
Distrib. Comput. (1997) 10: 199-225

0 Springer-Verlag 1997

Knowledge-based programs*
Ronald Fagin’***, Joseph Y. Halpern2.***, Yoram Moses3*****, Moshe Y. Vardis*****

‘IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95 120-6099, USA (e-mail: fagin@almaden.ibm.com)
’Department of Computer Science, Cornell University, Ithaca, NY 14853, USA (e-mail: halpern@cs.cornell.edu)
3Department of Applied Mathematics and CS, The Weizmann Institute of Science, 76100 Rehovot, Israel
(e-mail: yoram@wisdom.weizmann.ac.il)
4Department of Computer Science, Rice University, Houston, TX 77005-1 892, USA (e-mail: vardi@cs.rice.edu)

Received: October 1995 / Accepted: February 1997

Summary. Reasoning about activities in a distributed
computer system at the level of the knowledge of indi-
viduals and groups allows us to abstract away from many
concrete details of the system we are considering. In this
paper, we make use of two notions introduced in our
recent book to facilitate designing and reasoning about
systems in terms of knowledge. The first notion is that of
a knowledge-based program. A knowledge-based program
is a syntactic object: a program with tests for knowledge.
The second notion is that of a context, which captures the
setting in which a program is to be executed. In a given
context, a standard program (one without tests for know-
ledge) is represented by (i.e., corresponds in a precise sense
to) a unique system. A knowledge-based program, on the
other hand, may be represented by no system, one system,
or many systems. In this paper, we provide a sufficient
condition for a knowledge-based program to be repre-
sented in a unique way in a given context. This condition

*This is one of the five articles selected for a special issue of Distrib-
uted Computing based on papers that originally appeared - in pre-
liminary and abbreviated form - in the Proceedings of the 14th
SIGACT-SIGOPS Symposium on Principles ofDistributed Computing
(PODC ’951, held in Ottawa, Canada on August 14-16, 1995. The
other four selected papers from that conference appear in volume
10:2 (1997) of this journal. The paper contains also some results that
originally appeared in a paper by the fourth author in the Proceed-
ings of the 6th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK ’96), held in De Zeeuwse Stromen, The
Netherlands, on March 17-20, 1996.
**URL: http://www.almaden.ibm.com/cs/people/fagin/
***Most of this work was done while this author was at the IBM
Almaden Research Center, supported in part by the Air Force Office
of Scientific Research (AFSC), under Contract F49620-9 1 -C-0080.
URL: http://www.cs.cornelI.edu/home/halpern
****Part of this research was performed while this author was on
sabbatical at Oxford. His work is supported in part by a Helen and
Milton A. Kimmelman career development chair. URL:
http://www.wisdom.weizmann.ac.il/* yoram
*****Part of this research was done while this author was at the
IBM Almaden Research Center. URL: http://www.cs.rice.edu/-vardi

Correspondence to: R. Fagin

applies to many cases of interest, and covers many of the
knowledge-based programs considered in the literature.
We also completely characterize the complexity of deter-
mining whether a given knowledge-based program has
a unique representation, or any representation at all, in
a given finite-state context.

Key words: Knowledge-based program - Protocol -

Reasoning about knowledge - multi-agent system

1 Introduction

Reasoning about activities in a distributed computer sys-
tem at the level of the knowledge of individuals and groups
allows us to abstract away from many concrete details of
the system we are considering. One approach to program
development is to work top-down, first designing a high-
level protocol, and then implementing the high-level con-
structs in a way that may depend on properties of the
particular setting at hand. This style of program develop-
ment will generally allow us to modify the program more
easily when considering a setting with different properties,
such as a different communication topology, different
guarantees about the reliability of various components of
the system, etc.

Motivated by these considerations, Halpern and Fagin
[l 13 suggested a notion of knowledge-based protocols, in-
which an agent’s actions depend explicitly on the agent’s
knowledge. Their goal was to provide a formal semantics
for programs with tests for knowledge such as

if K (x = 0) do y := y + 1,

where K (x = 0) should be read as “you know that x = 0”.
Unfortunately, the technical definition of knowledge-
based protocols given in [l 13 (later simplified somewhat in
[l2, 21,27]), had a number of deficiencies, which made it
somewhat difficult to use as a tool for program design. For
one thing, a knowledge-based protocol was defined as
a function from local states and systems to actions (we
provide details in Sect. 3.2). Thus, the definition did not

200

directly capture the intuition that knowledge-based pro-
grams were meant to be programs with tests for know-
ledge. Moreover, the approach did not provide a clean
distinction between the protocol (or program) and the
setting in which it is to be executed. As a result,
the high-level and model-independent reasoning we wish
to use knowledge for was not facilitated by the definition
as much as it perhaps could have been. Nevertheless,
knowledge-based protocols were used (either formally or
informally) in papers such as [6, 15, 16,24,26].

In [S], an approach is given that overcomes the defi-
ciencies of the earlier definition. This approach introduces
knowledge-based programs, which are what knowledge-
based protocols were intended to be: (syntactic) programs
with tests for knowledge. This approach includes the intro-
duction of contexts, which capture the setting in which
a program is to be executed. By distinguishing between
programs and contexts, and by ascribing meaning to pro-
grams in different contexts in a uniform manner, high-level
and model-independent reasoning based on knowledge
are facilitated.

In a given context, we can associate with every protocol
- a mapping from local states to actions - a unique system,
namely, the system consisting of all possible runs (or ex-
ecutions) of the protocol in that context. We think of this
as the system that represents the protocol in this context.
We similarly want to associate with each knowledge-based
program a system that characterizes it in a given context,
but there are subtleties. In general, such a system is not
guaranteed to exist, and if one exists, it is not guaranteed
to be unique. A knowledge-based program should be
viewed as a high-level specification; the systems that rep-
resent i t can be viewed as those systems that satisfy the
specification. If there are no systems representing the pro-
gram, then the specification is inconsistent (at least, in the
given context); if there is more than one, that simply means
that the specification can be satisfied in more than one
way.

Of course, if we are to program at the knowledge level,
it is surely useful to be able to tell whether there is a system
representing a given knowledge-based program, and if so,
whether this system is unique. In instances in which we can
determine by the syntactic structure of a knowledge-based
program that it has exactly one representation, we can
think of the program as a high-level description of a speci-
fic behavior of the agents. In such cases, we are justified in
thinking of a knowledge-based program simply as a
program with tests for knowledge. In this paper, we pro-
vide a condition that is sufficient to guarantee that a
knowledge-based program is represented by a unique sys-
tem, and covers many of the simple knowledge-based
programs considered in the literature. This condition is
somewhat similar in spirit to a condition considered in
[12] that guarantees the existence of a canonical system
corresponding to a knowledge-based protocol. We also
completely characterize the complexity of determining
whether a given knowledge-based program has a unique
representation, or any representation at all, in a given
finite-state context.

The rest of this paper is organized as follows. The next
two sections review material from [8]: In Sect. 2, we
describe the multi-agent systems framework, and in

Sect. 3, we discuss standard and knowledge-based pro-
grams. We present our sufficient condition for the exist-
ence of unique representations in Sect. 4, and examine the
complexity of checking whether a knowledge-based pro-
gram is represented by a unique system, or any system at
all, in Sect. 5.

2 The multi-agent systems framework

We want to be able to view any collection of interacting
agents as a multi-agent system. Agents playing a game,
processes running a protocol, and interacting robots are
all examples of multi-agent systems. Thus we need a frame-
work that is general enough to allow all of these as special
cases. Such a framework was introduced in [l l , 131 and
further developed in [8]. We review the details here.

2.1 Runs and systems

We assume that at any point in time, each of the agents in
the system is in some state. We refer to this as the agent’s
local state, in order to distinguish it from a global state,
which we define shortly. We assume that an agent’s local
state encapsulates all the information to which the agent
has access. In this abstract framework, we do not make
any additional assumptions about the state. If we are
modeling a poker game, a player’s state might consist of
the cards he currently holds, the bets made by the other
players, any other cards he has seen, and any information
he may have about the strategies of the other players (for
example, Bob may know that Alice likes to bluff, but that
Charlie tends to bet conservatively). If we are modeling
a distributed system, a process’s local state might consist of
the values of certain variables and a list of messages
received and sent.

In addition to the agents, it is useful to have an environ-
ment, which we can think of as capturing everything else
that is relevant to the analysis that is not in the agents’
local states. In many ways the environment can be viewed
as just another agent, though it typically plays a special
role in many analyses. Like the agents, the environment
has a local state. If we are analyzing a message-passing
system where processes send messages back and forth
along communication lines, we might have the environ-
ment’s local state keep track of the messages that are in
transit, and whether a communication line is up or down.
A global state of a system with n agents is an (n + 1)-tuple
of the form (te, t,, . . . , tn), where te is the local state of the
environment and fi is the local state of agent i.

A global state describes the system at a given point in
time. But a system is not a static entity; i t constantly
changes. Since we are mainly interested in how systems
change over time, time must be built into the model. A run
is a function from time to global states. Intuitively, a run is
a complete description of how the system’s global state
evolves over time. Time ranges over the natural numbers.
Thus, r(0) describes the initial global state of the system in
a possible execution r, the next global state is r(l), and so
on. The run r can be viewed as the sequence r(O), r (l) , .. .
of the global states that the system goes through. Time is
measured on some clock external to the system. We do not

201

assume that agents in the system necessarily have access to
this clock; at time m measured on the external clock, agent
i need not know it is time m. If an agent does know the
time, then this information is encoded in his local state (we
return to this issue later). This external clock need not
measure “real time”.

A system can have many possible runs, since the sys-
tem’s global state can evolve in many possible ways: there
are a number of possible initial states and many things that
could happen from each initial global state. For example,
in a poker game, the initial global states could describe the
possible deals of the hand, with player i’s local state f i

describing the cards held initially by player i. For each
fixed deal of the cards, there may still be many possible
betting (and discarding) sequences, and thus many runs. In
a message-passing system, a particular message may or
may not be lost, so again, even with a fixed initial global
state, there are many possible runs. (A formal definition of
runs is given in the next paragraph). To capture this,
a system is formally defined to be a nonempty set of runs.
This definition abstracts the intuitive view of a system as
a collection of interacting agents. Instead of trying to
model the system directly, this definition models the pos-
sible behaviors of the system. The requirement that the set
of runs be nonempty captures the intuition that the system
being modeled has some behaviors.

We summarize this discussion as follows:

Definition 2.1 Let L, be a set of possible states for the
environment and let Li be a set of possible local states for
agent i, for i = 1, ... ,n. The set of global states is
29 = L, x L , x ... x L,. A run over 9 is a function from the
time domain - the natural numbers in our case ~ to 9.
Thus, a run over 9 can be identified with a sequence of
global states in 9. A pair (r , m) consisting of a run r and
time m is called a point. If r(m) = (fe, el, ... ,en) is the
global state at the point (r , m), define r,(m) = C, and
ri(m) = f i , for i = 1, . . . , n; thus, ri(m) is agent i’s local state
at the point (r , m). A round takes place between two time
points. Round m in run r is defined to take place between
time m - 1 and time m. A system 9 over 9 is a set of runs
over 9. We say that (r , rn) is a point in system 9 if
r E B . 0

2.2 Actions

In our discussion of runs, we avoided consideration of
where the runs came from. Starting in some initial global
state, what causes the system to change state? Intuitively, it
is clear that this change occurs as a result of actions
performed by the agents and the environment. It is often
convenient for us to view these actions as being performed
during a round. Neiger [25] explicitly includes actions in
his model of a run; for simplicity, we do not. However, we
can easily model actions as part of the state: If an agent
knows his actions, then they can be part of the agent’s local
state. Otherwise, they can be included in the environment’s
state.

For us, actions are simply elements of some specific set.
Thus, we assume that for each agent i there is a set ACTi of
actions that can be performed by i. For example, in a dis-

tributed system, an action send(x,j, i) - intuitively, this
action corresponds to i sending j the value of variable
x ~ might be in ACTi if x is a variable that is local to agent
i. On the other hand, if x is not a local variable of i, then it
would usually be inappropriate to include send(x,j, i) in
ACTi. In keeping with the policy of viewing the environ-
ment as an agent (albeit one whose state of knowledge is
not of interest), the environment is allowed to perform
actions from a set ACT,. In message-passing systems,
it is perhaps best to view message delivery as an action
performed by the environment. If we consider a system
of sensors observing a terrain, we may want to view
a thunderstorm as an action performed by the environ-
ment. For both the agents and the environment, we allow
for the possibility of a special null action A which
corresponds to the agents or the environment performing
no action.

Knowing which action was performed by a particular
agent is typically not enough to determine how the global
state of the system changes. Actions performed simulta-
neously by different agents in a system may interact. If two
agents simultaneously pull on opposite sides of a door, the
outcome may not be easily computed as a function of the
outcomes of the individual actions when performed in
isolation. If two processes try simultaneously to write
a value into a register, it is again not clear what will
happen. To deal with potential interaction between ac-
tions, we consider joint actions. A joint action is a tuple of
the form (a,, a , , . . . ,a,,), where a, is an action performed
by the environment and ai is an action performed by agent
i , f o r i = l , ..., n.

How do joint actions cause the system to change
state? We would like to associate with each joint action
(ae, a , , . . . , a,) a global state transformer F, where a global
state transformer is simply a function mapping global
states to global states, i.e., F : 9 + 9. Joint actions cause
the system to change state via the associated global state
transformers; if the system is in global state g when the
action (a,, a , , . . . , a,) is being performed, then the system
changes its state to F(g). Thus, whenever we discuss ac-
tions we will also have a mapping t that associates with
each joint action (ae, a , , ... ,a,), a global state trans-
former z(a,, a , , ... ,an). The mapping 7 is called the
transition function. Note that the definition requires that
t(a,, a , , ... ,a,) (te, el, ... ,en) be defined for each joint
action (a,, a , , ... ,a,) and each global state (f,, d, , ... ,en).
In practice, not all joint actions and all global states are
going to be of interest when we analyze a multi-agent
systems, since certain combinations of actions or certain
combinations of local states will never actually arise.
In such cases, we can let t(a,, a , , . .. ,a,,) (f,, el, .. . ,en) be
defined arbitrarily. Typically, we define t (A , . . . , A)
to be the no-op transformer z, where ~(t,, el, .. . ,en) =
(le, el, ... ,t,,). We make this assumption in this paper.

To summarize, we have the following definitions:

Definition 2.2 A joint action is an element of the set
ACT, x ACTl x ... x ACT,,. Given a set 9 of global
states, a global state transformer is a mapping from 9 to 9.
A transition function maps joint actions to global state
transformers. 0

202

2.3 Protocols In summary:

Definition 2.3 A protocol Pi for agent i is a mapping from
the set Li of agent i’s local states to nonempty sets of
actions in ACTi . A protocol P, for the environment is
a mapping from the set L, of the environment’s local states
to nonempty sets of actions in ACT,.

Intuitively, a protocol for agent i is a description of what
actions agent i may take, as a function of her local state.
A protocol Pi for agent i is formally defined to be a function
from the set Li of agent i’s local states to nonempty sets of
actions in ACTi. The fact that we consider a set of possible
actions allows us to capture nondeterministic protocols.
Of course, at a given step of the protocol, only one of these
actions is actually performed; the choice of action is non-
deterministic. A deterministic protocol is one that maps
states to actions, i.e., it prescribes a unique action for
each local state. Formally, Pi is deterministic if Pi(ti) is
a singleton set for each local state ti E Li. We remark
that if Pi is deterministic, we typically write Pi(t i) = a
rather than Pi(ei) = {a}. If we had wanted to consider
probabilistic protocols (which we do not here, since it
would only complicate the exposition), we would need to
put a probability distribution on the set of actions that an
agent can perform at a given state. This would then gener-
ate a probability space on the set of possible runs of the
protocol.

