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Summary. Reasoning about activities in a distributed 
computer system at the level of the knowledge of indi- 
viduals and groups allows us to abstract away from many 
concrete details of the system we are considering. In this 
paper, we make use of two notions introduced in our 
recent book to facilitate designing and reasoning about 
systems in terms of knowledge. The first notion is that of 
a knowledge-based program. A knowledge-based program 
is a syntactic object: a program with tests for knowledge. 
The second notion is that of a context, which captures the 
setting in which a program is to be executed. In a given 
context, a standard program (one without tests for know- 
ledge) is represented by (i.e., corresponds in a precise sense 
to) a unique system. A knowledge-based program, on the 
other hand, may be represented by no system, one system, 
or many systems. In this paper, we provide a sufficient 
condition for a knowledge-based program to be repre- 
sented in a unique way in a given context. This condition 
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applies to many cases of interest, and covers many of the 
knowledge-based programs considered in the literature. 
We also completely characterize the complexity of deter- 
mining whether a given knowledge-based program has 
a unique representation, or any representation at all, in 
a given finite-state context. 

Key words: Knowledge-based program - Protocol - 

Reasoning about knowledge - multi-agent system 

1 Introduction 

Reasoning about activities in a distributed computer sys- 
tem at the level of the knowledge of individuals and groups 
allows us to abstract away from many concrete details of 
the system we are considering. One approach to program 
development is to work top-down, first designing a high- 
level protocol, and then implementing the high-level con- 
structs in a way that may depend on properties of the 
particular setting at hand. This style of program develop- 
ment will generally allow us to modify the program more 
easily when considering a setting with different properties, 
such as a different communication topology, different 
guarantees about the reliability of various components of 
the system, etc. 

Motivated by these considerations, Halpern and Fagin 
[l 13 suggested a notion of knowledge-based protocols, in- 
which an agent’s actions depend explicitly on the agent’s 
knowledge. Their goal was to provide a formal semantics 
for programs with tests for knowledge such as 

if K (x = 0)  do y := y + 1, 

where K (x = 0) should be read as “you know that x = 0”. 
Unfortunately, the technical definition of knowledge- 
based protocols given in [l 13 (later simplified somewhat in 
[l2, 21,27]), had a number of deficiencies, which made it 
somewhat difficult to use as a tool for program design. For 
one thing, a knowledge-based protocol was defined as 
a function from local states and systems to actions (we 
provide details in Sect. 3.2). Thus, the definition did not 
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directly capture the intuition that knowledge-based pro- 
grams were meant to be programs with tests for know- 
ledge. Moreover, the approach did not provide a clean 
distinction between the protocol (or program) and the 
setting in which it  is to be executed. As a result, 
the high-level and model-independent reasoning we wish 
to use knowledge for was not facilitated by the definition 
as much as it perhaps could have been. Nevertheless, 
knowledge-based protocols were used (either formally or 
informally) in papers such as [6, 15, 16,24,26]. 

In [S], an approach is given that overcomes the defi- 
ciencies of the earlier definition. This approach introduces 
knowledge-based programs, which are what knowledge- 
based protocols were intended to be: (syntactic) programs 
with tests for knowledge. This approach includes the intro- 
duction of contexts, which capture the setting in which 
a program is to be executed. By distinguishing between 
programs and contexts, and by ascribing meaning to pro- 
grams in different contexts in a uniform manner, high-level 
and model-independent reasoning based on knowledge 
are facilitated. 

In a given context, we can associate with every protocol 
- a mapping from local states to actions - a  unique system, 
namely, the system consisting of all possible runs (or ex- 
ecutions) of the protocol in that context. We think of this 
as the system that represents the protocol in this context. 
We similarly want to associate with each knowledge-based 
program a system that characterizes it in a given context, 
but there are subtleties. In general, such a system is not 
guaranteed to exist, and if one exists, it is not guaranteed 
to be unique. A knowledge-based program should be 
viewed as a high-level specification; the systems that rep- 
resent i t  can be viewed as those systems that satisfy the 
specification. If there are no systems representing the pro- 
gram, then the specification is inconsistent (at least, in the 
given context); if there is more than one, that simply means 
that the specification can be satisfied in more than one 
way. 

Of course, if we are to program at the knowledge level, 
it is surely useful to be able to  tell whether there is a system 
representing a given knowledge-based program, and if so, 
whether this system is unique. In instances in which we can 
determine by the syntactic structure of a knowledge-based 
program that it has exactly one representation, we can 
think of the program as a high-level description of a speci- 
fic behavior of the agents. In such cases, we are justified in 
thinking of a knowledge-based program simply as a 
program with tests for knowledge. In this paper, we pro- 
vide a condition that is sufficient to guarantee that a 
knowledge-based program is represented by a unique sys- 
tem, and covers many of the simple knowledge-based 
programs considered in the literature. This condition is 
somewhat similar in spirit to a condition considered in 
[12] that guarantees the existence of a canonical system 
corresponding to a knowledge-based protocol. We also 
completely characterize the complexity of determining 
whether a given knowledge-based program has a unique 
representation, or any representation at all, in a given 
finite-state context. 

The rest of this paper is organized as follows. The next 
two sections review material from [8]: In Sect. 2, we 
describe the multi-agent systems framework, and in 

Sect. 3, we discuss standard and knowledge-based pro- 
grams. We present our sufficient condition for the exist- 
ence of unique representations in Sect. 4, and examine the 
complexity of checking whether a knowledge-based pro- 
gram is represented by a unique system, or any system at 
all, in Sect. 5. 

2 The multi-agent systems framework 

We want to be able to view any collection of interacting 
agents as a multi-agent system. Agents playing a game, 
processes running a protocol, and interacting robots are 
all examples of multi-agent systems. Thus we need a frame- 
work that is general enough to allow all of these as special 
cases. Such a framework was introduced in [ l l ,  131 and 
further developed in [8]. We review the details here. 

2.1 Runs and systems 

We assume that at any point in time, each of the agents in 
the system is in some state. We refer to this as the agent’s 
local state, in order to distinguish it from a global state, 
which we define shortly. We assume that an agent’s local 
state encapsulates all the information to which the agent 
has access. In this abstract framework, we do  not make 
any additional assumptions about the state. If we are 
modeling a poker game, a player’s state might consist of 
the cards he currently holds, the bets made by the other 
players, any other cards he has seen, and any information 
he may have about the strategies of the other players (for 
example, Bob may know that Alice likes to bluff, but that 
Charlie tends to bet conservatively). If we are modeling 
a distributed system, a process’s local state might consist of 
the values of certain variables and a list of messages 
received and sent. 

In addition to the agents, it is useful to have an environ- 
ment, which we can think of as capturing everything else 
that is relevant to the analysis that is not in the agents’ 
local states. In many ways the environment can be viewed 
as just another agent, though it typically plays a special 
role in many analyses. Like the agents, the environment 
has a local state. If we are analyzing a message-passing 
system where processes send messages back and forth 
along communication lines, we might have the environ- 
ment’s local state keep track of the messages that are in 
transit, and whether a communication line is up or down. 
A global state of a system with n agents is an (n  + 1)-tuple 
of the form (te, t,, . . . , tn), where te is the local state of the 
environment and fi is the local state of agent i. 

A global state describes the system at a given point in 
time. But a system is not a static entity; i t  constantly 
changes. Since we are mainly interested in how systems 
change over time, time must be built into the model. A run 
is a function from time to global states. Intuitively, a run is 
a complete description of how the system’s global state 
evolves over time. Time ranges over the natural numbers. 
Thus, r(0) describes the initial global state of the system in 
a possible execution r,  the next global state is r(l), and so 
on. The run r can be viewed as the sequence r(O), r ( l ) ,  .. . 
of the global states that the system goes through. Time is 
measured on some clock external to the system. We do not 
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assume that agents in the system necessarily have access to 
this clock; at time m measured on the external clock, agent 
i need not know it is time m. If an agent does know the 
time, then this information is encoded in his local state (we 
return to this issue later). This external clock need not 
measure “real time”. 

A system can have many possible runs, since the sys- 
tem’s global state can evolve in many possible ways: there 
are a number of possible initial states and many things that 
could happen from each initial global state. For example, 
in a poker game, the initial global states could describe the 
possible deals of the hand, with player i’s local state f i  

describing the cards held initially by player i. For each 
fixed deal of the cards, there may still be many possible 
betting (and discarding) sequences, and thus many runs. In 
a message-passing system, a particular message may or 
may not be lost, so again, even with a fixed initial global 
state, there are many possible runs. (A formal definition of 
runs is given in the next paragraph). To capture this, 
a system is formally defined to be a nonempty set of runs. 
This definition abstracts the intuitive view of a system as 
a collection of interacting agents. Instead of trying to 
model the system directly, this definition models the pos- 
sible behaviors of the system. The requirement that the set 
of runs be nonempty captures the intuition that the system 
being modeled has some behaviors. 

We summarize this discussion as follows: 

Definition 2.1 Let L, be a set of possible states for the 
environment and let Li be a set of possible local states for 
agent i, for i = 1, ... ,n. The set of global states is 
29 = L, x L ,  x ... x L,. A run over 9 is a function from the 
time domain - the natural numbers in our case ~ to 9. 
Thus, a run over 9 can be identified with a sequence of 
global states in 9. A pair ( r ,  m) consisting of a run r and 
time m is called a point. If r(m) = (fe, el, ... ,en) is the 
global state at the point (r ,  m), define r,(m) = C, and 
ri(m) = f i ,  for i = 1, . . . , n; thus, ri(m) is agent i’s local state 
at the point (r ,  m). A round takes place between two time 
points. Round m in run r is defined to take place between 
time m - 1 and time m. A system 9 over 9 is a set of runs 
over 9. We say that (r ,  rn) is a point in system 9 if 
r E B .  0 

2.2 Actions 

In our discussion of runs, we avoided consideration of 
where the runs came from. Starting in some initial global 
state, what causes the system to change state? Intuitively, it 
is clear that this change occurs as a result of actions 
performed by the agents and the environment. It is often 
convenient for us to view these actions as being performed 
during a round. Neiger [25] explicitly includes actions in 
his model of a run; for simplicity, we do not. However, we 
can easily model actions as part of the state: If an agent 
knows his actions, then they can be part of the agent’s local 
state. Otherwise, they can be included in the environment’s 
state. 

For us, actions are simply elements of some specific set. 
Thus, we assume that for each agent i there is a set ACTi of 
actions that can be performed by i. For example, in a dis- 

tributed system, an action send(x,j, i )  - intuitively, this 
action corresponds to i sending j the value of variable 
x ~ might be in ACTi if x is a variable that is local to agent 
i. On the other hand, if x is not a local variable of i, then it 
would usually be inappropriate to include send(x,j, i )  in 
ACTi.  In keeping with the policy of viewing the environ- 
ment as an agent (albeit one whose state of knowledge is 
not of interest), the environment is allowed to perform 
actions from a set ACT,. In message-passing systems, 
it is perhaps best to view message delivery as an action 
performed by the environment. If we consider a system 
of sensors observing a terrain, we may want to view 
a thunderstorm as an action performed by the environ- 
ment. For both the agents and the environment, we allow 
for the possibility of a special null action A which 
corresponds to the agents or the environment performing 
no action. 

Knowing which action was performed by a particular 
agent is typically not enough to determine how the global 
state of the system changes. Actions performed simulta- 
neously by different agents in a system may interact. If two 
agents simultaneously pull on opposite sides of a door, the 
outcome may not be easily computed as a function of the 
outcomes of the individual actions when performed in 
isolation. If two processes try simultaneously to write 
a value into a register, it is again not clear what will 
happen. To deal with potential interaction between ac- 
tions, we consider joint actions. A joint action is a tuple of 
the form (a,, a , ,  . . . ,a,,), where a, is an action performed 
by the environment and ai is an action performed by agent 
i , f o r i = l ,  ..., n. 

How do joint actions cause the system to change 
state? We would like to associate with each joint action 
(ae, a , ,  . . . , a,) a global state transformer F, where a global 
state transformer is simply a function mapping global 
states to global states, i.e., F : 9 + 9. Joint actions cause 
the system to change state via the associated global state 
transformers; if the system is in global state g when the 
action (a,, a , ,  . . . , a,) is being performed, then the system 
changes its state to F(g). Thus, whenever we discuss ac- 
tions we will also have a mapping t that associates with 
each joint action (ae, a , ,  ... ,a,), a global state trans- 
former z(a,, a , ,  ... ,an). The mapping 7 is called the 
transition function. Note that the definition requires that 
t(a,, a , ,  ... ,a,) (te, el, ... ,en) be defined for each joint 
action (a,, a , ,  ... ,a,) and each global state (f,, d, ,  ... ,en). 
In practice, not all joint actions and all global states are 
going to be of interest when we analyze a multi-agent 
systems, since certain combinations of actions or certain 
combinations of local states will never actually arise. 
In such cases, we can let t(a,, a , ,  . .. ,a,,) (f,, el, .. . ,en) be 
defined arbitrarily. Typically, we define t ( A ,  . . . , A )  
to be the no-op transformer z, where ~(t,, el, .. . ,en) = 
(le, el, ... ,t,,). We make this assumption in this paper. 

To summarize, we have the following definitions: 

Definition 2.2 A joint action is an element of the set 
ACT, x ACTl x ... x ACT,,. Given a set 9 of global 
states, a global state transformer is a mapping from 9 to 9. 
A transition function maps joint actions to global state 
transformers. 0 
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2.3 Protocols In summary: 

Definition 2.3 A protocol Pi for agent i is a mapping from 
the set Li of agent i’s local states to nonempty sets of 
actions in ACTi .  A protocol P, for the environment is 
a mapping from the set L, of the environment’s local states 
to nonempty sets of actions in ACT,. 

Intuitively, a protocol for agent i is a description of what 
actions agent i may take, as a function of her local state. 
A protocol Pi for agent i is formally defined to be a function 
from the set Li of agent i’s local states to nonempty sets of 
actions in ACTi.  The fact that we consider a set of possible 
actions allows us to capture nondeterministic protocols. 
Of course, at a given step of the protocol, only one of these 
actions is actually performed; the choice of action is non- 
deterministic. A deterministic protocol is one that maps 
states to actions, i.e., it prescribes a unique action for 
each local state. Formally, Pi is deterministic if Pi(ti)  is 
a singleton set for each local state ti E Li. We remark 
that if Pi is deterministic, we typically write Pi( t i )  = a 
rather than Pi(ei) = {a}. If we had wanted to consider 
probabilistic protocols (which we do not here, since it 
would only complicate the exposition), we would need to 
put a probability distribution on the set of actions that an 
agent can perform at a given state. This would then gener- 
ate a probability space on the set of possible runs of the 
protocol. 

Just as it is useful to view the environment as perform- 
ing an action, it is also useful to view the environment as 
running a protocol. A protocol for the environment is 
defined to be a function from L, to nonempty subsets of 
ACT,. For example, in a message-passing system, we can 
use the environment’s protocol to capture the possibility 
that messages are lost or that messages may be delivered 
out of order. If all the agents and the environment follow 
deterministic protocols, then there is only one run of the 
protocol for each initial global state. In many examples, 
the agents follow deterministic protocols, but the environ- 
ment does not. 

While this notion of protocol is quite general, there is 
a crucial restriction: a protocol is a function on local states, 
rather than a function on global states. This captures the 
intuition that all the information that the agent has is 
encoded in his local state. Thus, what an agent does can 
depend only on his local state, and not on the whole global 
state. This definition of protocol is so general that it allows 
protocols that are arbitrary functions on local states, in- 
cluding ones that cannot be computed. Of course, in prac- 
tice we are typically interested in computable protocols, i.e., 
protocols for which there is an algorithm that takes a local 
state as input and returns the set of actions prescribed by 
the protocol in that state. 

Processes do not run their protocols in isolation; it is 
the combination of the protocols run by all agents that 
cause the system to behave in a particular way. A joint 
protocol P is a tuple (PI, . . . , P,) consisting of protocols Pi, 
for each of the agents i = 1, ... ,n. Note that while the 
environment’s action is included in a joint action, the 
environment’s protocol is not included in a joint protocol. 
This is because of the environment’s special role; we usu- 
ally design and analyze the agents’ protocols, while taking 
the environment’s protocol as a given. In fact, when de- 
signing multi-agent systems, the environment is often seen 
as an adversary who may be trying to cause the system to 
behave in some undesirable way. In other words, the joint 
protocol P and the environment protocol P, can be viewed 
as the strategies of opposing players. 

2.4 Contexts 

A joint protocol P and an environment protocol pre- 
scribed the behavior of all “participants” in the system and 
therefore, intuitively, should determine the complete be- 
havior of the system. On closer inspection, the protocols 
describe only the actions taken by the agents and the 
environment. To determine the behavior of the system, we 
also need to know the “context” in which the joint proto- 
col is executed. What does such a context consist of? 
Clearly the environment’s protocol P, should be part of 
the context, since it determines the environment’s contri- 
bution to the joint actions. In addition, the context should 
include the transition function z, since it is z that describes 
the results of the joint actions. Furthermore, the context 
should contain the set Yo of initial global states, since this 
describes the state of the system when execution of the 
protocol is initiated. In general, not all global states are 
possible initial states. These components of the context 
provide us with a way of describing the environment’s 
behavior at any single step of an execution. 

There are times when we wish to consider more global 
constraints on the environment’s behavior, ones that are 
not easily captured by P,, z, and go. This is the case, for 
example, with a fairness assumption such as “all message 
sent are eventually delivered”. There are a number of ways 
that we could capture such a restriction on the environ- 
ment’s behavior. Perhaps the simplest is to specify an 
admissibility condition Y on runs, that tells us which ones 
are “acceptable”. Formally, Y is a set of runs; r E Y iff 
r satisfies the condition Y. Notice that while the environ- 
ment’s protocol can-be thought of as describing a restric- 
tion on the environment’s behavior at any given point in 
time, the reliable delivery of messages is a restriction on the 
environment’s behavior throughout the run, or, in other 
words, on the acceptable infinite behaviors of the environ- 
ment. Indeed, often the admissibility condition Y can be 
characterized by a formula in temporal logic, and the runs 
in Y are those that satisfy this formula. We return to this 
point when we review the formal definitions of temporal 
logic in the next section. The condition consisting of all 
runs is denoted by True; this is the appropriate condition 
to use if we view all runs as “good”. 

Definition 2.4 A context y is a tuple (Pe, go, z, Y),  where 
P,: L, + 2 A C T e  - {@I is a protocol for the environment, Yo 
is a nonempty subset of the set Y of global states, z is 
a transition function, and Y is an admissibility condition 
on runs. 

