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An elementary proof is presented of an asymptotic estimate for the number (up to
isomornhism) of finite relational structures. under a quite gencral definition of “‘relational
structure”.

1. Introduction

It seems to be well-known in combinatcrial folklore that ““aimost all’ structures
with many nodes are rigid, that is, have no nontrivial automorphisms. In other
words, the fraction of r:-node structures (of a speci‘ied type) which are rigid goes to
I as n goes to infinity. Equivalently |5, 8], if a. is the number of n-node *‘labeled
structures”’ and b, is the number of n-node *‘unlabeled siructures’, then b, ~
a./(n!), where ““ ~ " is read *‘is asymptotic to”". For example, in 1958, Harary [6]
noted thal the number of unlabeled directed graphs on n-nodes (that is, the number
of distinct directed graphs, up to isomorphism, on n-nod:s), is asymptotic to
2"’/(n'). {Harary's result is a straightforward extensior. of results in Ford and
Uhlenbeck [5], which in turn are based on unpublished work of Polya.) In 19¢6.
Oberschelp [8] generalized this result as follows. Instead of considering n-node
labeled directed graphs (each such graph can be thought of as a distinguished binary
relation over {1,...,n}), he considers n-node labeled structures with k distin-
gushed r-ary relations (each such structure can be thought of as a2 k-tuple of
distinguished r-ary relations over {1,...,n}). The special case of directed graphs
corresponds to k =1 and r = 2. Oberschelp shows that if X and r are held fixed
(with r = 2), then the number of unlabeled such structures with n nodes (that s, the
number of isomorphism classes) i asymptotic 10 the number of labeled such
structures on n nodes divided by n! A natural final generalization (which does not
seem to appear in the literature)' is to labeled structures with u, i-ary relations

* This work was carried out while the aut. r was at the IEM Thomas J. Watson Rescarch Center,
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' This result was apparently obtained by Oberschelp in 1967 (unpublished) and was recently obtained,

independenily of Oberschelp and the author, by A. Ehrenfeucht (unpublished).
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(i =1....,1): for example, if t =3, u, =1, u>=5, and u, =2, then we are dealing
with labeled structures that have 1 distinguished unary relation, 5 distinguished
binary relations, and 2 distingushed ternary relations, all over {1,...,n}. Such
structures correspond exactly to what Tarski [9] calls “finite relational systems of
finite order in a fixed similarity class”. In this paper, we ;)resent an elementaryf
proof that as long as u; >0 for some i >1 (that is, as long as we are dealing with
structures in which at least one distinguished relation is not unary), and if
f,u,,...,u, are each held fixed, then once again, the number of unlabeled such
n-node structures is asymptotic to the number of labeled such n-node structures,
divided by n! (The statement is easily scen to be false it u;, =0 for each i >1.)

The paper arose when the author needed this result, in its full generality, as a
lemma to prove a result in mathematical logic [4].

2. Definitions

Let S be a type, that is a t-tuple of nonnegative integers for some positive integer
.5 =(uy,..., 1) then by a (labeled n-node ) S-structure, we mean a (Z u, )-tuple
of u; distinguished unary relations, u. distinguished binary relations, ..., u,

distinguished ¢-ary relations, all ovui {1,...,n} (we assume for convenience that
u, >0). Thus, if

A =(Ri,...,RL; - Ri;...3Ry,...,RL) 1

is a labeled n-node S-structure, then R is an i-ary relation over{1,...,n}, thatis, a
set of i-tuples of integers between 1 and n (i=1....,¢t;j=1,...,uw). A (0,1)
structure is a labeled directed graph; Oberschelp dealt with {0, ..., 0, k)-structures
in [8]. If

% = (O;a--'voiu; f!' uz, Qh O:a.)‘

is another n-node labeled S -structure, then we say that &f and 8 are isomorphic if
there is a bijection »:{l,...,n}—{1,...,n} such that for each i,j,ai...,a,
(Isistl<sjsu,l=<a,sn,...,l<a sn) :

(ai,...,a)E R} iff (may,...,7a)€ Q.

Let a.(S) be the number of distinct n-node labeled S-structures. Cleariy,
a.(S)=2 Timun v

Let b.(S) be the number of isomorphism classes of n-node labeled S -structures.
We will show that as long as S is not of type (u;), that is, as long as we are dealmg
with structures with at least one dzstmgmshed relatxon whi h is not unary, then
b (S)~ an (S)/(n}).
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3. Proof of Theorem 3.1 .
We will prove the following result.

Theorem 3.1. Assume that S =(u,,...,u), t>1 and u, >0. Then b,(S)~
a,.(S)/‘{n!)‘

Proof. If 7 ic a permutation of {1,..., n}, then 7 induces a natural permutation
on the set of i-tuples of {1,...,n}, via

ey, ...,a)=(wa, ..,7a).

Define C, (7} to be the total number of cycles (including singletons) in the cyclic
decomposition of =, (i =1,...,1).

Lemma 3.2 (McKenzie [7]). Let 7 be a permutation of {1,...,n}. The number of
n-node labeled S-structures for which  is an automorphtsm is exactly 2 -G,

Proof of Lemma 3.2. Assume that (pﬁ’ ., 2% is one of the C, (7} cycles in the
cyclic decomposition of . (here v, ..., v are each i-tuples.) Let of be as in (1).
If 7 is an automorphism of &, then

v"eR} ff vYeER; iff --- it vYER.

I d = 3!, uC (=). then it follows that = is an autoraorphism of exactly 2¢ n-node
labeled S-structures; intuitively. there are d “‘degrees of fi zedom™. This proves the
lemma.