Just as it is useful to view the environment as perform-
ing an action, it is also useful to view the environment as
running a protocol. A protocol for the environment is
defined to be a function from L, to nonempty subsets of
ACT,. For example, in a message-passing system, we can
use the environment’s protocol to capture the possibility
that messages are lost or that messages may be delivered
out of order. If all the agents and the environment follow
deterministic protocols, then there is only one run of the
protocol for each initial global state. In many examples,
the agents follow deterministic protocols, but the environ-
ment does not.

While this notion of protocol is quite general, there is
a crucial restriction: a protocol is a function on local states,
rather than a function on global states. This captures the
intuition that all the information that the agent has is
encoded in his local state. Thus, what an agent does can
depend only on his local state, and not on the whole global
state. This definition of protocol is so general that it allows
protocols that are arbitrary functions on local states, in-
cluding ones that cannot be computed. Of course, in prac-
tice we are typically interested in computable protocols, i.e.,
protocols for which there is an algorithm that takes a local
state as input and returns the set of actions prescribed by
the protocol in that state.

Processes do not run their protocols in isolation; it is
the combination of the protocols run by all agents that
cause the system to behave in a particular way. A joint
protocol P is a tuple (PI, . . . , P,) consisting of protocols Pi,
for each of the agents i = 1, ... ,n. Note that while the
environment’s action is included in a joint action, the
environment’s protocol is not included in a joint protocol.
This is because of the environment’s special role; we usu-
ally design and analyze the agents’ protocols, while taking
the environment’s protocol as a given. In fact, when de-
signing multi-agent systems, the environment is often seen
as an adversary who may be trying to cause the system to
behave in some undesirable way. In other words, the joint
protocol P and the environment protocol P, can be viewed
as the strategies of opposing players.

2.4 Contexts

A joint protocol P and an environment protocol pre-
scribed the behavior of all “participants” in the system and
therefore, intuitively, should determine the complete be-
havior of the system. On closer inspection, the protocols
describe only the actions taken by the agents and the
environment. To determine the behavior of the system, we
also need to know the “context” in which the joint proto-
col is executed. What does such a context consist of?
Clearly the environment’s protocol P, should be part of
the context, since it determines the environment’s contri-
bution to the joint actions. In addition, the context should
include the transition function z, since it is z that describes
the results of the joint actions. Furthermore, the context
should contain the set Yo of initial global states, since this
describes the state of the system when execution of the
protocol is initiated. In general, not all global states are
possible initial states. These components of the context
provide us with a way of describing the environment’s
behavior at any single step of an execution.

There are times when we wish to consider more global
constraints on the environment’s behavior, ones that are
not easily captured by P,, z, and go. This is the case, for
example, with a fairness assumption such as “all message
sent are eventually delivered”. There are a number of ways
that we could capture such a restriction on the environ-
ment’s behavior. Perhaps the simplest is to specify an
admissibility condition Y on runs, that tells us which ones
are “acceptable”. Formally, Y is a set of runs; r E Y iff
r satisfies the condition Y. Notice that while the environ-
ment’s protocol can-be thought of as describing a restric-
tion on the environment’s behavior at any given point in
time, the reliable delivery of messages is a restriction on the
environment’s behavior throughout the run, or, in other
words, on the acceptable infinite behaviors of the environ-
ment. Indeed, often the admissibility condition Y can be
characterized by a formula in temporal logic, and the runs
in Y are those that satisfy this formula. We return to this
point when we review the formal definitions of temporal
logic in the next section. The condition consisting of all
runs is denoted by True; this is the appropriate condition
to use if we view all runs as “good”.

Definition 2.4 A context y is a tuple (Pe, go, z, Y), where
P,: L, + 2 A C T e - {@I is a protocol for the environment, Yo
is a nonempty subset of the set Y of global states, z is
a transition function, and Y is an admissibility condition
on runs.

Notice that by including z in the context, we are also
implicitly including the sets L,, L1, . . . , L, of local states as
well as the sets ACT,, A C T I , ... , A C T , of actions, since
the set of joint actions is the domain of z and the set of
global states is the domain of the global state transformers

203

in the range of z. To minimize notation, we do not explicit-
ly mention the state sets and action sets in the context. We
shall, however, refer to these sets and to the set 9 =
L, x L1 x ... x L, of global states as if they were part of the
context.

It is only in a context that a joint protocol describes the
behavior of a system. As we shall see later on, the combina-
tion of a context y and a joint protocol P for the agents
uniquely determines a set of runs, which we shall think of
as the system representing the execution of the joint proto-
col P in the context y .

2.5 Consistency

We can now talk about the runs of the protocol in a given
context.

Definition 2.5 A run r is weakly consistent with a joint
protocol P = (P1, ... , P,) in context y = (Pe, go, z, Y) if

1. r(0) E ??o (so r(0) is a legal initial state),
2. for all m 2 0, if r(m) = (fe, f,, .. . , t,), then there is

ajointaction(a, ,a, , ..., a,)€ P e (& e) x P l (~ l) x ... xP,,(f,)
such that r(m + 1) = z(a,, a , , ... ,a , ,) (r(m)) (so r(m + 1) is
the result of transforming r(m) by a joint action that could
have been performed from r(m) according to P and P,).

The run r is consistent with P in context y if it satisfies in
addition

3. r E Y (so that, intuitively, r is admissible according

Thus, the run r is consistent with P in context y if r is
a possible behavior of the system under the actions pre-
scribed by P in y ; the run r is weakly consistent with P in
context y if r is consistent with the step-by-step behavior of
protocol P, but not necessarily with its global behavior.
Note that while we are always guaranteed to have runs
that are weakly consistent with P in y , it is possible that
there is no run r that is consistent with P in y. This would
happen precisely if there is no run in Y that is weakly
consistent with P in y. In such a case we say that P is
inconsistent with y; otherwise, P is consistent with y . Notice
that all joint protocols would be inconsistent with a con-
text y in which, for example, Y contains no run whose
initial state is in go. We take a situation where the joint
protocol is inconsistent with the context as an indication
of bad modeling. We implicitly assume that the joint
protocols we consider are consistent with their contexts.

Definition 2.6 The system representing protocol P in con-
text y , denoted Rrep(P, y), is the system consisting of all
runs consistent with P in context y.

Abadi and Lamport [13 introduced an approach that
can also be viewed as specifying a system that represents
a protocol. In our notation, an Abadi-Lamport representa-
tion is a four-tuple (9, go, M , Y) , where 3 is a set of global
states, Yo is a set of initial states, Y is an admissibility
condition on runs, and Jlr, the next-state relation, is a sub-
set of ?? x ?? such that (9, g) E AT for all g E ??. Roughly
speaking, we can think of JY as encoding all possible
transitions of the system. The condition that (9, g) E .,V for
all g E 29 ensures that the system can always “stutter”. Such

to Y). 0

0

stuttering can be thought of as the result of “no-op”
actions being performed by each agent in the system and
by the environment (in our notation, this amounts to
a joint action of the form (A , ... ,A)). The definition of
JV abstracts always from actions and focuses instead on
state transitions. An Abadi-Lamport representation
generates the set of all runs r E Y such that r(0) E Yo and
(r(i) , r(i + 1)) E JY for all i 2 0. Clearly this notion is sim-
ilar in spirit to our notion of the system representing
a protocol in a given context.

2.6 Incorporating knowledge

When analyzing a message-passing protocol, it is common
to make statements such as “ A does not know for certain
that B received its acknowledgement”.

To define knowledge in interpreted systems, we assume
that we have a set 4p of primitive propositions, which we
can think of as describing basic facts about the system.
These might be such facts as “the value of the variable x is
O”, “process 1’s initial input was 17”, “process 3 sends the
message p in round 5 of this run”, or “the system is
deadlocked”. (For simplicity, we are assuming that we can
describe the basic properties of the system adequately
using propositional logic; the extension of the framework
to use first-order logic is straightforward [S].) We then
form more complicated formulas by closing off under
conjunction, negation, and the epistemic operators
K1, ... , K , (where K i stands for “agent i knows”,
i = 1 , . . . , n), E (“everyone knows”), and C (“common
knowledge”), and the standard temporal operators
0 (“next”) and U (for “until”) [20]. As usual, we define Ocp
(“eventually cp”) to be an abbreviation for trueUcp, and Ocp
(“always cp”) to be an abbreviation for i 01 cp). Thus, we
get formulas such as K,Op A i K 2 K 1 0 p : agent 1 knows
that eventually p will be true, but agent 2 does not know
that agent 1 knows this. Formulas without temporal con-
nectives (i.e., without 0 and U) are called knowledgefor-
mulas. Formulas without knowledge modalities (i.e., with-
out Ki, E, or C) are called temporal formulas.

Definition 2.7 An interpreted system 9 consists of a pair
(9, n), where W is a system over a set 9 of global states and
n is an interpretation for the propositions in 4p over 3,
which assigns truth values to the primitive propositions at
the global states. Thus, for every p E @ and state g E 3, we
have n(g)(p) E {true, false}.

Of course, n induces also an interpretation over the points
of 9; simply take n(r, m) to be n(r(m)). Notice that 4p and
n are not intrinsic to the system 9. They constitute addi-
tional structure on top of W that we, as outside observers,
add for our convenience, to help us analyze or understand
the system better. We refer to the points and states of the
system B as points and states, respectively, of the inter-
preted system 9. That is, we say that the point (r , m) is in
the interpreted system 9 = (B, n) if r E B, and similarly,
we say that 9 is a system over state space 9 if 9 is.

We can now define the truth of a formula at a point
(r , rn) in an interpreted system 9 = (9, n) in a straight-
forward way. The truth value of a primitive proposition is

204

determined by 7c:

(9, r, in) I= p (for p E @) iff 7c(r(m))(p) = true.

Negation and conjunction are defined in the standard way:

(9, r , 4 I= cp A $ iff (9, r , 4 I= io and (4, r, m) l= $.

(9, r, 4 I= 1 4 0 iff (9, r, m) F cp.

We say agent i knows cp if cp is true at all points that
i considers possible, where we interpret “i considers (r’, m‘)
possible at (r, my’ as ri (m) = rf(m‘). That is, at (r, m), agent
i considers possible all points (r’, m’) at which he has the
same local state. In such a case, we write (r, m) -i (r’, m’). It
is easy to see that -i is an equivalence relation. We define

(9, r, m) I= K i q iff (9, r’, m’) k 43 for all (r’, m’) such that
(r, m) -i (r‘, m’).

Notice that this interpretation of knowledge is an ex-
ternal one, ascribed to the agents by someone reasoning
about the system. We do not assume that the agents
compute their knowledge in any way, nor that they can
necessarily answer questions based on their knowledge. As
all the references cited in the introduction show, this defini-
tion of knowledge is quite useful. Moreover, it captures the
informal way people often think about programs. For
example, a system designer may think “once A knows
B has received the message p, then A should stop sending
p to B”. In simple examples, our formal definition of
knowledge seems to capture exactly what the system de-
signer has in mind when he uses the word “know” here.
Nevertheless, there are times when a more computational
notion of knowledge is appropriate. We return to this issue
in Sect. 6.

We say that Ecp (“everyone knows q”) holds if each of
the agents knows cp, and Ccp (“cp is common knowledge”)
holds if each of the agents knows that each of the agents
knows ... that each of the agents knows cp. Defining
E‘cp = E q and taking Ekilcp to be an abbreviation for
E(Ekcp), we have

(9 , r ,m) l= Ecp iff (4 , r , m) (= K i q

(9, r, m)+ Ccp iff (9, r, m) k Ekcp

for i = 1 , ... ,n

for k = 1,2, ...

Finally, for the temporal operators, we have

(9, r, m) k Ocp iff (9, r, m + 1)1= cp

(9, r, m) + q U $ iff (9, r, m‘) t= $ for some m’ >= m and

(9, r, m”) cp for all m“ such that m $ m“ < m’.

Note that if cp is a temporal formula, then the truth of q at
a point (r, m) does not depend on 92 at all, but only on 71, so
we can write (71, r, m) + cp. We say that r satisjes cp if
(71, r, 0) cp holds.

We use knowledge formulas, as the examples above
suggested, to describe the knowledge necessary for agents
to perform certain actions. We use temporal formulas to
specify properties that we want our protocols to have, such
as safety properties - these are invariance properties that
have the form “a bad thing never happens”, typically

expressed with the temporal operator 0 - and liueness
properties ~ these are properties that say “a good thing
eventually happens”, typically expressed using 0 [28].
Admissibility conditions can also often be specified by
temporal constraints. For example, to specify reliability of
communication, we can use the admissibility condition Re1
defined by Re1 = {rlall messages sent in r are eventually
received). Let send@, j , i) be a proposition that is inter-
preted to mean “message p is sent to j by i”, and let
receive(p, i , j) be a proposition that is interpreted to mean
“message p is received from i by j”. Then a run r is in Re1
precisely if n(send(p , j , i) 3 Oreceiue(p, i , j)) holds at (r, 0)
(and thus at every point in r) for each message p and
processes i, j .

3 Standard programs and knowledge-based programs

3. I Standard programs

As discussed above, a protocol is a function from local
states to sets of actions. We typically describe protocols by
means of programs written in some programming lan-
guage. We now describe a simple programming language,
which is still rich enough to describe protocols, and whose
syntax emphasizes the fact that an agent performs actions
based on the result of a test that is applied to her local
state. A (standard) program for agent i is a statement of the
form:

case of
if t l do a,
if t2 do a2
...

end case

where the tj’s are standard tests for agent i and the aj’s are
actions of agent i (i.e., aj E ACTi) . (We call such programs
“standard” to distinguish them from the knowledge-based
programs of Sect. 3.2. We typically omit the case statement
if there is only one clause.) A standard test for agent i is
simply a propositional formula over a set Qi of primitive
propositions. Intuitively, once we know how to evaluate
the tests in the program at the local states in Li, we can
convert this program to a protocol over Li: at a local state
e, agent i nondeterministically chooses one of the (possibly
infinitely many) clauses in the case statement whose test is
true at e, and executes the corresponding action.

Standard programs can be viewed as a generalization
of UNITY programs [3]. A UNITY program consists of
a collection of guarded assignment statements, such as “if
b then x +- f (x , y)”. Standard programs generalize assign-
ments to arbitrary actions. Note that UNITY requires
fairness (each statement must be attempted infinitely
often), while in the framework here, fairness is not re-
quired, although it can be guaranteed by using the appro-
priate admissibility condition in the context.

We want to use an interpretation 7c to tell us how to
evaluate the tests. However, not just any interpretation
will do. We intend the tests in a program for agent i to be
local, that is, to depend only on agent i’s local state. It
would be inappropriate for agent i’s action to depend on

205

the truth value of a test that i could not determine from her
local state. We say that an interpretation n on the global
states in 9 is compatible with a program Pg, for agent i if
every proposition that appears in Pg, is local to i; that is, if
q appears in Pg,, the states g and g’ are in 9, and g -, g’,
then n(g)(q) = n(g’)(q). If cp is a propositional formula all of
whose primitive propositions are local to agent i, and 8 is
a local state of agent i, then we write (n, t)I= cp if cp is
satisfied by the truth assignment n(g), where g =
(ee, el, ... ,[,,) is a global state such that ti = t. Since all
the primitive propositions in cp are local to i, it does not
matter which global state g we choose, as long as i’s local
state in g is L‘. Given a program Pg, for agent i and an
interpretation n compatible with Pg,, we define a protocol
that we denote Pgq by setting

Intuitively, Pg; selects all actions from the clauses that
satisfy the test, and selects the null action A if no test is
satisfied. In general, we get a nondeterministic protocol,
since more than one test may be satisfied at a given state.

Many of the definitions that we gave for protocols have
natural analogues for programs.

Definition 3.1 A joint program is a tuple Pg =
(Pg,, ... ,Pg,), where Pg, is a program for agent i. An
interpretation n is compatible with Pg if n is compatible
with each of the Pg,’s. From Pg and n we get a joint
protocol Pg“ = (Pg;. ... ,Pgt). An interpreted context is
a pair (y , n) consisting of a context y and an interpretation
n. An interpreted system 4 = (92, n) represents a joint
program Pg in the interpreted context (y, n) exactly if n is
compatible with Pg, and 9 represents the corresponding
protocol Pg” in context y. The interpreted system repre-
senting Pg in (y, n) is denoted Irep (Pg, y , n). 0

Note that the definition of Irep(Pg, y , n) makes sense only if
n is compatible with Pg. From now on we always assume
that this is the case.