Notice that by including z in the context, we are also 
implicitly including the sets L,, L1,  . . . , L, of local states as 
well as the sets ACT,, A C T I ,  ... , A C T ,  of actions, since 
the set of joint actions is the domain of z and the set of 
global states is the domain of the global state transformers 
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in the range of z. To minimize notation, we do not explicit- 
ly  mention the state sets and action sets in the context. We 
shall, however, refer to these sets and to the set 9 = 
L, x L1 x ... x L, of global states as if they were part of the 
context. 

It is only in a context that a joint protocol describes the 
behavior of a system. As we shall see later on, the combina- 
tion of a context y and a joint protocol P for the agents 
uniquely determines a set of runs, which we shall think of 
as the system representing the execution of the joint proto- 
col P in the context y .  

2.5 Consistency 

We can now talk about the runs of the protocol in a given 
context. 

Definition 2.5 A run r is weakly consistent with a joint 
protocol P = (P1, ... , P,) in context y = (Pe,  go, z, Y )  if 

1. r(0) E ??o (so r(0)  is a legal initial state), 
2. for all m 2 0, if r(m) = (fe, f,, .. . , t,), then there is 

ajointaction(a, ,a, ,  ..., a,)€ P e ( & e ) x P l ( ~ l ) x  ... xP,,(f,) 
such that r(m + 1) = z(a,, a , ,  ... ,a , , ) (r(m))  (so r(m + 1) is 
the result of transforming r(m) by a joint action that could 
have been performed from r(m) according to P and P,). 

The run r is consistent with P in context y if it satisfies in 
addition 

3. r E Y (so that, intuitively, r is admissible according 

Thus, the run r is consistent with P in context y if r is 
a possible behavior of the system under the actions pre- 
scribed by P in y ;  the run r is weakly consistent with P in 
context y if r is consistent with the step-by-step behavior of 
protocol P, but not necessarily with its global behavior. 
Note that while we are always guaranteed to have runs 
that are weakly consistent with P in y ,  it is possible that 
there is no run r that is consistent with P in y. This would 
happen precisely if there is no run in Y that is weakly 
consistent with P in y. In such a case we say that P is 
inconsistent with y; otherwise, P is consistent with y .  Notice 
that all joint protocols would be inconsistent with a con- 
text y in which, for example, Y contains no run whose 
initial state is in go. We take a situation where the joint 
protocol is inconsistent with the context as an indication 
of bad modeling. We implicitly assume that the joint 
protocols we consider are consistent with their contexts. 

Definition 2.6 The system representing protocol P in con- 
text y ,  denoted Rrep(P, y), is the system consisting of all 
runs consistent with P in context y. 

Abadi and Lamport [ 13 introduced an approach that 
can also be viewed as specifying a system that represents 
a protocol. In our notation, an Abadi-Lamport representa- 
tion is a four-tuple (9, go, M ,  Y) ,  where 3 is a set of global 
states, Yo is a set of initial states, Y is an admissibility 
condition on runs, and Jlr, the next-state relation, is a sub- 
set of ?? x ?? such that (9, g) E AT for all g E ??. Roughly 
speaking, we can think of JY as encoding all possible 
transitions of the system. The condition that (9, g) E .,V for 
all g E 29 ensures that the system can always “stutter”. Such 

to Y). 0 

0 

stuttering can be thought of as the result of “no-op” 
actions being performed by each agent in the system and 
by the environment (in our notation, this amounts to 
a joint action of the form ( A ,  ... ,A)). The definition of 
JV abstracts always from actions and focuses instead on 
state transitions. An Abadi-Lamport representation 
generates the set of all runs r E Y such that r(0) E Yo and 
(r( i ) ,  r(i + 1)) E JY for all i 2 0. Clearly this notion is sim- 
ilar in spirit to our notion of the system representing 
a protocol in a given context. 

2.6 Incorporating knowledge 

When analyzing a message-passing protocol, it is common 
to make statements such as “ A  does not know for certain 
that B received its acknowledgement”. 

To define knowledge in interpreted systems, we assume 
that we have a set 4p of primitive propositions, which we 
can think of as describing basic facts about the system. 
These might be such facts as “the value of the variable x is 
O”, “process 1’s initial input was 17”, “process 3 sends the 
message p in round 5 of this run”, or “the system is 
deadlocked”. (For simplicity, we are assuming that we can 
describe the basic properties of the system adequately 
using propositional logic; the extension of the framework 
to use first-order logic is straightforward [S].) We then 
form more complicated formulas by closing off under 
conjunction, negation, and the epistemic operators 
K1, ... , K ,  (where K i  stands for “agent i knows”, 
i = 1 ,  . . . , n), E (“everyone knows”), and C (“common 
knowledge”), and the standard temporal operators 
0 (“next”) and U (for “until”) [20]. As usual, we define Ocp 
(“eventually cp”) to be an abbreviation for trueUcp, and Ocp 
(“always cp”) to be an abbreviation for i 01 cp). Thus, we 
get formulas such as K,Op  A i K 2 K 1 0 p :  agent 1 knows 
that eventually p will be true, but agent 2 does not know 
that agent 1 knows this. Formulas without temporal con- 
nectives (i.e., without 0 and U )  are called knowledgefor- 
mulas. Formulas without knowledge modalities (i.e., with- 
out Ki, E,  or C )  are called temporal formulas. 

Definition 2.7 An interpreted system 9 consists of a pair 
(9, n), where W is a system over a set 9 of global states and 
n is an interpretation for the propositions in 4p over 3, 
which assigns truth values to the primitive propositions at 
the global states. Thus, for every p E @ and state g E 3, we 
have n(g)(p) E {true, false}. 

Of course, n induces also an interpretation over the points 
of 9; simply take n(r, m) to be n(r(m)). Notice that 4p and 
n are not intrinsic to the system 9. They constitute addi- 
tional structure on top of W that we, as outside observers, 
add for our convenience, to help us analyze or understand 
the system better. We refer to the points and states of the 
system B as points and states, respectively, of the inter- 
preted system 9. That is, we say that the point ( r ,  m) is in 
the interpreted system 9 = (B, n) if r E B, and similarly, 
we say that 9 is a system over state space 9 if 9 is. 

We can now define the truth of a formula at a point 
( r ,  rn) in an interpreted system 9 = (9, n) in a straight- 
forward way. The truth value of a primitive proposition is 
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determined by 7c: 

(9, r, in) I= p (for p E @) iff 7c(r(m))(p) = true. 

Negation and conjunction are defined in the standard way: 

(9, r ,  4 I= cp A $ iff (9, r ,  4 I= io and (4, r, m) l= $. 

(9, r,  4 I= 1 4 0  iff (9, r, m) F cp. 

We say agent i knows cp if cp is true at all points that 
i considers possible, where we interpret “i considers (r’, m‘) 
possible at (r, my’ as ri (m) = rf(m‘). That is, at (r, m), agent 
i considers possible all points (r’, m’) at which he has the 
same local state. In such a case, we write (r,  m) -i (r’, m’). It 
is easy to see that -i is an equivalence relation. We define 

(9, r,  m) I= K i q  iff (9, r’, m’) k 43 for all (r’, m’) such that 
(r, m) -i (r‘, m’). 

Notice that this interpretation of knowledge is an ex- 
ternal one, ascribed to the agents by someone reasoning 
about the system. We do not assume that the agents 
compute their knowledge in any way, nor that they can 
necessarily answer questions based on their knowledge. As 
all the references cited in the introduction show, this defini- 
tion of knowledge is quite useful. Moreover, it captures the 
informal way people often think about programs. For 
example, a system designer may think “once A knows 
B has received the message p, then A should stop sending 
p to B”. In simple examples, our formal definition of 
knowledge seems to capture exactly what the system de- 
signer has in mind when he uses the word “know” here. 
Nevertheless, there are times when a more computational 
notion of knowledge is appropriate. We return to this issue 
in Sect. 6. 

We say that Ecp (“everyone knows q”) holds if each of 
the agents knows cp, and Ccp (“cp is common knowledge”) 
holds if each of the agents knows that each of the agents 
knows ... that each of the agents knows cp. Defining 
E‘cp = E q  and taking Ekilcp to be an abbreviation for 
E(Ekcp), we have 

(9 , r ,m) l=  Ecp iff ( 4 , r , m ) ( =  K i q  

(9, r,  m)+ Ccp iff (9, r, m ) k  Ekcp 

for i = 1 ,  ... ,n 

for k = 1,2,  ... 

Finally, for the temporal operators, we have 

(9, r, m ) k  Ocp iff (9, r, m + 1)1= cp 

(9, r, m) + q U $  iff (9, r,  m‘) t= $ for some m’ >= m and 

(9, r, m”) cp for all m“ such that m $ m“ < m’. 

Note that if cp is a temporal formula, then the truth of q at 
a point (r, m) does not depend on 92 at all, but only on 71, so 
we can write (71, r, m) + cp. We say that r satisjes cp if 
(71, r, 0) cp holds. 

We use knowledge formulas, as the examples above 
suggested, to describe the knowledge necessary for agents 
to perform certain actions. We use temporal formulas to 
specify properties that we want our protocols to have, such 
as safety properties - these are invariance properties that 
have the form “a bad thing never happens”, typically 

expressed with the temporal operator 0 - and liueness 
properties ~ these are properties that say “a good thing 
eventually happens”, typically expressed using 0 [28]. 
Admissibility conditions can also often be specified by 
temporal constraints. For example, to specify reliability of 
communication, we can use the admissibility condition Re1 
defined by Re1 = {rlall messages sent in r are eventually 
received). Let send@, j ,  i )  be a proposition that is inter- 
preted to mean “message p is sent to j by i”, and let 
receive(p, i , j )  be a proposition that is interpreted to mean 
“message p is received from i by j”. Then a run r is in Re1 
precisely if n(send(p ,  j ,  i )  3 Oreceiue(p, i , j ) )  holds at (r, 0) 
(and thus at every point in r )  for each message p and 
processes i, j .  

3 Standard programs and knowledge-based programs 

3. I Standard programs 

As discussed above, a protocol is a function from local 
states to sets of actions. We typically describe protocols by 
means of programs written in some programming lan- 
guage. We now describe a simple programming language, 
which is still rich enough to describe protocols, and whose 
syntax emphasizes the fact that an agent performs actions 
based on the result of a test that is applied to her local 
state. A (standard) program for agent i is a statement of the 
form: 

case of 
if t l  do a,  
if t2  do a2 
... 

end case 

where the tj’s are standard tests for agent i and the aj’s are 
actions of agent i (i.e., aj E ACTi ) .  (We call such programs 
“standard” to distinguish them from the knowledge-based 
programs of Sect. 3.2. We typically omit the case statement 
if there is only one clause.) A standard test for agent i is 
simply a propositional formula over a set Qi of primitive 
propositions. Intuitively, once we know how to evaluate 
the tests in the program at the local states in Li, we can 
convert this program to a protocol over Li: at a local state 
e, agent i nondeterministically chooses one of the (possibly 
infinitely many) clauses in the case statement whose test is 
true at e, and executes the corresponding action. 

Standard programs can be viewed as a generalization 
of UNITY programs [3]. A UNITY program consists of 
a collection of guarded assignment statements, such as “if 
b then x +- f ( x ,  y)”. Standard programs generalize assign- 
ments to arbitrary actions. Note that UNITY requires 
fairness (each statement must be attempted infinitely 
often), while in the framework here, fairness is not re- 
quired, although it can be guaranteed by using the appro- 
priate admissibility condition in the context. 

We want to use an interpretation 7c to tell us how to 
evaluate the tests. However, not just any interpretation 
will do. We intend the tests in a program for agent i to be 
local, that is, to depend only on agent i’s local state. It 
would be inappropriate for agent i’s action to depend on 
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the truth value of a test that i could not determine from her 
local state. We say that an interpretation n on the global 
states in 9 is compatible with a program Pg, for agent i if 
every proposition that appears in Pg, is local to i; that is, if 
q appears in Pg,, the states g and g’ are in 9, and g -, g’, 
then n(g)(q) = n(g’)(q). If cp is a propositional formula all of 
whose primitive propositions are local to agent i, and 8 is 
a local state of agent i, then we write (n, t)I= cp if cp is 
satisfied by the truth assignment n(g), where g = 
(ee, el, ... ,[,,) is a global state such that ti = t. Since all 
the primitive propositions in cp are local to i, it does not 
matter which global state g we choose, as long as i’s local 
state in g is L‘. Given a program Pg, for agent i and an 
interpretation n compatible with Pg,, we define a protocol 
that we denote Pgq by setting 

Intuitively, Pg; selects all actions from the clauses that 
satisfy the test, and selects the null action A if no test is 
satisfied. In general, we get a nondeterministic protocol, 
since more than one test may be satisfied at a given state. 

Many of the definitions that we gave for protocols have 
natural analogues for programs. 

Definition 3.1 A joint program is a tuple Pg = 
(Pg,, ... ,Pg,), where Pg, is a program for agent i. An 
interpretation n is compatible with Pg if n is compatible 
with each of the Pg,’s. From Pg and n we get a joint 
protocol Pg“ = (Pg;. ... ,Pgt). An interpreted context is 
a pair ( y ,  n) consisting of a context y and an interpretation 
n. An interpreted system 4 = (92, n) represents a joint 
program Pg in the interpreted context (y, n) exactly if n is 
compatible with Pg, and 9 represents the corresponding 
protocol Pg” in context y. The interpreted system repre- 
senting Pg in (y, n) is denoted Irep (Pg, y ,  n). 0 

Note that the definition of Irep(Pg, y ,  n) makes sense only if 
n is compatible with Pg. From now on we always assume 
that this is the case. 

3.2 Knowledge-based programs 

The notion of standard programs, in which agents perform 
actions based on the results of tests that are applied to 
their local state, is very simple. As we observed earlier, 
however, this notion is rich enough to describe protocols. 
Nevertheless, standard programs cannot be used to de- 
scribe the relationships between knowledge and action 
that we would often like to capture. The issue is perhaps 
best understood by considering the muddy children puzzle 

In this puzzle, a number of children are playing in the 
mud. Their father then comes along and says “At least one 
of you has mud on your forehead”. He then repeatedly 
asks the children if they know whether they have mud on 
their forehead. If so, they are supposed to answer “Yes”; 
otherwise they should answer “No”. If we take the prop- 
osition p i  to represent “child i has mud on his forehead”, 
then it seems quite reasonable to think of child i as 

~2,131. 

following the program MC, (the M C  stands for “Muddy 
Children”): 

case of 
if childheard, A (K ip i  V K i i p , )  do say “Yes“ 
if childheardi A i Kipi A i K , i p ,  do say ”No” 

end case. 

Here childkeard, is a primitive proposition that is true at 
a given state if child i heard the father’s question “Does any 
of you know whether you have mud on your own fore- 
head?’ in the previous round. Unfortunately, MCi is not 
a program as we have defined it. Besides propositional 
tests, it has tests for knowledge such as Kipi  V K i i p i .  
Moreover, we cannot use our earlier techniques to associ- 
ate a protocol with a program, since the truth value of such 
a knowledge test cannot be determined by looking at 
a local state in isolation. 

We call a program of the form above a knowledge- 
based program, to distinguish it from the standard 
programs defined in Sect. 3. Formally, a knowledge-based 
program for agent i has the form: 

case of 
if t l  A k ,  do a ,  
if t ,  A k 2  do a 2  
... 

end case 

where the t,’s are standard tests, the kj’s are knowledge tests 
for agent i, and the aj’s are actions of agent i. A knowledge 
test for agent i is a Boolean combination of formulas of the 
form Kicp, where cp can be an arbitrary formula that may 
include other modal operators, including common know- 
ledge and temporal operators. Intuitively, the agent selects 
an action based on the result of applying the standard test 
to her local state and applying the knowledge test to her 
“knowledge state”, in a sense that will be made precise 
below. In the program MCi, the test ckildheard, is a stan- 
dard test, while Kipi V K i i p i  and i K i p ,  A i K i i p ,  are 
knowledge tests. In any given clause, we can omit either 
the standard test or the knowledge test; thus, a standard 
program is a special case of a knowledge-based program. 
We define a joint knowledge-based program to be a tuple 
Pg = (Pg, , . . . , Pg,), with one knowledge-based program 
for each agent. 

The notion discussed here of a knowledge-based pro- 
gram is from [S]. Although the idea of a knowledge-based 
program was implicit in the discussion in [ll], the first 
formal definition seems to have been given by Kurki- 
Suonio [19] and by Shoham [32]. Kurki-Suonio and 
Shoham, however, did not work with interpreted systems. 
Rather, they assumed that an agent’s knowledge was ex- 
plicitly encoded in his local state (and thus, in our termin- 
ology, was independent of the interpreted system). This 
means that their knowledge-based programs are really 
more like our standard programs, although some of the 
tests in their programs are intuitively thought of as tests 
for knowledge. 

We have described the syntax of knowledge-based pro- 
grams. It remains to give formal semantics to knowledge- 
based programs. Just as we think of a standard program as 
inducing a protocol that determines an agent’s actions, we 



206 

also want to think of a knowledge-based program as 
inducing a protocol. It is not obvious, however, how to 
associate a protocol with a knowledge-based program. 
A protocol is a function from local states to actions. To go 
from a standard program to a protocol, all we needed to 
do was to evaluate the standard tests at a given local state, 
which we did using interpretations. In a knowledge-based 
program, we also need to evaluate the knowledge tests. But 
in our framework, a knowledge test depends on the whole 
interpreted system, not just the local state. It may well be 
the case that agent i is in the same local state t in two 
different interpreted systems Y1 and Y2, and the test K i p  
may turn out to be true at the local state C in Y1, and false 
at the local state C in Y2. 

To deal with this problem, we proceed as follows. 
Given an interpreted system .a = (a, n), we associate with 
a joint knowledge-based program Pg = (Pg, , . . . , Pg,) 
a joint protocol that is denoted Pg' = (Pgf, ... ,PgL). In- 
tuitively, we evaluate the standard tests in Pg according to 
n, and evaluate the knowledge tests in Pg according to 4. 
As in the case of standard programs, we require that n be 
compatible with Pg, that is, that every proposition appear- 
ing in a standard test in Pgi should be local to i. Note that 
we place the locality requirement only on the propositions 
appearing in the standard tests, not on the propositions 
appearing in the knowledge tests. We wish to define Pg[(/) 
for all local states C of agent i. To define this, we first define 
when a test cp holds in a local state C with respect to an 
interpreted system 4, denoted (9, t )+  cp. (Note that this 
overloads I=, since previously we had a triple (4, Y, m) on 
the left-hand-side of +.) 

If cp is a standard test and 4 = (g, n) then, in analogy 
to Sect. 3,  we define 

(9,4 I= cp iff (n,C) I= cp. 

Since cp is a standard test in Pgi, it must be local to agent i, 
so this definition makes sense. If cp is a knowledge test of 
the form Kill/, we define 

(9, C) /= Kill/ iff (9, r, m) I= ll/ for all points (r, m) of 4 such 
that ri(m) = t .  

