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THE NUMBER OF FINITE RELATIQPJAL STRUCTURES” 

Reel vi=d 19 December 1975 

Reyisfd 23 August 1976 

An elementary proof is presented of an asymptotic cstimilte for the number (up to 

isotnor?hism) of finite relational stru-ture\. under it quite gent:ral definition of “relartnnal 

strLxturc:“. 

1. Introduction 

It seems to be well-known in combinatorial folklore that “aimost all” structures 
with many nodes are rigid, that is, have no nontrivial automorphisms. In other 
words, the fraction of r: -node structu res (of a speci’.ied type) which are rigid goes to 
1 as n goes to infinity. Equivalently 15, 81, if a, is the number of n-node “labelt:d 
structures” and b, is the number of n-node “w~labeled structures“, then 6, - 
a., /(n !), N here “ - ” is read “is asymptotic to”. Fx example, in 1958, Harary [hf 
noted thar the number of unlabeled directed graph> on II -nodes (that is., the number 
of distinct directed graphs, tip to &morphism, on n-nodzsj, ic s:;jmptotic to 
2”‘/(n !). bj-iarary’s result is a straightforward exeensiori of results in Ford and 
Uhlenbeck [S], which in turn are based on unpublished work of Polya.) 111 1966. 
Oberschelp [8! generalized this result as follows. Instead of considering n-not& 
iabeled dzrectcd graphs (each such graph can be thought of as a distinguished binary 
relation over (1, . . . . n)), he considers n-node labeled structures with k distin- 
gushed r-ary ?*elations (each such structure can be thought of as a k-tuplc of 
distinguished vary relations over (I, . . . + n)). The: speck11 case of directed graphs 

corresponds to k = 1 and r = 2. Uberschelp shov s that if k and Y are held fixed 
(with r 3 21, then the number of unlabeled such structures wlith n nodes (that I,s, the 
number of isomorphism classes) ilr asymptotic 10 the number of labeied such 
structures 011 n nodes divided by n ! A natural fin:&1 generalization (which does not 
seem to appar in the literature)’ is BO Iabeied structures ,with iu, i-ary relations 

’ This work was carried out while the aut: jr was aa the iE;M Thomas J. Watson Resr:arch Center, 
Yorktown Heights, NY, U.S.A. 

’ This result was apparently obtained by Oberschelp in 1967 (unpublishedjl and was recenrly obtained, 

independenriy of Qbersche!lp and the author, by A. Ehrenfeucht (unpubkshed). 
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(ti = L.., t ): for example, if t = 3, L4 I = 1, u2 = 5, and u.$ = 2, then wk: are dealing 
with labeled stlructures th;at have I distinguished unary relation, 5 distinguished 
binary relations,, and 2 distingushed ternary relations, all over (1,. . . , n). Such 
structures correspond exactly to what Tarski [9] calls “finite relational systems of 
finite order i,n n fixed similarity class”. In this paper, we present an elementary 
proof Ichat as long as ur > 0 for some 5 > I (that is, as long as we are dealing with 
structures in which at lea3.t one distinguished relatiun , is not unary), and if 
tV Ul, . . . , ut are each held fixed, then once again, the n,umber of unlabeled such 
nr-node structures is asymptotic to the number of iabele0 such n-node structures, 
dlivrided by n ? (The statement is easily seen to be false if u1 = 0 for each i > 1.) 

The paper arose when the author needed this result, in its full generality, as a 
lemma to prove a result in mathematical logic (41. 

Let S be a gyp, that is a t-tuple of nonneg,ative integers for some positive integer 
lb. If S = (u,,. I,) u,), th_en by a (labeled n-mde) S-structune, we mean a (x u&tuple 
(of u 1 distinguil~hed unary relations, ucz distinguished binary relations, .‘.) a, 
distinguished t-ary relations, all ow (19 . . m , nF; (we assume for convenience that 
IL, > 0). Thus, if 

is a labeled n -node S-structure, then R f is an i -ary relation over (1, . . , ) n},, that is, a 
set of i-tuplcs of integers between 1 and n (i = 1,. . . , t ; j = 1,. . . , Ui). A (0,l) 
structure is a labeled directed graph; Oberschelp dealt with (0,. . . ,0, k)-structures 
in [S]. If 

SB =.(Q: ,..., Qt,;Q:,...,Q~,;...;4:,...,Q:‘~ 

is another n-node labeled S-structure, then we say that z#’ and @ are isomorphic if 
there is a bijection n : {I,. . . , n)* (1,. . . , n) wch thut for each i, j, 41,. . . , ai, 

(Wi St, 1Sj SU,, l~Q*~?t,***,ltSai C?Z), 

Let (L- (S) be the number of distinct n-node labeled S-structures. Clsarly, 

G(S)= 2&W . &) 

Let 6, (S) be the number of isomorphism classes of rr -node labeled S -structuresti 
We will show that as Iong N S is not of type [uJX that b, as long BS we safe dealing 
with structures with at feast one dbtinguished r&#ion WI&~ ‘is not anary, then. 
b, (S ) - a,, (S ),I it !). 



T&e num&er of finite rdatironal structures 

We wili prc>ve the 

3.1 

Fol’fowing result. 

Proof. Iif 7~ is a permutation of (I,. . . ? n), then 7t induces a natural permutation 7r, 

on the set of i-tuples of { 1,. . . , a}. via 

a&, . . . , a,) = (mzl, a*, TiJl, ). 