3.2 Knowledge-based programs

The notion of standard programs, in which agents perform
actions based on the results of tests that are applied to
their local state, is very simple. As we observed earlier,
however, this notion is rich enough to describe protocols.
Nevertheless, standard programs cannot be used to de-
scribe the relationships between knowledge and action
that we would often like to capture. The issue is perhaps
best understood by considering the muddy children puzzle

In this puzzle, a number of children are playing in the
mud. Their father then comes along and says “At least one
of you has mud on your forehead”. He then repeatedly
asks the children if they know whether they have mud on
their forehead. If so, they are supposed to answer “Yes”;
otherwise they should answer “No”. If we take the prop-
osition p i to represent “child i has mud on his forehead”,
then it seems quite reasonable to think of child i as

~2,131.

following the program MC, (the M C stands for “Muddy
Children”):

case of
if childheard, A (K ip i V K i i p ,) do say “Yes“
if childheardi A i Kipi A i K , i p , do say ”No”

end case.

Here childkeard, is a primitive proposition that is true at
a given state if child i heard the father’s question “Does any
of you know whether you have mud on your own fore-
head?’ in the previous round. Unfortunately, MCi is not
a program as we have defined it. Besides propositional
tests, it has tests for knowledge such as Kipi V K i i p i .
Moreover, we cannot use our earlier techniques to associ-
ate a protocol with a program, since the truth value of such
a knowledge test cannot be determined by looking at
a local state in isolation.

We call a program of the form above a knowledge-
based program, to distinguish it from the standard
programs defined in Sect. 3. Formally, a knowledge-based
program for agent i has the form:

case of
if t l A k , do a ,
if t , A k 2 do a 2
...

end case

where the t,’s are standard tests, the kj’s are knowledge tests
for agent i, and the aj’s are actions of agent i. A knowledge
test for agent i is a Boolean combination of formulas of the
form Kicp, where cp can be an arbitrary formula that may
include other modal operators, including common know-
ledge and temporal operators. Intuitively, the agent selects
an action based on the result of applying the standard test
to her local state and applying the knowledge test to her
“knowledge state”, in a sense that will be made precise
below. In the program MCi, the test ckildheard, is a stan-
dard test, while Kipi V K i i p i and i K i p , A i K i i p , are
knowledge tests. In any given clause, we can omit either
the standard test or the knowledge test; thus, a standard
program is a special case of a knowledge-based program.
We define a joint knowledge-based program to be a tuple
Pg = (Pg, , . . . , Pg,), with one knowledge-based program
for each agent.

The notion discussed here of a knowledge-based pro-
gram is from [S]. Although the idea of a knowledge-based
program was implicit in the discussion in [ll], the first
formal definition seems to have been given by Kurki-
Suonio [19] and by Shoham [32]. Kurki-Suonio and
Shoham, however, did not work with interpreted systems.
Rather, they assumed that an agent’s knowledge was ex-
plicitly encoded in his local state (and thus, in our termin-
ology, was independent of the interpreted system). This
means that their knowledge-based programs are really
more like our standard programs, although some of the
tests in their programs are intuitively thought of as tests
for knowledge.

We have described the syntax of knowledge-based pro-
grams. It remains to give formal semantics to knowledge-
based programs. Just as we think of a standard program as
inducing a protocol that determines an agent’s actions, we

206

also want to think of a knowledge-based program as
inducing a protocol. It is not obvious, however, how to
associate a protocol with a knowledge-based program.
A protocol is a function from local states to actions. To go
from a standard program to a protocol, all we needed to
do was to evaluate the standard tests at a given local state,
which we did using interpretations. In a knowledge-based
program, we also need to evaluate the knowledge tests. But
in our framework, a knowledge test depends on the whole
interpreted system, not just the local state. It may well be
the case that agent i is in the same local state t in two
different interpreted systems Y1 and Y2, and the test K i p
may turn out to be true at the local state C in Y1, and false
at the local state C in Y2.

To deal with this problem, we proceed as follows.
Given an interpreted system .a = (a, n), we associate with
a joint knowledge-based program Pg = (Pg, , . . . , Pg,)
a joint protocol that is denoted Pg' = (Pgf, ... ,PgL). In-
tuitively, we evaluate the standard tests in Pg according to
n, and evaluate the knowledge tests in Pg according to 4.
As in the case of standard programs, we require that n be
compatible with Pg, that is, that every proposition appear-
ing in a standard test in Pgi should be local to i. Note that
we place the locality requirement only on the propositions
appearing in the standard tests, not on the propositions
appearing in the knowledge tests. We wish to define Pg[(/)
for all local states C of agent i. To define this, we first define
when a test cp holds in a local state C with respect to an
interpreted system 4, denoted (9, t)+ cp. (Note that this
overloads I=, since previously we had a triple (4, Y, m) on
the left-hand-side of +.)

If cp is a standard test and 4 = (g, n) then, in analogy
to Sect. 3, we define

(9,4 I= cp iff (n,C) I= cp.

Since cp is a standard test in Pgi, it must be local to agent i,
so this definition makes sense. If cp is a knowledge test of
the form Kill/, we define

(9, C) /= Kill/ iff (9, r, m) I= ll/ for all points (r, m) of 4 such
that ri(m) = t .

Finally, for conjunctions and negations of knowledge tests,
we follow the standard treatment.

Note that (9 , L) k cp is defined even if the local state
e does not occur in Y. In this case it is almost immediate
from the definitions that (9, e) Ki(fulse). This means
that one of the standard properties of knowledge fails,
namely, that whatever is known is true (K i q - cp). On the
other hand, if 8 does occur in 9, then Ki behaves in the
standard way. This follows since if L = ri(m) for some point
(r , m) in 9, then it is not hard to show that (9 , C) I= Kicp iff
(9, r7 m) I= KiV.

We can now define

Pg,"(e) =

a..(Y,C)t= t j A k j } if { j : (9 , /) + t j A k j } +(?i

if { j : (9 ; d) I= t j A k j) = 8. ki
Intuitively, the actions prescribed by i's protocol Pgf
are exactly those prescribed by Pgi in the interpreted
system 4.

Let Pg be a standard program. Then Pg is also a know-
ledge-based program, with no knowledge tests. Consider
an interpreted system 9 = (a, n). We can associate a pro-
tocol with Pg in two ways. We can think of Pg as a stan-
dard program and associate with it the protocol Pg", or we
can think of Pg as a knowledge-based program and associ-
ate with it the protocol Pg'. It is easy to see that our
definitions guarantee that these protocols are identical.

Roughly speaking, the knowledge-based protocols of
[123 bear the same relation to knowledge-based programs
as protocols bear to standard programs. Formally,
a knowledge-based protocol is defined in [I21 to be a func-
tion from local states and interpreted systems to actions.
We can associate a knowledge-based protocol with
a knowledge-based program in an obvious way: Given
a knowledge-based program Pg, we can associate with i t
the knowledge-based protocol P such that P (9 , C) =
Pg'(C) for all local states C. Knowledge-based protocols
can be viewed as an intermediate step between knowledge-
based programs and protocols. We find it convenient here
to go directly from knowledge-based programs to (stan-
dard) protocols, skipping this intermediate step. Thus, we
do not deal with knowledge-based protocols in this paper.

The mapping from knowledge-based programs to pro-
tocols allows us to define what i t means for an interpreted
system to represent a knowledge-based program in a given
interpreted context by reduction to the corresponding
definition for protocols.

Definition 3.2 An interpreted system 4 = (9, z) represents
Pg in (y , n) if n is compatible with Pg and if 9 represents
Pg'in y.

This means that to check if 9 represents Pg, we check if
9 represents the protocol obtained by evaluating the
knowledge tests in Pg with respect to Y itself. Because of
the circularity of the definition, i t is not necessarily the case
that there is a unique interpreted system representing
a knowledge-based program. There may be more than one
or there may be none. In contrast, there can be at most one
interpreted system that represents a standard program.
This issue is explored in more detail in Sect. 4 and 5,
where, among other things, conditions are described under
which a knowledge-based program is guaranteed to be
represented by a unique system.

We often find it convenient to speak of a protocol
implementing a knowledge-based program. The most obvi-
ous definition of this notion - and the one used in [S] - is
to say that P implements Pg in (7, n) if P = Pg"rp(p.y*"). The
intuition behind this definition can be understood as fol-
lows. Fix the protocol P and context (y,n), and let
9p = Irep(P, y, n). Suppose that we are running the proto-
col P and that P = Pg'.. By definition, the actions pre-
scribed by the protocol Pg'. are precisely those prescribed
by Pg in the system Yap. Since the system represents P, it
follows that by running P we are in fact adhering to Pg.
This suggests that if P = PgFP then we should say that
i? i w e m e n t s Pg. It turns out, however, that this obvious
defini&k just a bit too restrictive. The reason is that Pg:
is defined on all local states of Li, including states that do
not arise in 9(!). Of course, on states that do not arise in 9,
the behavior described by Pg9 is somewhat arbitrary.

207

Consider a protocol P' that agrees with P on the states that
arise in YP, but may possibly differ from P on other states.
Clearly. P and P' behave in exactly the same way in the
context (y , n). Thus, for all practical purposes, in this con-
text the protocols P and P' are one and the same. Accord-
ing to the definition we quoted above from [S], however,
P implements Pg in (y, n), while P' does not. We thus
modify the definition given in [S] slightly, so that P' will be
considered as implementing Pg as well.

Definition 3.3 Let P be a protocol and let 4 = P (P , y, n).
We say that P implements Pg in (y , n) if (1) 9 =
Irep(Pg', y, n) and (2) P and Pg' agree on all global states
that appear in 4. 0

The new definition solves the problem of the old defini-
tion involving states that do not arise in 9. Part (1) by
itself is not sufficient, since it is stated only in terms of the
systems that represent the protocols P and Pg'. It does not
talk directly about the actions the agents perform in the
two protocols. Hence, for example, if there are two joint
actions a and b such that, at a particular global state of 9,
the effect of the agents' performing a is the same as that of
their performing b, then by looking at 9 we would not be
able to tell which of these actions was taken. When we say
that P implements Pg, we mean that the actions that
P performs are those prescribed by Pg. This is handled by
part (2) of the definition. It says that on the global states
that actually arise when running protocol P in the given
context, the actions performed by P are precisely those
that Pg prescribes. An immediate consequence of Defini-
tion 3.3 is that if 4 represents Pg in (y, n), then Pg'
implements Pg in (y, n).

We remark that the notion of representation can be
viewed as a notion of equilibrium: 9 represents Pg =

(Pg,, . . . , Pg,) if whenever each agent i runs its program
Pg, with respect to the interpreted system 9 (in the inter-
preted context (y, n)), then the joint knowledge-based pro-
gram Pg indeed gives rise to the interpreted system 9. This
is reminiscent of the notion of Nash equilibrium in game
theory, where a tuple (fl, . . . ,fk) of strategies in a k-player
game is a Nash equilibrium if, for every player i, the
strategyf, is a best response to the case where each of the
other players j + i follows the strategy f j [9]. That is, if
each player believes that the other players play as if they
are at the equilibrium point (fl, .., ,&), then the players
have no incentive not to play at that equilibrium.

4 Getting unique representations

As we mentioned in the previous section, in general there is
no unique interpreted system that represents a knowledge-
based program in a given context. In this section, we
provide sufficient conditions to guarantee the existence of
a unique representation. We begin with an example that
illustrates why we may get more than one system repre-
senting a knowledge-based program.

Example 4.1 Suppose we have a system consisting of only
one agent, agent 1, who has a bit that is initially set to 0.
Suppose agent 1 runs the following simple knowledge-

based program NU (for "not unique"):

if K , (O(bit = 1)) do bit := 1.

Intuitively, bit := 1 has the effect of assigning the value 1 to
the bit.-According to NU, agent 1 sets the bit to 1 if she
knows that eventually the bit is 1, and otherwise does
nothing. It should be clear that there are two ways that
agent 1 could be consistent with the program: either by
never setting the bit to 1 or by setting the bit to 1 in the first
round. We can formalize this by considering the context
y"" = (Pe, Yo, T , True), defined as follows: We take agent
1's local state to be either 0 or 1; we think of this local state
as representing the value of the bit. We take the environ-
ment's state to always be A (the environment plays no role
in this example). Since the bit is initially 0, we take
Yo = {(A, 0)). We assume that the environment's action is
always A , so PJA) = A . The agent's action is either A or
bit := 1. The effect of T is to reset the bit as appropriate;
thus, T (A , A)(,?, k) = (A, k) and T (A , bit := l) (A , k) = (A, 1).
This completes the description of y"". Finally, we define nnu
in the obvious way: n""((A, k))(bit = 1) is true exactly if

Let ro be the run where agent 1 does nothing, starting
in the initial state (A, 0); thus, r"(m) = (A, 0) for all m 2 0.
Let rj, for j 2 1, be the run where agent 1 sets the bit to 1 in
round j , after starting in the initial state (A, 0); thus,
rj(m) = (i, 0) for m < j , and rJ(m) = (A, 1) for m z j . It is
easy to see that the only runs that we can have in context
y"" are of the form rJ. It is also not hard to see that no run
of the form rj for j > 1 can be in an interpreted system
consistent with NU. For if rj is in an interpreted system
9 consistent with NU, then since agent 1 sets the bit to 1 in
round j of rj, it must be the case that (9, rj, j - 1)
K,(V(bit = 1)). But clearly (r j , 0) -1 (rj, j - 1). Thus,
(9, rJ, 0) + K 1 (O(bit = 1)). Since 9 is consistent with
NU', this means that agent 1 should have set the bit to 1 in
round 1 of rj, a contradiction. Thus, the set of runs in any
interpreted system consistent with NU must be a non-
empty subset of {ro, 7 ') . Let be the system consisting of
the single run rJ, for j = 0, 1, and let 9' = (Bj, nn"). We
claim that both Y o and 9' represent NU in the context
(y"", n""). Clearly, in Y1, agent 1 knows O(bit = l), since
this formula is true at every point in 9', so the only
possible action that she can take is to set the bit to 1 in
round 1, which is precisely what she does in r l . On the
other hand, in Yo, agent 1 never knows O(bit = l), since it
is false at all points in ro. This means that according to the
protocol NU.f", agent 1 never sets the bit to 1, so the only
run consistent with NU." is Yo. It follows that both 4' and
9' represent NU in (y"", nnu). It is easy to see that the
interpreted system Y 2 = (B2, n""), where W 2 = {r', r l } , is
not consistent with NU, so that Y o and 9' are in fact the
only interpreted systems that represent NU in this context.

Now consider the program that intuitively says "set the
bit to 1 exactly if you know you will never set the bit to 1".
No interpreted system can be consistent with this pro-
gram, since it amounts to saying "set the bit to 1 exactly if
you know you should not". We can capture this intuition
by means of the following knowledge-based program NU':

k = 1.

if K , (i O (b i t = 1)) do bit := 1.

208

There can be no interpreted system consistent with NU’ in
the context (y“”, n””): Arguments similar to those used
before show that the only runs that can be in an inter-
preted system consistent with NU’ are ro and r’. Thus,
Yo, Y’, and s2 are the only possible candidates for inter-
preted systems consistent with NU’. It is straightforward
to show that none of these interpreted systems in fact are
consistent with NU’. Hence, there is no interpreted system
that is consistent with or represents NU‘. We take this to
mean that the program NU’ is inconsistent with the inter-
preted context (?””, TC””). 0

In Example 4.1, we saw programs that determine an
agent’s current actions as a function of his knowledge
about the actions that he will perform in the future. This
direct reference to knowledge about the future seemed to
make it possible to define both nonsensical programs such
as NU’, which cannot be implemented by any standard
program, and ambiguous programs such as NU, which can
be implemented in more than one way. We remark that the
explicit use of future temporal operators such as 0 is not
crucial to this example. Essentially the same effect can be
achieved without such operators (see [S, Exercise 7.53 for
an example).