Finally, for conjunctions and negations of knowledge tests, 
we follow the standard treatment. 

Note that ( 9 , L )  k cp is defined even if the local state 
e does not occur in Y. In this case it is almost immediate 
from the definitions that (9, e) Ki(fulse). This means 
that one of the standard properties of knowledge fails, 
namely, that whatever is known is true ( K i q  - cp). On the 
other hand, if 8 does occur in 9, then Ki behaves in the 
standard way. This follows since if L = ri(m) for some point 
( r ,  m) in 9, then it is not hard to show that ( 9 , C )  I= Kicp iff 
(9, r7 m) I= KiV. 

We can now define 

Pg,"(e) = 

a..(Y,C)t= t j A k j }  if { j : ( 9 , / ) +  t j A k j }  +(?i 

if { j  : ( 9 ; d )  I= t j  A k j )  = 8. ki 
Intuitively, the actions prescribed by i's protocol Pgf 
are exactly those prescribed by Pgi in the interpreted 
system 4. 

Let Pg be a standard program. Then Pg is also a know- 
ledge-based program, with no knowledge tests. Consider 
an interpreted system 9 = (a, n). We can associate a pro- 
tocol with Pg in two ways. We can think of Pg as a stan- 
dard program and associate with it the protocol Pg", or we 
can think of Pg as a knowledge-based program and associ- 
ate with it the protocol Pg'. It is easy to see that our 
definitions guarantee that these protocols are identical. 

Roughly speaking, the knowledge-based protocols of 
[ 123 bear the same relation to knowledge-based programs 
as protocols bear to standard programs. Formally, 
a knowledge-based protocol is defined in [I21 to be a func- 
tion from local states and interpreted systems to actions. 
We can associate a knowledge-based protocol with 
a knowledge-based program in an obvious way: Given 
a knowledge-based program Pg, we can associate with i t  
the knowledge-based protocol P such that P ( 9 ,  C) = 
Pg'(C) for all local states C. Knowledge-based protocols 
can be viewed as an intermediate step between knowledge- 
based programs and protocols. We find it convenient here 
to go directly from knowledge-based programs to (stan- 
dard) protocols, skipping this intermediate step. Thus, we 
do not deal with knowledge-based protocols in this paper. 

The mapping from knowledge-based programs to pro- 
tocols allows us to define what i t  means for an interpreted 
system to represent a knowledge-based program in a given 
interpreted context by reduction to the corresponding 
definition for protocols. 

Definition 3.2 An interpreted system 4 = (9, z) represents 
Pg in ( y ,  n) if n is compatible with Pg and if 9 represents 
Pg'in y. 

This means that to check if 9 represents Pg, we check if 
9 represents the protocol obtained by evaluating the 
knowledge tests in Pg with respect to Y itself. Because of 
the circularity of the definition, i t  is not necessarily the case 
that there is a unique interpreted system representing 
a knowledge-based program. There may be more than one 
or there may be none. In contrast, there can be at most one 
interpreted system that represents a standard program. 
This issue is explored in more detail in Sect. 4 and 5, 
where, among other things, conditions are described under 
which a knowledge-based program is guaranteed to be 
represented by a unique system. 

We often find it convenient to speak of a protocol 
implementing a knowledge-based program. The most obvi- 
ous definition of this notion - and the one used in [S] - is 
to say that P implements Pg in (7, n) if P = Pg"rp(p.y*"). The 
intuition behind this definition can be understood as fol- 
lows. Fix the protocol P and context (y,n), and let 
9p = Irep(P, y, n). Suppose that we are running the proto- 
col P and that P = Pg'.. By definition, the actions pre- 
scribed by the protocol Pg'. are precisely those prescribed 
by Pg in the system Yap. Since the system represents P, it 
follows that by running P we are in fact adhering to Pg. 
This suggests that if P = PgFP then we should say that 
i? i w e m e n t s  Pg. It turns out, however, that this obvious 
defini&k just a bit too restrictive. The reason is that Pg: 
is defined on all local states of Li, including states that do 
not arise in 9(!). Of course, on states that do not arise in 9, 
the behavior described by Pg9 is somewhat arbitrary. 
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Consider a protocol P' that agrees with P on the states that 
arise in YP, but may possibly differ from P on other states. 
Clearly. P and P' behave in exactly the same way in the 
context ( y ,  n). Thus, for all practical purposes, in this con- 
text the protocols P and P' are one and the same. Accord- 
ing to the definition we quoted above from [S], however, 
P implements Pg in (y, n), while P' does not. We thus 
modify the definition given in [S] slightly, so that P' will be 
considered as implementing Pg as well. 

Definition 3.3 Let P be a protocol and let 4 = P ( P ,  y, n). 
We say that P implements Pg in ( y ,  n) if (1) 9 = 
Irep(Pg', y, n)  and (2) P and Pg' agree on all global states 
that appear in 4. 0 

The new definition solves the problem of the old defini- 
tion involving states that do not arise in 9. Part (1) by 
itself is not sufficient, since it is stated only in terms of the 
systems that represent the protocols P and Pg'. It does not 
talk directly about the actions the agents perform in the 
two protocols. Hence, for example, if there are two joint 
actions a and b such that, at a particular global state of 9, 
the effect of the agents' performing a is the same as that of 
their performing b, then by looking at 9 we would not be 
able to tell which of these actions was taken. When we say 
that P implements Pg, we mean that the actions that 
P performs are those prescribed by Pg. This is handled by 
part (2) of the definition. It says that on the global states 
that actually arise when running protocol P in the given 
context, the actions performed by P are precisely those 
that Pg prescribes. An immediate consequence of Defini- 
tion 3.3 is that if 4 represents Pg in (y, n), then Pg' 
implements Pg in (y, n). 

We remark that the notion of representation can be 
viewed as a notion of equilibrium: 9 represents Pg = 

(Pg,, . . . , Pg,) if whenever each agent i runs its program 
Pg, with respect to the interpreted system 9 (in the inter- 
preted context (y, n)), then the joint knowledge-based pro- 
gram Pg indeed gives rise to the interpreted system 9. This 
is reminiscent of the notion of Nash equilibrium in game 
theory, where a tuple (fl, . . . ,fk) of strategies in a k-player 
game is a Nash equilibrium if, for every player i, the 
strategyf, is a best response to the case where each of the 
other players j + i follows the strategy f j  [9]. That is, if 
each player believes that the other players play as if they 
are at the equilibrium point (fl, .., ,&), then the players 
have no incentive not to play at that equilibrium. 

4 Getting unique representations 

As we mentioned in the previous section, in general there is 
no unique interpreted system that represents a knowledge- 
based program in a given context. In this section, we 
provide sufficient conditions to guarantee the existence of 
a unique representation. We begin with an example that 
illustrates why we may get more than one system repre- 
senting a knowledge-based program. 

Example 4.1 Suppose we have a system consisting of only 
one agent, agent 1, who has a bit that is initially set to 0. 
Suppose agent 1 runs the following simple knowledge- 

based program NU (for "not unique"): 

if K ,  (O(bit = 1)) do bit := 1. 

Intuitively, bit := 1 has the effect of assigning the value 1 to 
the bit.-According to NU, agent 1 sets the bit to 1 if she 
knows that eventually the bit is 1, and otherwise does 
nothing. It should be clear that there are two ways that 
agent 1 could be consistent with the program: either by 
never setting the bit to 1 or by setting the bit to 1 in the first 
round. We can formalize this by considering the context 
y"" = (Pe, Yo, T ,  True), defined as follows: We take agent 
1's local state to be either 0 or 1; we think of this local state 
as representing the value of the bit. We take the environ- 
ment's state to always be A (the environment plays no role 
in this example). Since the bit is initially 0, we take 
Yo = {(A, 0)). We assume that the environment's action is 
always A ,  so PJA) = A .  The agent's action is either A or 
bit := 1. The effect of T is to reset the bit as appropriate; 
thus, T ( A ,  A)(,?, k )  = (A, k )  and T ( A ,  bit := l ) (A ,  k )  = (A, 1). 
This completes the description of y"". Finally, we define nnu 
in the obvious way: n""((A, k))(bit = 1) is true exactly if 

Let ro be the run where agent 1 does nothing, starting 
in the initial state (A, 0); thus, r"(m) = (A, 0)  for all m 2 0. 
Let rj, for j  2 1, be the run where agent 1 sets the bit to 1 in 
round j ,  after starting in the initial state (A, 0); thus, 
rj(m) = (i, 0) for m < j ,  and rJ(m) = (A, 1) for m z j .  It is 
easy to see that the only runs that we can have in context 
y"" are of the form rJ.  It is also not hard to see that no run 
of the form rj for j > 1 can be in an interpreted system 
consistent with NU. For if rj is in an interpreted system 
9 consistent with NU, then since agent 1 sets the bit to 1 in 
round j of rj, it must be the case that (9, rj, j - 1) 
K,(V(bit  = 1)). But clearly ( r j ,  0) -1 (rj, j - 1). Thus, 
(9, rJ,  0) + K 1  (O(bit = 1)). Since 9 is consistent with 
NU', this means that agent 1 should have set the bit to 1 in 
round 1 of rj, a contradiction. Thus, the set of runs in any 
interpreted system consistent with NU must be a non- 
empty subset of {ro, 7 ' ) .  Let be the system consisting of 
the single run rJ, for j = 0, 1, and let 9' = (Bj, nn"). We 
claim that both Y o  and 9' represent NU in the context 
(y"", n""). Clearly, in Y1, agent 1 knows O(bit  = l), since 
this formula is true at every point in 9', so the only 
possible action that she can take is to set the bit to 1 in 
round 1, which is precisely what she does in r l .  On the 
other hand, in Yo,  agent 1 never knows O(bit = l), since it 
is false at all points in ro. This means that according to the 
protocol NU.f", agent 1 never sets the bit to 1, so the only 
run consistent with NU." is Yo. It follows that both 4' and 
9' represent NU in (y"", nnu). It is easy to see that the 
interpreted system Y 2  = (B2, n""), where W 2  = {r', r l } ,  is 
not consistent with NU, so that Y o  and 9' are in fact the 
only interpreted systems that represent NU in this context. 

Now consider the program that intuitively says "set the 
bit to 1 exactly if you know you will never set the bit to 1". 
No interpreted system can be consistent with this pro- 
gram, since it amounts to saying "set the bit to 1 exactly if 
you know you should not". We can capture this intuition 
by means of the following knowledge-based program NU': 

k = 1. 

if K , ( i O ( b i t  = 1)) do bit := 1. 
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There can be no interpreted system consistent with NU’ in 
the context (y“”, n””): Arguments similar to those used 
before show that the only runs that can be in an inter- 
preted system consistent with NU’ are ro and r’. Thus, 
Yo, Y’, and s2 are the only possible candidates for inter- 
preted systems consistent with NU’. It is straightforward 
to show that none of these interpreted systems in fact are 
consistent with NU’. Hence, there is no interpreted system 
that is consistent with or represents NU‘. We take this to 
mean that the program NU’ is inconsistent with the inter- 
preted context (?””, TC””). 0 

In Example 4.1, we saw programs that determine an 
agent’s current actions as a function of his knowledge 
about the actions that he will perform in the future. This 
direct reference to knowledge about the future seemed to 
make it possible to define both nonsensical programs such 
as NU’, which cannot be implemented by any standard 
program, and ambiguous programs such as NU, which can 
be implemented in more than one way. We remark that the 
explicit use of future temporal operators such as 0 is not 
crucial to this example. Essentially the same effect can be 
achieved without such operators (see [S, Exercise 7.53 for 
an example). 

Example 4.1 shows that a knowledge-based program 
may not have a unique interpreted system representing it. 
Is this a problem? Not necessarily. Of course, if there is no 
interpreted system representing the program, then this 
program is not of any practical interest. Such programs 
can be viewed as inconsistent. We return to this issue later 
in the section. On the other hand, when there is more than 
one interpreted system representing a knowledge-based 
program, the program should be viewed as a high-level 
specification that is satisfied by many interpreted systems. 
For example, consider the knowledge-based program NU 
from Example 4.1: 

if K,(O(bi t  = 1)) do bit := 1. 

This program can be viewed as saying: “if you know that 
you are going to take an action, then take it as soon as 
possible”. Appropriately, as we have shown, this program 
is represented by two interpreted systems, one in which the 
action is taken immediately and one in which the action is 
never taken. Thus, while a standard program (in a given 
interpreted context) is a complete description of the behav- 
ior of the agents, this is not the case with a knowledge- 
based program. 

In many situations, however, there is a strong intuition 
that a knowledge-based program does completely describe 
the behavior of the agents, and consequently, the program 
ought to be represented by a unique interpreted system. 
For example, in the case of the muddy children puzzle, we 
expect the behavior of the children following the know- 
ledge-based program MC, described earlier, to be uniquely 
determined. In the remainder of this section, we describe 
necessary and sufficient conditions for there to be a unique 
interpreted system representing a knowledge-based pro- 
gram. The conditions we consider here are similar in spirit 
to those shown in [lZ]  to guarantee a representation of 
a knowledge-based protocol that was canonical in a cer- 
tain sense. Nevertheless, there are significant technical 

differences between the framework here and that of [ 121 
(for example, in [12] there were no contexts and no pro- 
grams, and the notion of a system representing a program 
was not considered). These differences result in significant 
differences between the proof here and that of [12]. One 
payoff is that the claims we prove in this version are more 
general, and apply in many cases of practical interest to 
which those of [12] do not apply. We start with an infor- 
mal discussion of the result and then make things more 
formal. 

Why may one feel that there should be a unique inter- 
preted system representing MC? Intuitively, it is because, 
once we fix the initial set of states, we can start running the 
program step by step, generating the run as we go. If r is 
a run over 3, the prejix ofr through time m, or the m-prejix 
o f r ,  denoted Prefm(r), is the sequence of the first m + 1 
global states in r, i.e., it is a function p from (0 ,  ... , m} to 
9 such that p ( k )  = r ( k )  for k = 0, ... ,m.  If 92 is a set of 
runs, then Pref,(B) is the set of in-prefixes of the runs in 9, 
i.e., Pvefm(W) = {Prefm(r) I r E B?). If 4 = (92, n), we define 
Prefm(Y) = (Prefm(92), n). Suppose that we can generate all 
rn-prefixes of runs. Once we have all m-prefixes, at any 
given point ( r ,  m), the children in that situation can deter- 
mine whether they do  indeed know whether their own 
forehead is muddy, and thus can take the appropriate 
action at the next step. This allows us to generate all 
(m + 1)-prefixes. 

The key reason that this idea works is that the prefixes 
that we have already constructed are sufficient to deter- 
mine the truth of the knowledge tests in the children’s 
program. In general, this might not be the case. To under- 
stand why, suppose we have a knowledge-based program 
Pg = (Pg,, ... ,Pg,), and Pg, includes a test such as Kicp. 
Suppose that we have indeed constructed all the m-prefixes 
of runs of Pg. For agent i to know what actions to perform 
next at a point (r,m),  the knowledge test K,cp has to be 
evaluated. As long as this can be done solely by consider- 
ing points of the form (r’, m’) with in’ $ m - intuitively, 
these are the points we have already constructed - then 
there is no problem. If, on the other hand, cp is a temporal 
formula such as the formula O(bit = 1) that appears in the 
program NU in Example 4.1, then we may not be able to 
evaluate the truth of cp in the prefixes we have constructed 
thus far. Even if cp is a nontemporal formula, there may be 
a problem. For example, suppose the time m is encoded in 
the environment’s state, and cp is the formula m 5 1, which 
is true at all time m points with m less than or equal to 1. 
Then K 1  (m 5 1) may be false at a point (r, 1) if agent 
1 does not know the time, i.e., if (r, 1) -’ (r‘, k )  for some 
point (r’, k ) ,  where k > 1. Note, however, that there is no 
point that occurs in a 1-prefix and “witnesses” the fact that 
K 1  (m 5 1) fails at ( I ,  1), since the formula m 5 1 is true at 
all points of the form (r’, 0) or (r’, 1). This discussion sug- 
gests that to make the inductive construction work, if a test 
Kicp in the program is false, there must be a “witness” to its 
falsity in some prefix we have already constructed, i.e., the 
result of the test K,cp should “depend on the past”. 

Even if tests “depend on the past”, there may be a prob- 
lem. Suppose we are interested in running the knowledge- 
based program Pg in the interpreted context (y, n), where 
y = (Pe ,  go, z, Y), and all tests “depend on the past” in the 
sense we have just discussed. What should the system 
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representing Pg be? Intuitively, i t  should consist of all runs 
in Y whose prefixes arise in the inductive construction. But 
suppose the admissibility condition Y does not include 
a run with a prefix p that arises in the construction. This 
means that we cannot include a run with prefix p in the 
system. This, in turn, might mean that a “witness” that we 
counted on in the course of the inductive construction may 
not occur in the system, thus undermining our evaluation 
of the tests. 

We now show that there is a unique system that repre- 
sents Pg if tests “depend on the past” and if the admissibil- 
ity condition Y is “reasonable”. Intuitively, the property 
we shall require Y to satisfy ensures that for every prefix 
that arises in the inductive construction, there is some run 
in Y with that prefix that we can include in the system we 
are constructing. 

We first formalize dependence on the past. Intuitively, 
a formula cp depends on the past in a class f of interpreted 
systems if, in order to determine whether p is true at the 
point (r ,  m) of an interpreted system 4 E f ,  we need only 
look at m-prefixes of runs in 4; whatever may happen after 
time m cannot affect the truth of cp. The formal definition 
captures the idea of “whatever may happen” by consider- 
ing any interpreted system in f that agrees with 9 up to 
time m. 

Definition 4.2 Formula $ depends on the past in the class 
2 of interpreted systems if its truth at a point (r, m) of an 
arbitrary interpreted system Y E 3 depends only on 
Pref,(r) and Pref,(Y).  More precisely, we require that for 
all m, for all interpreted systems Y , J ’ E ~  such that 
Prefm(Y) = Prefm(4’), and for all runs r in Y and r’ in 4’, if 
Prefm(r) = Pref,(r’), then (4, r, m) $ if and only if 
(Y‘, r‘, m) I= $. A knowledge-based program Pg depends on 
the past in f if all the tests in Pg depend on the past 
in f .  

In general, it may be difficult to tell if a program 
depends on the past. As we shall see, however, there are 
relatively simple sufficient conditions that guarantee de- 
pendence on the past and are applicable in many cases of 
interest. 

We next make precise the condition that is required for 
an admissibility condition Y to be “reasonable”. Recall 
that a run r is weakly consistent with a protocol P in 
context y = (Pe, 90, 7, Y )  if r is consistent with P except 
that it may not be in Y. Intuitively, Y is “reasonable” if it 
does not rule out prefixes that are “consistent” with P in y. 
We formalize this intuition in the following definition. 

