
P[AB] + P[ ĀB]

+ P[AB̄] + P[ Ā B̄]
) = P[AB̄] P[ ĀB] − P[AB] P[ Ā B̄].

Equality (16) follows by symmetry.

Multiple Disclosures. Assume that the user learns knowledge set B1 followed
by B2, which is equivalent to the acquisition of B1 B2. When the auditor’s second-
level knowledge set K represents her assumption about the user’s knowledge, rather
than her knowledge of the user’s knowledge (see Remark 2.5), she may want to
require that K remains a valid assumption after each disclosure. This property is
formalized below:

Definition 3.9. Let K be a second-level knowledge set, which may be pos-
sibilistic (K ⊆ �poss) or probabilistic (K ⊆ �prob). A set B ⊆ � is called
K -preserving when

Possibilistic K . For all (ω, S) ∈ K such that ω ∈ B, we have (ω, S ∩ B) ∈ K ;
Probabilistic K . For all (ω, P) ∈ K such that ω ∈ B, we have (ω, P(· | B)) ∈ K .

Suppose that knowledge sets B1 and B2 are individually safe to disclose,
while protecting the privacy of A, to an agent whose knowledge satisfies the
constraints defined by K . If, after B1 is disclosed, the updated agent’s knowl-
edge still satisfies the constraints, then it is safe to disclose B2 too. Thus, it is
safe to disclose both sets at once—as long as at least one of them preserves the
constraints:

PROPOSITION 3.10. For every second-level knowledge set K , possibilistic or
probabilistic, we have:

(1) B1 and B2 are K -preserving ⇒ B1 B2 is K -preserving;
(2) If SafeK (A, B1) and SafeK (A, B2) and if at least one of B1, B2 is K -

preserving, then SafeK (A, B1 B2).

PROOF
(1) trivially holds; just notice that Definition 3.9 checks knowledge worlds

(ω, S) ∈ K or (ω, P) ∈ K only where both ω ∈ B1 and ω ∈ B2;
(2) Without loss of generality, assume that B1 is K -preserving. If K is possi-

bilistic, we must take an arbitrary (ω, S) ∈ K such that ω ∈ B1 B2 and SB1 B2 ⊆ A,
and show that S ⊆ A. Indeed, we have (ω, SB1) ∈ K because B1 is K -preserving,
SB1 ⊆ A by applying K -privacy definition (Definition 3.1) to B2, and S ⊆ A by
applying K -privacy definition to B1.
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If K is probabilistic, take an arbitrary (ω, P) ∈ K such that ω ∈ B1 B2, and
denote P1 := P(· | B1). We have (ω, P1) ∈ K because B1 is K -preserving, and

P[A | B1 B2] = P[A ∩ B1 B2]

P[B1 B2]
= P[A ∩ B2 | B1]

P[B2 | B1]
= P1[A | B2] � P1[A] := P[A | B1] � P[A],

by applying K -privacy definition (Definition 3.3) first to P1 and B2, then to P
and B1.

Remark 3.11. Proposition 3.10 implies that both the family of K -preserving
sets and its sub-family of the K -preserving sets safe to disclose while protecting A
are ∩-closed. Without the “K -preserving” constraint, the family of sets that are safe
to disclose does not have to be ∩-closed (Remark 4.2). See Section 4 and especially
Theorem 4.14 for a class of situations where the “K -preserving” constraint can be
lifted.

3.4. UNRESTRICTED PRIOR KNOWLEDGE. What is the characterization of
privacy when the auditor knows nothing? More formally, which knowledge
sets A and B satisfy K -privacy for K = �poss = � ⊗ P (�) and for
K = �prob = � ⊗ Pprob(�), where Pprob(�) is the set of all probability distri-
butions over �? Also, what is the answer to this question if the auditor has com-
plete information about the actual world ω∗, but knows nothing about the user’s
knowledge, that is, for K = {ω∗} ⊗ P (�) and for K = {ω∗} ⊗ Pprob(�)? Here is
a theorem that answers these questions:

THEOREM 3.12. For all sets A, B ⊆ � and for all ω∗ ∈ B the following four
conditions are equivalent:

(1) SafeK (A, B) for K = �poss ;
(2) SafeK (A, B) for K = �prob ;

(3) SafeK (A, B) for K = {ω∗} ⊗ Pprob(�) ;
(4) Either A ∩ B = ∅, or A ∪ B = � .

Also, the following two conditions are equivalent (again ω∗ ∈ B):

(i) SafeK (A, B) for K = {ω∗} ⊗ P (�) ;
(ii) A ∩ B = ∅, or A ∪ B = �, or ω∗ /∈ A .

PROOF. First, we assume condition (4), that is, either A∩ B = ∅ or A∪ B = �,
and prove SafeK (A, B) for all second-level knowledge sets of the form K =
C ⊗ P (�) and C ⊗ Pprob(�), including those where C = � or {ω∗}. In the
possibilistic case, by Proposition 3.2 it is enough to check implication (6), which is:

∀ S ∈ 	 : (SBC �= ∅ & SB ⊆ A) ⇒ S ⊆ A. (17)

If AB = ∅, then SB ⊆ A ⇒ SB = ∅, making the left-hand side of (17)
always false and the entire implication true. If A ∪ B = �, then S − B ⊆ A,
hence SB ⊆ A alone implies S ⊆ A in (17). In the probabilistic case, for every
P ∈ Pprob(�), the privacy inequality P[AB] � P[A] P[B] trivially holds when
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AB = ∅, and holds when A ∪ B = � due to Proposition 3.8:

P[A] P[B] − P[AB] = P[ Ā] P[B̄] − P[ Ā B̄] = P[ Ā] P[B̄] � 0.

To verify that (ii) ⇒ (i), observe that if C = {ω∗} and ω∗ /∈ A in (17), then
SBC �= ∅ implies SB � A, and the left-hand side of (17) is again false, making
the implication true.

Now assume condition (4) to be false, that is, AB �= ∅ and A ∪ B �= �. Pick
ω1 ∈ AB and ω2 ∈ Ā B̄; if ω∗ ∈ A, choose ω1 = ω∗. Consider the following
possibilistic and probabilistic knowledge worlds:

—If C = �, consider the worlds (ω1, S) and (ω1, P) where S = {ω1, ω2} and
P(ω1) = P(ω2) = 1/2;

—If C = {ω∗}, consider the worlds (ω∗, S) and (ω∗, P) where S = {ω∗, ω1, ω2}
and P is uniform with support S. Note that ω∗ ∈ A ⇔ |S| = 2.

When C = {ω∗}, in the possibilistic case we also assume that ω∗ ∈ A (i.e., (ii) is
false). Let us show that, for these worlds, Definitions 3.1 and 3.3 are both violated;
that is:

SB ⊆ A & S � A, P[A | B] > P[A].

The possibilistic part is obvious, since SB = {ω1} and S = {ω1, ω2}. For the
probabilistic part, if |S| = 2, then P[A] = 1/2 and P[A | B] = 1; if |S| = 3 and
ω∗ /∈ A, then P(ω1) = P(ω2) = P(ω∗) = 1/3, and we have:

P[A | B] = P[AB] / P[B] = P(ω1) /
(
P(ω1) + P(ω∗)

)
= 1/2 > 1/3 = P(ω1) = P[A].

Remark 3.13. In the auditing practice, the interesting case is ω∗ ∈ A ∩ B, that
is, when the protected and the disclosed properties are both true. In this case,
unconditional privacy can be tested simply by checking whether A ∪ B = �, that
is, whether “A or B” is always true.

4. Possibilistic Case

In this section, we shall focus exclusively on the possibilistic case; thus,
the auditor’s assumption about the user’s knowledge shall be represented by
K ⊆ �poss. While the probabilistic case is perhaps more interesting from the
privacy perspective, the possibilistic case is simpler and provides intuition that
sometimes extends to the probabilistic case. In fact, the possibilistic case is simple
enough that useful statements can be proven in general, for arbitrary auditor’s
second-level knowledge sets K ⊆ �poss, or for a wide class of these sets.

Proposition 4.1 below gives a necessary and sufficient condition for K -preserving
sets B to satisfy the privacy predicate SafeK (A, B), for a given and fixed set A.
It associates every world ω ∈ A with a “safety margin” β(ω) ⊆ �− A which
depends only on ω, A and K . Given B, the condition verifies whether every ω ∈ A
occurs in B together with its “safety margin,” or does not occur in B at all. The
“safety margin” ensures that this ω will not reveal A to the agent, no matter what
prior knowledge S ∈ π2(K ) the agent might have. (Recall that by πi we denote the
projection operation.)
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PROPOSITION 4.1. Let K ⊆ �poss be an arbitrary second-level knowledge set,
and assume A ⊆ �. There exists a function β : A → P (�− A) such that ∀B ⊆ �

(∀ ω ∈ AB : β(ω) ⊆ B) ⇒ SafeK (A, B), (18)

and if B is K -preserving, then the converse holds:

SafeK (A, B) ⇒ (∀ ω ∈ AB : β(ω) ⊆ B). (19)

PROOF. For each ω ∈ A, define β(ω) to be the Ā-portion of the most informative
K -preserving and K -privacy preserving disclosure B0(ω) that is true at ω:

β(ω) := B0(ω) − A, where B0(ω) =
⋂ {

B ′
∣∣∣∣ ω ∈ B ′, SafeK (A, B ′)

B ′ is K -preserving

}
. (20)

As an intersection of K -preserving sets B ′ that satisfy SafeK (A, B ′), by
Proposition 3.10 the set B0(ω) itself is K -preserving and satisfies SafeK (A, B0(ω)).

To prove (18), let us assume ∀ ω ∈ AB : β(ω) ⊆ B and verify SafeK (A, B).
Following Definition 3.1, we take some (ω, S) ∈ K such that ω ∈ B and
S ∩ B ⊆ A, and show that S ⊆ A. Since ω ∈ SB ⊆ A, we have ω ∈ AB,
implying β(ω) ⊆ B by our assumption. We substitute β(ω) := B0(ω) − A and get
B0(ω) − A ⊆ B − A, which in turn implies

S ∩ B0(ω) − A ⊆ S ∩ B − A = ∅,

that is, S ∩ B0(ω) ⊆ A. By (20), we also have ω ∈ B0(ω). By the privacy definition
for B0(ω) we obtain S ⊆ A.

To prove (19), assume that B is K -preserving and satisfies SafeK (A, B); take
an arbitrary ω ∈ AB. Then, B is one of the sets intersected to define B0 in (20),
which gives us β(ω) ⊆ B0 ⊆ B.

Remark 4.2. In the converse implication (19) of Proposition 4.1, we cannot
drop the condition of B being K -preserving. Indeed, for all fixed A and β, the
property Q(B) defined as “∀ ω ∈ AB : β(ω) ⊆ B” is preserved under intersection:
Q(B1) & Q(B2) ⇒ Q(B1 ∩ B2). But SafeK (A, B), in general, is not preserved
under intersection. For a simple example, let � = {1, 2, 3}, K = � ⊗ {�}, and
A = {3}. Then both B1 = {1, 3} and B2 = {2, 3} protect the K -privacy of A, yet
B1 ∩ B2 = {3} does not. However, see Theorem 4.14 for more on this subject.

The characterization in Proposition 4.1 could be quite useful for auditing a lot
of properties B1, B2, . . . , BN disclosed over a period of time, using the same audit
query A. Given A, the auditor would compute the mapping β once, and use it to
test every Bi . This comment applies to Section 4.1 as well.