Example 4.1 shows that a knowledge-based program
may not have a unique interpreted system representing it.
Is this a problem? Not necessarily. Of course, if there is no
interpreted system representing the program, then this
program is not of any practical interest. Such programs
can be viewed as inconsistent. We return to this issue later
in the section. On the other hand, when there is more than
one interpreted system representing a knowledge-based
program, the program should be viewed as a high-level
specification that is satisfied by many interpreted systems.
For example, consider the knowledge-based program NU
from Example 4.1:

if K,(O(bi t = 1)) do bit := 1.

This program can be viewed as saying: “if you know that
you are going to take an action, then take it as soon as
possible”. Appropriately, as we have shown, this program
is represented by two interpreted systems, one in which the
action is taken immediately and one in which the action is
never taken. Thus, while a standard program (in a given
interpreted context) is a complete description of the behav-
ior of the agents, this is not the case with a knowledge-
based program.

In many situations, however, there is a strong intuition
that a knowledge-based program does completely describe
the behavior of the agents, and consequently, the program
ought to be represented by a unique interpreted system.
For example, in the case of the muddy children puzzle, we
expect the behavior of the children following the know-
ledge-based program MC, described earlier, to be uniquely
determined. In the remainder of this section, we describe
necessary and sufficient conditions for there to be a unique
interpreted system representing a knowledge-based pro-
gram. The conditions we consider here are similar in spirit
to those shown in [lZ] to guarantee a representation of
a knowledge-based protocol that was canonical in a cer-
tain sense. Nevertheless, there are significant technical

differences between the framework here and that of [121
(for example, in [12] there were no contexts and no pro-
grams, and the notion of a system representing a program
was not considered). These differences result in significant
differences between the proof here and that of [12]. One
payoff is that the claims we prove in this version are more
general, and apply in many cases of practical interest to
which those of [12] do not apply. We start with an infor-
mal discussion of the result and then make things more
formal.

Why may one feel that there should be a unique inter-
preted system representing MC? Intuitively, it is because,
once we fix the initial set of states, we can start running the
program step by step, generating the run as we go. If r is
a run over 3, the prejix ofr through time m, or the m-prejix
o f r , denoted Prefm(r), is the sequence of the first m + 1
global states in r, i.e., it is a function p from (0 , ... , m} to
9 such that p (k) = r (k) for k = 0, ... ,m. If 92 is a set of
runs, then Pref,(B) is the set of in-prefixes of the runs in 9,
i.e., Pvefm(W) = {Prefm(r) I r E B?). If 4 = (92, n), we define
Prefm(Y) = (Prefm(92), n). Suppose that we can generate all
rn-prefixes of runs. Once we have all m-prefixes, at any
given point (r , m), the children in that situation can deter-
mine whether they do indeed know whether their own
forehead is muddy, and thus can take the appropriate
action at the next step. This allows us to generate all
(m + 1)-prefixes.

The key reason that this idea works is that the prefixes
that we have already constructed are sufficient to deter-
mine the truth of the knowledge tests in the children’s
program. In general, this might not be the case. To under-
stand why, suppose we have a knowledge-based program
Pg = (Pg,, ... ,Pg,), and Pg, includes a test such as Kicp.
Suppose that we have indeed constructed all the m-prefixes
of runs of Pg. For agent i to know what actions to perform
next at a point (r,m), the knowledge test K,cp has to be
evaluated. As long as this can be done solely by consider-
ing points of the form (r’, m’) with in’ $ m - intuitively,
these are the points we have already constructed - then
there is no problem. If, on the other hand, cp is a temporal
formula such as the formula O(bit = 1) that appears in the
program NU in Example 4.1, then we may not be able to
evaluate the truth of cp in the prefixes we have constructed
thus far. Even if cp is a nontemporal formula, there may be
a problem. For example, suppose the time m is encoded in
the environment’s state, and cp is the formula m 5 1, which
is true at all time m points with m less than or equal to 1.
Then K 1 (m 5 1) may be false at a point (r, 1) if agent
1 does not know the time, i.e., if (r, 1) -’ (r‘, k) for some
point (r’, k) , where k > 1. Note, however, that there is no
point that occurs in a 1-prefix and “witnesses” the fact that
K 1 (m 5 1) fails at (I , 1), since the formula m 5 1 is true at
all points of the form (r’, 0) or (r’, 1). This discussion sug-
gests that to make the inductive construction work, if a test
Kicp in the program is false, there must be a “witness” to its
falsity in some prefix we have already constructed, i.e., the
result of the test K,cp should “depend on the past”.

Even if tests “depend on the past”, there may be a prob-
lem. Suppose we are interested in running the knowledge-
based program Pg in the interpreted context (y, n), where
y = (Pe , go, z, Y), and all tests “depend on the past” in the
sense we have just discussed. What should the system

209

representing Pg be? Intuitively, i t should consist of all runs
in Y whose prefixes arise in the inductive construction. But
suppose the admissibility condition Y does not include
a run with a prefix p that arises in the construction. This
means that we cannot include a run with prefix p in the
system. This, in turn, might mean that a “witness” that we
counted on in the course of the inductive construction may
not occur in the system, thus undermining our evaluation
of the tests.

We now show that there is a unique system that repre-
sents Pg if tests “depend on the past” and if the admissibil-
ity condition Y is “reasonable”. Intuitively, the property
we shall require Y to satisfy ensures that for every prefix
that arises in the inductive construction, there is some run
in Y with that prefix that we can include in the system we
are constructing.

We first formalize dependence on the past. Intuitively,
a formula cp depends on the past in a class f of interpreted
systems if, in order to determine whether p is true at the
point (r , m) of an interpreted system 4 E f , we need only
look at m-prefixes of runs in 4; whatever may happen after
time m cannot affect the truth of cp. The formal definition
captures the idea of “whatever may happen” by consider-
ing any interpreted system in f that agrees with 9 up to
time m.

Definition 4.2 Formula $ depends on the past in the class
2 of interpreted systems if its truth at a point (r, m) of an
arbitrary interpreted system Y E 3 depends only on
Pref,(r) and Pref,(Y). More precisely, we require that for
all m, for all interpreted systems Y , J ’ E ~ such that
Prefm(Y) = Prefm(4’), and for all runs r in Y and r’ in 4’, if
Prefm(r) = Pref,(r’), then (4, r, m) $ if and only if
(Y‘, r‘, m) I= $. A knowledge-based program Pg depends on
the past in f if all the tests in Pg depend on the past
in f .

In general, it may be difficult to tell if a program
depends on the past. As we shall see, however, there are
relatively simple sufficient conditions that guarantee de-
pendence on the past and are applicable in many cases of
interest.

We next make precise the condition that is required for
an admissibility condition Y to be “reasonable”. Recall
that a run r is weakly consistent with a protocol P in
context y = (Pe, 90, 7, Y) if r is consistent with P except
that it may not be in Y. Intuitively, Y is “reasonable” if it
does not rule out prefixes that are “consistent” with P in y.
We formalize this intuition in the following definition.

Definition 4.3 A context y is nonexcluding if (a) gOn
Prefo(Y) + 0 (note that a 0-prefix can be viewed both as
a prefix and as a global state), and (b) for every protocol P,
if a run r is weakly consistent with P in the context y, and
the m-prefix p of r is in Prefm(Y), then there is a run r‘ E Y
with m-prefix p that is consistent with P in y.

Note that condition (a) gets our inductive construction
started (since Y cannot exclude all the initial states), and
condition (b) guarantees that Y does not exclude a prefix
p that has been constructed in our inductive construction

from being extended to a run. While it may seem difficult
to check whether a context is nonexcluding, many contexts
of interest are easily shown to be nonexcluding. For one
thing, a context y = (Pe, go, z, Y) is guaranteed to be
nonexcluding if Y is True. More generally, in many con-
texts of interest the admissibility condition constraints
only the “limit” behavior of the run; this is the case, for
example, with fairness requirements. In such cases, it is
typically not hard to show that the context under consid-
eration is nonexcluding. We remark that the property of
being nonexcluding is a property of the context y =
(Pe, go, z, Y) as a whole and not in general a property of
Y by itself.

We are now almost ready to state our necessary and
sufficient conditions for there to be a unique interpreted
system representing a knowledge-based program with
respect to nonexcluding contexts. We actually break the
problem up into two parts. We first provide necessary and
sufficient conditions for the existence of at least one system
that represents a given program and then provide neces-
sary and sufficient conditions for there to be at most one
system that represents a program. Putting these results
together, we get necessary and sufficient conditions for
there to be a unique system representing a given program
with respect to nonexcluding contexts. Our conditions
involve two natural closure conditions on a class f of
interpreted systems. The first says that f is closed under
“app1ication”of Pg.

Definition 4.4 A class f of interpreted systems is Pg-closed
with respect to (y , n) if whenever Y is in 2, then so is
IreP(Pg’, Y > n). 0

That is, f is Pg-closed i f f contains all the interpreted
systems that are obtained by running Pg with respect to
interpreted systems in 9.

We now consider the second closure condition.

Definition 4.5 A sequence go, 9’, . . . of systems is prejix-
compatible if Prefm(9tm‘) = Prefm(gm) for all m 2 0 and
m‘ >= m.

Intuitively, the m-prefix is determined by 9tm. Let us define
a limit of a prefix-compatible sequence to be a system
B? such that Prefm(9) = Prefm(Bm) holds for all m >= 0. It
is easy to see that every prefix-compatible sequence has
a limit. As we now show, a prefix-compatible sequence can
have more than one limit. Assume we have a system where
process 1 sends process 2 a message in the first round.
Process l’s state changes from sl to t l after sending the
message, and then continues to be t l from then on. Process
2’s state changes from s2 to t 2 when it receives the message,
and then continues to be t2 from then on. For each non-
negative integer k , let rk be a run where process 2 receives
the message at round k , so that its state changes to t 2 at
time k. Let B be a system consisting precisely of all of these
runs rk . Now let rm be another run where process 2 never
receives the messages, so that it is always in state s2, and let
B‘ be the system consisting of the runs in 92, along with
this new run rm. Clearly the constant sequence
9, B, 9, ... is prefix-compatible, and 92 is a limit of this

210

sequence. But &?' is also a limit of this sequence, since
Prefm(9') = Pref,(g) for every m.'

Definition 4.6 A set 2 of systems has limits if P contains
a limit of every prefix-compatible sequence of members of
2. A set 2 of systems is limit closed if i t contains every
limit of every prefix-compatible sequence of members
o f P . 0
All of these definitions can be extended in a natural way to
deal not just with systems but with interpreted systems.
For example, a sequence Yo, Y1, , . . of interpreted sys-
tems, where 9" = (9", n) for each m (i.e., all interpreted
systems in the sequence have the same interpretation n), is
prefix-compatible if the corresponding sequence
%', 9', . . . of systems is prefix-compatible. If .a is an
interpreted system, then the singleton set {Y) has limits
(since 9 is a limit of the constant sequence Y,Y, Y, . . .),
but is not necessarily limit closed (since as we saw above,
another interpreted system may also be a limit of this
constant sequence).

Theorem 4.7 Let y be a nonexcluding context. There is at
least one interpreted system representing the knowledge-
based program Pg in context (y , n) iff there exists
a nonempty set 2 of interpreted systems that is Pg-closed
with respect to (11, n) and has limits, such that Pg depends on
the past in f .

Proof: The proof of the "only if" direction is easy, as we
now show. Assume that Pg is represented by some system
Y in (y , n). Then the set f consisting ofjust 4 is nonempty,
Pg-closed with respect to (y , n) (since 9 = Irep(PgF, y , n)),
and has limits. (It has limits, since as we observed above,
every singleton set has limits.) Since f is a singleton set, it
easily follows that Pg depends on the past in 2.

For the "if" direction, note that finding an interpreted
system representing Pg in the interpreted context (y, n)
corresponds precisely to finding a fixed point 9 of the
"equation" Y =f(Y), where f (9) = Irep(Pg', y, n). We
attempt to construct a fixed point by starting at an arbit-
rary point and continually applying Pg. We define the limit
step of this construction by applying the fact that 3 has
limits. It turns out we reach a fixed point at the (o + 1)st
s tep of the construction (where w is the first infinite ordi-
nal). We proceed as follows.

Let 9-l be some member of 9. (There is one, since
f is nonempty. The unusual choice of superscript makes
some of the technical claims in the proof easier to state.)
Suppose inductively that we have constructed 9". We
then define 9"" = Irep(Pg'", y, n). Since 3 is Pg-closed, it
follows by a straightforward induction that 9" E 2 for
each m. We shall show in the appendix that the sequence
Yo, Y', Y2, ... is prefix-compatible, given that Pg de-
pends on the past in f and that y is nonexcluding (see
Claim A.3). Since 8; has limits, there is a limit Y m of this
sequence in f . We now continue our construction into the

'We note that the reason the limit is not unique is that under the
appropriate topology, the space of systems is not Hausdorf, that is,
two distinct points may not be separable by an open set that contains
one and not the other.

infinite ordinals. Define 9'+' = Irep(Pgye, y, n), for 6' = w
and Q = w + 1. In the appendix, we show that
4"" = YW+' (see Claims A.4 and AS). This proves that
9""' is an interpreted system representing Pg in the
interpreted context (y, n). 0

Although it may not be obvious, this construction ac-
tually formalizes the intuition we gave earlier in the sec-
tion. Our discussion there was in terms of prefixes of runs.
The idea was that by inductively assuming that we have
defined all m-prefixes, we could then construct all (m + 1)-
prefixes. The desired system would then be a limit of this
construction. As we mentioned above, the sequence
4', a', 9', . . . is prefix-compatible. Suppose 9" =
(g", n), for m = 0,1, 2, So the prefixes Prefm(9?m), for
m = 0, 1 , 2 , . . . , form an increasing sequence of prefixes
(i.e., the prefixes in Pref, , extend those in
Pref,(g")), and correspond precisely to the prefixes we
constructed in our informal proof. Since 2 consists of
systems which involve sets of runs, rather than sets of
prefixes of runs, we are forced to use 2" in the construc-
tion rather than Pref,(&?"). Nevertheless, since Pg depends
on the past in &, the "suffixes" in 99, (i.e., the part of the
run after time m) are irrelevant; only the prefixes matter.
The purpose of the transfinite steps in the construction is
to ensure that the runs that we get are in Y, since it is
possible that 9"' contains runs that are not in YJ.

Given a knowledge-based program Pg and an inter-
preted context (y, n), let REP(Pg, y , n) be the set of inter-
preted systems that represent Pg in (y , n). Theorem 4.7
gives conditions that guarantee that REP(Pg, y, n) is
nonempty; that is, conditions that guarantee that there is
at least one system that represents Pg in (y, n). We now give
a condition that guarantees that REP(Pg, y, n) contains at
most one system; that is, conditions that guarantee that
there is at most one system that represents Pg in (7, n).

Theorem 4.8 Let y be a nonexcluding context. There is at
most one system representing the knowledge-based program
Pg in (y, n) ifsPg depends on the past in REP(Pg, y, n).

Proof: The "only if" part is immediate, since if there is at
most one system in, then Pg depends on the past in
REP(Pg, y , n). The proof of t h e "if" par t appears i n t h e
appendix (see Claim A.6). 0
Note that the theorem holds trivially if REP(Pg, y, n) is
empty.

Putting together Theorem 4.7 and 4.8, we obtain a ne-
cessary and sufficient condition for a program to have
a unique system representing it (under the assumption that
the context is nonexcluding).

Theorem 4.9 Let y be a nonexcludiny context. There is
a unique system representing the knowledge-based program
Pg in (y , n) Efs there exists a nonempty set f containing
REP(Pg, y, n) that is Pg-closed with respect to (y , n) and has
limits, such that Pg depends on the past in 8;.