Definition 4.3 A context y is nonexcluding if (a) gOn 
Prefo(Y) + 0 (note that a 0-prefix can be viewed both as 
a prefix and as a global state), and (b) for every protocol P, 
if a run r is weakly consistent with P in the context y, and 
the m-prefix p of r is in Prefm(Y), then there is a run r‘ E Y 
with m-prefix p that is consistent with P in y. 

Note that condition (a) gets our inductive construction 
started (since Y cannot exclude all the initial states), and 
condition (b) guarantees that Y does not exclude a prefix 
p that has been constructed in our inductive construction 

from being extended to a run. While it may seem difficult 
to check whether a context is nonexcluding, many contexts 
of interest are easily shown to be nonexcluding. For one 
thing, a context y = (Pe, go, z, Y )  is guaranteed to be 
nonexcluding if Y is True. More generally, in many con- 
texts of interest the admissibility condition constraints 
only the “limit” behavior of the run; this is the case, for 
example, with fairness requirements. In such cases, it is 
typically not hard to show that the context under consid- 
eration is nonexcluding. We remark that the property of 
being nonexcluding is a property of the context y = 
(Pe, go, z, Y )  as a whole and not in general a property of 
Y by itself. 

We are now almost ready to state our necessary and 
sufficient conditions for there to be a unique interpreted 
system representing a knowledge-based program with 
respect to nonexcluding contexts. We actually break the 
problem up into two parts. We first provide necessary and 
sufficient conditions for the existence of at least one system 
that represents a given program and then provide neces- 
sary and sufficient conditions for there to be at most one 
system that represents a program. Putting these results 
together, we get necessary and sufficient conditions for 
there to be a unique system representing a given program 
with respect to nonexcluding contexts. Our conditions 
involve two natural closure conditions on a class f of 
interpreted systems. The first says that f is closed under 
“app1ication”of Pg. 

Definition 4.4 A class f of interpreted systems is Pg-closed 
with respect to ( y ,  n) if whenever Y is in 2, then so is 
IreP(Pg’, Y >  n). 0 

That is, f is Pg-closed i f f  contains all the interpreted 
systems that are obtained by running Pg with respect to 
interpreted systems in 9. 

We now consider the second closure condition. 

Definition 4.5 A sequence go, 9’, . . . of systems is prejix- 
compatible if Prefm(9tm‘) = Prefm(gm) for all m 2 0 and 
m‘ >= m. 

Intuitively, the m-prefix is determined by 9tm. Let us define 
a limit of a prefix-compatible sequence to be a system 
B? such that Prefm(9) = Prefm(Bm) holds for all m >= 0. It 
is easy to see that every prefix-compatible sequence has 
a limit. As we now show, a prefix-compatible sequence can 
have more than one limit. Assume we have a system where 
process 1 sends process 2 a message in the first round. 
Process l’s state changes from sl to t l  after sending the 
message, and then continues to be t l  from then on. Process 
2’s state changes from s2 to t 2  when it receives the message, 
and then continues to be t2  from then on. For each non- 
negative integer k ,  let rk  be a run where process 2 receives 
the message at round k ,  so that its state changes to t 2  at 
time k. Let B be a system consisting precisely of all of these 
runs rk .  Now let rm be another run where process 2 never 
receives the messages, so that it is always in state s2, and let 
B‘ be the system consisting of the runs in 92, along with 
this new run rm. Clearly the constant sequence 
9, B, 9, ... is prefix-compatible, and 92 is a limit of this 
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sequence. But &?' is also a limit of this sequence, since 
Prefm(9') = Pref,(g) for every m.' 

Definition 4.6 A set 2 of systems has limits if P contains 
a limit of every prefix-compatible sequence of members of 
2. A set 2 of systems is limit closed if i t  contains every 
limit of every prefix-compatible sequence of members 
o f P .  0 
All of these definitions can be extended in a natural way to 
deal not just with systems but with interpreted systems. 
For example, a sequence Yo, Y1, , . . of interpreted sys- 
tems, where 9" = (9", n) for each m (i.e., all interpreted 
systems in the sequence have the same interpretation n), is 
prefix-compatible if the corresponding sequence 
%', 9', . . . of systems is prefix-compatible. If .a is an 
interpreted system, then the singleton set {Y) has limits 
(since 9 is a limit of the constant sequence Y,Y, Y, . . . ), 
but is not necessarily limit closed (since as we saw above, 
another interpreted system may also be a limit of this 
constant sequence). 

Theorem 4.7 Let y be a nonexcluding context. There is at 
least one interpreted system representing the knowledge- 
based program Pg in context ( y ,  n) iff there exists 
a nonempty set 2 of interpreted systems that is Pg-closed 
with respect to (11, n) and has limits, such that Pg depends on 
the past in f .  

Proof: The proof of the "only if" direction is easy, as we 
now show. Assume that Pg is represented by some system 
Y in ( y ,  n). Then the set f consisting ofjust 4 is nonempty, 
Pg-closed with respect to ( y ,  n) (since 9 = Irep(PgF, y ,  n)), 
and has  limits. (It has limits, since as we observed above, 
every singleton set has limits.) Since f is a singleton set, it 
easily follows that Pg depends on the past in 2. 

For the "if" direction, note that finding an interpreted 
system representing Pg in the interpreted context (y, n) 
corresponds precisely to finding a fixed point 9 of the 
"equation" Y =f(Y),  where f ( 9 )  = Irep(Pg', y, n). We 
attempt to construct a fixed point by starting at an arbit- 
rary point and continually applying Pg. We define the limit 
step of this construction by applying the fact that 3 has 
limits. It turns out we reach a fixed point at the (o + 1)st 
s tep of the  construction (where w is the first infinite ordi- 
nal). We proceed as follows. 

Let 9-l be some member of 9. (There is one, since 
f is nonempty. The unusual choice of superscript makes 
some of the technical claims in the proof easier to state.) 
Suppose inductively that we have constructed 9". We 
then define 9"" = Irep(Pg'", y, n). Since 3 is Pg-closed, it 
follows by a straightforward induction that 9" E 2 for 
each m. We shall show in the appendix that the sequence 
Yo,  Y', Y2, ... is prefix-compatible, given that Pg de- 
pends on the past in f and that y is nonexcluding (see 
Claim A.3). Since 8; has limits, there is a limit Y m  of this 
sequence in f .  We now continue our construction into the 

'We note that the reason the limit is not unique is that under the 
appropriate topology, the space of systems is not Hausdorf, that is, 
two distinct points may not be separable by an open set that contains 
one and not the other. 

infinite ordinals. Define 9'+' = Irep(Pgye, y, n), for 6' = w 
and Q = w + 1. In the appendix, we show that 
4"" = YW+'  (see Claims A.4 and AS). This proves that 
9""' is an interpreted system representing Pg in the 
interpreted context (y, n). 0 

Although it may not be obvious, this construction ac- 
tually formalizes the intuition we gave earlier in the sec- 
tion. Our discussion there was in terms of prefixes of runs. 
The idea was that by inductively assuming that we have 
defined all m-prefixes, we could then construct all (m + 1)- 
prefixes. The desired system would then be a limit of this 
construction. As we mentioned above, the sequence 
4', a', 9', . . . is prefix-compatible. Suppose 9" = 
(g", n), for m = 0,1, 2, ... . So the prefixes Prefm(9?m), for 
m = 0, 1 , 2 ,  . . . , form an increasing sequence of prefixes 
(i.e., the prefixes in Pref, ,  extend those in 
Pref,(g")), and correspond precisely to the prefixes we 
constructed in our informal proof. Since 2 consists of 
systems which involve sets of runs, rather than sets of 
prefixes of runs, we are forced to use 2" in the construc- 
tion rather than Pref,(&?"). Nevertheless, since Pg depends 
on the past in &, the "suffixes" in 99, (i.e., the part of the 
run after time m) are irrelevant; only the prefixes matter. 
The purpose of the transfinite steps in the construction is 
to ensure that the runs that we get are in Y, since it is 
possible that 9"' contains runs that are not in YJ. 

Given a knowledge-based program Pg and an inter- 
preted context (y, n), let REP(Pg, y ,  n) be the set of inter- 
preted systems that represent Pg in ( y ,  n). Theorem 4.7 
gives conditions that guarantee that REP(Pg, y, n) is 
nonempty; that is, conditions that guarantee that there is 
at least one system that represents Pg in (y, n). We now give 
a condition that guarantees that REP(Pg, y, n) contains at 
most one system; that is, conditions that guarantee that 
there is at most one system that represents Pg in (7, n). 

Theorem 4.8 Let y be a nonexcluding context. There is at 
most one system representing the knowledge-based program 
Pg in (y, n) ifsPg depends on the past in REP(Pg, y, n). 

Proof: The "only if" part is immediate, since if there is at 
most one system in, then Pg depends on the past in 
REP(Pg, y ,  n). The proof  of t h e  "if" par t  appears i n  t h e  
appendix (see Claim A.6). 0 
Note that the theorem holds trivially if REP(Pg, y, n) is 
empty. 

Putting together Theorem 4.7 and 4.8, we obtain a ne- 
cessary and sufficient condition for a program to have 
a unique system representing it (under the assumption that 
the context is nonexcluding). 

Theorem 4.9 Let y be a nonexcludiny context. There is 
a unique system representing the knowledge-based program 
Pg in ( y ,  n) Efs there exists a nonempty set f containing 
REP(Pg, y, n) that is Pg-closed with respect to ( y ,  n) and has 
limits, such that Pg depends on the past in 8;. 

Proof: Clearly if there is a unique system representing Pg, 
say 9, then the singleton set (9) contains REP(Pg, y ,  n), is 
Pg-closed with respect to (7, n), and has limits. Also, Pg 
depends on the past in (9). For the converse, assume that 
there is a nonempty set f containing REP(Pg, y, n) that is 
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Pg-closed with respect to (y, n) and has limits such that Pg 
depends on the past in f .  It follows immediately from 
Theorem 4.7 that there is at least one system representing 
Pg in (y, n). Moreover, since f contains REP(Pg, y, n) and 
Pg depends on the past in &, it is immediate from the 
definitions that Pg also depends on the past in 
REP(Pg, 7 ,  n). Thus, it follows from Theorem 4.8 that there 
is at most one system representing Pg in (y, n). Hence, there 
is exactly one system representing Pg in ( y ,  n). 

How useful is the characterization given by Theorem 
4.9? That depends, of course, on how hard it is to find 
a class f of interpreted systems that satisfies the assump- 
tions of the theorem. One could try to take f to be 
REP(Pg, y, n), but then one has to show that REP(Pg, y, n) 
is nonempty. We now describe one candidate for f that 
often does satisfy the conditions of Theorem 4.9. 

Definition 4.10 Given a program Pg and an interpreted 
context (y, n), let f(Pg, y ,  n) consist of all interpreted sys- 
tems IreP(Pgf, y, n), where 9 is of the form (9, n). (Notice 
that the interpretation z in the pair (9, n) is the same as 
that in the interpreted context (y, n).) The system 9 can be 
arbitrary, except that it must satisfy one constraint: all the 
global states that arise in runs of 9 must be in the domain 
of n (that is, they must be among the global states impli- 
citly determined by the context y). Thus, f(Pg, y, n)  con- 
sists of all the systems that represent protocols of the form 
Pg’ in y. IJ 

We can expect some of the systems that represent 
protocols of the form Pg’ in y to be very different from 
systems that represent Pg in (y, n). Nevertheless, certain 
aspects of the structure of Pg will be reflected in all the 
systems in f(Pg, y, n). For example, standard tests clearly 
behave in the same way in all these systems (since we are 
using the same interpretation n), and certain properties of 
Pg may also be reflected in all these systems. For example, 
if the structure of Pg guarantees that a non-null action is 
performed by each process in every round, then this will be 
reflected in every system that represents a protocol of the 
form Pg’ in y; the exact action performed in a given round 
may change from one such system to another. 

Clearly f(Pg, y, n) is Pg-closed with respect to ( y ,  n); 
indeed, it is almost immediate that any superset of 
f(Pg, y, n) is as well. It does not in general have limits. 
Define f+(Pg, y, n) to be the limit closure of f(Pg, y ,  7~); 
that is, f+(Pg,y, n) is the smallest set that contains 
2(Pg, y ,  n) and is limit closed. (We remark that for our 
purposes, we could just as well take f’(Pg, y, n) to be any 
set that contains f(Pg, y, n) and has limits; for definite- 
ness, we take f+(Pg, y, n) to be the limit closure.) Since 
REP(Pg, y, n) c f ( P g ,  y ,  n) E f+(Pg, y, n), the following 
result follows immediately from Theorem 4.9. 

Corollary 4.11 Zf y is nonexcluding and Pg depends on the 
past in f+(Pg, y, n), then there is a unique interpreted sys- 
tem representing Pg in (y, z). 

How hard is it to show that Pg depends on the past in 
f ‘(Pg, y ,  n)? That depends on Pg, of course, but the fol- 
lowing results provide some useful sufficient conditions. 

Notice that our formal definition of dependence on the 
past does not capture the intuition stated earlier that if 

a test Kip is false at a point (r, m), then there should be 
a point (r’, m’) with m‘ 5 m that is a “witness” to its falsity. 
The next definitions do formalize this intuition. If 9 is an 
interpreted system and Kicp is a formula,then we say that 
9 provides witnesses for K i p  if whenever (r, m) is a point of 
9 such that (9, r,  m) I= i Kicp, then there is some point 
(r’, m’) of 9 with m‘ 5 m such that ri(m’) = ri(m) and 
(4, r‘, m’) i cp. We say that f provides witnesses for  Pg if 
9 provides witnesses for Kicp for every interpreted system 
4 E f and for every subformula Kicp of a test in Pg. 
Finally, we say that Pg is atemporal if all its tests are 
knowledge formulas (and so do not involve temporal 
operators). 

Lemma 4.12 I f  Pg is atemporal and 9 provides witnesses 
for Pg, then Pg depends on the past in 2. 
Proof: A straightforward induction on the structure of 
formulas shows that all subformulas of tests in Pg depend 
on the past in f .  For primitive propositions this is im- 
mediate, since the truth of a primitive proposition is deter- 
mined by the global state (given a fixed interpretation n). 
The case of conjunctions and negations follows immedi- 
ately from the inductive hypothesis, and the case of epi- 
stemic formulas is immediate from the fact that there is 
always a witness. We leave details to the reader. 

Lemma 4.13 Suppose Pg is atemporal. I f  f(Pg, y, n) pro- 
vides witnesses for Pg, then so does f+(Pg, y, n). 

Proot For the purposes of this proof only, we now give 
some more definitions that simplify notation. If p is the 
m-prefix of a run r,  let us define pi(m) to be ri (m),  the state 
of process i at time m. Let p be the m-prefix of the run r of 
the interpreted system 9 and let cp be a knowledge 
formula. We define (4, p)l= cp to hold precisely if 
(9, r,  m) (= cp holds. This is well-defined, since it is easy to 
show by induction on the structure of cp that if r‘ is another 
run of 4 with m-prefix p and cp is a knowledge formula, 
then (9, r,  m) I= cp iff (4, r’, m) I= cp. 

We prove that for every knowledge formula cp that is 
a subformula or the negation of a subformula of a test in 
Pg, the following properties hold: 

(a) for every time m, every pair #,Y1 of systems in 
j ’(Pg, y, TC) such that Prefm(4)  = Prefm(9’),  and every 
p that is an m-prefix of both a run of 9 and a run of 4’, we 
have that (4, p )  I= cp iff (Sl, p )  I =  cp, and 

(b) if cp is of the form Ki$, then every 9 E f’(Pg, y ,  n) 
provides witnesses for cp. 

We proceed by induction on the structure of formulas. The 
case of primitive propositions, conjunctions, and negations 
is straightforward. It remains to show the case of formulas 
of the form Ki$. By the symmetry of the roles of 4 and 4’, 
to prove part (a) it is sufficient to show that if 
(4, p )  + i Ki$ then (Y1, p )  I= i Ki$. Assume that 
(9, p)  + i Ki$. So for some m’, there is an m’-prefix p’ of 
a run of 9 such that pi(m’) = pi(m) and (4, p’) + i $. 
Let m* = max{m, m’). Find Y2 E j ( P g ,  y ,  n) such that 
Pref,.(Y2) = Prefm.(4). Such a system 9’ is guaranteed to 
exist, since every interpreted system in y(Pg, y, n) is the 
limit of a prefix-compatible sequence of members of 
f(Pg, y, x). In particular, p is the m-prefix of a run of 4’ 

0 
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and p’ is the m’-prefix of a run of J2. Since (9, p’) i $, 
it follows by the inductive hypothesis for $ that 
(Y2, p’) I= i 3. Since pi(m’) = pi(m), it follows that 
(Y2, p)  + i Ki$ .  Since f(Pg, y ,  n) provides witnesses for 
Pg, there is some m” 5 m and an m”-prefix p“ of a run of Y2 
such that pY(m”) = pi(m) and (Y2, p”)+ i$. Now 
Pref,,.(Y’) = Pref,. .(Y) = Pref,..(Y’). So p” is an m”-pre- 
fix of a run of 9’. Therefore, by the inductive hypothesis 
for $, i t  follows that (9’, p”) 13. Since p;(m”) = pi(m), 
i t  follows that (9’, p ) k  i K i $ ,  as desired. So part (a) 
holds for cp. As for part (b), we see that since p” is also an 
m“-prefix of a run of la, it follows from the inductive 
hypothesis that (9, p”) I= i $. So 9 provides witnesses for 
cp. Therefore, (b) holds for cp. This concludes the inductive 
step. The result stated in the lemma now follows from part 
(b). 0 

We define a system 9 to be synchronous if for every 
agent i and points (r, m), (r’, m’) E 9, we have that 
( r ,  m) -i (r’, m‘) implies rn = m’. Intuitively, a system is syn- 
chronous if an agent can determine the time by looking at 
his local state. 

Lemma 4.14 I f  every system in 2 is synchronous, then 
f provides witnesses for Pg. 

Proof. This follows directly from the definitions. Suppose 
9 E f and (3, r,  rn) I= iKicp .  By definition of I= , there 
must be a point (r’, m‘) in 9 satisfying both r:(m’) = ri(rn) 
and (9, r‘, m’) /= i cp. Since 9 is synchronous, r:(m’) = 
r,(m) implies that m’ = rn and, in particular, we have that 
m‘ 5 m. It now follows that 2 provides witnesses for Pg 
(the point (r’, rn) is the desired ‘witness” to i c p ) .  0 

For many programs Pg and interpreted context ( y ,  n) of 
interest, every system in f(Pg, y ,  n)  is indeed synchronous. 
In particular, if Pg prescribes that each agent performs 
some action in every round (more precisely, if each agent 
performs an action in every round of Pgp, regardless of the 
choice of 9) and if the agents keep track of the actions they 
have performed in their local states (as is the case in 
message-passing systems), then interpreted systems of the 
form Irep(Pg ’, y ,  n) are necessarily synchronous, since an 
agent can determine the time by looking at his local state. 
It follows that y(Pg, y ,  n) provides witnesses for Pg. 