4.1. INTERSECTION-CLOSED KNOWLEDGE

Motivation. When two or more possibilistic agents collude, that is, join forces
in attacking protected information, their knowledge sets intersect: they jointly con-
sider a world possible if and only if none of them has ruled it out. Therefore, if
the auditor wants to account for potential collusions, she must consider knowl-
edge world (ω, S1 ∩ S2) possible whenever she considers both (ω, S1) and (ω, S2)
possible. This motivates the following definition:
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Definition 4.3. A second-level knowledge set K ⊆ �poss is intersection-
closed, or ∩-closed for short, when ∀ (ω, S1) ∈ K and ∀ (ω, S2) ∈ K we have
(ω, S1 ∩ S2) ∈ K . Note that we intersect the user’s knowledge sets (ω, S1) and
(ω, S2) only when they are paired with the same world ω.

One way to obtain a second-level knowledge set K ⊆ �poss that is ∩-closed is by
taking an ∩-closed family 	 of subsets of � (such that ∀ S1, S2 ∈ 	: S1 ∩ S2 ∈ 	)
and computing the product K = C ⊗ 	 with some knowledge set C .

Intervals. When the auditor’s knowledge is ∩-closed, the notion of an “interval”
between two worlds becomes central in characterizing the privacy relation:

Definition 4.4. Let K ⊆ �poss be ∩-closed, and let ω1, ω2 ∈ � be two worlds
such that

ω1 ∈ π1(K ), ω2 ∈
⋃

{S | (ω1, S) ∈ K }. (21)

The K -interval from ω1 to ω2, denoted by IK (ω1, ω2), is the smallest set S such
that (ω1, S) ∈ K and ω2 ∈ S, or equivalently:

IK (ω1, ω2) :=
⋂

{S | (ω1, S) ∈ K , ω2 ∈ S}.
If the worlds ω1, ω2 do not satisfy conditions (21), we shall say that interval
IK (ω1, ω2) does not exist.

Intuitively, IK (ω1, ω2) represents the “most knowledgeable” user who has not
ruled out ω2 when the actual world is ω1. The following proposition shows that
we need to know only the intervals in order to check whether or not SafeK (A, B)
holds:

PROPOSITION 4.5. For an ∩-closed set K ⊆ �poss and for all A, B ⊆ �, we
have SafeK (A, B) if and only if

∀ IK (ω1, ω2) : ω1 ∈ AB & ω2 /∈ A ⇒ IK (ω1, ω2) ∩ (B − A) �= ∅. (22)

PROOF
(if) Assume (22) and let us prove SafeK (A, B). By Definition 3.1, we want to show

∀ (ω, S) ∈ K : (ω ∈ B & S ∩ B ⊆ A) ⇒ S ⊆ A. (23)

Suppose that (23) is violated for (ω1, S1) ∈ K ; we have ω1 ∈ AB and ∃ ω2 ∈
S1 − A. Interval IK (ω1, ω2) ⊆ S1 is well defined and satisfies the left-hand side of
implication (22); hence, it satisfies the right-hand side too:

IK (ω1, ω2) ∩ (B − A) �= ∅, which implies S1 ∩ (B − A) �= ∅.

But then (ω1, S1) does not violate (23) because the left-hand side of the implication
(namely, S1 ∩ B ⊆ A) is false. Contradiction.

(only if) Assume SafeK (A, B), that is, (23), and let us prove (22). Take an
arbitrary interval S = IK (ω1, ω2) such that ω1 ∈ AB and ω2 /∈ A, and consider a
knowledge world (ω1, S) ∈ K . Since ω2 /∈ A, we have S � A; to keep (23) true,
we must also have S ∩ B � A. This is the same as the right-hand side of (22).

Remark 4.6. As implied by Proposition 4.5, there is no need to store the entire
∩-closed second-level knowledge set K (which could require |�|·2|�| bits of data) in
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order to test the possibilistic privacy. It is sufficient to store one set IK (ω1, ω2) ⊆ �,
or the fact of its non-existence, for each pair (ω1, ω2) ∈ � × �, that is, at most
|�|3 bits of data.

Minimal Intervals. In fact, in Proposition 4.5, we do not even have to check all
intervals; it is enough to consider just “minimal” intervals defined as follows:

Definition 4.7. For an ∩-closed second-level knowledge set K ⊆ �poss, for a
world ω1 ∈ � and for a set X ⊆ � not containing ω1, an interval IK (ω1, ω2) is
called a minimal K -interval from ω1 to X when ω2 ∈ X and

∀ ω′
2 ∈ X ∩ IK (ω1, ω2) : IK (ω1, ω

′
2) = IK (ω1, ω2).

PROPOSITION 4.8. For an ∩-closed set K ⊆ �poss and for ∀ A, B ⊆ �, we have
SafeK (A, B) if and only if the formula (22) holds over all intervals IK (ω1, ω2) that
are minimal from a world ω1 ∈ AB to the set �− A.

PROOF. We want to prove that, if (22) holds for all minimal intervals, then
(22) holds for all intervals. It is sufficient to take an arbitrary interval IK (ω1, ω2)
that satisfies ω1 ∈ AB and ω2 ∈ Ā, and show that it contains a minimal interval
from ω1 to Ā. To find the minimal interval, start by setting ω1

2 = ω2, and continue
to iteratively select ωn+1

2 given ωn
2 so that

ωn+1
2 ∈ Ā ∩ IK

(
ω1, ω

n
2

)
, IK

(
ω1, ω

n+1
2

)
� IK

(
ω1, ω

n
2

)
until it is no longer possible, that is, until IK (ω1, ω

n
2) is minimal.

Example 4.9. Let � be an area of the plane that is bounded by a rectangle and
discretized into pixels to ensure finiteness (the area within the 14 × 7 rectangle in
Figure 1). Let the worlds be the pixels. Consider an auditor who does not know the
actual database ω∗ and who assumes that the user’s prior knowledge set S ∈ 	 is an
integer rectangle, that is, a rectangle whose four corners have integer coordinates
(corresponding to the vertical and horizontal lines in the picture). The family 	 of
integer rectangles, and hence the auditor’s second-level knowledge set K = �⊗	,
are ∩-closed.

Given ω1, ω2 ∈ �, the interval IK (ω1, ω2) is the smallest integer rectangle that
contains both ω1 and ω2. For ω1 and ω2 in Figure 1, the interval IK (ω1, ω2) is the
light-grey rectangle from point (1, 1) to point (4, 4); for ω1 and ω′

2, the interval
IK (ω1, ω

′
2) is the rectangle from point (1, 1) to point (9, 3).

The interval IK (ω1, ω2) shown on the picture is one of the three minimal intervals
from ω1 to set Ā (the area bounded by the ellipse). The other two minimal intervals
are the rectangles (1, 1)−(5, 3) and (1, 1)−(6, 2). Every knowledge set S that the
auditor considers possible in the case of ω∗ = ω1, that is, every S such that
(ω1, S) ∈ K , must contain at least one of these three minimal intervals, unless
S ⊆ A. For example, S = IK (ω1, ω

′
2) in Figure 1 contains two minimal intervals

(1, 1)−(5, 3) and (1, 1)−(6, 2). Thus, when looking for privacy violations, rather
than going through all possible pairs (ω1, S) ∈ K such that ω1 ∈ B & S � A and
checking if S ∩ B ⊆ A, the auditor has to go only through those (ω1, S) that define
minimal intervals to Ā, a case of using Proposition 4.8.
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FIG. 1. An example of an ∩-closed K ⊆ �poss where the worlds are the pixels inside the 14 × 7
rectangle (such as ω1, ω2 and ω′

2), and the permitted user’s knowledge sets are the integer sub-
rectangles (rectangles composed of whole squares). Set Ā is the complement of the privacy-sensitive
knowledge set. See Example 4.9 for details.

Interval-Induced Partitions of Ā. Let us have a closer look at the minimal
K -intervals from a given world ω1 ∈ A to the set Ā = �− A. For every ω2 ∈ Ā,
the interval IK (ω1, ω2), if it exists, is either minimal or not; if it is not minimal,
then ω2 cannot belong to any minimal interval from ω1 to Ā. Now, take some pair
ω2, ω

′
2 ∈ Ā such that both IK (ω1, ω2) and IK (ω1, ω

′
2) are minimal. There are two

possible situations:

(1) IK (ω1, ω2) = IK (ω1, ω
′
2), or

(2) IK (ω1, ω2) ∩ IK (ω1, ω
′
2) ∩ Ā = ∅.

Indeed, if ∃ ω′′
2 ∈ IK (ω1, ω2) ∩ IK (ω1, ω

′
2) ∩ Ā, then by Definition 4.7 the

interval IK (ω1, ω
′′
2) equals both of the minimal intervals, making them equal. We

have thus shown the following

PROPOSITION 4.10. Given an ∩-closed set K ⊆ �poss, a set A ⊆ �, and a
world ω1 ∈ A, the minimal K -intervals from ω1 to Ā partition set Ā into disjoint
equivalence classes

Ā = D1 ∪ D2 ∪ · · · ∪ Dm ∪ D′

where two worlds ω2, ω
′
2 ∈ Ā belong to the same class Di when they both belong

to the same minimal interval, or (class D′) when they both do not belong to any
minimal interval.

Definition 4.11. In the assumptions and in the notation of Proposition 4.10,
denote

ΔK ( Ā, ω1) := {D1, D2, . . . , Dm}.
In other words, ΔK ( Ā, ω1) is the disjoint collection of all sets formed by intersecting
Ā with the minimal intervals from ω1 to Ā.

COROLLARY 4.12. Given an ∩-closed set K ⊆ �poss, for all A, B ⊆ � , we
have SafeK (A, B) if and only if

∀ ω1 ∈ AB, ∀ Di ∈ ΔK ( Ā, ω1) : B ∩ Di �= ∅. (24)
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PROOF. By Proposition 4.8, SafeK (A, B) holds if and only if for ∀ ω1 ∈ AB
and for all intervals IK (ω1, ω2) that are minimal from ω1 to Ā we have IK (ω1, ω2)∩
(B − A) �= ∅, or equivalently,

∀ ω1 ∈ AB, ∀ IK (ω1, ω2) minimal from ω1 to Ā : B ∩ (IK (ω1, ω2) ∩ Ā) �= ∅.

By Proposition 4.10, for every minimal IK (ω1, ω2) from ω1 to Ā, the intersection
IK (ω1, ω2)∩ Ā belongs to ΔK ( Ā, ω1). Moreover, ΔK ( Ā, ω1) contains all such inter-
sections for the given Ā and ω1, and contains nothing else. Replacing the quantifier
over IK (ω1, ω2) with the quantifier over Di ∈ ΔK ( Ā, ω1) gives us (24).

As Figure 1 illustrates for Example 4.9, the three minimal intervals from ω1
to Ā formed by integer rectangles (1, 1)−(4, 4), (1, 1)−(5, 3) and (1, 1)−(6, 2) are
disjoint inside Ā. Their intersections with Ā, shown hatched in Figure 1, constitute
the collection ΔK ( Ā, ω1). A disclosed set B is private, assuming ω∗ = ω1, if and
only if B intersects each of these three intervals inside Ā.

The Case of All-Singleton ΔK ’s. If set K satisfies the property defined next,5

privacy testing is simplified still further:

Definition 4.13. An ∩-closed set K ⊆ �poss has tight intervals when for every
K -interval IK (ω1, ω2) such that ω1 �= ω2 we have

∀ ω′
2 ∈ IK (ω1, ω2) − {ω1, ω2} : IK (ω1, ω

′
2) � IK (ω1, ω2).

Informally, an interval from ω1 to ω2 is “tight” when for every point ω′
2 in its

“interior” the interval from ω1 to ω′
2 is strictly smaller (and hence no longer

contains ω2).