Proof: Clearly if there is a unique system representing Pg,
say 9, then the singleton set (9) contains REP(Pg, y , n), is
Pg-closed with respect to (7, n), and has limits. Also, Pg
depends on the past in (9). For the converse, assume that
there is a nonempty set f containing REP(Pg, y, n) that is

21 1

Pg-closed with respect to (y, n) and has limits such that Pg
depends on the past in f . It follows immediately from
Theorem 4.7 that there is at least one system representing
Pg in (y, n). Moreover, since f contains REP(Pg, y, n) and
Pg depends on the past in &, it is immediate from the
definitions that Pg also depends on the past in
REP(Pg, 7 , n). Thus, it follows from Theorem 4.8 that there
is at most one system representing Pg in (y, n). Hence, there
is exactly one system representing Pg in (y , n).

How useful is the characterization given by Theorem
4.9? That depends, of course, on how hard it is to find
a class f of interpreted systems that satisfies the assump-
tions of the theorem. One could try to take f to be
REP(Pg, y, n), but then one has to show that REP(Pg, y, n)
is nonempty. We now describe one candidate for f that
often does satisfy the conditions of Theorem 4.9.

Definition 4.10 Given a program Pg and an interpreted
context (y, n), let f(Pg, y , n) consist of all interpreted sys-
tems IreP(Pgf, y, n), where 9 is of the form (9, n). (Notice
that the interpretation z in the pair (9, n) is the same as
that in the interpreted context (y, n).) The system 9 can be
arbitrary, except that it must satisfy one constraint: all the
global states that arise in runs of 9 must be in the domain
of n (that is, they must be among the global states impli-
citly determined by the context y). Thus, f(Pg, y, n) con-
sists of all the systems that represent protocols of the form
Pg’ in y. IJ

We can expect some of the systems that represent
protocols of the form Pg’ in y to be very different from
systems that represent Pg in (y, n). Nevertheless, certain
aspects of the structure of Pg will be reflected in all the
systems in f(Pg, y, n). For example, standard tests clearly
behave in the same way in all these systems (since we are
using the same interpretation n), and certain properties of
Pg may also be reflected in all these systems. For example,
if the structure of Pg guarantees that a non-null action is
performed by each process in every round, then this will be
reflected in every system that represents a protocol of the
form Pg’ in y; the exact action performed in a given round
may change from one such system to another.

Clearly f(Pg, y, n) is Pg-closed with respect to (y , n);
indeed, it is almost immediate that any superset of
f(Pg, y, n) is as well. It does not in general have limits.
Define f+(Pg, y, n) to be the limit closure of f(Pg, y , 7~);
that is, f+(Pg,y, n) is the smallest set that contains
2(Pg, y , n) and is limit closed. (We remark that for our
purposes, we could just as well take f’(Pg, y, n) to be any
set that contains f(Pg, y, n) and has limits; for definite-
ness, we take f+(Pg, y, n) to be the limit closure.) Since
REP(Pg, y, n) c f (P g , y , n) E f+(Pg, y, n), the following
result follows immediately from Theorem 4.9.

Corollary 4.11 Zf y is nonexcluding and Pg depends on the
past in f+(Pg, y, n), then there is a unique interpreted sys-
tem representing Pg in (y, z).

How hard is it to show that Pg depends on the past in
f ‘(Pg, y , n)? That depends on Pg, of course, but the fol-
lowing results provide some useful sufficient conditions.

Notice that our formal definition of dependence on the
past does not capture the intuition stated earlier that if

a test Kip is false at a point (r, m), then there should be
a point (r’, m’) with m‘ 5 m that is a “witness” to its falsity.
The next definitions do formalize this intuition. If 9 is an
interpreted system and Kicp is a formula,then we say that
9 provides witnesses for K i p if whenever (r, m) is a point of
9 such that (9, r, m) I= i Kicp, then there is some point
(r’, m’) of 9 with m‘ 5 m such that ri(m’) = ri(m) and
(4, r‘, m’) i cp. We say that f provides witnesses for Pg if
9 provides witnesses for Kicp for every interpreted system
4 E f and for every subformula Kicp of a test in Pg.
Finally, we say that Pg is atemporal if all its tests are
knowledge formulas (and so do not involve temporal
operators).

Lemma 4.12 I f Pg is atemporal and 9 provides witnesses
for Pg, then Pg depends on the past in 2.
Proof: A straightforward induction on the structure of
formulas shows that all subformulas of tests in Pg depend
on the past in f . For primitive propositions this is im-
mediate, since the truth of a primitive proposition is deter-
mined by the global state (given a fixed interpretation n).
The case of conjunctions and negations follows immedi-
ately from the inductive hypothesis, and the case of epi-
stemic formulas is immediate from the fact that there is
always a witness. We leave details to the reader.

Lemma 4.13 Suppose Pg is atemporal. I f f(Pg, y, n) pro-
vides witnesses for Pg, then so does f+(Pg, y, n).

Proot For the purposes of this proof only, we now give
some more definitions that simplify notation. If p is the
m-prefix of a run r, let us define pi(m) to be ri (m), the state
of process i at time m. Let p be the m-prefix of the run r of
the interpreted system 9 and let cp be a knowledge
formula. We define (4, p)l= cp to hold precisely if
(9, r, m) (= cp holds. This is well-defined, since it is easy to
show by induction on the structure of cp that if r‘ is another
run of 4 with m-prefix p and cp is a knowledge formula,
then (9, r, m) I= cp iff (4, r’, m) I= cp.

We prove that for every knowledge formula cp that is
a subformula or the negation of a subformula of a test in
Pg, the following properties hold:

(a) for every time m, every pair #,Y1 of systems in
j ’(Pg, y, TC) such that Prefm(4) = Prefm(9’), and every
p that is an m-prefix of both a run of 9 and a run of 4’, we
have that (4, p) I= cp iff (Sl, p) I = cp, and

(b) if cp is of the form Ki$, then every 9 E f’(Pg, y , n)
provides witnesses for cp.

We proceed by induction on the structure of formulas. The
case of primitive propositions, conjunctions, and negations
is straightforward. It remains to show the case of formulas
of the form Ki$. By the symmetry of the roles of 4 and 4’,
to prove part (a) it is sufficient to show that if
(4, p) + i Ki$ then (Y1, p) I= i Ki$. Assume that
(9, p) + i Ki$. So for some m’, there is an m’-prefix p’ of
a run of 9 such that pi(m’) = pi(m) and (4, p’) + i $.
Let m* = max{m, m’). Find Y2 E j (P g , y , n) such that
Pref,.(Y2) = Prefm.(4). Such a system 9’ is guaranteed to
exist, since every interpreted system in y(Pg, y, n) is the
limit of a prefix-compatible sequence of members of
f(Pg, y, x). In particular, p is the m-prefix of a run of 4’

0

212

and p’ is the m’-prefix of a run of J2. Since (9, p’) i $,
it follows by the inductive hypothesis for $ that
(Y2, p’) I= i 3. Since pi(m’) = pi(m), it follows that
(Y2, p) + i Ki$. Since f(Pg, y , n) provides witnesses for
Pg, there is some m” 5 m and an m”-prefix p“ of a run of Y2
such that pY(m”) = pi(m) and (Y2, p”)+ i$. Now
Pref,,.(Y’) = Pref,. .(Y) = Pref,..(Y’). So p” is an m”-pre-
fix of a run of 9’. Therefore, by the inductive hypothesis
for $, i t follows that (9’, p”) 13. Since p;(m”) = pi(m),
i t follows that (9’, p) k i K i $, as desired. So part (a)
holds for cp. As for part (b), we see that since p” is also an
m“-prefix of a run of la, it follows from the inductive
hypothesis that (9, p”) I= i $. So 9 provides witnesses for
cp. Therefore, (b) holds for cp. This concludes the inductive
step. The result stated in the lemma now follows from part
(b). 0

We define a system 9 to be synchronous if for every
agent i and points (r, m), (r’, m’) E 9, we have that
(r , m) -i (r’, m‘) implies rn = m’. Intuitively, a system is syn-
chronous if an agent can determine the time by looking at
his local state.

Lemma 4.14 I f every system in 2 is synchronous, then
f provides witnesses for Pg.

Proof. This follows directly from the definitions. Suppose
9 E f and (3, r, rn) I= iKicp . By definition of I= , there
must be a point (r’, m‘) in 9 satisfying both r:(m’) = ri(rn)
and (9, r‘, m’) /= i cp. Since 9 is synchronous, r:(m’) =
r,(m) implies that m’ = rn and, in particular, we have that
m‘ 5 m. It now follows that 2 provides witnesses for Pg
(the point (r’, rn) is the desired ‘witness” to i c p) . 0

For many programs Pg and interpreted context (y , n) of
interest, every system in f(Pg, y , n) is indeed synchronous.
In particular, if Pg prescribes that each agent performs
some action in every round (more precisely, if each agent
performs an action in every round of Pgp, regardless of the
choice of 9) and if the agents keep track of the actions they
have performed in their local states (as is the case in
message-passing systems), then interpreted systems of the
form Irep(Pg ’, y , n) are necessarily synchronous, since an
agent can determine the time by looking at his local state.
It follows that y(Pg, y , n) provides witnesses for Pg.

Putting the results above together, we can define a con-
dition that guarantees a program has a unique representa-
tion and that applies to many contexts of interest. We say
that an interpreted context (y , n) provides witnesses for
a knowledge-based program Pg exactly if 6p(Pg, y , n) pro-
vides witnesses for Pg. As a straightforward corollary of
Corollary 4.11, Lemmas 4.12 and 4.13, we obtain the
following result (which is precisely Theorem 7.2.4 of [S]).

Corollary 4.15 Let Pg be an atemporal knowledge-based
program and let (y , n) be an interpreted context that provides
witnesses for Pg suck that y is nonexcluding. Then there is
a unique interpreted system Irep(Pg, y , n) representing Pg in
(Y , n).

Proof: The assumption that (y , .) provides witnesses for
Pg means, by definition, that y(Pg, y , n) provides

witnesses for Pg. Since, by assumption, Pg is atemporal, we
have by Lemma 4.13 that f+(Pg, y , n) provides witnesses
for Pg. Lemma 4.12 now implies that Pg depends on the
past in f’(Pg, y , n). This, coupled with the fact that y is
assumed to be nonexcluding, gives us by Corollary 4.11
that there is a unique interpreted system representing Pg in
b, 71).

Corollary 4.15.

Corollary 4.16 Suppose that Pg is an atemporal know-
ledge-based program, that y is a nonexcluding context, and
that every system in $(Pg, y , n) is synchronous. Then there
is a unique interpreted system Irep(Pg, y , n) representing Pg
in (y , n).

Proof: Since every system in y(Pg, y , n) is synchronous, it
follows from Lemma 4.14 that gl(Pg, y , n) provides wit-
nesses for Pg, that is, (7, .) provides witnesses for Pg. The
result now follows from Corollary 4.15.

The next corollary follows from Lemma 4.14 and

The muddy children problem gives an application of
Corollary 4.16.

Example 4.1 7 We now want to take a more careful look at
the knowledge-based program M C run by the muddy
children. We start by formally describing the context
(y’”‘, n”‘) corresponding to our intuitive description of the
muddy children puzzle. The agents here are the children
and the father. We can view y“‘ = (P r , go, T , True) as
a context in which whatever an agent (the father or one of
the children) says in a given round is represented as a mess-
age that is delivered in the same round to all other agents,
and in which all these messages are recorded in the local
states of the agents when they are received. The initial
states of the agents describe what they see; later states
describe everything they have heard. Thus, go consists of
all 2” tuples of the form (() , X - ’ , ... , X-”, X) , where
X = (x l , ... , x,) is a tuple of 0’s and l’s, with xi = 0 mean-
ing that child i is clean, and xi = 1 meaning that he
has a muddy forehead, and X - ‘ = (x l , ... ,xi-’,
*, xi+ . . . , xn), i.e., it differs from X only in that it contains
a * in the ith component. Intuitively, X-’ describes what
child i sees given that X describes the true situation, where
* means “no information”. Only the father sees all the
children, so his initial local state is X. The initial local state
of the environment is the empty history (). The only
actions performed by the children and the father are the
sending of messages, and these actions have the obvious
results of changing their local states and the local state of
the environment. The environment’s protocol Py is simply
to deliver all messages in the same round in which they are
sent.

The children run the knowledge-based programs MCi
described at the beginning of Sect. 3.2. The father runs the
following (standard) program:

case of
if initial A Vf= p i do

say ”At least one of you has mud on your fore-
head; does any of you know whether you have
mud on your own forehead?”

213

if initial A i vI= pi do
say ”Does any of you know whether you have
mud on your own forehead?”

say ”Does any of you know whether you have
mud on your own forehead?”

if childrenanswered do

end case.

Here initial is a primitive proposition that is true in the
initial state, i.e., before any communication has taken
place, and childrenanswered is a primitive proposition that
is true if the father heard the children’s answers in the
previous round. Thus, in round 1, if there is at least one
muddy child, a message to this effect is sent to all children.
In the odd-numbered rounds 1,3,5, .. . , the father sends
to all children the message “Does any of you know
whether you have mud on your own forehead?”. The
children respond “Yes” or “No” in the even-numbered
rounds. Finally, nmc interprets the propositions p i ,
childheardi, initial, and childrenanswered in the obvious
way.

We now want to apply Corollary 4.16 to show that
there is a unique interpreted system representing MC.
Since the admissibility condition in y”‘ is True, it easily
follows that y”‘ is nonexcluding. Clearly there are no
temporal operators in the tests in MC. Moreover, notice
that the father and the children each either send a message
or receive one in every round, and they keep track of the
messages they send and receive in their local states. Since
an action is performed by each child at every round of
MC’, regardless of the choice of 9, as we observed in the
discussion following Lemma 4.14, it follows that every
interpreted system in Y(MC, y”‘, nmc) is synchronous.
Thus, by Corollary 4.16, there is a unique system repre-
senting M C in (y”‘, nmc).

The same arguments show that the hypotheses of
Corollary 4.16 also hold for any subcontext y’ obtained by
restricting the set of initial states, that is, by replacing go
by some subset of Yo. Restricting the set of initial states
corresponds to changing the puzzle by making certain
information common knowledge. For example, eliminat-
ing the initial states where child 3’s forehead is clean
corresponds to making it common knowledge that child
3’s forehead is muddy.

As shown in [13], if the father initially says that at least
one child has a muddy forehead, then a child that sees
k muddy children responds “No” to the father’s first
k questions and “Yes” to the (k + 1)st question (and to all
the questions after that). Let MC, be the standard program
for the muddy children that has them doing this. Finally,
let 9”‘ = Irep (MC,, y”‘). It is straightforward to show that
9”‘ represents M C in (y”‘, n“‘), and hence, by our previous
argument, is the unique such interpreted system. In fact,
MC, implements M C in (y”‘, n“‘). There are, however,
contexts in which MC, does not implement MC. For
example, consider the context where it is common
knowledge that the children all have muddy foreheads.
This is the subcontext y’ in which we replace Yo
by the singleton set ((0, X - ’ , ... ,X-”, X }) , where
X = (1, ... ,1). We leave it to the reader to check that in
the unique interpreted system 9‘ representing M C in

(y’, nmc), all the children respond “Yes” to the father’s first
question. Clearly MC, does not implement M C in this
context. 0

As is shown in [S], Corollary 4.11 (or its derivatives,
Corollaries 4.15 and 4.16) can be used to show that
a number of other knowledge-based programs have
unique representations. For example, i t applies to the
knowledge-based programs used to analyze the sequence
transmission problem [161, Byzantine agreement [6,24],
and to a program designed to capture a Teller giving
information to a knowledge base [7]. On the other hand,
there are times when we cannot apply Corollary 4.1 1, since
Pg may fail to depend on the past with respect to
Y+(Pg, y, n), although there may be another class $ to
which the hypotheses of Theorem 4.9 apply. Is there any-
thing we can say then? That is the subject of the next
section.