Putting the results above together, we can define a con- 
dition that guarantees a program has a unique representa- 
tion and that applies to many contexts of interest. We say 
that an interpreted context ( y ,  n) provides witnesses for 
a knowledge-based program Pg exactly if 6p(Pg, y ,  n) pro- 
vides witnesses for Pg. As a straightforward corollary of 
Corollary 4.11, Lemmas 4.12 and 4.13, we obtain the 
following result (which is precisely Theorem 7.2.4 of [S]). 

Corollary 4.15 Let Pg be an atemporal knowledge-based 
program and let ( y ,  n) be an interpreted context that provides 
witnesses for Pg suck that y is nonexcluding. Then there is 
a unique interpreted system Irep(Pg, y ,  n) representing Pg in 
( Y ,  n). 

Proof: The assumption that ( y ,  .) provides witnesses for 
Pg means, by definition, that y(Pg, y ,  n) provides 

witnesses for Pg. Since, by assumption, Pg is atemporal, we 
have by Lemma 4.13 that f+(Pg, y ,  n) provides witnesses 
for Pg. Lemma 4.12 now implies that Pg depends on the 
past in f’(Pg, y ,  n). This, coupled with the fact that y is 
assumed to be nonexcluding, gives us by Corollary 4.11 
that there is a unique interpreted system representing Pg in 
b, 71). 

Corollary 4.15. 

Corollary 4.16 Suppose that Pg is an atemporal know- 
ledge-based program, that y is a nonexcluding context, and 
that every system in $(Pg, y ,  n) is synchronous. Then there 
is a unique interpreted system Irep(Pg, y ,  n) representing Pg 
in ( y ,  n). 

Proof: Since every system in y(Pg, y ,  n) is synchronous, it 
follows from Lemma 4.14 that gl(Pg, y ,  n) provides wit- 
nesses for Pg, that is, (7, .) provides witnesses for Pg. The 
result now follows from Corollary 4.15. 

The next corollary follows from Lemma 4.14 and 

The muddy children problem gives an application of 
Corollary 4.16. 

Example 4.1 7 We now want to take a more careful look at 
the knowledge-based program M C  run by the muddy 
children. We start by formally describing the context 
(y’”‘, n”‘) corresponding to our intuitive description of the 
muddy children puzzle. The agents here are the children 
and the father. We can view y“‘ = ( P r ,  go, T ,  True) as 
a context in which whatever an agent (the father or one of 
the children) says in a given round is represented as a mess- 
age that is delivered in the same round to all other agents, 
and in which all these messages are recorded in the local 
states of the agents when they are received. The initial 
states of the agents describe what they see; later states 
describe everything they have heard. Thus, go consists of 
all 2” tuples of the form ( ( ) , X - ’ ,  ... , X-”, X ) ,  where 
X = ( x l ,  ... , x,) is a tuple of 0’s and l’s, with xi = 0 mean- 
ing that child i is clean, and xi = 1 meaning that he 
has a muddy forehead, and X - ‘ =  ( x l ,  ... ,xi-’, 
*, xi+ . . . , xn), i.e., it differs from X only in that it contains 
a * in the ith component. Intuitively, X-’  describes what 
child i sees given that X describes the true situation, where 
* means “no information”. Only the father sees all the 
children, so his initial local state is X. The initial local state 
of the environment is the empty history (). The only 
actions performed by the children and the father are the 
sending of messages, and these actions have the obvious 
results of changing their local states and the local state of 
the environment. The environment’s protocol Py is simply 
to deliver all messages in the same round in which they are 
sent. 

The children run the knowledge-based programs MCi 
described at the beginning of Sect. 3.2. The father runs the 
following (standard) program: 

case of 
if initial A Vf= p i  do 

say ”At least one of you has mud on your fore- 
head; does any of you know whether you have 
mud on your own forehead?” 
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if initial A i vI= pi do 
say ”Does any of you know whether you have 
mud on your own forehead?” 

say ”Does any of you know whether you have 
mud on your own forehead?” 

if childrenanswered do 

end case. 

Here initial is a primitive proposition that is true in the 
initial state, i.e., before any communication has taken 
place, and childrenanswered is a primitive proposition that 
is true if the father heard the children’s answers in the 
previous round. Thus, in round 1, if there is at least one 
muddy child, a message to this effect is sent to all children. 
In the odd-numbered rounds 1,3,5,  .. . , the father sends 
to all children the message “Does any of you know 
whether you have mud on your own forehead?”. The 
children respond “Yes” or “No” in the even-numbered 
rounds. Finally, nmc interprets the propositions p i ,  
childheardi, initial, and childrenanswered in the obvious 
way. 

We now want to apply Corollary 4.16 to show that 
there is a unique interpreted system representing MC. 
Since the admissibility condition in y”‘ is True, it easily 
follows that y”‘ is nonexcluding. Clearly there are no 
temporal operators in the tests in MC. Moreover, notice 
that the father and the children each either send a message 
or receive one in every round, and they keep track of the 
messages they send and receive in their local states. Since 
an action is performed by each child at every round of 
MC’, regardless of the choice of 9, as we observed in the 
discussion following Lemma 4.14, it follows that every 
interpreted system in Y(MC, y”‘, nmc) is synchronous. 
Thus, by Corollary 4.16, there is a unique system repre- 
senting M C  in (y”‘, nmc). 

The same arguments show that the hypotheses of 
Corollary 4.16 also hold for any subcontext y’ obtained by 
restricting the set of initial states, that is, by replacing go 
by some subset of Yo. Restricting the set of initial states 
corresponds to changing the puzzle by making certain 
information common knowledge. For example, eliminat- 
ing the initial states where child 3’s forehead is clean 
corresponds to making it common knowledge that child 
3’s forehead is muddy. 

As shown in [13], if the father initially says that at least 
one child has a muddy forehead, then a child that sees 
k muddy children responds “No” to the father’s first 
k questions and “Yes” to the ( k  + 1)st question (and to all 
the questions after that). Let MC, be the standard program 
for the muddy children that has them doing this. Finally, 
let 9”‘ = Irep (MC,, y”‘). It is straightforward to show that 
9”‘ represents M C  in (y”‘, n“‘), and hence, by our previous 
argument, is the unique such interpreted system. In fact, 
MC, implements M C  in (y”‘, n“‘). There are, however, 
contexts in which MC, does not implement MC. For 
example, consider the context where it is common 
knowledge that the children all have muddy foreheads. 
This is the subcontext y’ in which we replace Yo 
by the singleton set ((0, X - ’ ,  ... ,X-”, X } ) ,  where 
X = (1, ... ,1). We leave it to the reader to check that in 
the unique interpreted system 9‘ representing M C  in 

(y’, nmc), all the children respond “Yes” to the father’s first 
question. Clearly MC, does not implement M C  in this 
context. 0 

As is shown in [S], Corollary 4.11 (or its derivatives, 
Corollaries 4.15 and 4.16) can be used to show that 
a number of other knowledge-based programs have 
unique representations. For example, i t  applies to the 
knowledge-based programs used to analyze the sequence 
transmission problem [ 161, Byzantine agreement [6,24], 
and to a program designed to capture a Teller giving 
information to a knowledge base [7]. On the other hand, 
there are times when we cannot apply Corollary 4.1 1, since 
Pg may fail to depend on the past with respect to 
Y+(Pg,  y, n), although there may be another class $ to 
which the hypotheses of Theorem 4.9 apply. Is there any- 
thing we can say then? That is the subject of the next 
section. 

5 Testing for existence and uniqueness of representations 

While the results of the previous section provide necessary 
and sufficient conditions to determine if a knowledge- 
based program has a unique representation, they are not 
always easy to apply. How hard is it to tell in general 
whether a knowledge-based program has a unique repre- 
sentation, or any representation at all, for that matter? 
Clearly the answer depends in part on the context in which 
the program is run, and how it is represented. In this 
section, we give a partial answer to that question by con- 
sidering jinite-state interpreted contexts. 

A finite-state interpreted context is one in which the set 
of global states is finite, the set of possible actions is finite, 
the set of primitive propositions is finite, and the admissi- 
bility condition on runs is given by a temporal formula. 
We also assume that all the components of such a context 
are described in a “transparent” way, so that the environ- 
ment’s protocol is described as a set of (local state, action) 
pairs, the transition function is described as a set of Cjoint 
action, global state, global state) tuples, and the interpreta- 
tion (of the primitive propositions) is described as a set 
of (primitive proposition, global state, truth value) 
tuples. The key is that we should be able to check in poly- 
nomial time whether, for example, n(g)(p) = true or 
z(a,, a, ,  . . . , a&) = g’. A Jinite knowledge-based pro- 
gram is one where the case statement involves only finitely 
many tests (which may include knowledge operators and 
temporal operators). A joint knowledge-based program is 
finite if each of its components is. Thus, it makes sense to 
talk about the size of a finite-state interpreted context and 
of a finite knowledge-based program; it is the length of 
a description of the context or the program under any 
reasonable encoding. We will measure the complexity of 
testing existence and uniqueness as a function of the size of 
the given finite-state interpreted context and of the given 
finite knowledge-based program. 

Our goal in this section is to study the complexity of 
determining whether a given finite knowledge-based pro- 
gram has some (resp. a unique) representation in a given 
finite-state interpreted context. It is not hard to show that 
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the problem involves both model checking [ 5 ]  - checking 
whether the tests in the program are true at certain states 
in a system whose global states are among the global states 
allowed by the context ( y ,  n)  - and testing the satisfiability 
of the admissibility condition. Both model checking and 
satisfiability testing are known to be PSPACE-complete 
problems for (linear time) temporal logic [33], so our 
problem is at least PSPACE-hard. We show below 
(Theorem 5.10) that, in fact, it is no harder. 

5.1 An easier case 

Before proving the general result, we prove a simpler 
version: we consider nonrestrictive (interpreted) contexts, 
where the admissibility condition is True, and atemporal 
knowledge-based programs. With these restrictions, our 
arguments for PSPACE-hardness no longer apply: testing 
the satisfiability of the admissibility condition is now triv- 
ial, and the model checking problem for knowledge for- 
mulas can be solved in polynomial time. Indeed, as we now 
show, these restrictions do make the problems simpler: 
they drop from PSPACE to NP. We now develop the 
technical machinery required, and then proceed to state 
and prove the results. 

5.1.1 Knowledge-based programs and Kripke structures 

Our first step is to show that atemporal knowledge-based 
programs can be interpreted with respect to Kripke struc- 
tures. This will enable us to characterize the existence of 
representations for atemporal knowledge-based programs 
with respect to nonrestrictive interpreted contexts in terms 
of existence of certain Kripke structures. Let 9 be a set of 
global states and n be an interpretation for the proposi- 
tions in @ over F. We define a Kripke structure MF = 
(9, XI,  ... ,Xn, z), where each is a binary relation on 
9 such that (9, g') E iff gi = g;, that is, if g and g' agree 
on their ith component. Truth of knowledge formulas in 
MF can now be defined in the standard way (cf. [14]). In 
particular, we have 

(&, g)l= Kicp iff (MF, g')k cp for all g' such that 
(g, 9') E x 
(MF,g)k Ecp iff (M, ,g)k  Kicp for i = 1, ... , n  

(MF,g)I= Ccp iff (MF,g)k Ekcp for k = 1,2,  ... 

Consider an interpreted system 9 = (9, n), where 9 is 
a system over a set 9 of global states and n is an interpreta- 
tion for the proposition in Q, over 9. We use both Ff and 
F9 to denote the global states that occur in 9, i.e., 
Ff = F2 = { r  (m) I r E B}. It is easy to prove by induction 
on the structure of knowledge formulas that MFy com- 
pletely captures the semantics of knowledge formulas in 9. 

Lemma 5.1 Let cp be a knowledge formula. Then 
(9, r,  m) I= cp #(MFf, r(m)) I= cp. 

Given a set 9 of global states, we can associate with an 
atemporal knowledge-based program Pg, for agent i a pro- 
tocol PgT in much the same way we used an interpreted 

system 9 to obtain the protocol Pg'. We start, as in Sect. 
3.2, by defining truth of tests in local states. We do  this by 
overloading notation and defining yet another satisfaction 
notion, where on the left-hand side of + we have a pair 
(M,,L') consisting of a Kripke structure kfF and a local 
state f for agent i. 

If cp is a standard test in Pgi, we define 

(MF, 4 I= CP iff (n, 8) /= v?. 
Since cp is a standard test in Pgi, it must be local to agent i, 
so this definition makes sense. If cp is a knowledge test Ki$, 
we define 

(MF, L') k K,$ iff (MF, g )  I= $ for all global states g E F 
such that gi = f .  

Finally, for conjunctions and negations, we follow the 
standard treatment. 

We can now define 

Pg?(L) = 

{a..(M,, t)i= t j A k j }  if { j : ( M F ,  t ) k  ti A k j }  f 0 
if {j:(MF, L')b t j A k j }  = 8. Lf4 

Intuitively, the actions prescribed by i's protocol Pgr are 
exactly those prescribed by Pg, when the tests are evalu- 
ated in MF. 

Lemma 5.2 Let Pg be an atemporal knowledge-based pro- 
gram, let ( y ,  .) be an interpreted context, and let 9 = (9, n) 
be an interpreted system. Then Pg' = Pfp. 

Pro05 Let 9 = 9%. We have to show that for every local 
or knowledge test cp we have that (9,8) I= cp iff (MF, L)  
cp. For a standard test cp this holds, since (9, L)+ cp iff 
(n, 6') /= cp iff ( M F ,  /)I= cp. For a knowledge test K i $ ,  we 
have that (9, L') k Ki$ iff (9, r,  m) I= $ for all points (r ,  m)  
of 9 such that ri(m) = 8. By Lemma 5.1, the latter holds iff 
(MF, g)l= $ for all global states g in F such that gi = L'. 
This holds iff (MF, 4)  k Ki$.  (Note that Lemma 5.1 applies 
only to knowledge formulas, which is why we need to 
assume that Pg is an atemporal knowledge-based pro- 
gram.) 0 

5.1.2. Testing existence of representations 

We now provide a characterization for when there is 
a system representing an atemporal knowledge-based pro- 
gram with respect to a nonrestrictive interpreted context. 

Proposition 5.3 Let Pg be an atemporal knowIedge-based 
program and let ( y ,  n) be a nonrestrictive interpreted context. 
There is an interpreted system that represents Pg in ( y ,  x )  i fs  
there is a set 9 of global states such that 9 = F2, where 
9 = Rrep(P<, y) ,  i.e., 9 is precisely the set of states that 
occur in the system that represents Pg" in y .  Furthermore, 
there is a unique interpreted system that represents Pg in 
( y ,  n) iff there is a unique such 9. 

Proof: Suppose first that there is an interpreted system 
9 = (&,TC) that represents Pg in ( y ,  n), is., .9 = 

Rrep(PgY, y) .  Let w' be Rep(P$#, y). It follows from 
Lemma 5.2 that 9' = B. 
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Conversely, suppose that there is a subset 9 of global 
states such that 9 = 9*, where 9 = RreP(PgF, y). We 
claim that 9 = (%, n) represents Pg in (y, K ) .  This holds 
since, as before, Pg’ = Pg? 

Finally, if there are two different such sets, say 
9, =k F2, then we get two systems, B1 = RreP(PgF1’, y )  and 
B2 = ReP(PgF2, y), that represent Pg in context y. These 
systems are different, since 8 = Fg1 and 4 = Fj,. 0 

We can now obtain the desired complexity results for 
nonrestrictive finite-state interpreted contexts and atem- 
poral finite knowledge-based programs. 

Theorem 5.4 Testing whether there is at least one (resp. 
more than one) interpreted system representing a given atem- 
poral finite knowledge-based program in a given nonrestric- 
tive jinite-state interpreted context is NP-complete. 

Proof: We first show that the problem is in NP. Let Pg be 
an atemporal finite knowledge-based program and let 
(y, n) be a nonrestrictive finite-state interpreted context, 
where y = (P,, go, z, True). By Proposition 5.3, there is an 
interpreted system that represents Pg in (y, n) iff there is 
a subset 9 of global states such that 9 = %%, where 
9 = Rep(Pf, y). 

To check that there is at least one interpreted system 
that represents Pg in ( y ,  n), our algorithm guesses a subset 
9 of global states and checks that it satisfies the condition 
of Proposition 5.3. To that end, we need to compute the set 
gr = 9%, where R = Rrep(PgF, y ) .  9‘ is easily seen to be 
the least set containing 9, that is closed under the opera- 
tion of the protocol PgF. That is, if g E 9’, then so is every 
global state of the form t(a,, a,, . . . , a,)(gi), where 
a, E P,(g) and a, E PgT(gi). Thus, to compute it, we start 
with the set go of initial states and keep applying the 
operation of the protocol PgF until no new global states 
are added. To compute P$(gi) we need to evaluate the 
truth of knowledge tests of Pg, in M,, but this can be done 
in polynomial time in the size of 9 and the size of the 
knowledge tests [14]. Thus, checking that 9 = 9‘ can be 
done in polynomial time. 

To check that there is more than one interpreted sys- 
tem that represents Pg in (y, n), the algorithm simply 
guesses two sets 9, and F2 and checks that they both 
satisfy the condition and that they are different. This can 
clearly be done in nondeterministic polynomial time. 

It remains to show that testing whether there is at least 
one (resp. more than one) interpreted system representing 
a given atemporal finite knowledge-based program in 
a given nonrestrictive finite-state interpreted context is 
NP-hard. The proof is by reduction from the satisfiability 
problem [lo]. 

Suppose we are given a propositional formula 5 over 
the primitive propositions pl ,  . . . , p,.  Without loss of gen- 
erality, we can assume that if 5 is satisfiable then it has 
more than one satisfying assignment. (This can be ensured 
by adding one primitive proposition that does not appear 
in 5 to the language. Since this proposition can be assigned 
two truth values, if 4 is satisfiable then it has at least two 
truth assignments.) We now describe a nonrestrictive 
finite-state interpreted context ( y ,  K )  and an atemporal 

finite knowledge-based program Pg such that the follow- 
ing are equivalent: 

0 5 is satisfiable. 
0 There is at least one interpreted system that represents 

0 There is more than one interpreted system that repres- 
pg in ( Y ,  4. 

ents Pg in (7, n). 

The environment can be in any of the states (0, 1, ... , n } ,  
where 0 is the initial state. There is only one agent in the 
context y, who is always in the same fixed local state. Thus, 
we can identify the global state with the environment’s 
state. The set of primitive propositions is @ = 
{p,, p , ,  . . . , p , } .  Note that @ contains a primitive proposi- 
tion po that is not in 5. For pi E @, we define n( i ) (p j )  = true 
iff i =J,  i.e., pi holds only in the state i .  The set of the 
agent’s actions is {a,, ... ,a,}, but the environment can 
perform only a single action. Thus, we can identify a joint 
action with the agent’s action. Finally, we have that 
z(a,)Q) = i ,  independent of j ,  i.e., the action ai always 
moves the system to the state i .  This concludes the defini- 
tion of (y, n). 