When K has tight intervals, every minimal interval IK (ω1, ω2) from ω1 ∈ A to Ā
has exactly one of its elements in Ā, namely ω2: Ā ∩ IK (ω1, ω2) = {ω2}. Indeed,
if Ā ∩ IK (ω1, ω2) contains another point ω′

2 �= ω2, then ω1 /∈ {ω2, ω
′
2} since

ω1 ∈ A, and by Definition 4.13 we get IK (ω1, ω
′
2) � IK (ω1, ω2), that is, interval

IK (ω1, ω2) is not minimal. Thus, for K that has tight intervals, all equivalence
classes Di in ΔK ( Ā, ω1) are singletons, and Corollary 4.12 gives us the following
characterization theorem (cf. Proposition 4.1):

THEOREM 4.14. Let K ⊆ �poss be an ∩-closed second-level knowledge set.
The following three conditions are equivalent:

(1) K has tight intervals;
(2) ∀ A ⊆ � ∃ β : A → P (�− A) such that ∀ B ⊆ � :

SafeK (A, B) ⇔ (∀ ω ∈ AB : β(ω) ⊆ B) ;

(3) ∀ A, B, B ′ ⊆ � : SafeK (A, B) & SafeK (A, B ′) ⇒ SafeK (A, B ∩ B ′), that
is, the privacy of individual disclosures always implies their joint privacy.

5 This definition slightly differs from the one given in the conference version: [Evfimievski et al.
2008].
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PROOF
(1 ⇒ 2): Let K have tight intervals, and assume A ⊆ �. Define the function

β : A → P (�− A) as given by

∀ ω1 ∈ A : β(ω1) :=
⋃

ΔK ( Ā, ω1).

As we explained above, all Di in the ΔK ( Ā, ω1) of Corollary 4.12 are singletons,
therefore B ∩ Di �= ∅ is equivalent to Di ⊆ B, and in (24)(∀ Di ∈ ΔK ( Ā, ω1) : B ∩ Di �= ∅

) ⇔
⋃

ΔK ( Ā, ω1) ⊆ B.

(2 ⇒ 3): If property “∀ ω ∈ AB : β(ω) ⊆ B” is satisfied for B and B ′, then it
is also satisfied for B ∩ B ′. Indeed, take an arbitrary ω ∈ A ∩ B ∩ B ′, then ω ∈ AB
implies β(ω) ⊆ B and ω ∈ AB ′ implies β(ω) ⊆ B ′; therefore, β(ω) ⊆ B ∩ B ′. By
Item 2, the property is equivalent to SafeK (A, B).

(3 ⇒ 1): We shall prove (¬1 ⇒ ¬3) by assuming that K does not satisfy the
tight intervals property (Definition 4.13) and constructing sets A, B, B ′ ⊆ � that
violate Item 3. Let IK (ω1, ω2) be a “nontight” interval; that is, ω1 �= ω2 and

∃ ω′
2 ∈ IK (ω1, ω2) − {ω1, ω2} : IK (ω1, ω

′
2) = IK (ω1, ω2).

Notice that the three worlds ω1, ω2, and ω′
2 are all different. Choose the sets as

follows: A = �− {ω2, ω
′
2}, B = {ω1, ω2}, and B ′ = {ω1, ω

′
2}. Then, we have:

— AB = AB ′ = AB B ′ = {ω1};
— I := IK (ω1, ω2) = IK (ω1, ω

′
2) is the only minimal interval from ω1 to

{ω2, ω
′
2} = Ā;

— I ∩ (B − A) = {ω2}, I ∩ (B ′ − A) = {ω′
2}, and I ∩ (B B ′ − A) = ∅.

By Proposition 4.8, we have SafeK (A, B), SafeK (A, B ′), but not
SafeK (A, B B ′).

In practice, Condition 3 in Theorem 4.14 is very desirable: it allows the auditor
to verify the safety of a sequence B1, . . . , Bk of disclosed queries by testing each
query individually, even though the auditor’s prior assumptions K about the user’s
knowledge no longer hold after some or all of the disclosures. For example, if the
disclosure of subsequence B1, . . . , Bk−1 protects the privacy of a certain database
property A, but the disclosure of the entire sequence violates it, then Condition 3
for K implies ¬ SafeK (A, Bk); the same is true for any other subsequence of the
disclosed queries.

Several important examples of second-level knowledge sets that have tight in-
tervals are discussed in Section 5.1. See Remark 4.2 for a counterexample where
an ∩-closed K does not have tight intervals.

Remark 4.15. When the auditor knows that the actual database is precisely ω∗,
her second-level knowledge set K contains only knowledge worlds of the form
(ω∗, S). Then all collections ΔK ( Ā, ω1) and sets β(ω1) are empty for all ω1 �= ω∗
because there exist no intervals IK (ω1, ω2), and we have to check only the case of
ω1 = ω∗ in the above privacy tests.
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5. Modularity Assumptions for Probabilistic Knowledge

In the previous section, we clarified some general properties of possibilistic knowl-
edge; now we turn to the more complex probabilistic case. Rather than studying
arbitrary probabilistic knowledge families, here we shall focus on a few specific,
yet important, families of distributions. We shall also see some concrete examples
of possibilistic knowledge families induced by the probabilistic ones. Later, in Sec-
tion 6, we present more sophisticated approaches that extend beyond these families.

From now on, we assume that � = {0, 1}n for some fixed n. Let ω1 ∧ ω2
(ω1 ∨ ω2, ω1 ⊕ ω2) be the bit-wise “AND” (“OR”, “XOR”), and define the partial
order ω1 � ω2 to mean “∀ i = 1, . . . , n: ω1[i] = 1 ⇒ ω2[i] = 1.”

Definition 5.1. A probability distribution P over � is called log-supermodular
(log-submodular)6 when the following holds:

∀ ω1, ω2 ∈ � : P(ω1) P(ω2) � (�) P(ω1 ∧ ω2) P(ω1 ∨ ω2).

The family of all log-supermodular distributions shall be denoted by �+
m, the family

of all log-submodular distributions by �−
m.

A distribution P is called a product distribution if it makes every coordinate
independent. Every product distribution corresponds to a vector (p1, . . . , pn) of
Bernoulli probabilities, each pi ∈ [0, 1], such that

∀ ω ∈ {0, 1}n : P(ω) = ∏n
i=1 pω[i]

i · (1 − pi )1−ω[i]. (25)

The family of all product distributions shall be denoted by �0
m.

PROPOSITION 5.2. We have �0
m = �−

m ∩ �+
m . Equivalently, P is a product

distribution if and only if

∀ ω1, ω2 ∈ � : P(ω1) P(ω2) = P(ω1 ∧ ω2) P(ω1 ∨ ω2). (26)

PROOF. This is a minor variation of a statement proven in Lovász [1983]; we
include the proof below for the sake of completeness.

For every i = 1, . . . , n the bit pair ω1[i], ω2[i] contains the same number of
0’s and 1’s as the bit pair (ω1 ∧ω2)[i], (ω1 ∨ ω2)[i]. Therefore, if P is a product
distribution, then ∀ i = 1, . . . , n the terms pi and 1 − pi appear the same number of
times on the left-hand side and on the right-hand side of (26), making the sides equal.

Conversely, (26) implies ∀ ω, ω′ ∈ �, ∀ i = 1, . . . , n:

P
(
ω|ω[i]←0

) · P
(
ω′|ω′[i]←1

) = P
(
ω|ω[i]←1

) · P
(
ω′|ω′[i]←0

)
, (27)

where “ω[i] ← b” means “set the i th bit in ω to b.” As a probability function,
P must sum up to 1, hence P must be nonzero at some ω′ ∈ �. Take an arbitrary
i = 1, . . . , n and assume that ω′[i] = 0; then we can rewrite (27) as

∀ ω ∈ � : P
(
ω|ω[i]←1

) = ci ·P
(
ω|ω[i]←0

)
, ci = P

(
ω′|ω′[i]←1

) /
P

(
ω′|ω′[i]←0

)
.

Set pi = ci/(1 + ci ). If instead we have ω′[i] = 1, then rewrite (27) as

∀ ω ∈ � : P
(
ω|ω[i]←0

) = c′
i ·P

(
ω|ω[i]←1

)
, c′

i = P
(
ω′|ω′[i]←0

) /
P

(
ω′|ω′[i]←1

)
,

6 The “log-” means that supermodularity is multiplicative, rather than additive. The subscript “m” in
�−

m, �+
m etc. means “modular.”
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and set pi = 1/(1 + c′
i ). By induction on the Hamming distance of ω from ω′,

we can check that every P(ω) is proportional to the product distribution (25).
Therefore, P is a product distribution.

Supermodular and submodular functions occur often in mathematics and have
been extensively studied [Fujishige 2005; Lovász 1983]. Our goal in considering
these assumptions was to substantially relax bit-wise independence while staying
away from the unconstrained case. Besides that, the log-supermodular assumption
(as implied by Theorem 5.10 in Section 5.2) describes situations where no negative
correlations are permitted across individual database records—something we might
expect from knowledge about, say, HIV incidence among humans. The following
example provides a case in point:

Example 5.3. Let us consider a probability distribution P : � → R+ that has
the form

P(ω) = C exp

⎛⎝ n∑
i=1

ai ω[i] +
∑

1�i< j�n

bi, j ω[i] ω[ j]

⎞⎠ , where ∀ i, j : bi, j � 0.

(28)
The log-linear expression in (28) naturally arises when P is the maximum en-
tropy distribution with equality constraints on single-bit expectations and two-bit
covariances [Cover and Thomas 2006]. It is used extensively in machine learning,
for example in the definition of the Boltzmann machine [Ackley et al. 1985], but
without our requirement that all bi, j be nonnegative.

It is easy to see that a distribution of the form (28) is always log-supermodular.
Indeed, since C exp(x) · C exp(y) = C2 exp(x + y), for all ω1 and ω2 in � we
have:

P(ω1) P(ω2) = C2 exp

(
n∑

i=1

ai
(
ω1[i] + ω2[i]

)
+

∑
1�i< j�n

bi, j
(
ω1[i] ω1[ j] + ω2[i] ω2[ j]

)⎞⎠
P(ω1 ∧ ω2) P(ω1 ∨ ω2) = C2 exp

( n∑
i=1

ai
(
(ω1 ∧ω2)[i] + (ω1 ∨ω2)[i]

)
+

∑
1�i< j�n

bi, j
(
(ω1 ∧ ω2)[i] (ω1 ∧ω2)[ j] + (ω1 ∨ ω2)[i] (ω1 ∨ω2)[ j]

))
,

where, because ω1 and ω2 are from � = {0, 1}n , for all i and j we always have

ω1[i] + ω2[i] = (ω1 ∧ ω2)[i] + (ω1 ∨ ω2)[i]
ω1[i]ω1[ j] + ω2[i]ω2[ j] � (ω1 ∧ ω2)[i](ω1 ∧ ω2)[ j]

+ (ω1 ∨ ω2)[i] (ω1 ∨ ω2)[ j],

which gives us P(ω1) P(ω2) � P(ω1 ∧ ω2) P(ω1 ∨ω2), since all bi, j � 0.
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5.1. MODULARITY FOR SETS. Let us define three families of sets composed of
the supports of all distributions in �−

m, �+
m, and �0

m:

	−
m = supp

(
�−

m

)
, 	+

m = supp
(
�+

m

)
, 	0

m = supp
(
�0

m

)
;

here, as before, supp(�) denotes {supp(P) | P ∈ �}. These families of sets have a
simple characterization, given in the following definition and in Propositions 5.6
and 5.7, which we now derive.