5 Testing for existence and uniqueness of representations

While the results of the previous section provide necessary
and sufficient conditions to determine if a knowledge-
based program has a unique representation, they are not
always easy to apply. How hard is it to tell in general
whether a knowledge-based program has a unique repre-
sentation, or any representation at all, for that matter?
Clearly the answer depends in part on the context in which
the program is run, and how it is represented. In this
section, we give a partial answer to that question by con-
sidering jinite-state interpreted contexts.

A finite-state interpreted context is one in which the set
of global states is finite, the set of possible actions is finite,
the set of primitive propositions is finite, and the admissi-
bility condition on runs is given by a temporal formula.
We also assume that all the components of such a context
are described in a “transparent” way, so that the environ-
ment’s protocol is described as a set of (local state, action)
pairs, the transition function is described as a set of Cjoint
action, global state, global state) tuples, and the interpreta-
tion (of the primitive propositions) is described as a set
of (primitive proposition, global state, truth value)
tuples. The key is that we should be able to check in poly-
nomial time whether, for example, n(g)(p) = true or
z(a,, a, , . . . , a&) = g’. A Jinite knowledge-based pro-
gram is one where the case statement involves only finitely
many tests (which may include knowledge operators and
temporal operators). A joint knowledge-based program is
finite if each of its components is. Thus, it makes sense to
talk about the size of a finite-state interpreted context and
of a finite knowledge-based program; it is the length of
a description of the context or the program under any
reasonable encoding. We will measure the complexity of
testing existence and uniqueness as a function of the size of
the given finite-state interpreted context and of the given
finite knowledge-based program.

Our goal in this section is to study the complexity of
determining whether a given finite knowledge-based pro-
gram has some (resp. a unique) representation in a given
finite-state interpreted context. It is not hard to show that

214

the problem involves both model checking [5] - checking
whether the tests in the program are true at certain states
in a system whose global states are among the global states
allowed by the context (y , n) - and testing the satisfiability
of the admissibility condition. Both model checking and
satisfiability testing are known to be PSPACE-complete
problems for (linear time) temporal logic [33], so our
problem is at least PSPACE-hard. We show below
(Theorem 5.10) that, in fact, it is no harder.

5.1 An easier case

Before proving the general result, we prove a simpler
version: we consider nonrestrictive (interpreted) contexts,
where the admissibility condition is True, and atemporal
knowledge-based programs. With these restrictions, our
arguments for PSPACE-hardness no longer apply: testing
the satisfiability of the admissibility condition is now triv-
ial, and the model checking problem for knowledge for-
mulas can be solved in polynomial time. Indeed, as we now
show, these restrictions do make the problems simpler:
they drop from PSPACE to NP. We now develop the
technical machinery required, and then proceed to state
and prove the results.

5.1.1 Knowledge-based programs and Kripke structures

Our first step is to show that atemporal knowledge-based
programs can be interpreted with respect to Kripke struc-
tures. This will enable us to characterize the existence of
representations for atemporal knowledge-based programs
with respect to nonrestrictive interpreted contexts in terms
of existence of certain Kripke structures. Let 9 be a set of
global states and n be an interpretation for the proposi-
tions in @ over F. We define a Kripke structure MF =
(9, XI, ... ,Xn, z), where each is a binary relation on
9 such that (9, g') E iff gi = g;, that is, if g and g' agree
on their ith component. Truth of knowledge formulas in
MF can now be defined in the standard way (cf. [14]). In
particular, we have

(&, g)l= Kicp iff (MF, g')k cp for all g' such that
(g, 9') E x
(MF,g)k Ecp iff (M, ,g)k Kicp for i = 1, ... , n

(MF,g)I= Ccp iff (MF,g)k Ekcp for k = 1,2, ...

Consider an interpreted system 9 = (9, n), where 9 is
a system over a set 9 of global states and n is an interpreta-
tion for the proposition in Q, over 9. We use both Ff and
F9 to denote the global states that occur in 9, i.e.,
Ff = F2 = { r (m) I r E B}. It is easy to prove by induction
on the structure of knowledge formulas that MFy com-
pletely captures the semantics of knowledge formulas in 9.

Lemma 5.1 Let cp be a knowledge formula. Then
(9, r, m) I= cp #(MFf, r(m)) I= cp.

Given a set 9 of global states, we can associate with an
atemporal knowledge-based program Pg, for agent i a pro-
tocol PgT in much the same way we used an interpreted

system 9 to obtain the protocol Pg'. We start, as in Sect.
3.2, by defining truth of tests in local states. We do this by
overloading notation and defining yet another satisfaction
notion, where on the left-hand side of + we have a pair
(M,,L') consisting of a Kripke structure kfF and a local
state f for agent i.

If cp is a standard test in Pgi, we define

(MF, 4 I= CP iff (n, 8) /= v?.
Since cp is a standard test in Pgi, it must be local to agent i,
so this definition makes sense. If cp is a knowledge test Ki$,
we define

(MF, L') k K,$ iff (MF, g) I= $ for all global states g E F
such that gi = f .

Finally, for conjunctions and negations, we follow the
standard treatment.

We can now define

Pg?(L) =

{a..(M,, t)i= t j A k j } if { j : (M F , t) k ti A k j } f 0
if {j:(MF, L')b t j A k j } = 8. Lf4

Intuitively, the actions prescribed by i's protocol Pgr are
exactly those prescribed by Pg, when the tests are evalu-
ated in MF.

Lemma 5.2 Let Pg be an atemporal knowledge-based pro-
gram, let (y , .) be an interpreted context, and let 9 = (9, n)
be an interpreted system. Then Pg' = Pfp.

Pro05 Let 9 = 9%. We have to show that for every local
or knowledge test cp we have that (9,8) I= cp iff (MF, L)
cp. For a standard test cp this holds, since (9, L)+ cp iff
(n, 6') /= cp iff (M F , /)I= cp. For a knowledge test K i $, we
have that (9, L') k Ki$ iff (9, r, m) I= $ for all points (r , m)
of 9 such that ri(m) = 8. By Lemma 5.1, the latter holds iff
(MF, g)l= $ for all global states g in F such that gi = L'.
This holds iff (MF, 4) k Ki$. (Note that Lemma 5.1 applies
only to knowledge formulas, which is why we need to
assume that Pg is an atemporal knowledge-based pro-
gram.) 0

5.1.2. Testing existence of representations

We now provide a characterization for when there is
a system representing an atemporal knowledge-based pro-
gram with respect to a nonrestrictive interpreted context.

Proposition 5.3 Let Pg be an atemporal knowIedge-based
program and let (y , n) be a nonrestrictive interpreted context.
There is an interpreted system that represents Pg in (y , x) i fs
there is a set 9 of global states such that 9 = F2, where
9 = Rrep(P<, y) , i.e., 9 is precisely the set of states that
occur in the system that represents Pg" in y . Furthermore,
there is a unique interpreted system that represents Pg in
(y , n) iff there is a unique such 9.

Proof: Suppose first that there is an interpreted system
9 = (&,TC) that represents Pg in (y , n), is., .9 =

Rrep(PgY, y) . Let w' be Rep(P$#, y). It follows from
Lemma 5.2 that 9' = B.

215

Conversely, suppose that there is a subset 9 of global
states such that 9 = 9*, where 9 = RreP(PgF, y). We
claim that 9 = (%, n) represents Pg in (y, K) . This holds
since, as before, Pg’ = Pg?

Finally, if there are two different such sets, say
9, =k F2, then we get two systems, B1 = RreP(PgF1’, y) and
B2 = ReP(PgF2, y), that represent Pg in context y. These
systems are different, since 8 = Fg1 and 4 = Fj,. 0

We can now obtain the desired complexity results for
nonrestrictive finite-state interpreted contexts and atem-
poral finite knowledge-based programs.

Theorem 5.4 Testing whether there is at least one (resp.
more than one) interpreted system representing a given atem-
poral finite knowledge-based program in a given nonrestric-
tive jinite-state interpreted context is NP-complete.

Proof: We first show that the problem is in NP. Let Pg be
an atemporal finite knowledge-based program and let
(y, n) be a nonrestrictive finite-state interpreted context,
where y = (P,, go, z, True). By Proposition 5.3, there is an
interpreted system that represents Pg in (y, n) iff there is
a subset 9 of global states such that 9 = %%, where
9 = Rep(Pf, y).

To check that there is at least one interpreted system
that represents Pg in (y , n), our algorithm guesses a subset
9 of global states and checks that it satisfies the condition
of Proposition 5.3. To that end, we need to compute the set
gr = 9%, where R = Rrep(PgF, y) . 9‘ is easily seen to be
the least set containing 9, that is closed under the opera-
tion of the protocol PgF. That is, if g E 9’, then so is every
global state of the form t(a,, a,, . . . , a,)(gi), where
a, E P,(g) and a, E PgT(gi). Thus, to compute it, we start
with the set go of initial states and keep applying the
operation of the protocol PgF until no new global states
are added. To compute P$(gi) we need to evaluate the
truth of knowledge tests of Pg, in M,, but this can be done
in polynomial time in the size of 9 and the size of the
knowledge tests [14]. Thus, checking that 9 = 9‘ can be
done in polynomial time.

To check that there is more than one interpreted sys-
tem that represents Pg in (y, n), the algorithm simply
guesses two sets 9, and F2 and checks that they both
satisfy the condition and that they are different. This can
clearly be done in nondeterministic polynomial time.

It remains to show that testing whether there is at least
one (resp. more than one) interpreted system representing
a given atemporal finite knowledge-based program in
a given nonrestrictive finite-state interpreted context is
NP-hard. The proof is by reduction from the satisfiability
problem [lo].

Suppose we are given a propositional formula 5 over
the primitive propositions pl , . . . , p,. Without loss of gen-
erality, we can assume that if 5 is satisfiable then it has
more than one satisfying assignment. (This can be ensured
by adding one primitive proposition that does not appear
in 5 to the language. Since this proposition can be assigned
two truth values, if 4 is satisfiable then it has at least two
truth assignments.) We now describe a nonrestrictive
finite-state interpreted context (y , K) and an atemporal

finite knowledge-based program Pg such that the follow-
ing are equivalent:

0 5 is satisfiable.
0 There is at least one interpreted system that represents

0 There is more than one interpreted system that repres-
pg in (Y , 4.

ents Pg in (7, n).

The environment can be in any of the states (0, 1, ... , n } ,
where 0 is the initial state. There is only one agent in the
context y, who is always in the same fixed local state. Thus,
we can identify the global state with the environment’s
state. The set of primitive propositions is @ =
{p,, p , , . . . , p , } . Note that @ contains a primitive proposi-
tion po that is not in 5. For pi E @, we define n(i) (p j) = true
iff i =J, i.e., pi holds only in the state i . The set of the
agent’s actions is {a,, ... ,a,}, but the environment can
perform only a single action. Thus, we can identify a joint
action with the agent’s action. Finally, we have that
z(a,)Q) = i , independent of j , i.e., the action ai always
moves the system to the state i . This concludes the defini-
tion of (y, n).

Let cp be the knowledge formula obtained from 5 by
replacing each occurrence of pi by the formula i K i p i ,
for 1 5 i 5 n. (Since there is only one agent, we do not need
to index the knowledge modalities.) Note that cp is a know-
ledge test. Let Pg be the following program:

case of
if K p o A i c p do a ,
if cp do a,

if cp do a,
...

end case.

Assume that 9 = (B, n) is an interpreted system that
represents Pg in (y, n), that is, = Rrep(Pgy, y), and as-
sume that r E B. We claim that 4 is satisfied by the truth
assignment that makes p i true precisely when i E 9%, for
1 5 i 5 n. Since 0 is the initial state, we know that 0 E 9%.
Suppose first that g9 = (0). That can happen if no action
ai is ever selected by Pgy, so the only action selected by
Pg‘ is A. But (9, r, 0) + Kgo, since Fa = (01, so we must
have that (f, 0)b cp (otherwise a, is selected by the first
clause of Pg, which contradicts our earlier point that only
A is selected). Since, however, (9, r, 0) k K i p , for
1 5 i 5 n (because 9% = {0}), this means that 5 is satisfied
by the truth assignment that sets p l , ... ,pn to false. Now
suppose that (0) is a proper subset of 9%. This means that
some action aj must be selected by Pg9. It follows that
(9, r, 0) Kp, , which means that the first clause of Pg
cannot be selected. For any other clause to be selected, we
must have (9, r, 0) ,b cp. Since (9, r, 0) I= i K i pi iff i E F,
it follows that r is satisfied by the truth assignment that
makes p i true precisely when i E Fg, for 1 5 i

Now suppose that is satisfied by a truth assignment x.
Let 9 = { i (x (p i) = true}u{O}. It is easy to see that
(M,, j) + i K i p , iff i E 9, for 1 5 i 5 n. Thus, Pf (j) =
{ai I i E 9 - {0}}, for each statej. Since T(ai)(j) = i, it fol-
lows that 9 = FR, where R = Rrep(P$, y), so (R, n) rep-
resents Pg in (y, n), by Proposition 5.3. Note that since (is

n.

216

satisfied by more than one truth assignment, P g is repre-
sented by more than one interpreted system.

Theorem 5.4 tells us that testing whether there is at
least one or more than one interpreted system representing
a given atemporal finite knowledge-based program in
a given nonrestrictive finite-state interpreted context is
NP-complete. How can we test whether there is a unique
interpreted system representing a given atemporal finite
knowledge-based program in a given nonrestrictive finite-
state interpreted context? We have to test that the pro-
gram is represented by at least one interpreted system and
that it is not represented by more than one interpreted
system. Thus, this test is the difference between two N P
tests. Problems that can be decided by the difference be-
tween two NP tests are classified in the complexity class D p
[29]. Formally, D p is the class P of problems (i.e., lan-
guages) such that P = PI - P2, where both PI and P2 are
in NP. All problems in N P and co-NP are easily seen to be
in Dp; thus, unless N P = co-NP, the class D p is strictly
larger than either N P or co-NP. The UNIQUE-SAT prob-
lem is the problem of deciding whether a given proposi-
tional formula has a unique satisfying assignment. It is not
hard to show that UNIQUE-SAT is in Dp. It is shown in
[17] that, in fact, UNIQUE-SAT is complete for D p under
randomized reductions. This means that for every problem
A E Dp, there is a random polynomial-time function f (that
is, the output offon input x, denoted f(x), may depend on
some coin tosses) and a polynomial p such that

0 if x #A, then f(x)#UNIQUE-SAT with probability
1 (that is, whatever the output off on input x is, it is not
in UNIQUE-SAT), and

0 if x E A, thenf(x) E UNIQUE-SAT with probability at
least l / p (1x1).

Theorem 5.5 Testing whether there is a unique interpreted
system representing a given atemporal finite knowledge-
based program in a given nonrestrictive jinite-state
interpreted system is polynomially equivalent to the
UNIQ U E - S A T problem.

Proof: We first show that UNIQUE-SAT is polynomially
reducible to the unique representation problem. The proof
is almost identical to the lower-bound proof in Theorem
5.4. (Unlike the proof in Theorem 5.4, we do not force 5 to
have at least two satisfying truth assignments when it has
at least one satisfying truth assignment.) It is easy to see
there that Pg is represented by a unique interpreted system
in (y , x) iff 5 has a unique satisfying truth assignment.

We now show that the unique representation problem
is polynomially reducible to UNIQUE-SAT. The algo-
rithm in Theorem 5.4 guesses a set F of global states and
then verifies in polynomial time that 9 = FB, where
9 = Rrep(P$, y) . Uniqueness of the representation means
that there is a unique such 9. Clearly, this algorithm can
be implemented by a deterministic polynomial time Tur-
ing machine M equipped with a “guessing” tape. The
standard reduction of M to the satisfiability problem [lo]
reduces the unique representation problem to UNIQUE-
SAT. 0
Corollary 5.6 Testing whether there is a unique interpreted
system representing a given atemporal jinite knowledge-

0.
based program in a given nonrestrictive jinite-state
interpreted system is complete for D p under randomized
reductions.