Let cp be the knowledge formula obtained from 5 by 
replacing each occurrence of pi by the formula i K i p i ,  
for 1 5 i 5 n. (Since there is only one agent, we do not need 
to index the knowledge modalities.) Note that cp is a know- 
ledge test. Let Pg be the following program: 

case of 
if K p o A i c p  do a ,  
if cp do a, 

if cp do a, 
... 

end case. 

Assume that 9 = (B, n) is an interpreted system that 
represents Pg in (y, n), that is, = Rrep(Pgy, y), and as- 
sume that r E B. We claim that 4 is satisfied by the truth 
assignment that makes p i  true precisely when i E 9%, for 
1 5 i 5 n. Since 0 is the initial state, we know that 0 E 9%. 
Suppose first that g9 = (0). That can happen if no action 
ai is ever selected by Pgy, so the only action selected by 
Pg‘ is A. But (9, r,  0) + Kgo, since Fa = (01, so we must 
have that (f, 0)b  cp (otherwise a, is selected by the first 
clause of Pg, which contradicts our earlier point that only 
A is selected). Since, however, (9, r, 0) k K i p ,  for 
1 5 i 5 n (because 9% = {0}), this means that 5 is satisfied 
by the truth assignment that sets p l ,  ... ,pn to false. Now 
suppose that (0) is a proper subset of 9%. This means that 
some action aj  must be selected by Pg9. It follows that 
(9, r, 0) Kp, ,  which means that the first clause of Pg 
cannot be selected. For any other clause to be selected, we 
must have (9, r, 0) ,b cp. Since (9, r, 0) I= i K i  pi iff i E F, 
it follows that r is satisfied by the truth assignment that 
makes p i  true precisely when i E Fg, for 1 5 i 

Now suppose that is satisfied by a truth assignment x. 
Let 9 = { i ( x ( p i )  = true}u{O}. It is easy to see that 
(M,, j )  + i K i p ,  iff i E 9, for 1 5 i 5 n. Thus, Pf (j) = 
{ai I i E 9 - {0}}, for each statej. Since T(ai)(j) = i, it fol- 
lows that 9 = FR, where R = Rrep(P$, y), so (R, n) rep- 
resents Pg in (y, n), by Proposition 5.3. Note that since ( is 

n. 
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satisfied by more than one truth assignment, P g  is repre- 
sented by more than one interpreted system. 

Theorem 5.4 tells us that testing whether there is at 
least one or more than one interpreted system representing 
a given atemporal finite knowledge-based program in 
a given nonrestrictive finite-state interpreted context is 
NP-complete. How can we test whether there is a unique 
interpreted system representing a given atemporal finite 
knowledge-based program in a given nonrestrictive finite- 
state interpreted context? We have to test that the pro- 
gram is represented by at least one interpreted system and 
that it is not represented by more than one interpreted 
system. Thus, this test is the difference between two N P  
tests. Problems that can be decided by the difference be- 
tween two NP tests are classified in the complexity class D p  
[29]. Formally, D p  is the class P of problems (i.e., lan- 
guages) such that P = PI - P2, where both PI and P2 are 
in NP. All problems in N P  and co-NP are easily seen to be 
in Dp; thus, unless N P  = co-NP, the class D p  is strictly 
larger than either N P  or co-NP. The UNIQUE-SAT prob- 
lem is the problem of deciding whether a given proposi- 
tional formula has a unique satisfying assignment. It is not 
hard to show that UNIQUE-SAT is in Dp.  It is shown in 
[17] that, in fact, UNIQUE-SAT is complete for D p  under 
randomized reductions. This means that for every problem 
A E Dp, there is a random polynomial-time function f (that 
is, the output offon input x, denoted f(x), may depend on 
some coin tosses) and a polynomial p such that 

0 if x #A,  then f(x)#UNIQUE-SAT with probability 
1 (that is, whatever the output off on input x is, it is not 
in UNIQUE-SAT), and 

0 if x E A, thenf(x) E UNIQUE-SAT with probability at 
least l / p (  1x1). 

Theorem 5.5 Testing whether there is a unique interpreted 
system representing a given atemporal finite knowledge- 
based program in a given nonrestrictive jinite-state 
interpreted system is polynomially equivalent to  the 
UNIQ U E - S A T  problem. 

Proof: We first show that UNIQUE-SAT is polynomially 
reducible to the unique representation problem. The proof 
is almost identical to the lower-bound proof in Theorem 
5.4. (Unlike the proof in Theorem 5.4, we do not force 5 to 
have at least two satisfying truth assignments when it has 
at least one satisfying truth assignment.) It is easy to see 
there that Pg is represented by a unique interpreted system 
in ( y ,  x) iff 5 has a unique satisfying truth assignment. 

We now show that the unique representation problem 
is polynomially reducible to UNIQUE-SAT. The algo- 
rithm in Theorem 5.4 guesses a set F of global states and 
then verifies in polynomial time that 9 = FB, where 
9 = Rrep(P$, y ) .  Uniqueness of the representation means 
that there is a unique such 9. Clearly, this algorithm can 
be implemented by a deterministic polynomial time Tur- 
ing machine M equipped with a “guessing” tape. The 
standard reduction of M to the satisfiability problem [lo] 
reduces the unique representation problem to UNIQUE- 
SAT. 0 
Corollary 5.6 Testing whether there is a unique interpreted 
system representing a given atemporal jinite knowledge- 

0. 
based program in a given nonrestrictive jinite-state 
interpreted system is complete for D p  under randomized 
reductions. 

5.2 The general case 

The problem is considerably more involved for general 
contexts and programs, where we allow temporal connect- 
ives. To understand the issues involved, we focus attention 
first on programs that do not mention the knowledge 
modalities E and C (although they may have temporal 
modalities and arbitrary nestings of Ki’s). The first diffi- 
culty stems from the fact that we can no longer collapse an 
interpreted system 9 to the Kripke structure M?,, while 
still preserving the relevant semantic information as in 
Lemma 5.1. MF, preserves the semantics of knowledge, but 
does not preserve the temporal semantics. Since the know- 
ledge tests in Pg may involve temporal operators, we 
cannot simply consider PgFx instead of Pg4. 

-r 

5.2.1 Knowledge-based programs and knowledge 
interpretations 

We deal with this problem by considering knowledge inter- 
pretations, which tell us how to interpret knowledge tests 
in local states. Given a context y in which Li is the set of 
local states of agent i ,  for i = 1, ... , n, let L,  = L,u 
. . . uL,. Let Pg be a knowledge-based program. Define 
test(Pg) to be the set of subformulas of tests in Pg and their 
negations (we identify a formula ii t+b with $). For each 
i = 1, ... , n ,  a knowledge interpretation K for Pg in y as- 
signs to every local state d e L i  and every formula 
Ki$ E test(Pg) a truth value, i.e., ~ ( t ,  Ki$) = true or 
~ ( t ,  Kill/) = false. 

Now consider a knowledge-based program Pg, for 
agent i. Instead of using an interpreted system 9 to obtain 
a protocol P g f ,  we can associate a protocol PgY,” with Pg, 
with a knowledge interpretation K and an interpretation 
.n that is compatible with Pg,. If (P is a standard test, we 
define 

( K ,  .n, 4 I= qJ iff ( n , 4  I= (P. 

If cp is a knowledge test K i $ ,  we define 

( K ,  n, /) /= Kill/ iff K ( / ,  Kill/) = true. 

Finally, for conjunctions and negations, we follow the 
standard treatment. 

We now define 

P g y y e )  = 

{ a . . ( K , n , 8 ) k t j A k j }  if { j : ( r c , n , / ) F r j A k j }  + 8  i4 if {j:( ic ,n , t )k  t j A k j }  =8. 
In addition to the notion of knowledge interpretation, 

we also need the notion of annotated states, which are 
global states tagged with sets of formulas. Let g be a global 
state and let 0 be a subset of test(Pg). The pair (9, 0) is 
called an annotated state. 

A set 0 E test(Pg) isfull if the following holds: 

1. For each V E  test(Pg), we have that ( P E  0 iff 
l(P$0. 
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2. For each cpl Acp, E test(Pg), we have that cpl Acp2 

An annotated state (g, 0) is consistent with a knowledge 
interpretation ic and an interpretation n if (a) 0 is full, 
(b) for each proposition p E Q, we have that p E 0 iff 
n(g)(p) = true, and (c) for each formula K i $  E test(Pg) we 
have that Ki$ E 0 iff K ( g i ,  Kill/) = true. These conditions 
say that the annotations capture the standard semantics of 
propositions, of Boolean connectives, and of knowledge 
modalities. On the other hand, no constraint is imposed on 
the semantics of temporal operators. 

To deal with the semantics of temporal operators we 
have to introduce the notion of annotated runs. An anno- 
tated run a over a set 9 of annotated states is a function 
from time to annotated states in 9 that satisfies the 
following condition: if CL = (go, O0), (gl, @I),  ... , then for 
each formula Ocp E test(Pg) or cpU$ E test(Pg) we have: 

E 0 iff q1 E 0 and cp2 E 0. 

1. Ocp E 0" iff cp E Om+' 
2.  cpU$ E 0" iff $ E 0"' for some m' 2 m and cp E Om'' 

Thus, annotated runs have to display the "proper" tem- 
poral behavior. Given an annotated run a = (go, O0), 
(gl, @I), ... , let run(a) be the run go,gl,  ... that is ob- 
tained by deleting the annotations in a. An annotated run 
a is consistent with (ic, n) if every annotated state in a is 
consistent with ( K ,  n). An annotated run c1 is consistent with 
a joint protocol P in a context y if run(c1) is consistent 
with P in y. 

We can now state a condition for existence for repres- 
entations. We say that the knowledge interpretation K is 
compatible with P g  in interpreted context (y, n) if, for each 
local state t E Li and each formula Ki$ E test(Pg), we have 
~ ( d ,  K i $ )  = false iff there is an annotated state ( g , 0 )  such 
that 

g i  = t and i$ E 0, and 
(9, 0 )  occurs in an annotated run that is consistent both 

Proposition 5.7 Let P g  be a knowledge-based program and 
let (y, n) be an interpreted context. There is an interpreted 
system that represents P g  in (y, n) iff there is a knowledge 
interpretation K that is compatible with P g  in (y,.). 
Moreover, there is more than one interpreted system that re- 
presents P g  in (y, .) i f f  there are two knowledge 
interpretations icl and ic2 compatible with P g  in (y, n) such 
that Rrep(PgK1-", y) + Rrep(PgK2-", y). 

ProoJ First suppose that there is an interpreted system 
9 = (W, n) that represents P g  in (y, n), i.e., 9 = 
Rrep(Pgg, y). For t E Li ,  define i c ( t ,  K i $ )  = true iff 
(9,t) K i $ .  By the definition of Pg".", we have that Pg' 
and Pg"." are identical. We now show that ic is compatible 
with P g  in (y, n): 

for all m" such that m 5 m" < m'. 

with (ic, n) and with Pg"." in the context y. 

~ ( t ,  Ki$)  = false 

iff (9, r ,  m) k i$ for some point (r,  m) of 9 such that 
ri(m) = d 

iff there is an annotated state ( g , 0 )  that occurs in an 
annotated run that is consistent both with ( K ,  n) and 
with Pg"." in context y such that gi = t and i$ E 0. 

iff (9, 8) ft Ki$ 

We have to prove the last equivalence. The direction from 
left to right is easy: Assume that r E 9. Define an anno- 
tated run c1 = (go, Oo), (gl, @ I ) ,  ... , where gm = r(m) and 
0" = { c p  E test(Pg) l(9, r, m) + q}.  It is easy to verify that 
a is consistent both with (ic, 7c) and with Pg9 in y: 

0" is full, since for each q E test(Pg), we have that 
(9, r, m) cp iff (4, r, m) f t l q ,  and for each cpl A cp2 
E test(Pg), we have that (9, r, m) I= q1 A cp2 iff 

For each proposition p E Qi, we have that (9, r, m) I= p iff 
z(r(m))(p) = true. 
For each formula K i  $ E test(Pg), we have that 

true. 
run(c1) = r, r E W, and W = W p ( P g 4 ,  y).  

(9, r,  m) k Pl and (4, r, m) I= (P2. 

(9, m) Ki$ iff ( 9 3  ri(m)) k Ki$ iff K(ri(m)> Ki$) = 

Thus, if (9, r, m) I= i $ and ri(m) = t, then i $ E 0" and 
gy = d. For the direction from right to left, let 
a = (go, Go), (gl, @I),  .. . be an annotated run that is con- 
sistent both with ( K ,  n) and with Pg"." in y, and let 
r = run(a). Since Pg"*" = Pg', it follows that r is consistent 
with P f f '  in y, and so r E 9 .  We claim that ( P E  0" iff 
(9, r,  m)+ q, for each m 2 0 and cp E test(Pg). The proof 
is by induction on the structure of formulas in test(Pg). 

1. 

2. 

3. 

4. 

5. 

6. 

For a proposition p E Qi, we have that p E 0" iff 
n(g")(p) = true iff (9, r, m) I= p .  
For a formula i cp E test(Pg), we have that 
i c p ~ 0 "  iff cp$Orn iff ( 9 , r , m ) k q  iff ( 9 , r , m )  
I= l c p .  
For a formula cpl A cp2 E test(Pg), we have that 
cpl Acp, E @"iff cpl E 0" and cp2 E @"iff (9, r, m)+ cpl 
and (9, I, rn) I= 402 iff (9, r, m) I= q1 A cp2.  
For a formula K , $ E  test(Pg), we have that 
K i $ € O m  iff .(d,Ki$) = true for t = gy iff 
(Y, t) /= Ki$ iff (9, r', m') + $ for every point (r', m') 
such that rL(m') = t iff (9, r, m) + K i + .  
For a formula Oq E test(Pg), we have that Ocp E 0" 
iff cp E Om+' iff (9, r, m + I)+ cp iff (9, r, rn)k Ocp. 
For a formula cpU$ E test(Pg), we have that 
cpU$ E 0" iff $ E 0"' for some m' 2 m and cp E 0"" 
for all m" such that m 5 m" < m' iff (9, r, m') + $ for 
some m' 2 m and (9, r, m") I= cp for all m" such that 
m 5 m" < rn' iff (9, r, m) cpU$. 

Thus, if i $ E Om, then (9, r, m) + 1 $. If we also have 
gy = t, then ri(m) = d. This proves the desired equivalence. 

Now suppose that we have a knowledge interpretation 
K that is compatible with P g  in (y, n). Let W = 
RreP(PgK.", y) and 4 = (2, n). We claim that B = 
Rrep(Pgg, y), so 9 represents P g  in (y, n). To prove that, it 
suffices to show that Pg"." and P g '  coincide. Thus, we have 
to show that for every test cp of P g  and local state t, we 
have that (ic, n, 8) I= cp iff (9, /) I= cp. Satisfaction of stan- 
dard tests depend only on n, so all we have to show is that 
for every formula K i $  E test(Pg) we have that 
( K ,  n, t) I= Ki$ iff (9, t) K i $ .  By definition, (4, t) + 
Ki$ iff (9, r, m ) k  $ for some point (r, m) of 9 such that 
ri(m) = t. By assumption, (ic, n, t )k  K i $  iff there is an 
annotated state (9, 0) that occurs in an annotated run that 
is consistent both with (ic,n) and with Pg"." in context 
y such that gi = d and i + E 0. Thus, much like above, it 
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suffices to show that if CI = (go, OO), (gl, 0'), ... is an an- 
notated run that is consistent both with ( K ,  .) and with 
Pg"." in y, if m 2 0  and if cp E test(Pg), then cp E 0" iff 
(9, r, m) cp for r = run(a). The proof is by induction on 
the structure of formulas in test(Pg). The argument for the 
various cases of the induction are identical to (1)-(6) 
above, except for case (4), for a formula Kill/ E test(Pg). In 
this case we proceed as follows: 

4 .  For a formula Ki$ E test(Pg) we have that 

Ki$ E 0" 
iff ~ ( t ,  K i $ )  = true for t = gT 
iff for every annotated state (9, 0 )  that occurs in 

an annotated run that is consistent both with 
( K ,  n) and with Pg"," in y such that gi = gr,  we 
have that $ E 0 iff (Y, r', m ' ) k  $ for every 
point (r', m') such that r:(m') = gy 

iff (9, r, m ) +  Kill/. 

The condition about existence of more than one 
interpreted system that represents Pg in ( y ,  n) follows 
immediately from the correspondence between interpreted 
systems that represent Pg in (y, n) and knowledge inter- 
pretations that meet the condition of the proposition. 0 

5.2.2 Testing existence of representations 

We can now obtain the desired complexity results for 
finite-state interpreted contexts and finite knowledge- 
based programs. The algorithm is based on Proposition 
5.7. The difficult part is in checking that a knowledge 
interpretation is compatible with Pg in (y, n). For this we 
use the automata-theoretic techniques of [34]. 

A Buchi automaton A is a tuple (C, S, So, p, F ) ,  where 
.Z is a finite nonempty alphabet, S is a finite nonempty set 
of states, So c_ S is a nonempty set of initial states, F E S is 
the set of accepting states, and p : S x C -+ 2' is a transition 
function. Now suppose that A is given as input an infinite 
word w = ao, a l ,  ... E C". A run r of A on w is a sequence 
so, sl, . . . of states, where so E So and si+ E p(si,  ai), for all 
i 2 0. Since the run is infinite, we cannot define acceptance 
in terms of the final state of the run. Instead we have to 
consider the limit behavior of the run. We define lim(r) to 
be the set {s 1 s = si for infinitely many i 's) ,  i.e., the set of 
states that occur in r infinitely often. Since S is finite, lim(r) 
is necessarily nonempty. The run r is accepting if 
lim(r)nF + 0, i.e., if there is some accepting state that 
repeats in r infinitely often. The infinite word w is accepted 
by A if there is an accepting run of A on w. The infinitary 
language of A,  denoted L,(A) ,  is the set of infinite words 
accepted by A .  An automaton A is nonempty if L,(A)  $; 0. 
The nonemptiness problem for Buchi automata is to decide, 
given a Buchi automaton A ,  whether A is nonempty. 

The following result is taken from [35].  As we shall 
need details from the proof, we repeat it here. 

Proposition 5.8 [35]  The nonemptiness problem for  Buchi 
automata is in NLOGSPACE.  