Definition 5.4. A set S ⊆ � is an up-set (a down-set) when ∀ ω1 ∈ S, ∀ ω2 �
ω1 (∀ ω2 � ω1) we have ω2 ∈ S. A nonempty intersection of an up-set and a
down-set shall be called a convex set. A nonempty set S ⊆ � is a sublattice when

∀ ω1, ω2 ∈ S : ω1 ∧ ω2 ∈ S and ω1 ∨ ω2 ∈ S. (29)

A nonempty set S ⊆ � is a product set when
S = S1 × S2 × · · · × Sn, Si = {0} or {1} or {0, 1}.

Remark 5.5. An intersection of up-sets is an up-set, of down-sets is a down-set;
set S ⊆ � is an up-set if and only if Ā is a down-set. A nonempty intersection of con-
vex sets is a convex set, of sublattices is a sublattice, of product sets is a product set.

PROPOSITION 5.6

(a) A nonempty set S ⊆ � is convex if and only if
∀ ω1, ω2 ∈ S, ∀ ω ∈ � : ω1 � ω � ω2 ⇒ ω ∈ S. (30)

(b) A nonempty set S ⊆ � is a sublattice if and only if the property “ω ∈ S” can be
expressed as a conjunction of two-bit implications7 of the form “ω[i] → ω[ j]”
and one-bit lookups of the form “ω[i] = 0” or “ω[i] = 1.”

PROOF
(a) An intersection of an up-set U and a down-set D must satisfy (30) because
ω1 ∈ U implies ω ∈ U and ω2 ∈ D implies ω ∈ D. Conversely, every set that
satisfies (30) can be represented as such an intersection U ∩ D as follows:

U = {ω ∈ � | ∃ ω1 ∈ S : ω1 � ω}, D = {ω ∈ � | ∃ ω2 ∈ S : ω � ω2}.
(b) For the “if” direction, it is easy to see that sets {ω ∈ � | ω[i] → ω[ j]} and

{ω ∈ � | ω[i] = b} are sublattices, for all i and j ; a conjunction of such implica-
tions and lookups gives an intersection of sublattices, which is also a sublattice (if
nonempty). A straightforward proof for the “only if” direction by induction on n
is a bit tedious, so we instead refer to Table 2 of Creignou et al. [2008]. The set of
all sublattices over {0, 1}n is a special case of co-clone, the notion studied in that
paper. Given a set F of Boolean functions, the co-clone Inv(F) is the collection of
all subsets S ⊆ {0, 1}n (for some n) that satisfy

∀ f ∈ F, m := arity( f ), ∀ ω1, . . . , ωm ∈ S : f (ω1, . . . , ωm) ∈ S,

where

f (ω1, . . . , ωm) := ω ∈ {0, 1}n such that
∀ i = 1, . . . , n : ω[i] = f (ω1[i], . . . , ωm[i]).

7An implication “ω[i] → ω[ j]” is the same as formula “¬ ω[i] ∨ ω[ j]”.
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Informally, S ∈ Inv(F) means S is “preserved” under all Boolean operations in
F applied bit-wise to vectors in S. In particular [Böhler et al. 2003], co-clone
IM2 = Inv({∧, ∨}) gives the set of all sublattices, as defined by (29). Table 2
in Creignou et al. [2008] gives a “plain basis” for every Boolean co-clone, that is,
a set of Boolean relations whose conjunctions generate precisely all subsets in the
co-clone. In our special case, it shows that IM2 is generated by two-bit implications
and single-bit lookups.

PROPOSITION 5.7. The following equalities hold:

— 	−
m = {all convex sets over �};

— 	+
m = {all sublattices over �};

— 	0
m = {all product sets over �} = 	+

m ∩ 	−
m.

PROOF. By Proposition 5.6, a set S �= ∅ is convex if and only if ∀ u, v ∈ S:
u � ω � v ⇒ ω ∈ S. We now show that this is equivalent to

∀ ω1, ω2 ∈ � : {ω1 ∧ ω2, ω1 ∨ω2} ⊆ S ⇒ {ω1, ω2} ⊆ S. (31)

Indeed, for a convex S the above implication holds because ω1 ∧ω2 � ωi �
ω1 ∨ω2 for i = 1, 2. Now let us assume (31), take some u, v ∈ S and u � ω � v ,
and show ω ∈ S. Define ω′ = ω ⊕ u ⊕ v , that is, we have ω′[i] = ω[i] iff
u[i] = v[i]. It is not hard to verify that u = ω ∧ ω′ and v = ω ∨ ω′, so by (31)
u, v ∈ S implies ω, ω′ ∈ S.

Given a nonempty set S, define a probability distribution PS to be identical
(uniform) on all ω ∈ S and zero everywhere else. For a convex S, distribution PS
is log-submodular due to (31): ∀ ω1, ω2 ∈ �,

P(ω1 ∧ ω2) P(ω1 ∨ω2) �= 0 ⇒ P(ω1)P(ω2) = 1/|S|2 = P(ω1 ∧ ω2) P(ω1 ∨ω2).

Since S = supp(PS), we obtain S ∈ 	−
m. Conversely, if P is log-submodular, then

(31) must hold for S = supp(P) in order to satisfy Definition 5.1, proving the
convexity of supp(P).

In the same way, given a sublattice S, the distribution PS is log-supermodular
due to (29) in Definition 5.4, and conversely, ∀ P ∈ �+

m the set supp(P) has
to be a sublattice in order to satisfy Definition 5.1. Lastly, for a product set S,
the distribution PS is a product distribution with vector (p1, . . . , pn) where all
pi ∈ {0, 1, 1/2}, and conversely, supports of product distributions must be product
sets. Equality 	0

m = 	+
m ∩ 	−

m for sets S is implied by �0
m = �+

m ∩ �−
m for

distributions PS .

Families 	−
m, 	+

m and 	0
m can also be viewed as possibilistic knowledge assump-

tions. For example, the family 	−
m of convex sets describes a user’s possibilistic

knowledge about the actual database ω∗ learned by issuing a sequence of monotone
Boolean queries8 and receiving “yes” or “no” answers. Family 	0

m of product sets
describes the possibilistic knowledge learned by asking, for a sequence of records,
whether or not each given record belongs to the database. All three families are

8 A monotone Boolean query is a mapping Q : � → {“yes”, “no”} such that ∀ω1, ω2 ∈ � if
Q(ω1) = “yes” and ω1 �ω2 then Q(ω2) = “yes”.
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∩-closed, barring the empty intersections (see Remark 5.5). Therefore, for every
set C �= ∅ the second-level knowledge sets C ⊗ 	−

m, C ⊗ 	+
m and C ⊗ 	0

m are
intersection closed, and Section 4.1 applies. Let us compute for them the intervals
introduced in Definition 4.4:

PROPOSITION 5.8. Assuming ω1 ∈ C, we have:

IC⊗	−
m

(ω1, ω2) =
⎧⎨⎩

{ω |ω1 � ω � ω2}, if ω1 � ω2,

{ω |ω2 � ω � ω1}, if ω2 � ω1,

{ω1, ω2}, if ω1 � ω2 and ω1 � ω2;

IC⊗	+
m

(ω1, ω2) = {ω1, ω2, ω1 ∧ω2, ω1 ∨ω2}; (32)

IC⊗	0
m

(ω1, ω2) = {ω | ω1 ∧ω2 � ω � ω1 ∨ω2}.
All these second-level knowledge sets satisfy the “tight intervals” property (see
Definition 4.13), and therefore the items of Theorem 4.14 apply to them.

PROOF. First, let us get convinced that the sets on the right-hand side of the
above equalities (32) belong to their respective families 	−

m, 	+
m and 	0

m. Indeed,
for all ω′ � ω′′ the set {ω |ω′ � ω � ω′′} is convex as an intersection of an up-set
and a down-set, and it is a sublattice too, because operations ∧ and ∨ respect
a common lower or upper bound; hence, it is a product set (Proposition 5.7). A
set {ω1, ω2} of two (or any number of) incomparable worlds is convex because
it satisfies the implication in (30), while set {ω1, ω2, ω1 ∧ ω2, ω1 ∨ω2} is the
sublattice generated by ω1 and ω2.

Second, let us show that the sets on the right-hand side of (32) are subsets of
all sets that contain ω1 and ω2 from their respective families 	−

m, 	+
m and 	0

m;
this will prove that these sets satisfy Definition 4.4. If a convex set contains ω1
and ω2 where ω1 � ω2 or ω2 � ω1, then by (30) the set contains everything
between ω1 and ω2. If a sublattice contains ω1 and ω2, then by definition it contains
ω1 ∧ω2 and ω1 ∨ ω2. If a product set contains ω1 and ω2, then as a sublattice
it contains ω1 ∧ω2 and ω1 ∨ω2, and as a convex set it contains everything in
between. This proves that the right-hand sides are indeed the intervals between ω1
and ω2.

Finally, let us show that these intervals are “tight” by verifying Definition 4.13.
We consider each family in turn:

K = C ⊗ 	−
m If ω1 and ω2 are comparable, say ω1 � ω2, and if we pick

some world ω′
2 /∈ {ω1, ω2} from IK (ω1, ω2) = {ω |ω1 � ω � ω2} and construct

IK (ω1, ω
′
2) = {ω |ω1 � ω � ω′

2}, the new interval will not contain ω2. If ω1 and
ω2 are incomparable, the original interval is {ω1, ω2} and there is nothing to pick
as ω′

2.

K = C ⊗ 	+
m If ω1 and ω2 are incomparable, the original interval contains four

different worlds, and picking, say, ω′
2 = ω1 ∧ω2 reduces the interval to two worlds.

If ω1 and ω2 are comparable, we start out with a two-world interval, so there is
nothing to pick as ω′

2.

K = C ⊗ 	0
m The original interval IK (ω1, ω2) = {ω |ω1 ∧ω2 � ω � ω1 ∨ω2}

can be equivalently written as

IK (ω1, ω2) = {ω | ∀ i = 1, . . . , n : ω1[i] = ω2[i] ⇒ ω[i] = ω1[i] = ω2[i]}.
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If we pick some ω′
2 �= ω2 from this interval, the set of bit indices

{i |ω1[i] = ω′
2[i]} will be a strict superset of {i |ω1[i] = ω2[i]}, and therefore ω2

will not make it into the new interval IK (ω1, ω
′
2).

5.2. PRIVACY FOR LOG-SUPERMODULAR DISTRIBUTIONS. Let us come back to
the probabilistic knowledge, specifically to the three families of distributions in-
troduced by Definition 5.1: �+

m (log-supermodular distributions), �−
m (log-submo-

dular distributions), and �0
m (product distributions). We shall be interested in

necessary criteria and in sufficient criteria for testing privacy over these families.
From here onwards, the probabilistic privacy will be understood in the sense of
Definition 3.5.

One way to produce a necessary criterion for probabilistic privacy is by con-
verting the family of probabilities into a possibilistic family of supports of these
probabilities, as we discussed in Section 3.3. We can then consider the privacy test
for this possibilistic family, and use the implication (15), repeated next:

Safe�(A, B) ⇒ Safe�⊗	(A, B) & Safe�⊗	( Ā, B̄), (33)

where 	 = supp(�). Let us instantiate this criterion for the family �+
m of

log-supermodular distributions:

PROPOSITION 5.9 (�+
m SAFETY: NECESSARY CRITERION). For all A, B ⊆

� = {0, 1}n such that Safe�+
m

(A, B), every pair of worlds ω1 ∈ AB and ω2 ∈ Ā B̄
satisfies one of the following two conditions:

— ω1 ∧ω2 ∈ A − B and ω1 ∨ω2 ∈ B − A;
— ω1 ∧ω2 ∈ B − A and ω1 ∨ω2 ∈ A − B.