5.2 The general case

The problem is considerably more involved for general
contexts and programs, where we allow temporal connect-
ives. To understand the issues involved, we focus attention
first on programs that do not mention the knowledge
modalities E and C (although they may have temporal
modalities and arbitrary nestings of Ki’s). The first diffi-
culty stems from the fact that we can no longer collapse an
interpreted system 9 to the Kripke structure M?,, while
still preserving the relevant semantic information as in
Lemma 5.1. MF, preserves the semantics of knowledge, but
does not preserve the temporal semantics. Since the know-
ledge tests in Pg may involve temporal operators, we
cannot simply consider PgFx instead of Pg4.

-r

5.2.1 Knowledge-based programs and knowledge
interpretations

We deal with this problem by considering knowledge inter-
pretations, which tell us how to interpret knowledge tests
in local states. Given a context y in which Li is the set of
local states of agent i , for i = 1, ... , n, let L, = L,u
. . . uL,. Let Pg be a knowledge-based program. Define
test(Pg) to be the set of subformulas of tests in Pg and their
negations (we identify a formula ii t+b with $). For each
i = 1, ... , n , a knowledge interpretation K for Pg in y as-
signs to every local state d e L i and every formula
Ki$ E test(Pg) a truth value, i.e., ~ (t , Ki$) = true or
~ (t , Kill/) = false.

Now consider a knowledge-based program Pg, for
agent i. Instead of using an interpreted system 9 to obtain
a protocol P g f , we can associate a protocol PgY,” with Pg,
with a knowledge interpretation K and an interpretation
.n that is compatible with Pg,. If (P is a standard test, we
define

(K , .n, 4 I= qJ iff (n , 4 I= (P.

If cp is a knowledge test K i $, we define

(K , n, /) /= Kill/ iff K (/ , Kill/) = true.

Finally, for conjunctions and negations, we follow the
standard treatment.

We now define

P g y y e) =

{ a . . (K , n , 8) k t j A k j } if { j : (r c , n , /) F r j A k j } + 8 i4 if {j:(ic ,n , t)k t j A k j } =8.
In addition to the notion of knowledge interpretation,

we also need the notion of annotated states, which are
global states tagged with sets of formulas. Let g be a global
state and let 0 be a subset of test(Pg). The pair (9, 0) is
called an annotated state.

A set 0 E test(Pg) isfull if the following holds:

1. For each V E test(Pg), we have that (P E 0 iff
l(P$0.

217

2. For each cpl Acp, E test(Pg), we have that cpl Acp2

An annotated state (g, 0) is consistent with a knowledge
interpretation ic and an interpretation n if (a) 0 is full,
(b) for each proposition p E Q, we have that p E 0 iff
n(g)(p) = true, and (c) for each formula K i $ E test(Pg) we
have that Ki$ E 0 iff K (g i , Kill/) = true. These conditions
say that the annotations capture the standard semantics of
propositions, of Boolean connectives, and of knowledge
modalities. On the other hand, no constraint is imposed on
the semantics of temporal operators.

To deal with the semantics of temporal operators we
have to introduce the notion of annotated runs. An anno-
tated run a over a set 9 of annotated states is a function
from time to annotated states in 9 that satisfies the
following condition: if CL = (go, O0), (gl, @I), ... , then for
each formula Ocp E test(Pg) or cpU$ E test(Pg) we have:

E 0 iff q1 E 0 and cp2 E 0.

1. Ocp E 0" iff cp E Om+'
2. cpU$ E 0" iff $ E 0"' for some m' 2 m and cp E Om''

Thus, annotated runs have to display the "proper" tem-
poral behavior. Given an annotated run a = (go, O0),
(gl, @I), ... , let run(a) be the run go,gl, ... that is ob-
tained by deleting the annotations in a. An annotated run
a is consistent with (ic, n) if every annotated state in a is
consistent with (K , n). An annotated run c1 is consistent with
a joint protocol P in a context y if run(c1) is consistent
with P in y.

We can now state a condition for existence for repres-
entations. We say that the knowledge interpretation K is
compatible with P g in interpreted context (y, n) if, for each
local state t E Li and each formula Ki$ E test(Pg), we have
~ (d , K i $) = false iff there is an annotated state (g , 0) such
that

g i = t and i$ E 0, and
(9, 0) occurs in an annotated run that is consistent both

Proposition 5.7 Let P g be a knowledge-based program and
let (y, n) be an interpreted context. There is an interpreted
system that represents P g in (y, n) iff there is a knowledge
interpretation K that is compatible with P g in (y,.).
Moreover, there is more than one interpreted system that re-
presents P g in (y, .) i f f there are two knowledge
interpretations icl and ic2 compatible with P g in (y, n) such
that Rrep(PgK1-", y) + Rrep(PgK2-", y).

ProoJ First suppose that there is an interpreted system
9 = (W, n) that represents P g in (y, n), i.e., 9 =
Rrep(Pgg, y). For t E Li , define i c (t , K i $) = true iff
(9,t) K i $. By the definition of Pg".", we have that Pg'
and Pg"." are identical. We now show that ic is compatible
with P g in (y, n):

for all m" such that m 5 m" < m'.

with (ic, n) and with Pg"." in the context y.

~ (t , Ki$) = false

iff (9, r , m) k i$ for some point (r, m) of 9 such that
ri(m) = d

iff there is an annotated state (g , 0) that occurs in an
annotated run that is consistent both with (K , n) and
with Pg"." in context y such that gi = t and i$ E 0.

iff (9, 8) ft Ki$

We have to prove the last equivalence. The direction from
left to right is easy: Assume that r E 9. Define an anno-
tated run c1 = (go, Oo), (gl, @ I) , ... , where gm = r(m) and
0" = { c p E test(Pg) l(9, r, m) + q}. It is easy to verify that
a is consistent both with (ic, 7c) and with Pg9 in y:

0" is full, since for each q E test(Pg), we have that
(9, r, m) cp iff (4, r, m) f t l q , and for each cpl A cp2
E test(Pg), we have that (9, r, m) I= q1 A cp2 iff

For each proposition p E Qi, we have that (9, r, m) I= p iff
z(r(m))(p) = true.
For each formula K i $ E test(Pg), we have that

true.
run(c1) = r, r E W, and W = W p (P g 4 , y).

(9, r, m) k Pl and (4, r, m) I= (P2.

(9, m) Ki$ iff (9 3 ri(m)) k Ki$ iff K(ri(m)> Ki$) =

Thus, if (9, r, m) I= i $ and ri(m) = t, then i $ E 0" and
gy = d. For the direction from right to left, let
a = (go, Go), (gl, @I), .. . be an annotated run that is con-
sistent both with (K , n) and with Pg"." in y, and let
r = run(a). Since Pg"*" = Pg', it follows that r is consistent
with P f f ' in y, and so r E 9 . We claim that (P E 0" iff
(9, r, m)+ q, for each m 2 0 and cp E test(Pg). The proof
is by induction on the structure of formulas in test(Pg).

1.

2.

3.

4.

5.

6.

For a proposition p E Qi, we have that p E 0" iff
n(g")(p) = true iff (9, r, m) I= p .
For a formula i cp E test(Pg), we have that
i c p ~ 0 " iff cp$Orn iff (9 , r , m) k q iff (9 , r , m)
I= l c p .
For a formula cpl A cp2 E test(Pg), we have that
cpl Acp, E @"iff cpl E 0" and cp2 E @"iff (9, r, m)+ cpl
and (9, I, rn) I= 402 iff (9, r, m) I= q1 A cp2.
For a formula K , $ E test(Pg), we have that
K i $ € O m iff .(d,Ki$) = true for t = gy iff
(Y, t) /= Ki$ iff (9, r', m') + $ for every point (r', m')
such that rL(m') = t iff (9, r, m) + K i + .
For a formula Oq E test(Pg), we have that Ocp E 0"
iff cp E Om+' iff (9, r, m + I)+ cp iff (9, r, rn)k Ocp.
For a formula cpU$ E test(Pg), we have that
cpU$ E 0" iff $ E 0"' for some m' 2 m and cp E 0""
for all m" such that m 5 m" < m' iff (9, r, m') + $ for
some m' 2 m and (9, r, m") I= cp for all m" such that
m 5 m" < rn' iff (9, r, m) cpU$.

Thus, if i $ E Om, then (9, r, m) + 1 $. If we also have
gy = t, then ri(m) = d. This proves the desired equivalence.

Now suppose that we have a knowledge interpretation
K that is compatible with P g in (y, n). Let W =
RreP(PgK.", y) and 4 = (2, n). We claim that B =
Rrep(Pgg, y), so 9 represents P g in (y, n). To prove that, it
suffices to show that Pg"." and P g ' coincide. Thus, we have
to show that for every test cp of P g and local state t, we
have that (ic, n, 8) I= cp iff (9, /) I= cp. Satisfaction of stan-
dard tests depend only on n, so all we have to show is that
for every formula K i $ E test(Pg) we have that
(K , n, t) I= Ki$ iff (9, t) K i $. By definition, (4, t) +
Ki$ iff (9, r, m) k $ for some point (r, m) of 9 such that
ri(m) = t. By assumption, (ic, n, t)k K i $ iff there is an
annotated state (9, 0) that occurs in an annotated run that
is consistent both with (ic,n) and with Pg"." in context
y such that gi = d and i + E 0. Thus, much like above, it

218

suffices to show that if CI = (go, OO), (gl, 0'), ... is an an-
notated run that is consistent both with (K , .) and with
Pg"." in y, if m 2 0 and if cp E test(Pg), then cp E 0" iff
(9, r, m) cp for r = run(a). The proof is by induction on
the structure of formulas in test(Pg). The argument for the
various cases of the induction are identical to (1)-(6)
above, except for case (4), for a formula Kill/ E test(Pg). In
this case we proceed as follows:

4 . For a formula Ki$ E test(Pg) we have that

Ki$ E 0"
iff ~ (t , K i $) = true for t = gT
iff for every annotated state (9, 0) that occurs in

an annotated run that is consistent both with
(K , n) and with Pg"," in y such that gi = gr, we
have that $ E 0 iff (Y, r', m ') k $ for every
point (r', m') such that r:(m') = gy

iff (9, r, m) + Kill/.

The condition about existence of more than one
interpreted system that represents Pg in (y , n) follows
immediately from the correspondence between interpreted
systems that represent Pg in (y, n) and knowledge inter-
pretations that meet the condition of the proposition. 0

5.2.2 Testing existence of representations

We can now obtain the desired complexity results for
finite-state interpreted contexts and finite knowledge-
based programs. The algorithm is based on Proposition
5.7. The difficult part is in checking that a knowledge
interpretation is compatible with Pg in (y, n). For this we
use the automata-theoretic techniques of [34].

A Buchi automaton A is a tuple (C, S, So, p, F) , where
.Z is a finite nonempty alphabet, S is a finite nonempty set
of states, So c_ S is a nonempty set of initial states, F E S is
the set of accepting states, and p : S x C -+ 2' is a transition
function. Now suppose that A is given as input an infinite
word w = ao, a l , ... E C". A run r of A on w is a sequence
so, sl, . . . of states, where so E So and si+ E p(si, ai), for all
i 2 0. Since the run is infinite, we cannot define acceptance
in terms of the final state of the run. Instead we have to
consider the limit behavior of the run. We define lim(r) to
be the set {s 1 s = si for infinitely many i 's) , i.e., the set of
states that occur in r infinitely often. Since S is finite, lim(r)
is necessarily nonempty. The run r is accepting if
lim(r)nF + 0, i.e., if there is some accepting state that
repeats in r infinitely often. The infinite word w is accepted
by A if there is an accepting run of A on w. The infinitary
language of A, denoted L,(A) , is the set of infinite words
accepted by A . An automaton A is nonempty if L,(A) $; 0.
The nonemptiness problem for Buchi automata is to decide,
given a Buchi automaton A , whether A is nonempty.

The following result is taken from [35]. As we shall
need details from the proof, we repeat it here.

Proposition 5.8 [35] The nonemptiness problem for Buchi
automata is in NLOGSPACE.

Proof: Let A = (C, S, So, p, F) be an automaton and
assume that s, t E S. We say that t is connected to s if there
exists a sequence s l , ... , s k of states in S and a sequence
al , ... , ak of symbols in Z such that s1 = s, s k = t , and

si E p(s i - ' , ai) for 1 < i 5 k. If in addition k = 2, then we
say that t is directly connected to s. We claim that L,(A) is
nonempty iff there exist states so E So and t E F such that
t is connected to so and t is connected to itself. To see this,
suppose first that L,(A) is nonempty. Then there is an
accepting run r = so, sl, ... of A on some input word.
Clearly, si+ is directly connected to si for all i 2 0. Thus,
sj is connected to si whenever i < j . Since r is accepting,
some t E F occurs in r infinitely often. In particular, there
exist i , j , where 0 < i < j , such that t = si = si. Thus, t is
connected to so E So and t is also connected to itself.

Conversely, suppose that there exist states so E So and
t E F such that t is connected to so and t is connected to
itself. Since t is connected to so, there exists a sequence
sl, ... ,sk of states and a sequence a l , ... ,ak of symbols
such that s k = t and si E p (s i - 1, ai) for 1 < i 2 k . Similarly,
since t is connected to itself, there exists a sequence
to, t l , ... , tl of states and a sequence b l , ... , bl of symbols
such that to = tl = t and ti E p (t i - l , bi) for 1 < i 5 2. Thus,
(so, sl, ... , ~ k - ~) (to, t l , ... , tl - is an accepting run of
A on input (al, ... , ak)(b, , ... , bl),, so L,(A) is nonempty.

Thus, automata nonemptiness is reducible to graph
reachability, and graph reachability can be tested in non-
deterministic logarithmic space. The algorithm simply
guesses a state so E So, then guesses a state s1 that is
directly connected to so, then guesses a state s2 that is
directly connected to sl, etc., until it reaches a state t E F .
At that point the algorithm remembers t and it continues
to move nondeterministically from a state s to a state s'
that is directly connected to s until it reaches t again.
Clearly, the algorithm needs only logarithmic memory,
since it needs to remember at most a description of three
states at each step. 0

Recall that one can define the truth of temporal for-
mulas in a run r with respect to an interpretation 71. In fact,
the truth can be defined with respect to the interpreted run
n(r), where n(r) is the sequence n(r(O)), n (r (l)) , ... of truth
assignments on ds, where ds is the set of primitive proposi-
tions in the underlying language. This sequence can be
viewed as an infinite word on the alphabet 2? The next
proposition is from [35] . We denote the cardinality of a set
S by I SI and the size of a formula cp (the number of symbols
in cp) by IcpI.
Proposition 5.9 [35] There is an exponential-time algo-
rithm that takes as input a temporal formula cp, and con-
structs a Buchi automaton A , = (C, s, So, p, F), where
.Z = 2@, @ is the set of primitive propositions in cp, and
IS1 = 2°(irp1), such that L,(A,) is exactly the set of inter-
preted runs satisfying the formula cp.

We can now prove our complexity results for general
programs and contexts.

Theorem 5.10 Testing whether there is at least one (resp.
precisely one) interpreted system representing a given finite
knowledge-based program in a given finite-state interpreted
context is PSPACE-complete.

Proof: Let Pg be a knowledge-based program and let (y, n)
be an interpreted context. Note that Itest(Pg)(is linear in
the size of Pg. By Proposition 5.7, there is an interpreted
system that represents Pg in (y, n) iff there is a knowledge

219

interpretation K that is compatible with Pg in (y. n). The
algorithm simply guesses a knowledge interpretation
K and checks that it is indeed compatible. We now show
that this can be done in nondeterministic polynomial
space. Thus, the problem is in PSPACE by [31].

Given a knowledge interpretation K , a local state
L E L,, and a formula Ki$ E test(Pg) such that
K(L , Ki$) = false, we have to check that there is an anno-
tated state (9, 0) that occurs in an annotated run that is
consistent both with (IC, n) and with Pg"." in y such that
gi = t and i$ E 0. Let 9 be the set of annotated states
that are consistent with (K , n). Consider an annotated run
CI = (go, OO), (gl, @'), ... ; it can be viewed as an infinite
word over 9. We construct a Buchi automaton A that
accepts precisely the set of interpreted runs over 9 that
are consistent with Pg"." in y and that contain an anno-
tated state (9, 0) such that gi = 8 and i $ E 0. All we then
have to check is that A is nonempty. The automaton A is
of size polynomial in the number of global states in y (al-
though it may be exponential in the admissibility condi-
tion Y) and exponential in the size of Pg. By Proposition
5.8, nonemptiness of Buchi automata can be tested in
nondeterministic logarithmic space, so nonemptiness of
A can be tested in nondeterministic space that is poly-
nomial in the size of the input.