Define: Ca (n> to be the total number of cycles (including singletons) in the cyclic 
decomposition of T, (i = 1, . . b , t ). 

Lemma1 3.2 (McKenzie 171). Let 7r be a permutation of (2,. . . , n ). The nu$wt of 
n-noda lab&d S-strucfufes for which 72 is an automorphism is exactly 2 2*=SIU~C‘? 

Proof cb Lunma 3.2. Assume that w’, . . . ,L’(kt) is one of the C’, (?T! cycks in the 
cyclic r:lec~,mposition of 7ti (here I?, . . . , f_’ 

If ?T is an automorphism of SII, then 
are each i -tuples.) Let 92 be as in (1). 

c’~Rj iff c”2’EirZ; iff ... iffflfRl. 

Lfd zf? -‘_I r!;Ci (w). then it fclllows that pi is an autarnorphism of exactly 2” n -node 
labeled S-structures; intuitivr=!y. there ar’e d “degrees of f; .:edom”. This proves the 

WL9 return to the proof of the theorem. Denote by N(r) the number of n-node 
labeled S-structures for which rr is art automorphism. By the lemma.. IV(n) = 
2~i”ic+). By Bumside’s Thieorem ([l]. Sec. 145, Theorem VII; see also 121. 

p. 15f& 

SO by Lemma 3.2, 

The asymptutic relationship between a,,(S) a;ld k,(S) in the statement of thr 

theorem is cqnGvafent to 

n!b,(S)+ l 

GJ W 
as n-,x. 

By (2) and (3), it is sutj[icier~t to show that 
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If 7r is the identity permutation T [where 10’) = j% for j = ‘I., . . ., n], then 
Ci (n) := n’ for each i. So, if we split the sum in (4) into the term with n = I and 
those terms for which 7t# I, we find that (4) is equivalem to 

Define a permutation to be of kind ml if eiactly m points are not fixed (i.e., are 
not mapped onto themselves b,y the permutation.) If v is of kind m, then wt is of 
kind at least mn’-‘, since if 1 G a I s n and at is not fixed by 7r [i.e., ~(a~)# a& 
then the n’-’ i-tuples (a,, a*, . . . , a,), where R~,. . . , a, each run through {I,. . . , n), 
are not fixed by ni. (Remark: In fact, nh is exactly of kind n’ - (n - m )‘.I 

It is simple to ste that if vi is of kind x, then CJ (12) G n’ - (x 12). So by the above:, 
if T is of kind m, then a~, is of kind at least mn ‘-I, and so 

If we substitute the right-hand side of :6 \ ) for each occurrence of C, (7~) in (51, and 
if we write in t’n) for MZ, then we find that the expresvilln on the ieft-hand side of the 
first “e *” in ,‘5) is dominated by 

c * -~m(n)m'- a 
1 . 

n#U 
(71 

Our goal is KJ show that expression (7) goes to 0 as n .-+ 3~. We Gil show even more, 
that (7) is o(P’--I) as long as i < 8 < 1. 

The number of permutations n of ( t, . . . , n) which are of kind m is tibviously at 
msst (Z)m !, which ir dom,inated 

n 

c 

n m ~v-$nn’-l 
9 

m=Z 

by n’? So (7) is dominated by 

Nh*tre the sum starts from m = 2 and not from m = 1 since there are no 
permutations of kind m == 1. Now expression (8) equals 

c ” 2-jm(n’ t -2fogn), 
m-2 C% 

where the logarithm is to the base 2. 
jssume that n is large enough so that n’-’ - 2 log n is positive. The largest 

sgs nmand of (9) occurs when m - 2, and so (9) is dominated by n - 1 (i.e., the 
nunber of summands) times the summand for m = 2, that is, (9) is dominatrzd by 

(n _ I).j(n’-’ 2tolTnI: 
I 

which equals 

~(n’-‘-2fogn -Iopti.t -1)) 
2 . 

ression is clearly 0 (en”‘), if t 9’ 8 < I, which completes f 



4. Further remarks 

(a) If S is not of type (uJ, then b,,,S) gets close to a,(S).I(n!) “quickly”. 
Specifically, if S is of type (u ,, . . . , ‘A, ), with t > 1 and U, > I), then we travc’ shown 

that 

I (n !)bn (SJ 1 
a,(S) t 

- 1 =o(B”’ ‘f if f<O < 1. 

1n particular, since t 2 2, we see that (n!)b,, (S)/~L~ (S) converges to 1 ;it icast 

“geometricafly fast”. 
(b) It is possible to generalize further our notion of “tvpc”‘. Thlls, irlstead of a . 

type “saying” that there must be a certain number elf distizguished binary wlatiorss, 
and so :>n, a type might also 1 say for example, that. in addi’tion, there must be 
a ccxtain number of distinguished “undirecttd graph refat’ons” (by an “undirected 
gra.ph relation”, we mean a set of unnrdered pairs of (1, . . . , n}). Simil;vrly. for 

ibitrary k, the type can say that there must be a certain number of “undirected 
k -ary relations”, each of which is a set of unordered k -tuples nf (I,. . . . n} (cf. the 
“linear graphs” of [3]). It is straightforward to check that with minor modifications, 
the proof of the tfvorem stiI1 goes through, as long as the type inciudes zt Icast one 
kind of relation, undirecte/ri or nc,t, which is not unary. 
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