PROOF. By definition and by Proposition 5.7, we have supp(�+
m) = 	+

m, the
family of all sublattices. In order to apply (33), we need a test for the possibilistic
privacy predicate SafeK (A, B), where K = � ⊗ 	+

m. Since K is ∩-closed, let us
use the interval-based test given by Proposition 4.5: SafeK (A, B) if and only if

∀ ω1 ∈ AB, ∀ ω2 /∈ A : I�⊗	+
m

(ω1, ω2) ∩ (B − A) �= ∅,

where we can restrict ω2 to set Ā B̄, since for ω2 ∈ B − A the formula is vacuously
true. From Proposition 5.8, we know that

I�⊗	+
m

(ω1, ω2) = {ω1, ω2, ω1 ∧ω2, ω1 ∨ω2};
therefore, we have SafeK (A, B) if and only if

∀ ω1 ∈ AB, ∀ ω2 ∈ Ā B̄ : {ω1 ∧ω2, ω1 ∨ω2} ∩ (B − A) �= ∅.

Analogously, we have SafeK ( Ā, B̄) if and only if

∀ ω1 ∈ AB, ∀ ω2 ∈ Ā B̄ : {ω1 ∧ω2, ω1 ∨ω2} ∩ (A − B) �= ∅.

Substituting these tests into (33) for � = �+
m and 	 = 	+

m completes the proof.

It turns out that one can prove a sufficient criterion for �+
m-safety that has a

form very similar to Proposition 5.9, although not quite the same. The sufficient
criterion relies on the following well-known theorem introduced in Ahlswede and
Daykin [1978]:
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THEOREM 5.10 (FOUR FUNCTIONS THEOREM). Let L be a finite distributive
lattice,9 and let α, β, γ, δ : L → R+. For all subsets A, B ⊆ L denote f [A] =∑

a∈A f (a), A∨ B = {a ∨b | a ∈ A, b ∈ B}, and A∧ B = {a ∧b | a ∈ A, b ∈ B}.
Then, the inequality

α[A] · β[B] � γ [A ∨ B] · δ[A ∧ B]

holds for all subsets A, B ⊆ L if and only if it holds for one-element subsets, that
is, if and only if

α(a) · β(b) � γ (a ∨ b) · δ(a ∧ b)

for all elements a, b ∈ L.

PROOF. See, for example, Bollobás [1986, Section 19].

PROPOSITION 5.11 (�+
m SAFETY: SUFFICIENT CRITERION). For all A, B ⊆

� = {0, 1}n, either one of the two conditions below is sufficient to estab-
lish Safe�+

m
(A, B) :

— AB ∧ Ā B̄ ⊆ A − B and AB ∨ Ā B̄ ⊆ B − A;
— AB ∧ Ā B̄ ⊆ B − A and AB ∨ Ā B̄ ⊆ A − B.

PROOF. Let P ∈ �+
m, set the four functions as α = β = γ = δ = P , and set

the distributive lattice L = � = {0, 1}n . The log-supermodularity definition and
Theorem 5.10 imply ∀ A, B ⊆ �

P[AB] · P[ Ā B̄] � P[AB ∨ Ā B̄] · P[AB ∧ Ā B̄]
� P[A − B] · P[B − A],

where the last “�” is implied by either of the two conditions assumed in our
proposition. It remains to recall that by Proposition 3.8

P[A] P[B] − P[AB] = P[A − B] · P[B − A] − P[AB] · P[ Ā B̄],

and the definition of Safe�(A, B) given by (10).

COROLLARY 5.12. If A is an up-set and B is a down-set (or vice-versa), then
Safe�+

m
(A, B).

PROOF. Let us show that, if A and B̄ are both up-sets, then A ∨ B̄ = AB̄ =
A − B. Indeed, ∀ ω ∈ A ∨ B̄ we have ω = a ∨ b′ where a ∈ A and b′ ∈ B̄,
implying a � ω ∈ A and b′ � ω ∈ B̄; on the other hand, ∀ ω ∈ A ∩ B̄ we
have ω = ω ∨ω ∈ A ∨ B̄. Analogously, since Ā and B are down-sets, also
B ∧ Ā = B − A. We have:

AB ⊆ A & Ā B̄ ⊆ B̄ ⇒ AB ∨ Ā B̄ ⊆ A ∨ B̄ = A − B;

AB ⊆ B & Ā B̄ ⊆ Ā ⇒ AB ∧ Ā B̄ ⊆ B ∧ Ā = B − A.

The rest follows from Proposition 5.11. If it is B that is the up-set, and A is the
down-set, just permute A and B everywhere in the proof.

9A lattice L is a partially ordered set where every pair of elements a, b ∈ L has the least upper bound
a ∨ b and the greatest lower bound a ∧ b. A lattice is distributive when ∀ a, b, c ∈ L: a ∧ (b ∨ c) =
(a ∧ b) ∨ (a ∧ c).
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Remark 5.13. Thus, if the user’s prior knowledge is assumed to be in �+
m,

a “no” answer to a monotone Boolean query always preserves the privacy of a
“yes” answer to another monotone Boolean query. Roughly speaking, it is OK
to disclose a negative fact while protecting a positive fact. This observation is
especially helpful when A and B are given by query language expressions, whose
monotonicity is often obvious.

5.3. PRIVACY FOR PRODUCT DISTRIBUTIONS. In this section, we shall study the
problem of checking the privacy relation Safe�(A, B) for sets A, B ⊆ � = {0, 1}n

over the family � = �0
m of product distributions. The independence relation

A ⊥�0
m

B, defined by

A ⊥�0
m

B
def⇐⇒ ∀ P ∈ �0

m : P[A] P[B] = P[AB],

has been studied by Miklau and Suciu, who proved the following necessary and
sufficient criterion:

THEOREM 5.14 (MIKLAU & SUCIU). For all A, B ⊆ �, we have A ⊥�0
m

B if
and only if sets A and B “share no critical coordinates,” that is, when coordinates
1, 2, . . . , n can be rearranged so that only ω[1], ω[2], . . . , ω[k] determine if ω ∈ A,
and only ω[k + 1], ω[k + 2], . . . , ω[k ′], where k ′ � n, determine if ω ∈ B.

PROOF. See Miklau and Suciu [2004].

Since A ⊥�0
m

B implies Safe�0
m

(A, B), Miklau-Suciu criterion is a sufficient
criterion for our notion of privacy. It is not a necessary one, even for n = 2: if we
set � = {00, 01, 10, 11} and for i = 1, 2 define Xi by (ω ∈ Xi ) ⇔ (ω[i] = 1), then
we have Safe�0

m
(X1, X̄1 ∪ X2) because for all P ∈ �0

m

P[X1 ∩ (X̄1 ∪ X2)] = P[X1 ∩ X2] = P[X1] · P[X2] � P[X1] · P[X̄1 ∪ X2],

but not X1 ⊥�0
m

(X̄1 ∪ X2) since they share a critical coordinate #1.

Another sufficient criterion is given by Corollary 5.12, if we note that �0
m ⊆ �+

m;
it implies Safe�0

m
(A, B) whenever A is an up-set and B is a down-set, or vice-versa.

A little more generally, Proposition 5.11 implies

COROLLARY 5.15 (MONOTONICITY CRITERION). Let A, B ⊆ � = {0, 1}n.
Relation Safe�0

m
(A, B) holds if there exists a “mask” vector z ∈ � such that either

one of the two conditions below is satisfied for Az = z ⊕ A := {z ⊕ ω | ω ∈ A}
and Bz = z ⊕ B:

— Az Bz ∧ Āz B̄z ⊆ Az − Bz and Az Bz ∨ Āz B̄z ⊆ Bz − Az;
— Az Bz ∨ Āz B̄z ⊆ Az − Bz and Az Bz ∧ Āz B̄z ⊆ Bz − Az .

In particular, Safe�0
m

(A, B) holds if z ⊕ A is an up-set and z ⊕ B is a down-set.

PROOF. By Proposition 5.11, either condition implies Safe�+
m

(Az, Bz), which
in turn implies Safe�0

m
(Az, Bz). Finally, we have Safe�0

m
(Az, Bz) ⇔ Safe�0

m
(A, B)

because the set of distributions P(z ⊕ ω) over ω ∈ � where P ∈ �0
m is the same

as �0
m itself.

It turns out that both the Miklau-Suciu and the monotonicity criteria are
special cases of another simple yet surprisingly strong sufficient criterion for
Safe�0

m
(A, B). This sufficient criterion shall be called the cancellation criterion,
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because its verification is equivalent to cancelling identical monomial terms in the
algebraic expansion for the difference

P[AB̄] · P[ ĀB] − P[AB] · P[ Ā B̄], (34)

where P is a product distribution written as in (25). Recall that expression (34)
equals P[A] P[B]− P[AB], see Proposition 3.8. In order to formulate the criterion
in combinatorial (rather than algebraic) terms, we need the following definition:

Definition 5.16. The pairwise matching function match(u, v) maps a pair (u, v)
of vectors from � = {0, 1}n to a single match-vector w = match(u, v) in {0, 1, ∗}n

as follows:

∀ i = 1 . . . n : w[i] =
{

u[i] if u[i] = v[i];
∗ if u[i] �= v[i].

For example, pair (01011, 01101) gets mapped into 01∗∗1. We say that v ∈ �
refines a match-vector w when v can be obtained from w by replacing its every star
with a 0 or a 1. For every match-vector w , define the following two sets:

Box(w) := {v ∈ � | v refines w};
Circ(w) := {(u, v) ∈ �× � | match(u, v) = w}.

Remark 5.17. Function “match” satisfies the following property: for all
u, v, u′, v ′ in {0, 1}n , we have

match(u, v) = match(u′, v ′) ⇔ u ∧ v = u′ ∧ v ′ & u ∨ v = u′ ∨ v ′. (35)

Indeed, a coordinate that has the same bit-value in u and v stays the same in u ∧ v
and u ∨ v , while a coordinate that is different in u versus v has value 0 in u ∧ v
and 1 in u ∨ v . Hence, given match(u, v), we can reconstruct both u ∧ v and u ∨ v
by replacing the ∗’s with 0’s for u ∧ v and with 1’s for u ∨ v; and vice-versa.

Now we are ready to state the cancellation criterion, which is a sufficient crite-
rion for Safe�0

m
(A, B), and also state a necessary criterion of a similar form, for

comparison:

PROPOSITION 5.18 (CANCELLATION CRITERION). For all A, B ⊆ � , in order
to establish Safe�0

m
(A, B) it is sufficient to verify the following:

∀ w ∈ {0, 1, ∗}n : |(AB × Ā B̄) ∩ Circ(w)| � |(AB̄ × ĀB) ∩ Circ(w)|. (36)

On the other hand, for all A, B ⊆ � , if Safe�0
m

(A, B) holds, then:

∀ w ∈ {0, 1, ∗}n : |(AB × Ā B̄) ∩ Box(w)2
∣∣ � |(AB̄ × ĀB) ∩ Box(w)2|. (37)

Here Box(w)2 denotes Box(w) × Box(w), and |S| denotes the size of set S.