W¢ return to the proof of the theorem. Denote by N(#) the number of n-node
labeled S-structures for which 7 is an automorphism. By the lemma. N(m)=
2%uCes) . By Burnside's Thecrem ([1]. Sec. 145, Theorem Vil; see also [2],
p. 156),

i
b.(S) =5 > N(m).

So by Lemma 3.2,
b. (s) - _.1_!, Z Luﬂ:(w) ) (3)

The asymptotic relationship between a.(S) aad b.(S) in the statement of the
theorem is equivalent to

Ml—él as n—x,
a.(S)

By (2) an,dv(3), it is sufficient to show that
, 2 22»%1‘3«(’4’)“"‘] -] asn-—>w, )
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If = is the identity permutation ’ [where I(j)=j for j=1,...,n], then
C.(m)=n' for each i. So, if we split the sum in (4) into the term with m = I and
those terms for which 7 # I, we find that (4) is equivalent to

S 2EmiCm-nl 50 asn-», )
n#l
Define a permutation to be of kind m if exactly m points are not fixed (i.e., are
not mapped onto themselves by the permutation.) If = is of kind m, then =, is of
kind at least mn'"', since if 1< a,<n and a, is not fixed by = {i.e., w(a,) # a.},
then the n' ' i-tuples (a., a,, ..., a), where a,, ..., a, each run through {1,...,n},
are not fixed by m. (Remark: In fact, m is exactly of kind n' - (n —m)')
It is simple to sce that if r, is of kind x, then Ci(7) < n' - (x/2). So by the above,
if w is of kind m, then =, is of kind at least mn'"', and so

C(r)sn'-(mn')2). (6)

If we substitute the right-hand side of {6) for each ozcurrence of C, () in (5), and
if we write m 7 ) for m, then we find that the expression on the left-hand side of the
first “-»" in -5) is dominated by

2 5 pmmnt '_ (7)

mpEl

QOur goal is to show that expression (7) goes to 0 as n - - . We will show even more,
that (7) is o(2"' ') as long as 3 < 6 < 1.

The number of permutations 7 of {!,...,n} which are of kind m is obviously at
most ()m!, which is dominated by n". So (7) is dominated by

n
> nmahe ®)
m=2 .

where the sum starts from m =2 and not from m =1 since there are no
permutations of kind m = 1. Now expression (8) equals

Z z—gm(nl'vhzlag")’ (9)

me=2

where the logarithm is to the base 2.
Assume that n is large enough so that n'™' - 2logn is positive. The largest
suinmand of (9) occurs when m =2, and so (9) is dominated by n -1 (i.c., the

number of summands) times the summand for m = 2, that is, (9) is dominated by
(n - 1)%(n"'~-2!agn)t

+

which equals

n'~1-2logn ~topi{a-1))
2 »

This expression is clearly 0(8™'"), if 1< 8 <1, which completes the proof.
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4. Further remarks

(@) 1f S is not of type (u,). then b, .S) gets close to a.(S)/(n!) “quickly”.
Specifically, if § is of type (u,,..., %), with t > 1 and u, >0, then we havc shown
that

t 1
%)—"(-S%S—); -1=o0(8"") ifi<o<l.

In particular, since t =2, we see that (n!)b.(S)a.(S) converges to | at least
“geometrically fast™.

(b) It is possible to generalize further our notion of “tvpe™. Thus, iastead of a
type “'saying” that there must be a certain number of distinguished binary relations,
and so on, a type might also say for example, that, in addition, there must be
a certain number of distinguished *‘undirected graph relat'ons™ (by an “undirected
graph relation”, we mean a set of unordered pairs of {I,...,n}). Similarly, for
. ibitrary k, the type can say that there must be a certain number of ‘‘undirected
k -ary relations”, each of which is a set of unordered k -tuples of {1,... n} (cf. the
“linear graphs” of [3]). It is straightforward to check that with minor modifications,
the proof of the theorem still goes through, as long as the type includes «t least one
kind of relation, undirecte! or not, which is not unary.

Acknowledgements

The author is grateful to Ralph McKenzie for Lemma 3.2, to George Markowsky
for helpful suggestions which improved readability, and to the referee for suggest-
ing certain simplifications in the proof and for pointing out the existence of
Oberschelp’s unpublishea manuscript.

References

[1] W. Burnside, Theory of Greupe of Finite Order, 2nd «dition (Cambridge University Press.
Cambridge, 1911, Dover Pubiications, NY, 1935).

[2] N.G. de Bruijn, Polya's theory of counting, in: E.F. Beckenbach, ed., Applied Combinatorial
Mathemaiics (Wiley, NY, 1954) 144-184.

[3] N.G. de Bruijn and D A. Klarner. Enumeration of generalized graphs, Indag. Math. 31 (1969) 1-9

[4] R. Fagin, Probabilities an finite models, I. Symbal. Logic 41 (1976) 50-58.

[5] G.W. Ford and G.%=. Uhlenteck, Combinatorial problems in the theory of graphs. IV. Proc. Nat
Acad. Sci. 43 (1957) 163-167.

[6] F. Harary, Note on Carnap's refational asymptotic relative frogueacies, J. Symbol. Logic 23 (1958)
257-260.

{71 R. McHeiizie, private commanicarion.

[8] W. Oberschelp, Strukturzahlen in endlichen Relationssystemen, m: H.A. Schmidt. ¢t al.. eds..
Con:ributions to Mathematical Legic, Proc. of 1966 Logic “olloquium (North-Holland. Amster-
dam, 1968) 199-213. . ,

{9] A. Tarski, Contributions 1o the theory of models 1, II, Indag. Math. 16 (1954) 572-588.