Proof: Let A = (C, S,  So, p, F )  be an automaton and 
assume that s, t E S. We say that t is connected to s if there 
exists a sequence s l ,  ... , s k  of states in S and a sequence 
al ,  ... , ak  of symbols in Z such that s1 = s, s k  = t ,  and 

si E p(s i - ' ,  ai) for 1 < i 5 k.  If in addition k = 2, then we 
say that t is directly connected to  s. We claim that L,(A) is 
nonempty iff there exist states so E So and t E F such that 
t is connected to so and t is connected to itself. To see this, 
suppose first that L,(A) is nonempty. Then there is an 
accepting run r = so, sl, ... of A on some input word. 
Clearly, si+ is directly connected to si for all i 2 0. Thus, 
sj is connected to si whenever i < j .  Since r is accepting, 
some t E F occurs in r infinitely often. In particular, there 
exist i ,  j ,  where 0 < i < j ,  such that t = si = si. Thus, t is 
connected to so E So and t is also connected to itself. 

Conversely, suppose that there exist states so E So and 
t E F such that t is connected to so and t is connected to 
itself. Since t is connected to so, there exists a sequence 
sl, ... ,sk of states and a sequence a l ,  ... ,ak of symbols 
such that s k  = t and si E p ( s i -  1, ai) for 1 < i 2 k .  Similarly, 
since t is connected to itself, there exists a sequence 
to, t l ,  ... , tl of states and a sequence b l ,  ... , bl of symbols 
such that to = tl = t and ti E p ( t i -  l ,  bi) for 1 < i 5 2. Thus, 
(so, sl, ... , ~ k - ~ )  (to, t l ,  ... , tl - is an accepting run of 
A on input (al, ... , ak)(b, ,  ... , bl),, so L,(A) is nonempty. 

Thus, automata nonemptiness is reducible to graph 
reachability, and graph reachability can be tested in non- 
deterministic logarithmic space. The algorithm simply 
guesses a state so E So, then guesses a state s1 that is 
directly connected to so, then guesses a state s2 that is 
directly connected to sl, etc., until it reaches a state t E F .  
At that point the algorithm remembers t and it continues 
to move nondeterministically from a state s to a state s' 
that is directly connected to s until it reaches t again. 
Clearly, the algorithm needs only logarithmic memory, 
since it needs to remember at most a description of three 
states at each step. 0 

Recall that one can define the truth of temporal for- 
mulas in a run r with respect to an interpretation 71. In fact, 
the truth can be defined with respect to the interpreted run 
n(r), where n(r)  is the sequence n(r(O)), n ( r ( l ) ) ,  ... of truth 
assignments on ds, where ds is the set of primitive proposi- 
tions in the underlying language. This sequence can be 
viewed as an infinite word on the alphabet 2? The next 
proposition is from [35] .  We denote the cardinality of a set 
S by I SI and the size of a formula cp (the number of symbols 
in cp) by IcpI. 
Proposition 5.9 [35] There is an exponential-time algo- 
rithm that takes as input a temporal formula cp, and con- 
structs a Buchi automaton A ,  = (C, s, So, p, F), where 
.Z = 2@, @ is the set of primitive propositions in cp, and 
IS1 = 2°(irp1), such that L,(A,)  is exactly the set of inter- 
preted runs satisfying the formula cp. 

We can now prove our complexity results for general 
programs and contexts. 

Theorem 5.10 Testing whether there is at least one (resp. 
precisely one) interpreted system representing a given finite 
knowledge-based program in a given finite-state interpreted 
context is PSPACE-complete. 

Proof: Let Pg be a knowledge-based program and let (y, n) 
be an interpreted context. Note that Itest(Pg)( is linear in 
the size of Pg. By Proposition 5.7, there is an interpreted 
system that represents Pg in (y, n) iff there is a knowledge 
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interpretation K that is compatible with Pg in (y. n). The 
algorithm simply guesses a knowledge interpretation 
K and checks that it is indeed compatible. We now show 
that this can be done in nondeterministic polynomial 
space. Thus, the problem is in PSPACE by [31]. 

Given a knowledge interpretation K ,  a local state 
L E L,, and a formula Ki$ E test(Pg) such that 
K(L ,  Ki$) = false, we have to check that there is an anno- 
tated state (9, 0) that occurs in an annotated run that is 
consistent both with (IC, n) and with Pg"." in y such that 
gi = t and i$ E 0. Let 9 be the set of annotated states 
that are consistent with ( K ,  n). Consider an annotated run 
CI = (go, OO), (gl, @'), ... ; it can be viewed as an infinite 
word over 9. We construct a Buchi automaton A that 
accepts precisely the set of interpreted runs over 9 that 
are consistent with Pg"." in y and that contain an anno- 
tated state (9, 0) such that gi = 8 and i $ E 0. All we then 
have to check is that A is nonempty. The automaton A is 
of size polynomial in the number of global states in y (al- 
though it may be exponential in the admissibility condi- 
tion Y )  and exponential in the size of Pg. By Proposition 
5.8, nonemptiness of Buchi automata can be tested in 
nondeterministic logarithmic space, so nonemptiness of 
A can be tested in nondeterministic space that is poly- 
nomial in the size of the input. 

The latter argument requires some care. We cannot 
simply construct A and then test it for nonemptiness, since 
A is exponentially big. Instead, we construct A "on-the- 
fly". First, the algorithm guesses an initial state of A .  Then 
whenever the nonemptiness algorithm wants to move from 
a state t l  of A to a state t 2 ,  the algorithm guesses t, and 
checks that it is directly connected to t l .  The description of 
A is such that checking whether a state t is initial or 
checking whether a state t l  is directly connected to a state 
t 2  can be done using polynomial space. Once this has been 
verified, the algorithm can discard t l .  Thus, at each step 
the algorithm needs to keep in memory at most three 
states of A and there is no need to generate all of A at any 
single step of the algorithm. In other words, the algorithm 
is essentially the nondeterministic algorithm described in 
the proof of Proposition 5.8, except that it uses polynomial 
space rather than logarithmic space, due to the exponen- 
tial size of the automaton under consideration. 

It remains to describe the construction of A .  We 
take A to be the composition of four Buchi automata 
A , ,  A,,  A,,  and A4. On input M = (go, OO), (gl, @I) ,  ... , 
the automaton Al  checks that run(%) satisfies the admissi- 
bility condition Y. For this we simply use the automaton 
A y  of Proposition 5.9. We see from Proposition 5.9 that A l  
has size exponential in Y. The automaton A ,  checks that 
cc is weakly consistent with Pg"." in y .  Take A2 = 

W,Y, 90, P, '% where p ( g 1 ,  (g,,@)) = 8 if 91 =I= 9 2 ,  and 
where g' E p ( g ,  (g, 0)) iff g = ( fe,  e l ,  .. . ,8J and there is 
a joint action (ae, a, ,  ... ,an) E Pe(fe)  x Pg;-"(d,) x ... x 
PgE3"(dn) such that g' = z(a,, a , ,  ... ,afl)(g). That is, A2 
simply simulates Pg".". Clearly, A ,  can be constructed in 
polynomial time from y and Pg. Note that A l  and A ,  
together verify that run(cr) is consistent with Pg"." in y. The 
automaton A ,  checks that M is indeed an annotated run, 
that is, that it satisfies the proper temporal behavior. For 
a detailed description of a similar construction see [34]. 
The size of A ,  is exponential in the size of Pg. Finally, A4 is 

a 2-state automaton that checks that for some (g", Om) we 
have that g r  = 8 and i $ E 0". The automaton A is taken 
to be the cross product A l  x ... x A 4 ;  for details on the 
product construction for Buchi automata see [4]. The 
important feature of the product construction is that 
,!,,(Al x ... x A4) = L,(A,)n ... nL,(A,). 

To check'that there is precisely one interpreted system 
that represents Pg in ( y ,  n), we check that there is such an 
interpreted system, but no more than one. We now show 
that we can check in polynomial space whether there is 
more than one interpreted system that represents Pg in 
( y ,  n). By Proposition 5.7, this means that we need to check 
that there are two knowledge interpretations K ]  and K~ 

compatible with Pg in (y, n) and a run r E Rrep(PgK1,", y) - 
Rrep(PgK2.", y). The first step is to guess K ]  and K ,  and check 
that each is indeed compatible with Pg in (y, n). To check 
that there is a run r E Rrep(PgK1Xn, y) - Rrep(PgK2.", y ) ,  we 
first construct a Buchi automaton A, ,  that accepts pre- 
cisely the runs in g(PgK1,", y). This automaton is essential- 
ly  the product of the automata A l  and A ,  described above, 
so its size is exponential in the size of Pg and Y,  but 
polynomial in the number of global states in y. We can 
similarly construct an automaton AK2 that accepts the runs 
in 3(Pg"2s",y). The automaton that accepts the runs in 
9(PgK1*", y) - g((Pg"'*", y) is then AKl,K2 = A, ,  x A1(2, 
where A,, is the complement of A K 2 ,  and accepts precisely 
the runs rejected by AK2.  Notice that a run r is not accepted 
by AK2 if it either does not satisfy the admissibility condi- 
tion Y (which can be checked using the automaton 
which has exponential size, of Proposition 5.9) or if it is not 
weakly consistent with Pg"'." in y (which can easily be 
checked by an automaton of polynomial size that checks 
whether r contains a global state g = (Le,  d,, ... ,8,,) fol- 
lowed by a global state g', but there is no joint action 
(ae, a , ,  ... ,an) E Pe(Le) x Pg;2."(Ll) x ... x Pg,"2-"(8,,) such 
that g' = r(ae, a, ,  ... ,an)(g). It is clear that has ex- 
ponential size, just as AK2 does. It remains to check that 
A K I , K 2  is nonempty. Since this automaton has exponential 
size, this can be done in polynomial space. 

Finally, we must show that testing whether there is at 
least one (resp. precisely one) interpreted system represent- 
ing a given finite knowledge-based program in a given 
finite-state interpreted context is PSPACE-hard. We show 
that this is the case even if either the interpreted context is 
nonrestrictive or the knowledge-based program is atem- 
poral. The reduction is from the satisfiability problem for 
temporal formulas [33]. 

Suppose CJ = { p }  and q is a temporal formula over @.* 
We now describe a finite-state interpreted context (y, n) 
and an atemporal finite knowledge-based program Pg 
such that cp is satisfiable iff there is an interpreted system 

'The PSPACE-hardness proof in [33] uses temporal formulas with 
an unbounded number of primitive propositions. By using a Turing 
machine M that accepts a PSPACE-complete language, it is possible 
to bound the number of primitive proposition used to the size of the 
working alphabet of M .  Since it is possible to encode the truth values 
of m primitive proposition in one state by the truth values of a single 
primitive proposition along log rn states, it follows that satisfiability 
of temporal formulas with a single primitive proposition is also 
PSPAC E-hard. 
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that represents Pg in ( y ,  n). The set of environment states is 
{1,2). There is only one agent in the context y ,  who is 
always in the same fixed local state. Thus, we can identify 
the global state with the environment's state. We take 1 to 
be the initial state. Assume that p is true in the state 2 but 
not in the state 1. The set of the agent's actions is {al, a*}, 
but the environment can perform only a single action, 
so that we can identify a joint action with the agent's 
action. We define z(ai)(j) = i, independent of j ,  i.e., 
the action ai always moves the system to the state i. 
Finally, we take Y to be Ocp. This concludes the definition 
of ( Y ,  4. 

case of 

Let Pg be the following atemporal program: 

if true do a,  
if true do a, 

end case. 

Clearly, if cp is not satisfiable, neither is Ocp, so there is 
no system representing Pg in ( y ,  n). On the other hand, 
note that if cp is satisfiable, then, since cp mentions only the 
primitive proposition p, there is a run of the form l(1 + 2)" 
that satisfies Ocp. Moreover, if cp is satisfiable, it is not hard 
to see that Pg is represented in ( y ,  n) by the unique inter- 
preted system that consists of all runs of the form l (1  + 2)" 
that satisfy Ocp. This shows PSPACE-hardness even when 
the knowledge-based program is atemporal (indeed, 
standard - since true is the only formula in tests). We now 
show PSPACE-hardness when the interpreted context is 
nonrestrictive. 

Let y' be the context that results by replacing the 
admissibility condition Ocp in y by True; this means that y' 
is now nonrestrictive. Let Pg' be the program 

case of 
if K i p  do a, 
if i K i c p  do a, 
if i K i  cp do a, 

end case. 

As before, it is easy to see that if cp is satisfiable, then 
there is an interpreted system 9 representing Pg' in (y ' ,  n); 
9 simply consists of all runs of the form l(1 + 2)". (Note 
that the first clause in Pg' does not play any role here.) 
Now suppose that Pg' is represented in (y, n) by 9'. We 
claim that cp must hold at some point in 9'. For suppose 
not. Clearly the second and third clauses are not selected 
by Pg". The first clause is selected only if the state 2 does 
not occur in $', but then a2 is selected, which changes the 
state to 2. On the other hand, if the first clause is not 
selected, then no test is satisfied. By assumption, this 
means that the action A is performed at all times. This, in 
turn, means that the system consists of one run, where the 
global state is always 1. But then K i p  holds, which means 
that the first clause has to be selected. Thus, cp must hold at 
some point of 9'. But then both actions a,  and a, are 
selected by Pg"', so 9' consists of all runs of the form 
l (1  + Z)", which means that 4' = 9. It follows that if cp is 
satisfiable, there is a unique interpreted system represent- 
ing Pg' in (y', n), and if cp is not satisfiable, then there are 
no systems representing Pg' in (y', n'). 0 

Remark 5.11 So far we have ignored the modalities E and 
C .  We now show how they can be handled. Dealing with 
E is easy: 

0 We enlarge test(Pg) by adding Ki$ and i Ki$ for each 
formula E$ E test(Pg). 

0 We modify the definition of being full so that a full set 
0 E test(Pg) must satisfy, in addition to the previous 
requirements, the additional requirement that E$ E 0 
i f fK,$EOfor  1 s i s n .  

Dealing with the modality C is somewhat more involved: 

We enlarge test(Pg) by adding KiC$ and I K i C $  for 
each formula C$ E test(Pg). 
We modify the definition of being full so that a full set 
0 G test(Pg) must satisfy, in addition to the previous 
requirements, the additional requirement that C$ E 0 
if fK,C$EOfor  1 ~ i ~ n .  
We modify the definition of compatibility so that for 
K to be compatible with Pg in ( y ,  n), we also require 
that for each local state k E Li and each formula 
KiC$ E test(Pg), we have ~ ( e ,  KiC$)  = false iff there is 
a sequence (gl, 0'), (g', 0*), ... , ( g k ,  Ok)  of annotated 
states, each occurring in an annotated run that is consis- 
tent both with ( K ,  n) and with Pg"." in context y such 
that g! = k,  -I$ E Ok, and for each 1 5 i < k there is 
some j with 1 5 j 5 n such that gi -j gif '. 

The additional condition on K ensures that C$ fails 
precisely when El$ fails for some 12 1. Note that 
this condition can be checked in nondeterministic 
polynomial space. We simply guess the sequence 
(gl, 0'), (g*, 02), . . . , ( g k ,  Ok) and use the automata-theor- 
etic technique to check that each (gi, 0') occurs in an 
annotated run that is consistent both with ( K ,  71) and with 
Pg"," in context y .  0 

5.3 Testing implementations 

So far we have dealt with the question of whether a given 
finite knowledge-based program Pg has a (unique) repre- 
sentation in a finite interpreted context ( y ,  n). As we ob- 
served earlier, there is a representation precisely if Pg is 
implemented by some protocol P in (y, n). Suppose, how- 
ever, that we are also given a protocol P and we want to 
decide whether P implements Pg in ( y ,  n). Is this problem 
easier than deciding whether Pg is implemented by some 
protocol? We now show that this problem is indeed easier 
(provided P =+ NP) for atemporal knowledge-based 
programs and nonrestrictive interpreted contexts, but is 
not easier in general. 

Recall that if P is a protocol and 9 = Irep(P, y, n), then 
P implements Pg in ( y ,  n) if (1) 4 = Irep(P$, y ,  n) and 
(2) P and Pg" agree on all global states that appear in 9. 

We first consider the simpler setting, where things are 
indeed easier. Note that for nonrestrictive contexts we can 
simplify the definition of implementation by taking only 
the second condition in the definition. This is because for 
nonrestrictive contexts, the second condition implies the 
first condition. That is, it is easy to see that if P and Pg9 
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agree on all global states that appear in 9, then Y = 
I'"P(Pg', y ,  n), since a run is weakly consistent with P in 
y iff it is weakly consistent with Pg" in y .  

Proposition 5.12 Let Pg be an atemporal knowledge-based 
program, let (7, n) be a nonrestrictive interpreted context, 
and let P be a protocol. Then P implements Pg in ( y ,  n) ifs 
P and P g F ~  agree on all global states that appear in 8, 
where 9 = Rrep(P, y). 

Proof: First suppose that P implements Pg in (y, n), i.e., 
P agrees with Pg' on global states in 9 = (B, n), for 
92 = Rrep(P, y). By Lemma 5.2, Pg' = PgF~. It follows that 
P agrees with PgFN on all global states in 9. 

Conversely, suppose that P agrees with PgF# on global 
states in B = Rep(P,  y). By Lemma 5.2, Pgs = Pg"., 
where 4 = (W, n). By the observation stated before the 
proposition we are proving, it follows that P implements 
Pg in (Y, 4. 0 
Theorem 5.13 There is a polynomial-time algorithm for 
testing whether a given protocol implements a given atem- 
poral finite knowledge-based program in a given nonrestric- 
tive jinite-state interpreted context. 

Pro05 Let Pg be an atemporal finite knowledge-based 
program, let ( y ,  n) be a nonrestrictive finite-state inter- 
preted context, and let P be a protocol. By Proposition 
5.12, P implements Pg in (y, n) iff P agrees with PgSH on 
global states in 92 = Rrep(P, y). 

To check that P implements Pg in ( y ,  n), our algorithm 
computes the set 9% of global states using the technique 
described in the proof of Theorem 5.4, and checks that it 
satisfies the condition of Proposition 5.12. To check that 
P agrees with Pg"# on global states in 92, we have to check 
that Pi([) = PgTH(L') for each agent i and local state t in 
a global state in 92. As observed in the proof of Theorem 
5.4, this can be done in polynomial time. 

Thus, in the case of an atemporal knowledge-based 
program Pg and a nonrestrictive interpreted context ( y ,  n), 
deciding whether a given protocol P implements Pg in 
(y, n) can be decided in polynomial time (Proposition 5.13), 
whereas deciding whether this knowledge-based program 
is implemented by some protocol in this interpreted con- 
text is NP-complete (Theorem 5.4). So the first problem is 
easier, if P + NP. We now consider the general case. 