PROOF. Two subsets S, S′ ⊆ Circ(w) satisfy |S| � |S′| if and only if there is
an injective function that maps S into S′. As the preimages of match(·, ·) the sets
Circ(w) are all mutually disjoint and form a partition of � × �. Hence, condi-
tion (36) is equivalent to the existence of an injective function F from AB × Ā B̄
to AB̄ × ĀB that maps each partition cell to itself, that is:

∀ u ∈ AB, ∀ v ∈ Ā B̄ : match(u, v) = match(F(u, v)). (38)
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Suppose we have such an F , and let P ∈ �0
m. By Proposition 5.2, since P

is a product distribution, we have P(ω1)P(ω2) = P(ω1 ∧ω2) P(ω1 ∨ω2) for all
ω1, ω2 ∈ �, and therefore

P[A] P[B] − P[AB] = P[AB̄] P[ ĀB] − P[AB] P[ Ā B̄] (Prop. 3.8)

=
∑

ω1∈A−B
ω2∈B−A

P(ω1) P(ω2) −
∑

ω′
1∈AB

ω′
2∈ Ā B̄

P(ω′
1) P(ω′

2) (39)

=
∑

ω1∈A−B
ω2∈B−A

P(ω1∧ω2) P(ω1∨ω2) −
∑

ω′
1∈AB

ω′
2∈ Ā B̄

P(ω′
1∧ω′

2) P(ω′
1∨ω′

2).

Every term in the right summation is canceled by an identical term in the left
summation, with (ω1, ω2) = F(ω′

1, ω
′
2). The two terms are identical due to prop-

erty (35). After the cancellation, we are left with a nonnegative expression, and
that proves Safe�0

m
(A, B).

To prove the necessary criterion (37), take some match-vector w ∈ {0, 1, ∗}n

and consider the following product distribution defined as in Eq. (25) by its vector
(p1, p2, . . . , pn) of bit probabilities: pi = w[i] if w[i] = 0 or 1; pi = 1/2 if
w[i] = ∗. Then, for all vectors v ∈ Box(w) we have P(v) = 1/2k where k = the
number of stars in w ; for all other vectors P(v) = 0. Therefore, ∀ S ⊆ � :
P[S] = 2−k · |S ∩ Box(w)|, and inequality (37) is equivalent to P[AB] P[ Ā B̄] �
P[AB̄] P[ ĀB], which holds due to Safe�0

m
(A, B).

We hope that the combinatorial simplicity of the sufficient criterion given by
Proposition 5.18 will allow highly scalable implementations that apply in real-life
database auditing scenarios, where sets A and B are given via expressions in a query
language. The theorems below justify our interest in the cancellation criterion:

THEOREM 5.19. If sets A, B satisfy the Miklau-Suciu criterion, they also satisfy
the cancellation criterion.

PROOF. Assume that we have rearranged the coordinates so that only ω[1 . . . k]
determine if ω ∈ A, and only ω[k+1 . . . n] determine if ω ∈ B (see Theorem 5.14).
To prove the cancellation condition (36), let us define an injective function F
from AB × Ā B̄ to AB̄ × ĀB that satisfies the match-preservation property (38), as
follows:

F(u, v) = F(u[1 . . . k] u[k + 1 . . . n], v[1 . . . k] v[k + 1 . . . n])
: = (u[1 . . . k] v[k + 1 . . . n], v[1 . . . k] u[k + 1 . . . n]).

That is, function F(u, v) swaps the last n − k coordinates between the first
and the second argument. The result of match(u, v) is the same as the result
of match(F(u, v)) because, coordinate-wise, the same bits are matched. Therefore,
F maps Circ(w) into itself, for every match-vector w .

Why does F map AB × Ā B̄ into AB̄ × ĀB? Take any u ∈ AB and v ∈ Ā B̄, and
denote (x, y) = F(u, v). The first k coordinates of x are the same as of u, therefore
x belongs to A just like u does; the last n − k coordinates of x are the same as of v ,
therefore x belongs to B̄ just like v does. Analogously, the first k coordinates of y
are the same as of v , so y /∈ A, and the last n − k coordinates of y are the same as
of u, so y ∈ B. It follows that (x, y) in AB̄ × ĀB.
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THEOREM 5.20. If sets A, B satisfy the monotonicity criterion, they also satisfy
the cancellation criterion.

Before we show that the cancellation criterion subsumes the monotonicity crite-
rion, let us observe the following fact:

LEMMA 5.21. ∀ w ∈ {0, 1, ∗}n, ∀ S ⊆ Circ(w) define

δS := {(u ∨ v ′, v ∧ u′) | (u, v), (u′, v ′) ∈ S}. (40)

Then we have: δS ⊆ Circ(w) and |δS| � |S|.
PROOF. First, let us prove δS ⊆ Circ(w) by showing that

(u, v), (u′, v ′) ∈ Circ(w) ⇒ (u ∨ v ′, v ∧ u′) ∈ Circ(w).

Indeed, take some (u, v) and (u′, v ′) in Circ(w), then by definition match(u, v) =
match(u′, v ′) = w . Let x be w with all stars replaced by 0, and y be w with all
stars replaced by 1. As explained in Remark 5.17, we have x = u ∧ v = u′ ∧ v ′
and y = u ∨ v = u′ ∨ v ′. Then,

(u ∨ v ′) ∧ (v ∧ u′) = (u ∧ v ∧ u′) ∨ (v ′ ∧ v ∧ u′)
= (x ∧ u′) ∨ (x ∧ v) = x ∨ x = x,

(u ∨ v ′) ∨ (v ∧ u′) = (u ∨ v ′ ∨ v) ∧ (u ∨ v ′ ∨ u′)
= (y ∨ v ′) ∧ (y ∨ u) = y ∧ y = y.

Again by the same reasoning as in Remark 5.17, the above equalities imply
match(u ∨ v ′, v ∧ u′) = w , and therefore (u ∨ v ′, v ∧ u′) ∈ Circ(w).

The proof of |δS| � |S| is based on the Marica-Schönheim inequality [Marica
and Schönheim 1969] (see also Section 19 in Bollobás [1986], and Aharoni and
Holzman [1993]), which states that ∀ U ⊆ {0, 1}n and for operation ω − ω′ :=
ω ∧ ¬ω′:

|ΔU | � |U |, where ΔU := {ω − ω′ | ω, ω′ ∈ U }.
Observe that in pairs (u, v) ∈ Circ(w) vector u can be computed from v by
inverting the bits that correspond to stars in w . Therefore, we can replace all pairs
in the subsets S and δS of Circ(w) by their second vectors, without change in the
cardinality of these subsets. We can also discard all non-star (in w) coordinates,
because they are the same in all vectors. Denote thus projected S and δS by Ŝ and δ̂S,
and denote vectors u, v, u′, v ′ without the non-star coordinates by û, v̂, û′, v̂ ′. We
have û = ¬v̂ , û′ = ¬v̂ ′, and:

δ̂S = {v̂ ∧ û′ | (u, v), (u′, v ′) ∈ S} = {v̂ ∧ ¬v̂ ′ | v̂, v̂ ′ ∈ Ŝ}
= ΔŜ, implying |δS| = |δ̂S| = |ΔŜ| � |̂S| = |S|.

Having proven Lemma 5.21, we are now ready to prove Theorem 5.20:

PROOF (THEOREM 5.20). Let A, B ⊆ � = {0, 1}n be two sets that satisfy the
monotonicity criterion (Corollary 5.15). Then, ∃z ∈ � such that sets Az = z ⊕ A
and Bz = z ⊕ B satisfy either one of the following two conditions:

— Az Bz ∧ Āz B̄z ⊆ Az − Bz and Az Bz ∨ Āz B̄z ⊆ Bz − Az;
— Az Bz ∨ Āz B̄z ⊆ Az − Bz and Az Bz ∧ Āz B̄z ⊆ Bz − Az .
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We want to show that they satisfy the cancellation criterion (i.e., the sufficient
criterion in Proposition 5.18).

First, note that, for every z ∈ �, sets A and B satisfy the cancellation criterion if
and only if sets z ⊕ A and z ⊕ B also do, because (z, z) ⊕ Circ(w) = Circ(z ⊕ w).
Therefore, we can assume that z = 00 · · · 0 and ignore it. In what follows, we shall
assume without loss of generality that Az = A and Bz = B satisfy the second of
the two conditions (if they satisfy the first, just swap the order of pairs in δS):

AB ∨ Ā B̄ ⊆ AB̄, AB ∧ Ā B̄ ⊆ ĀB. (41)

Let us take an arbitrary match-vector w ∈ {0, 1, ∗}n , define

S = (AB × Ā B̄) ∩ Circ(w)

and show that |S| � |(AB̄ × ĀB) ∩ Circ(w)|. Indeed, by Lemma 5.21, for set
δS defined in (40) we have δS ⊆ Circ(w) and |S| � |δS|. By (41), all pairs in δS
are in AB̄ × ĀB: every pair has the form (u ∨ v ′, v ∧ u′) where u and v belong to
AB whereas u′ and v ′ belong to Ā B̄. Therefore, (36) holds, and the cancellation
criterion is satisfied.

Remark 5.22. The sufficient condition in the cancellation criterion is not nec-
essary. Here is a pair of sets that satisfies the privacy predicate Safe�0

m
(A, B), but

does not satisfy the cancellation criterion:

A = {011, 100, 110, 111}; B = {010, 101, 110, 111}.
Sets (A−B) × (B−A) and AB × Ā B̄ can be conveniently represented in the form
of a table:

A−B B− A match match AB ĀB̄
100 010 ∗∗0 ∗∗0 110 000
100 101 10∗ ∗∗∗ 110 001
011 010 01∗ ∗∗∗ 111 000
011 101 ∗∗1 ∗∗1 111 001

We can see that |AB̄ × ĀB ∩ Circ(∗∗∗)| = 0 and |AB × Ā B̄ ∩ Circ(∗∗∗)| = 2 for
these sets, violating (36). In the expression for P[A] P[B] − P[AB], written as
in (39), the product terms for the ∗∗0-matching pairs and for the ∗∗1-matching
pairs cancel each other. The remaining terms result in expression

p2
1 · (1 − p2)2 · p3(1 − p3) + (1 − p1)2 · p2

2 · p3(1 − p3)
− 2 · p1(1 − p1) · p2(1 − p2) · p3(1 − p3),

which is nonnegative due to inequality x2 + y2 � 2xy.

6. The Computational Complexity of Testing Safety

We use techniques from multivariate polynomial optimization to test safety with
respect to certain families � of prior distributions on an agent’s knowledge. Recall
that a set A ⊆ � is �-safe given B ⊆ � when for all distributions P ∈ �, we have
P[A | B] � P[A], or equivalently, P[AB] � P[A] · P[B]. As in some previous
sections, we identify the set � of possible worlds with the hypercube {0, 1}n .

For each x ∈ {0, 1}n , we create variables px ∈ [0, 1]. We consider those families
� consisting of distributions (px )x∈{0,1}n that can be described by a finite number
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r of polynomial inequalities, together with the standard distribution equality and
inequalities:

α1((px )x∈{0,1}n ) � 0, . . . , αr ((px )x∈{0,1}n ) � 0,∑
x∈{0,1}n px = 1, ∀x px � 0.

We call such a family � algebraic. For example, if we had the family of log-
submodular distributions, then for all x, y ∈ {0, 1}n , we would have the constraint
px py − px∧y px∨y � 0. For the family of log-supermodular distributions, we would
instead have px∧y px∨y − px py � 0. Finally, for the family of product distributions,
we would have both px py − px∧y px∨y � 0 and px∧y px∨y − px py � 0.

For sets A and B, and a family � of distributions, we define the set K (A, B, �)
of distributions (px )x∈{0,1}n that satisfy∑

w∈AB

pw >
∑
x∈A

px

∑
y∈B

py

α1((px )x∈{0,1}n ) � 0, . . . , αr ((px )x∈{0,1}n ) � 0∑
x∈{0,1}n px = 1, ∀x px � 0.

The following proposition is an equivalent algebraic formulation of the fact that
in order for Safe�(A, B) to hold, there cannot be a single distribution P ∈ �
for which P[AB] > P[A] · P[B]. It follows immediately from the definition of
K (A, B, �).

PROPOSITION 6.1. Safe�(A, B) if and only if the set K (A, B, �) is empty.

We are interested in algorithms that decide emptiness of K (A, B, �) in time

polynomial or nearly polynomial in N
def= 2n . Recall that n corresponds to the total

number of possible records, and for a world ω ∈ {0, 1}n , record i occurs in ω if
and only if ωi = 1.

6.1. SPECIFIC DISTRIBUTIONS. In this section, we obtain efficient algorithms
for testing safefty for certain interesting families � of distributions.

We first obtain a necessary and sufficient condition for A, B ⊆ {0, 1}n to be safe
with respect to the family � of product distributions by providing a deterministic
algorithm. Its running time is N O(lg lg N ), which is essentially polynomial for all
practical purposes. The key observation is that while K (A, B, �) is N = 2n-di-
mensional for general families of distributions, for product distributions it can be
embedded into Rn .

Indeed, it is easy to see that K (A, B, �) can be defined in variables p1, . . . , pn ∈
R constrained by pi (1 − pi ) � 0, and for which P[AB] > P[A] · P[B], where
P(ω) = ∏n

i=1 pω[i]
i · (1 − pi )1−ω[i] for all ω ∈ {0, 1}n . We can write this with n

variables and n + 1 inequalities. Notice that the inequality P[AB] > P[A] · P[B]
can have an exponential number of terms in n. We apply the following simplified
form of Theorem 3 of Basu et al. [1996]:

THEOREM 6.2. Given a set K = {β1, . . . , βr } of r polynomials each of degree
at most d in s variables with coefficients in R, the problem of deciding whether there
exist X1, . . . , Xs ∈ R for which β1(X1, . . . , Xs) � 0, . . . , βr (X1, . . . , Xs) � 0,
can be solved deterministically with τ (rd)O(s) bit operations, where τ is the number
of bits needed to describe a coefficient in β1, . . . , βr .
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We apply this theorem to the set K = K (A, B, �). From the program above it
is easy to see that τ, r, d, and s are all linear in n, and so emptiness (and hence
safety) for product distributions can be decided in nO(n) = N O(lg lg N ) time.

The algorithm of Basu et al. uses sophisticated ideas from algebraic geome-
try over R, and we cannot do it justice here. The general approach taken by such
algorithms is to reduce a system of polynomial inequalities into a system of polyno-
mial equalities by introducing slack variables, and then combining the multivariate
polynomial equalities pi (x) = 0 into a single equality q(x)

def= ∑
x p2

i (x) = 0. One
finds the critical points of q(x), that is, the set VC of common zeros of its partial
derivatives over the complex field C. By perturbing q(x) and applying Bézout’s
Theorem, one can show that |VC| is finite. Various approaches are used to find
the subset VR of VC of real-valued points. Since VR is finite, once it is found q
is evaluated on each of its elements and the minimum value is taken. The main
step is finding VR, and approaches based on Gröbner bases, resultant theory, and
homotopy theory exist (see Parrilo and Sturmfels [2001]). The algorithm of Basu
et al. [1996] may be practical. Indeed, a similar algorithm of Canny [1993] was
implemented.

We remark that a simple trick allows one to further reduce the running time to
(|A| + |B|)O(lg lg(|A|+|B|)). First, observe that if either |A| or |B| is at least

√
N , then

N O(lg log N ) = (|A| + |B|)O(lg lg(|A|+|B|)),

and in this case we can simply run the algorithm above. Otherwise, we have that
|A| · |B| < N . Now, notice that the uniform distribution in which each pi = 1

2
is a product distribution. In order for P[AB] � P[A]P[B] for this distribution,
we need |AB|

N � |A|·|B|
N 2 , or equivalently, N |AB| � |A| · |B|. If AB �= ∅, then

since |A| · |B| < N we cannot have N |AB| � |A| · |B|. On the other hand,
if AB = ∅, then P[AB] � P[A]P[B] for any product distribution. It follows
that if |A| · |B| < N , testing safety reduces to testing whether or not A and B
intersect, which can be done in poly(|A|+ |B|) time by a simple sorting algorithm.
Thus, in all cases, the time complexity of testing safety for product distributions is
(|A| + |B|)O(lg lg(|A|+|B|)).

This approach generalizes to other algebraic families � described by poly(n)
constraints and O(n) variables. For instance, a family of distributions for which
px = py whenever the Hamming weight of x and y are equal is described by n + 1
variables.

Even when the family � of distributions requires N variables to describe, in
certain cases we can obtain a polynomial-time algorithm for testing safety with
respect to �. Indeed, if the constraints αi defining � have degree at most 2 and
there are only a constant number r of them, an algorithm in Grigoriev et al. [2003]
shows how to decide emptiness of K (A, B, �) in N O(r ) time. This algorithm makes
black-box use of the earlier algorithm of Basu et al. [1996]. As an optimization,
we note that if there are multiple linear equality constraints Li (X1, . . . , Xs) = 0,
it is helpful to combine them into a single quadratic constraint

∑
i L2

i = 0. This is
because the running time is exponential in the number of constraints.

6.2. HARDNESS RESULTS. As the following theorem shows, even when the
number N is not too large, we may need to restrict the class of distributions � that
we consider in order to efficiently test safety.
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THEOREM 6.3. If N P �⊆ P/poly,10 then there is an algebraic � for which the
number of constraints is poly(N ), each constraint has degree at most 2, and for
which deciding Safe�(A, B) cannot be done in poly(N ) time. This holds even if the
deciding algorithm is allowed to preprocess the distribution � with an unbounded
amount of computational work, provided that the output of its preprocessing stage
is a poly(N )-length bit string.

Before proving the theorem, we first recall the optimization problem MAX-CUT.
For an undirected unweighted graph G = (V, E) on t vertices, a cut S of G is a
set S ⊆ V of vertices, and the cut size of the cut is the number of edges with one
endpoint in S and the other in V \ S. A maximum cut is a cut of the largest possible
cut size in G. The number of such edges is called the maximum cut size γ (G), and
the problem MAX-CUT is the problem of computing γ (G). Note that one does not
need to output a cut realizing γ (G) to solve the MAX-CUT problem. However, given
an oracle for computing γ (·), there is a standard reduction to obtain a maximum cut
by iteratively deleting edges and checking whether they change the maximum cut
size. Assuming P �= NP, it is known [Karp 1972] that MAX-CUT cannot be solved
in polynomial time.

We further restrict the MAX-CUT problem so that t is a power of 2. This is possible
because we can increase the number of vertices of G by less than a factor of 2, so
that now the number of vertices is a power of 2. If we make the vertices that we
add be isolated vertices, then the maximum cut size of G remains the same.

Definition 6.4. The problem special MAX-CUT is the problem of determining
whether γ (G) > 365t2

4608 , given that the number t of vertices of G is a power of 2.

LEMMA 6.5. Assuming P �= NP, special MAX-CUT cannot be solved in poly(t)
time.

PROOF. Notice that MAX-CUT on graphs G ′ on t
4 vertices cannot be solved

in poly(t)-time assuming P �= NP. This is because if there were a poly(t)-time
algorithm for solving MAX-CUT on graphs on t

4 vertices, the same algorithm would
be a poly(t)-time algorithm for solving MAX-CUT on graphs on t vertices. It is not
hard to show that any graph H on t

4 vertices satisfies 0 � γ (H ) � t2

64 , where the
latter inequality is achieved by taking H to be a bipartite clique with t

8 vertices in
each part. It is easy to see that t2

64 < 365t2

4608 .
We need the fact that for every even integer s � 2 and non-negative integer

r � s2

4 , there is a graph Hr on s vertices with γ (Hr ) = r . This can be proven by
induction on even integers s. It is clearly true for s = 2, since we can take H0 to be
the empty graph on 2 vertices, and H1 to be a single edge. Suppose, inductively,
that it is true for some value of s � 2. We want to show that for every r � (s+2)2

4 ,

there is a graph Gr on s +2 vertices with γ (Gr ) = r . This clearly holds for r � s2

4 ,
since we can take Gr to be the disjoint union of Hr and 2 isolated vertices. For
r > s2

4 , let S be a maximum cut of Hs2/4. Denote the vertices of Hs2/4 by V . Let u

10 Recall that P/poly is the set of languages L for which there exists a polynomial-time algorithm A
and an infinite advice sequence (an)n∈N such that for every x ∈ {0, 1}∗, A(a|x |, x) = 1 if and only if
x ∈ L .
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and v be two vertices not in V . We connect u to a subset of vertices in S and v to a
subset of vertices in V \ S so that the total number of edges added is r − s2

4 . The cut
S ∪{v} is a maximum cut of the newly constructed graph Gr since all r edges in Gr

participate in the cut. This works for all r � s2

4 + s. Notice that (s+2)2

4 − s2

4 = s + 1.

If r = s2

4 + s + 1, then we also connect u to v , which increases the cut size of
S ∪ {v} by one. This proves the inductive step.

Returning to the proof of the lemma, for each r with 0 � r � 9t2

64 , let Jr be a
graph on 3t

4 vertices with γ (Jr ) = r .
Given a graph H on t

4 vertices, consider the graphs Ir on t vertices, where Ir
is the disjoint union of H with Jr . Then γ (Ir ) = γ (H ) + γ (Jr ) = γ (H ) + r .
Since γ (H ) � t2

64 and γ (J0) = 0, we have that γ (I0) < 365t2

4608 . On the other hand,

since γ (J9t2/64) = 9t2

64 > 365t2

4608 , we have that γ (I9t2/64) > 365t2

4608 . Thus, there is

some minimal value of r for which γ (Ir ) > 365t2

4608 . For this value of r , we have

γ (H ) = � 365t2

4608 � − r . Thus, by solving special MAX-CUT for each graph Ir , we can
determine γ (H ). It follows that special MAX-CUT cannot be solved in poly(t) time,
if P �= N P .

We now prove Theorem 6.3.

PROOF OF THEOREM 6.3. Put n = 1 + 2 log2 t , so that N = 2t2. For each

u ∈ [t]
def= {1, 2, . . . , t}, associate an element xu ∈ {0, 1}n . Associate each set

S = {u, v} ⊆ [t] of size 2 with a distinct element yS ∈ {0, 1}n . Call such an S
a 2-set. Let D1 and D2 be disjoint subsets of t2

2 unassociated elements of {0, 1}n .
Assume that 0n is not in D1 ∪ D2, and is not associated with any 2-set. Note that all
of this is possible because |D1 ∪ D2| = t2 and the number of elements associated
with a 2-set is ( t

2 ) � t2

2 , while only t elements are associated with a value xu . Thus,
there are at least

N − 3t2

2
− t = 2t2 − 3t2

2
− t > 0

unassociated elements of {0, 1}n and not in D1 ∪ D2 (for sufficiently large t).
We define � by the following constraints. For each 2-set S = {u, v}, include the

constraint:

pyS = 360pxu

(
1

20t
− pxv

)
+ 360pxv

(
1

20t
− pxu

)
.

For each u ∈ [t], include the constraint:

0 = pxu

(
1

20t
− pxu

)
.