Proposition 5.14 Let Pg be a knowledge-based program, let 
( y ,  n) be an interpreted context, and let P be a protocol. Then 
P implements Pg in ( y ,  n) iff there is a knowledge interpreta- 
tion K that is compatible with Pg in ( y ,  n) such that (1) 4 = 
Irep(PgK.", y ,  n)  and (2) P and Pg"." agree on all global states 
that appear in Y, where 4 = Irep(P, y, n). 

Prook First suppose that P implements Pg in (y, n), that 
4 = Irep(P$, y ,  n), and that P and Pg' agree on all global 
states that appear in 4, where 9 = Irep(P, y ,  n). Define 
K ( / ,  Ki$) = true iff (4,L') I= Ki$. Clearly, Pg' and Pg"," 
are identical, so P agrees with Pg"," on global states in 4. 
Furthermore, we showed in the proof of Proposition 5.7 
that K is compatible with Pg in ( y ,  n). 

NOW suppose that we have a knowledge interpreta- 
tion IC that is compatible with Pg in ( y ,  n) such that 

0 

(1) 9 = Irep(PgKsn, y ,  n) and (2) P and Pg"," agree on all 
global states that appear in 4, where 9 = Irep(P, y ,  n). We 
showed in the proof of Proposition 5.7 that Pg"." = Pg'. It 
follows that P implements Pg in ( y ,  n). 0 

Theorem 5.15 Testing whether a given protocol implements 
a given finite knowledge-based program in a given finite- 
state interpreted context is PSPACE-complete. 

Pro05 Let Pg be a finite knowledge-based program, and 
let (y, n) be a finite interpreted context, and let P be 
a protocol. By Proposition 5.14, P implements Pg in (y, n) 
iff there is a knowledge interpretation IC that is compatible 
with Pg in ( y ,  n) such that (1) 9 = Irep(Pg"3n, y ,  n), and 
(2) P and Pg"." agree on all global states that appear in 4, 
where 4 = Irep(P, y ,  n). We saw in the proof of Theorem 
5.10 how to find in polynomial space a knowledge inter- 
pretation IC that is compatible with Pg in (y, n). It remains 
to show that we can check conditions (1) and (2) in poly- 
nomial space. 

To check condition (2), we cycle over all global states 
g and check that if P and Pg"." disagree on g then g does 
not occur in 9. Note that g occurs in 9 ifit occurs on a run 
r that is weakly consistent with P in y and satisfies the 
admissibility condition. We saw in the proof of Theorem 
5.10 that this can be checked in polynomial space. 

Rather than showing how to check condition (l), we 
show how to check if condition (1) is violated. To check 
this, we have to find a run r that distinguishes between 
9 and 9' = IreP(PgK,", y, n). For example, r might satisfy 
the admissibility condition and be weakly consistent with 
P, but not weakly consistent with Pg".". We saw in the 
proof of Theorem 5.10 how to construct an automaton 
that takes a run r as input and checks that it satisfies the 
admissibility condition and is weakly consistent with P. It 
is straightforward to modify the automaton so that it also 
checks that r is not weakly consistent with Pg".". It simply 
has to nondeterministically guess a pair 9, g' of successive 
global states in r, where g = ( f e ,  L',, .. . ,L',J, and check that 
there is no joint action (ae, a,, ... ,a,,) E P,(t,) x Pg;s"(/,)x 
... x Pgn",n(t,,) such that g' = z(a,, a,, ... ,a,,)(g). A similar 

automaton can check that there is a run r that satisfies the 
admissibility condition and is weakly consistent with 
Pg".", but not weakly consistent with P. Thus, 4 + 9' if 
one of these automata is nonempty. We saw in the proof of 
Theorem 5.10 that this can be checked in polynomial 
space. Since we can check in polynomial space if condition 
(1) is violated, we can check condition (1) in polynomial 
space. This completes the proof of the upper bound. 

It remains to show that the problem is PSPACE-hard. 
The reduction is similar to the reduction in the proof of 
Theorem 5.10, and applies even if either the interpreted 
context is nonrestrictive or the knowledge-based program 
is atemporal. 

Suppose CP = { p )  and cp is a temporal formula over CP. 
Let ( y ,  n) and Pg be as described in the proof of Theorem 
5.10. We define a protocol P by taking P(1) = P(2) = 
{al, a2}.  It is not hard to see that P implements Pg iff q is 
satisfiable. This shows PSPACE-hardness even when the 
knowledge-based program is atemporal. To show 
PSPACE-hardness when the interpreted context is nonres- 
trictive. let Pg' and y' be as in the proof of Theorem 5.10. 
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Again, it is not hard to see that P implements Pg' in (y', r) 
iff cp is satisfiable. 0 

Thus, in contrast to the case of an atemporal know- 
ledge-based program Pg and a nonrestrictive interpreted 
context (y,n), we see from Theorems 5.10 and 5.15 that 
deciding whether a given protocol P implements a general 
knowledge-based program Pg in a general interpreted 
context (y, n) is no easier than deciding whether this know- 
ledge-based program is implemented by some protocol in 
this interpreted context: both problems are PSPACE- 
complete. 

6 Concluding remarks 

Standard programs work at the level of runs; by way of 
contrast, knowledge-based programs work at the know- 
ledge level, which provides a higher level of abstraction. 
We believe that the approach of designing a knowledge- 
based program that satisfies some specification, and then 
compiling it to a standard program, will give us a powerful 
tool for program development. The examples given in [8] 
provide some support for this belief. 

In this paper, we focused on ways of determining 
whether a knowledge-based program is represented by 
a unique system, no system, or many systems. Such in- 
formation will be crucial if we are to use knowledge-based 
programs in a serious way. As pointed out in [30], i t  would 
also be useful to have techniques for reasoning about 
knowledge-based programs without having to construct 
the system(s) that represent them. The development in [S] 
has already simplified the reasoning by distinguishing be- 
tween programs and contexts, and allowing us to discuss 
systems representing a program in a given context without 
having to describe the runs of the system explicitly. Never- 
theless, we still need to find ways of employing the techno- 
logy that has been developed for proving correctness of 
programs for the task of reasoning about knowledge- 
based programs. A first step along these lines was taken by 
Sanders [30], who extended UNITY in such a way as to 
allow the definition of knowledge predicates (although it 
appears that the resulting knowledge-based programs are 
somewhat less general than those described here), and then 
used proof techniques developed for UNITY to prove the 
correctness of another knowledge-based protocol for the 
sequence transmission problem. (We remark that tech- 
niques for reasoning about knowledge obtained in CSP 
programs, but not for knowledge-based programs, were 
given in [18].) 

One potential problem in starting with a knowledge- 
based program and then implementing it is that, as we 
stressed in Sect. 2.6, our definition of knowledge is an 
external one. Since we do not assume that agents necessar- 
ily compute their knowledge, it may not always be 
straightforward to implement the tests for knowledge that 
appear in knowledge-based programs. Indeed, an example 
in which this problem arises appears in [24]. The 
(provably optimal) knowledge-based program for simulta- 
neous Byzantine agreement presented in [24] (based on 
the one in [6]) has tests that are NP-hard to compute in 
a context that allows generalized omission failures. (The 

same tests are efficiently computable, and hence the opti- 
mal program is efficiently implementable, in contexts that 
allow only sending omission failures or crash failures.) 
Based on the notion of resource-bounded knowledge de- 
fined in [22], a notion of algorithmic knowledge is intro- 
duced in [S] that is intended to capture knowledge that is 
computable. In addition, algorithmic programs, which use 
tests for algorithmic knowledge, are considered. Algorith- 
mic programs can be viewed as a halfway point between 
knowledge-based programs and standard programs, since, 
although they have tests for knowledge, these tests are, in 
a precise sense, guaranteed to be implementable. 

An extension of the framework of knowledge-based 
programs is presented in [23]. Moses and Kislev argue 
that actions, as well as a program's internal tests, should be 
thought of at the knowledge level. The effect of sending 
a single message in a context with reliable communication 
can be considered similar to sending many messages in an 
unreliable context. As a result, they define knowledge- 
oriented programs, which are knowledge-based programs 
involving high-level actions that are defined in terms of 
knowledge. They illustrate how knowledge-oriented pro- 
grams can be used to unify solutions to well-known prob- 
lems in different contexts, as well as to generate efficient 
programs in a given context by way of top-down design. 

It is clear that there is more work to be done in 
understanding the knowledge-based approach. We feel 
that the potential advantages of this approach make the 
effort worthwhile. 
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A Appendix: Proofs 

In this appendix, we fill in the missing details of some of the proofs. 
We first establish two useful lemmas. 

Lemma A.l I f P  is a protocol and y = ( P e ,  Yo, T, Y) is nonexcluding, 
then Pref0(RreP(P,  y ) )  = ~ o n P r e f o ( Y ) .  

Proof: Clearly, Prefo(RrpP(P,  y)) 5 Y o n P r e f o ( Y ) .  We now must show 
that for each state g E 9 o n P r e f o ( Y ) ,  there is a run r E Rrep(P ,  y) such 
that r(0) = g. It is immediate from the definition of a protocol that 
there is a run r" weakly consistent with P in context y such that 
r"(0)  = g. It then follows immediately from part (b) of the definition 
of nonexcluding that there is a run r E Rrep(P ,  y )  such that r (0 )  = g, as 
desired. 0 

The next lemma is the key lemma, which shows that our inductive 
construction has the right properties. Intuitively, this lemma says 
that, for each interpreted system 9' E 2, the actions of the protocol 
Pg" at time m depend only on the prefixes of 9' up to time m. This 
lemma is the only place in the proof where we use the assumption 
that Pg depends on the past in 2; this and the preceding lemma are 
the only ones that use the assumption that y is nonexcluding. 

Lemma A.2 Assume that P g  depends on the past in &t and 
that y is nonexcluding. Suppose Y,, Y2 E 2 und Pref,(.F,) = 
Pref,(Y,) = Prefm(IreP(Pg", y ,  n)) = Pref,(IreP(Pg'Z, y ,  n)). Then 
Pref,. l(I'EP(Pg'l, Y .  n)) = Pref,+ l(I'ep(pg'z, Y, n)). 

Proof: Suppose p E Pref,. I (R'eP(Pg'l ,  7)). Thus, there must exist 
a run r E Rrep(Pg'l, y) such that p = Pref,, l ( r ) .  Suppose r(m) 
= (fe, d,, . . . ,fn). It follows that there must be a tuple (ae,  a , ,  ... , a , )  
E Pe(fe) x Pg:l(&,) x ' . .  x PgLl(dn) such that r ( m  + 1) = 
.r(a,, a , ,  ... ,a , , ) (r(m)) .  We now show that a i  E P g p ( t i )  for each agent 
i. By the assumptions of the lemma, there is a run r' of 9, and a run 
r2  of .$, such that Pref,(r) = Pref,(r') = Prefm(r2). Furthermore, 
PreJ"(4 , )  = Pref , (4 , ) .  We know that a i  E P g , f l ( f z ) .  This means that 
either 

( I )  there is a line in the knowledge-based program Pg,  of the form 
"if t  A k do a;', where i  is a standard test and k is a knowledge 
test, and (9,> fi) + t A k ,  or 

(2) a i  is the null action A and for each line "if t  A k do a" of Pg,, 
necessarily (Y,, f,) 

First assume that (1) holds. Then (n, fi) /= t and (Y,, r ' ,  ni) I= k (the 
latter holds since, r ! (m)  = ri (m) = t,). Since (a) Pg depends on 
the past in y ,  (b) .-O, E and 9, E 2, (c) (Y,, r l , m ) b  k ,  
(d) P r e f J 9 , )  = Pref,(Y,), and (e) Pref,(r') = Pref,(r'), i t  follows 
that (.-02, r z ,  m) + k. So (9,. fi) + k ,  since rZ(m) = t,. Also (Y,, fi) t ,  
since (n, !,)I= t. Hence, (9,, f,) + t A k .  Therefore, under the assump- 
tion that (1) holds, we have shown that a, E Pg{.(/,), as desired. 
A similar argument goes through when (2) holds. Hence, 
(a,,a,, ..., a , ) ~ P , ( f ~ ) x P g : 2 ( L , ) x  ... x P g i 2 ( f n ) .  It follows that 
there is a run with prefix p that is weakly consistent with Pg'' in 
context y .  Since p is in Pref,+,(R'eP(Pg'l, y)) ,  and hence in 
P r e f , ,  it follows from the fact that y is nonexcluding that there 
is a run with prefix p that is consistent with Pg'z in context y. This 
shows that Pref,, , ( R r e P ( P g f ' ,  y ) )  E Pref,, ,(R'"P(Pg'2, y)). Using 
symmetric arguments, we get that Pref,, , ( R e p ( P g g 2 ,  7)) c Pref,. 
(ReP(Pgfl, y)). Therefore, Pref,+ , (Rep(Pg': y))  = Pref,, ,(Rep(Pg'2, y)), 
as desired. 0 

We now complete the proof of Theorem 4.7. Recall that we want 
to show that the system Yw+' defined by our inductive construction 
represents Pg in c j ,  n). To do  this, we need to show that Y w + '  = 
Y"'+'. As unfinished business, we also need to prove that the se- 
quence Yo, Y', ... is prefix-compatible. 

Claim A.3 I f 0  5 m 5 m' < w, then Pref,(Y"') = Pref,(S"). 

Proof: We proceed by induction on m. The case m = 0 follows 
immediately from Lemma A.1. Suppose we have proved the result for 
m = k and wish to prove i t  for m = k + 1. Suppose that m' 2 k + 1. 

t  A k .  
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We want to show that Prefk+,(Yrn') = P r e f k + , ( Y k + l ) .  By the induc- 
tion hypothesis, Prefk(4""') = P r 4 ( Y k )  = Preh(4"') = Prtfk(fkkl). 
We can now apply Lemma A.2 (where the roles of 4, and 42 are 
played by Ykm'-'and fk), since by definition Irep(Pg"" -I, y, n) = 9"' 
and IreP(Pg' , y ,  n) = fk+ '. We then obtain that Pref,. ,(4"") = 
Prefk + (Yk+ I), as desired. 0 

Incidentally, the reason we named the system in 2 that we began 
our fixed-point construction with to be 9-' rather than 4' is that, 
as Claim A.3 tells us, the m-ary prefix of 9"' is preserved for m 2 0. 
That is, every 9'"' for m' 2 m 2 0 has the same m-ary prefix as 9". 
This would not necessarily have been true when m = 0 had we 
started our fixed-point construction by taking .go to be an arbitrary 
member of 8. 

Since Y o ,  4', . . . is prefix-compatible sequence of elements in 
&t and 2 has limits, it follows that there is a limit 9" of this sequence 
in 2. (This is the only place in the proof where we use the fact that 
2 has limits.) We now define go+' and 4"+' as before, by letting 
9''' = lrep(Pgfe, y ,  n), for 0 = w and 0 = w + 1. Since Y W  E f and 
2 is Pg-closed, it follows that 9*+' E 2. 

The next claim provides a tool for providing that fW+' = 4"+z. 
Let Pg be a knowledge-based program and (y, x) an interpreted 
context. Then d(Pg,  y, x), as defined after Theorem 4.9, consists of all 
interpreted systems Irep(Pg', y ,  A )  where 9 is of the form (92, x). Note 
that Ye, for 0 5 0 < w or w < f3 5 w + 2, is in &t(Pg, y, n). 

Claim A.4 I f  9,, Y2 E &t(Pg, y, z) and Prefm(Y1)  = Prefm(Y2)for all 
m, then f, = f,. 

Proof Suppose 9, = Irep(Pg':, y, n) and 42 = lrep(pg'i, y ,  n). Let 
r be a run in 4,; we now show that r is a run in fz. Since 
Prefm(9,)  = Prefm(9J for all m, r is weakly consistent with Pg'; in 11. 

Clearly every run in 9, (and, in particular r )  is in Y.  It follows that 
r is consistent with Pg 'i in y .  Therefore, r is a run in 9z. By 
a symmetric argument, we can show that every run in Y z  is in 9,. 
Thus, 4, = 9,. 0 

Claim A.5 Pref,(9"") = Pref , (9wt2)for  all m. 

Proof. We first show that Pref,(4"+') = Pref,(S") for each m. The 
case of m = 0 follows directly from Lemma A.l. So assume that 
m = k + 1 for some nonnegative integer k .  By definition of I " ,  we 
know that Prefk(9") = Pref , (Sk) .  By the induction hypothesis, we 
have Pref , (4"+' )  = Prefk(fk). By Claim A.3, we have = 
Pref , (Yk+' ) , so  Pref,(Y*) = Pre&(Yk) = Pref , (y"+' )  = P r e f , ( Y k + + ) .  
We can now apply Lemma A.2, where the roles of 9, and 4, are 
played by 9" and 9k. It follows that Prefk+l(I'U+l) = 
Prefk+,(Y'+'), as desired. 

Using the fact that Prefm(9"+')  = Prefm(9") for each m, a sim- 
ilar argument (where the roles of 9, and 4, in Lemma A.2 are played 
by 4"" and Y k )  shows that Pref,(YW+') = P r e f , ( Y " )  for each m. 
Therefore, P r e f , ( 9 " + ' )  = Pref,(9"+2) for each m. 0 

By Claims A.4 and AS, we must have $"+I = Ymt  ', as desired. 
This completes the proof of Theorem 4.7. (Note that Pref,(f") = 
Pref,(9"'+ I )  for all m. We cannot, however, apply Claim A.4 to show 
that 9" = 9"+', since 4" is not necessarily in kp(Pg, y ,  A). )  

We now give the rest of the proof of Theorem 4.8 (i.e., the "if" 
direction). Recall that we want to show that if y is nonexcluding and 
Pg depends on the past in REP(Pg, y ,  n), then there is at  most one 
system representing Pg in ( y ,  z). 

Suppose that 9, and 9, are two systems in REP(Pg, y, n); we 
want to show that 9, = 9,. To do this, we want to apply Claim A.4. 
Thus, we first show the following claim. 

Claim A.6 I f  f1 and 9, are two systems in REP(Pg, y, n), then 
Pref,(.Y,) = Prefm(Yz)for all m. 

Proof. We prove this by induction on m. Since Y1  and 9, are in 
REP(Pg, y, x), we know that 9, = I'ep(Pg'l, y, n) and Y2 = 
I"p(Pg'2, y, n). The base case m = 0 is now immediate from Lemma 
A.l. For the inductive step, assume that Prefm(4,)  = Prefm(Y2). 

By Lemma A.2, Pref,. ,(IreP(Pgf1, y, x)) = Prefm+ l(i'"p(Pg'z, y ,  x)). 
Therefore, Prefm+1(YJ = Pref;,+l(I"eP(Pgfl, Y, n)) = Prefmt 1 

(I"p(Pg'2, y ,  x)) = Pref,, '(Y2), as desired. 0 

As we said above, the fact that 4, = fz now follows from Claim 
A.4, since REP(Pg, 7 ,  n) c f(Pg, y, n). This completes the proof of 
Theorem 4.8. 
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