From this, we deduce that pxu ∈ {0, 1
20t }. Moreover, we claim that pyS ∈ {0, 9

10t2 }.
To see this, note that for S = {u, v}, there are four cases: (1) pxu = pxv = 0, (2)
pxu = 0 and pxv = 1

20t , (3) pxu = 1
20t and pxv = 0, and (4) pxu = pxv = 1

20t . We
see that in cases (1) and (4), we have pyS = 0, while in cases (2) and (3) we have
pyS = 9

10t2 .
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For each z ∈ D1 ∪ D2, put pz = 1
2t2 . For those z /∈ D1 ∪ D2 ∪ {0n} that are

unassociated with any 2-set, put pz = 0. Finally, put

p0n = 1 −
∑

2-sets S={u,v}
pyS −

∑
u∈[t]

pxu −
∑

z∈D1∪D2

pz.

We thus have,

p0n � 1 −
(

t

2

)
· 9

10t2
− t · 1

20t
− t2 · 1

2t2
� 0.

Observe that pz � 0 for all z ∈ {0, 1}n and
∑

z pz = 1.
The constraints defining � are equality constraints, which can each be converted

into two inequality constraints. Observe that � is algebraic and nonempty, the
number of constraints is poly(N ), and the constraints defining � have degree at
most 2. Moreover, each constraint can be described with O(log N ) bits.

Given an input graph G = ([t], E) and a parameter k, observe that the vertices
u ∈ [t] can be partitioned into two sets J and [t] \ J , where u ∈ J if and only if
pxu = 0. If u ∈ [t]\ J , then pxu = 1

20t . Then, by the case analysis above, pyS = 9
10t2

if and only if one endpoint of e is in J and the other is in [t] \ J . Put γ̄ (G) = γ (G)
t2 .

Put m = ∑
e∈E pye . Hence, the maximum value of m is 9γ (G)

10t2 = 9γ̄ (G)
10 .

We define query sets A and B as follows. Let F1 ⊆ D1 be an arbitrary subset of
size 247t2

512 , which is an integer for t � 512. Let F2 ⊆ D2 be an arbitrary subset of

size 247t2

512 .
Let A = ∪e∈E ye ∪ F1, and B = ∪e∈E ye ∪ F2. Then AB = ∪e∈E ye. Then, using

that for each z ∈ D1 ∪ D2 we have pz = 1
2t2 , the constraint P[A]P[B] < P[AB]

becomes (
m + 247

1024

)2

< m, (42)

since P[A] = P[B] = P[ ∪e∈E ye ∪ F2] = m + 1
2t2 · 247t2

512 = m + 247
1024 , and

P[AB] = m.
The quadratic formula shows that this inequality holds if and only if

m ∈
(

1

2
− 247

1024
− 3

16
,

1

2
− 247

1024
+ 3

16

)
.

We showed that m � 9γ̄ (G)
10 , and so if

γ̄ (G) � 10

9
·
(

1

2
− 247

1024
− 3

16

)
= 365

4608
,

then inequality (42) cannot hold.
We now turn to showing the converse, namely, that if γ̄ G > 365

4608 , then in-
equality (42) does hold for some distribution in �. So suppose that γ̄ (G) > 365

4608 .
If, also, γ̄ (G) � 10

9 · (
1
2 − 247

1024 + 3
16

)
, then by choosing the vertices in a max-

imum cut of G to be the set of vertices v for which pxv = 0, we have that
m ∈ (

1
2 − 247

1024 − 3
16 ,

1
2 − 247

1024 + 3
16

)
, and so inequality (42) holds.
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The only wrinkle comes when γ̄ (G) is larger than 10
9 · ( 1

2 − 247
1024 + 3

16 ). In this
case, it suffices to exhibit a cut whose cut size lies in the interval

I =
(

10

9

(
t2

2
− 247t2

1024
− 3t2

16

)
,

10

9

(
t2

2
− 247t2

1024
+ 3t2

16

))
.

By assumption on the maximum cut size, there is a cut S with cut size at least
10
9 · ( t2

2 − 247t2

1024 + 3t2

16 ). Let S = {v1, . . . , vr }. Consider the sequence of cuts S0 =
S, S1 = S \ {v1}, S2 = S \ {v1, v2}, . . . , ∅. The difference in cut sizes between
consecutive cuts in this sequence is bounded by t − 1, the maximum degree of a
vertex in G. Notice that the length of interval I is 10

9 · 3t2

8 = �(t2). Since the last cut
in the sequence, namely, ∅, has cut size 0, it follows that some cut in the sequence
has cut size which is in interval I (for sufficiently large t). By the arguments above,
it follows that P[A]P[B] < P[AB].

It follows that P[A]P[B] < P[AB] if and only if γ (G) > 10
9 ·( t2

2 − 247t2

1024 − 3t2

16 ) =
365t2

4608 . By Lemma 6.5, this cannot be solved in poly(t) = poly(N ) time unless
P = N P .

To prove the theorem, we must also allow the deciding algorithm access to a
poly(N )-length bit string that does not depend on the query sets A and B. In this
case, if Safe�(A, B) could be decided in poly(N ) time, then Special MAX-CUT on
graphs containing t vertices could be solved in poly(t) time given a poly(t)-length
bit string, and hence by the reduction in Lemma 6.5, MAX-CUT could also be solved
in poly(t) time given a poly(t)-length bit string. But this implies there is a P/poly-
algorithm for solving MAX-CUT, and since MAX-CUT is N P-complete, this would
imply NP ⊆ P/poly. This contradicts the assumption of the theorem.

6.3. HEURISTICS. For most families of distributions we will have to settle
for a heuristic or an approximation for testing safety. If the program describing
K (A, B, �) is multilinear (e.g., one can show this is the case for log-submodular
and log-supermodular distributions), there are heuristics such as branch-and-bound
or cutting-plane techniques. See page 2 of de Campos and Cozman [2005].

Here we describe the arguably most practical heuristic, the sum-of-squares
heuristic, introduced in Shor [1987], Shor and Stetsyuk [1997], and Parrilo [2000],
which works even for systems that are not multilinear. This heuristic was im-
plemented with great success in Parrilo and Sturmfels [2001]. If K (A, B, �) is
nonempty, that is Safe�(A, B) does not hold, then the heuristic is guaranteed to
report that K (A, B, �) is nonempty. On the other hand, there may be a false neg-
ative in the sense that if K (A, B, �) is empty, and so Safe�(A, B) holds, then
the heuristic may report that K (A, B, �) is nonempty, meaning that Safe�(A, B)
does not hold. One can reduce the likelihood of a false negative by increasing a
parameter D given in the following description of the method.

The problem of minimizing a degree-d multivariate polynomial f over a set
K ⊆ Rs is equivalent to finding the maximum γ ∈ R for which f (x) − γ � 0 for
all x ∈ K . Let Pd

+(K ) be the set of all polynomials in R[x1, . . . , xs] of degree at
most d which are nonnegative on every point in K . Thus, our problem is to find
the maximum γ ∈ R for which f − γ ∈ Pd

+(K ).
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It is unknown how to optimize over Pd
+(K ) efficiently, and so the following

indirect route is taken. Define the set 	2:

	2 =
{

f ∈ R[x1, . . . , xs]

∣∣∣∣ ∃g1, . . . , gt ∈ R[x1, . . . , xs] s.t. f =
t∑

i=1

g2
i

}
.

Notice that 	2 is a subset of nonnegative polynomials, as every sum of squares of
polynomials is nonnegative. It turns out that 	2 is in fact a strict subset of the non-
negative polynomials, as shown non-constructively by Hilbert, and constructively
by Motzkin who provided the polynomial

M(x, y, z) = x4 y2 + x2 y4 + z6 − 3x2 y2z2.

Motzkin showed M(x, y, z) is non-negative on R3, yet inexpressible as a sum of
squares of polynomials. It turns out that every non-negative polynomial can be
written as a sum of squares of rational functions (functions of the form gi (x)/hi (x)
for polynomials gi and hi ), which was Hilbert’s 17th problem, solved by Artin
in 1927. While 	2 fails to capture all nonnegative polynomials, the following
proposition is a compelling reason for studying it. The proposition is folklore, and
is proven using semidefinite programming.

PROPOSITION 6.6. For f ∈ R[x1, . . . , xs] of bounded degree, the test “ f (x) ∈
	2” can be done in poly(s) time.

Let 	2,d be those f (x) ∈ 	2 of degree at most d. Then, 	2,d ⊆ Pd
+(R). To

minimize f (x) over Rs , we find the largest λ ∈ R for which f (x) − λ ∈ 	2,d via
a binary search on λ and the proposition above. The value λ is a lower bound on
f (x) and in practice almost always agrees with the true minimum of f [Parrilo and
Sturmfels 2001].

To minimize f (x) over a set K constrained by polynomials, we need a few
more tools. We could reduce the problem to minimizing a single polynomial, as
mentioned in Section 6.1, but the following may work better in practice. We follow
the presentation in Caramanis [2001].

Definition 6.7. The Algebraic Cone generated by elements β1, . . . , βt ∈
R[x1, . . . , xs] is the set

A(β1, . . . , βt )
def=

{
f ∈ R[x1, . . . , xl]

∣∣∣∣ f = η +
∑
I⊆[t]

ηI

∏
i∈I

βi

}
,

where η and the ηI are in 	2, and [t] = {1, 2, . . . , t}.
Thus, the algebraic cone can be thought of as the set of all affine combinations

of all possible products of polynomials β1, . . . , βt , where the coefficients of the
affine combination are taken from 	2.

Definition 6.8. The Multiplicative Monoid M(β1, . . . , βt ) generated by
β1, . . . , βt ∈ R[x1, . . . , xs] is the set of finite products of the βi , including the
empty product, which we set to 1.

The key result is a simplified form of the Positivstellensatz [Stengle 1974]:
THEOREM 6.9. Given polynomials { f1, . . . , ft1}, {g1, . . . , gt2} in R[x1, . . . , xs],

the set

K
def= {x ∈ Rs : fi (x) � 0, g j (x) �= 0, ∀i ∈ [t1], j ∈ [t2]}
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is empty if and only if ∃F ∈ A( f1, . . . , ft1 ) and G ∈ M(g1, . . . , gt2 ) for which
F + G2 is the zero polynomial.

Thus, for a set K described by fi , and g j of the form above, we consider
K ′ = K ∩ {x ∈ Rs | γ − f (x) � 0, f (x) − γ �= 0}. K ′ is empty if and only if
f (x) > γ for all x ∈ K .

Heuristics implemented in practice work by choosing a degree bound D, gener-
ating all G ∈ M( f −γ, g1, . . . , gt2 ) of degree at most D (there are at most t D

2 such
G), and checking if there is an F ∈ A(γ − f, f1, . . . , ft1 ) for which F +G2 = 0 via
semidefinite programming. This is efficient for constant D, which usually suffices
in practice. Better algorithms for special cases are based on alternative forms of
the Positivstellensatz; see Putinar [1993] and Schmüdgen [1991].

7. Conclusion

We presented a novel approach to privacy where only gaining confidence in a
sensitive fact is illegal, while losing confidence is allowed. We showed that this
relaxation is significant and permits many more queries than with well-known
approaches. In exchange, this gave us an opportunity to relax prior knowledge
assumptions beyond current standards. Our hope is that work in this direction
will help bridge the gap between theoretical soundness and practical usefulness of
privacy frameworks.

One possible future goal is to obtain a better understanding of the families of
sets and distributions that arise in practice, and to understand whether they admit
efficient privacy tests. Another goal is to apply the new frameworks to online
(proactive) auditing, which will require the modeling of a user’s knowledge about
the auditor’s query-answering strategy.
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LOVÁSZ, L. 1983. Submodular functions and convexity. In Mathematical Programming—The State of

the Art, A. Bachem, M. Grötchel, and B. Korte, Eds. Springer-Verlag, 235–257.
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