The latter argument requires some care. We cannot
simply construct A and then test it for nonemptiness, since
A is exponentially big. Instead, we construct A "on-the-
fly". First, the algorithm guesses an initial state of A . Then
whenever the nonemptiness algorithm wants to move from
a state t l of A to a state t 2 , the algorithm guesses t, and
checks that it is directly connected to t l . The description of
A is such that checking whether a state t is initial or
checking whether a state t l is directly connected to a state
t 2 can be done using polynomial space. Once this has been
verified, the algorithm can discard t l . Thus, at each step
the algorithm needs to keep in memory at most three
states of A and there is no need to generate all of A at any
single step of the algorithm. In other words, the algorithm
is essentially the nondeterministic algorithm described in
the proof of Proposition 5.8, except that it uses polynomial
space rather than logarithmic space, due to the exponen-
tial size of the automaton under consideration.

It remains to describe the construction of A . We
take A to be the composition of four Buchi automata
A , , A,, A,, and A4. On input M = (go, OO), (gl, @I) , ... ,
the automaton Al checks that run(%) satisfies the admissi-
bility condition Y. For this we simply use the automaton
A y of Proposition 5.9. We see from Proposition 5.9 that A l
has size exponential in Y. The automaton A , checks that
cc is weakly consistent with Pg"." in y . Take A2 =

W,Y, 90, P, '% where p (g 1 , (g,,@)) = 8 if 91 =I= 9 2 , and
where g' E p (g , (g, 0)) iff g = (fe, e l , .. . ,8J and there is
a joint action (ae, a, , ... ,an) E Pe(fe) x Pg;-"(d,) x ... x
PgE3"(dn) such that g' = z(a,, a , , ... ,afl)(g). That is, A2
simply simulates Pg".". Clearly, A , can be constructed in
polynomial time from y and Pg. Note that A l and A ,
together verify that run(cr) is consistent with Pg"." in y. The
automaton A , checks that M is indeed an annotated run,
that is, that it satisfies the proper temporal behavior. For
a detailed description of a similar construction see [34].
The size of A , is exponential in the size of Pg. Finally, A4 is

a 2-state automaton that checks that for some (g", Om) we
have that g r = 8 and i $ E 0". The automaton A is taken
to be the cross product A l x ... x A 4 ; for details on the
product construction for Buchi automata see [4]. The
important feature of the product construction is that
,!,,(Al x ... x A4) = L,(A,)n ... nL,(A,).

To check'that there is precisely one interpreted system
that represents Pg in (y , n), we check that there is such an
interpreted system, but no more than one. We now show
that we can check in polynomial space whether there is
more than one interpreted system that represents Pg in
(y , n). By Proposition 5.7, this means that we need to check
that there are two knowledge interpretations K] and K~

compatible with Pg in (y, n) and a run r E Rrep(PgK1,", y) -
Rrep(PgK2.", y). The first step is to guess K] and K , and check
that each is indeed compatible with Pg in (y, n). To check
that there is a run r E Rrep(PgK1Xn, y) - Rrep(PgK2.", y) , we
first construct a Buchi automaton A, , that accepts pre-
cisely the runs in g(PgK1,", y). This automaton is essential-
ly the product of the automata A l and A , described above,
so its size is exponential in the size of Pg and Y, but
polynomial in the number of global states in y. We can
similarly construct an automaton AK2 that accepts the runs
in 3(Pg"2s",y). The automaton that accepts the runs in
9(PgK1*", y) - g((Pg"'*", y) is then AKl,K2 = A, , x A1(2,
where A,, is the complement of A K 2 , and accepts precisely
the runs rejected by AK2. Notice that a run r is not accepted
by AK2 if it either does not satisfy the admissibility condi-
tion Y (which can be checked using the automaton
which has exponential size, of Proposition 5.9) or if it is not
weakly consistent with Pg"'." in y (which can easily be
checked by an automaton of polynomial size that checks
whether r contains a global state g = (Le, d,, ... ,8,,) fol-
lowed by a global state g', but there is no joint action
(ae, a , , ... ,an) E Pe(Le) x Pg;2."(Ll) x ... x Pg,"2-"(8,,) such
that g' = r(ae, a, , ... ,an)(g). It is clear that has ex-
ponential size, just as AK2 does. It remains to check that
A K I , K 2 is nonempty. Since this automaton has exponential
size, this can be done in polynomial space.

Finally, we must show that testing whether there is at
least one (resp. precisely one) interpreted system represent-
ing a given finite knowledge-based program in a given
finite-state interpreted context is PSPACE-hard. We show
that this is the case even if either the interpreted context is
nonrestrictive or the knowledge-based program is atem-
poral. The reduction is from the satisfiability problem for
temporal formulas [33].

Suppose CJ = { p } and q is a temporal formula over @.*
We now describe a finite-state interpreted context (y, n)
and an atemporal finite knowledge-based program Pg
such that cp is satisfiable iff there is an interpreted system

'The PSPACE-hardness proof in [33] uses temporal formulas with
an unbounded number of primitive propositions. By using a Turing
machine M that accepts a PSPACE-complete language, it is possible
to bound the number of primitive proposition used to the size of the
working alphabet of M . Since it is possible to encode the truth values
of m primitive proposition in one state by the truth values of a single
primitive proposition along log rn states, it follows that satisfiability
of temporal formulas with a single primitive proposition is also
PSPAC E-hard.

220

that represents Pg in (y , n). The set of environment states is
{1,2). There is only one agent in the context y , who is
always in the same fixed local state. Thus, we can identify
the global state with the environment's state. We take 1 to
be the initial state. Assume that p is true in the state 2 but
not in the state 1. The set of the agent's actions is {al, a*},
but the environment can perform only a single action,
so that we can identify a joint action with the agent's
action. We define z(ai)(j) = i, independent of j , i.e.,
the action ai always moves the system to the state i.
Finally, we take Y to be Ocp. This concludes the definition
of (Y , 4.

case of

Let Pg be the following atemporal program:

if true do a,
if true do a,

end case.

Clearly, if cp is not satisfiable, neither is Ocp, so there is
no system representing Pg in (y , n). On the other hand,
note that if cp is satisfiable, then, since cp mentions only the
primitive proposition p, there is a run of the form l(1 + 2)"
that satisfies Ocp. Moreover, if cp is satisfiable, it is not hard
to see that Pg is represented in (y , n) by the unique inter-
preted system that consists of all runs of the form l (1 + 2)"
that satisfy Ocp. This shows PSPACE-hardness even when
the knowledge-based program is atemporal (indeed,
standard - since true is the only formula in tests). We now
show PSPACE-hardness when the interpreted context is
nonrestrictive.

Let y' be the context that results by replacing the
admissibility condition Ocp in y by True; this means that y'
is now nonrestrictive. Let Pg' be the program

case of
if K i p do a,
if i K i c p do a,
if i K i cp do a,

end case.

As before, it is easy to see that if cp is satisfiable, then
there is an interpreted system 9 representing Pg' in (y ' , n);
9 simply consists of all runs of the form l(1 + 2)". (Note
that the first clause in Pg' does not play any role here.)
Now suppose that Pg' is represented in (y, n) by 9'. We
claim that cp must hold at some point in 9'. For suppose
not. Clearly the second and third clauses are not selected
by Pg". The first clause is selected only if the state 2 does
not occur in $', but then a2 is selected, which changes the
state to 2. On the other hand, if the first clause is not
selected, then no test is satisfied. By assumption, this
means that the action A is performed at all times. This, in
turn, means that the system consists of one run, where the
global state is always 1. But then K i p holds, which means
that the first clause has to be selected. Thus, cp must hold at
some point of 9'. But then both actions a, and a, are
selected by Pg"', so 9' consists of all runs of the form
l (1 + Z)", which means that 4' = 9. It follows that if cp is
satisfiable, there is a unique interpreted system represent-
ing Pg' in (y', n), and if cp is not satisfiable, then there are
no systems representing Pg' in (y', n'). 0

Remark 5.11 So far we have ignored the modalities E and
C . We now show how they can be handled. Dealing with
E is easy:

0 We enlarge test(Pg) by adding Ki$ and i Ki$ for each
formula E$ E test(Pg).

0 We modify the definition of being full so that a full set
0 E test(Pg) must satisfy, in addition to the previous
requirements, the additional requirement that E$ E 0
i f fK,$EOfor 1 s i s n .

Dealing with the modality C is somewhat more involved:

We enlarge test(Pg) by adding KiC$ and I K i C $ for
each formula C$ E test(Pg).
We modify the definition of being full so that a full set
0 G test(Pg) must satisfy, in addition to the previous
requirements, the additional requirement that C$ E 0
if fK,C$EOfor 1 ~ i ~ n .
We modify the definition of compatibility so that for
K to be compatible with Pg in (y , n), we also require
that for each local state k E Li and each formula
KiC$ E test(Pg), we have ~ (e , KiC$) = false iff there is
a sequence (gl, 0'), (g', 0*), ... , (g k , Ok) of annotated
states, each occurring in an annotated run that is consis-
tent both with (K , n) and with Pg"." in context y such
that g! = k, -I$ E Ok, and for each 1 5 i < k there is
some j with 1 5 j 5 n such that gi -j gif '.

The additional condition on K ensures that C$ fails
precisely when El$ fails for some 12 1. Note that
this condition can be checked in nondeterministic
polynomial space. We simply guess the sequence
(gl, 0'), (g*, 02), . . . , (g k , Ok) and use the automata-theor-
etic technique to check that each (gi, 0') occurs in an
annotated run that is consistent both with (K , 71) and with
Pg"," in context y . 0

5.3 Testing implementations

So far we have dealt with the question of whether a given
finite knowledge-based program Pg has a (unique) repre-
sentation in a finite interpreted context (y , n). As we ob-
served earlier, there is a representation precisely if Pg is
implemented by some protocol P in (y, n). Suppose, how-
ever, that we are also given a protocol P and we want to
decide whether P implements Pg in (y , n). Is this problem
easier than deciding whether Pg is implemented by some
protocol? We now show that this problem is indeed easier
(provided P =+ NP) for atemporal knowledge-based
programs and nonrestrictive interpreted contexts, but is
not easier in general.

Recall that if P is a protocol and 9 = Irep(P, y, n), then
P implements Pg in (y , n) if (1) 4 = Irep(P$, y , n) and
(2) P and Pg" agree on all global states that appear in 9.

We first consider the simpler setting, where things are
indeed easier. Note that for nonrestrictive contexts we can
simplify the definition of implementation by taking only
the second condition in the definition. This is because for
nonrestrictive contexts, the second condition implies the
first condition. That is, it is easy to see that if P and Pg9

221

agree on all global states that appear in 9, then Y =
I'"P(Pg', y , n), since a run is weakly consistent with P in
y iff it is weakly consistent with Pg" in y .

Proposition 5.12 Let Pg be an atemporal knowledge-based
program, let (7, n) be a nonrestrictive interpreted context,
and let P be a protocol. Then P implements Pg in (y , n) ifs
P and P g F ~ agree on all global states that appear in 8,
where 9 = Rrep(P, y).

Proof: First suppose that P implements Pg in (y, n), i.e.,
P agrees with Pg' on global states in 9 = (B, n), for
92 = Rrep(P, y). By Lemma 5.2, Pg' = PgF~. It follows that
P agrees with PgFN on all global states in 9.

Conversely, suppose that P agrees with PgF# on global
states in B = Rep(P, y). By Lemma 5.2, Pgs = Pg".,
where 4 = (W, n). By the observation stated before the
proposition we are proving, it follows that P implements
Pg in (Y, 4. 0
Theorem 5.13 There is a polynomial-time algorithm for
testing whether a given protocol implements a given atem-
poral finite knowledge-based program in a given nonrestric-
tive jinite-state interpreted context.

Pro05 Let Pg be an atemporal finite knowledge-based
program, let (y , n) be a nonrestrictive finite-state inter-
preted context, and let P be a protocol. By Proposition
5.12, P implements Pg in (y, n) iff P agrees with PgSH on
global states in 92 = Rrep(P, y).

To check that P implements Pg in (y , n), our algorithm
computes the set 9% of global states using the technique
described in the proof of Theorem 5.4, and checks that it
satisfies the condition of Proposition 5.12. To check that
P agrees with Pg"# on global states in 92, we have to check
that Pi([) = PgTH(L') for each agent i and local state t in
a global state in 92. As observed in the proof of Theorem
5.4, this can be done in polynomial time.

Thus, in the case of an atemporal knowledge-based
program Pg and a nonrestrictive interpreted context (y , n),
deciding whether a given protocol P implements Pg in
(y, n) can be decided in polynomial time (Proposition 5.13),
whereas deciding whether this knowledge-based program
is implemented by some protocol in this interpreted con-
text is NP-complete (Theorem 5.4). So the first problem is
easier, if P + NP. We now consider the general case.

Proposition 5.14 Let Pg be a knowledge-based program, let
(y , n) be an interpreted context, and let P be a protocol. Then
P implements Pg in (y , n) iff there is a knowledge interpreta-
tion K that is compatible with Pg in (y , n) such that (1) 4 =
Irep(PgK.", y , n) and (2) P and Pg"." agree on all global states
that appear in Y, where 4 = Irep(P, y, n).

Prook First suppose that P implements Pg in (y, n), that
4 = Irep(P$, y , n), and that P and Pg' agree on all global
states that appear in 4, where 9 = Irep(P, y , n). Define
K (/ , Ki$) = true iff (4,L') I= Ki$. Clearly, Pg' and Pg","
are identical, so P agrees with Pg"," on global states in 4.
Furthermore, we showed in the proof of Proposition 5.7
that K is compatible with Pg in (y , n).

NOW suppose that we have a knowledge interpreta-
tion IC that is compatible with Pg in (y , n) such that

0

(1) 9 = Irep(PgKsn, y , n) and (2) P and Pg"," agree on all
global states that appear in 4, where 9 = Irep(P, y , n). We
showed in the proof of Proposition 5.7 that Pg"." = Pg'. It
follows that P implements Pg in (y , n). 0

Theorem 5.15 Testing whether a given protocol implements
a given finite knowledge-based program in a given finite-
state interpreted context is PSPACE-complete.

Pro05 Let Pg be a finite knowledge-based program, and
let (y, n) be a finite interpreted context, and let P be
a protocol. By Proposition 5.14, P implements Pg in (y, n)
iff there is a knowledge interpretation IC that is compatible
with Pg in (y , n) such that (1) 9 = Irep(Pg"3n, y , n), and
(2) P and Pg"." agree on all global states that appear in 4,
where 4 = Irep(P, y , n). We saw in the proof of Theorem
5.10 how to find in polynomial space a knowledge inter-
pretation IC that is compatible with Pg in (y, n). It remains
to show that we can check conditions (1) and (2) in poly-
nomial space.

To check condition (2), we cycle over all global states
g and check that if P and Pg"." disagree on g then g does
not occur in 9. Note that g occurs in 9 ifit occurs on a run
r that is weakly consistent with P in y and satisfies the
admissibility condition. We saw in the proof of Theorem
5.10 that this can be checked in polynomial space.

Rather than showing how to check condition (l), we
show how to check if condition (1) is violated. To check
this, we have to find a run r that distinguishes between
9 and 9' = IreP(PgK,", y, n). For example, r might satisfy
the admissibility condition and be weakly consistent with
P, but not weakly consistent with Pg".". We saw in the
proof of Theorem 5.10 how to construct an automaton
that takes a run r as input and checks that it satisfies the
admissibility condition and is weakly consistent with P. It
is straightforward to modify the automaton so that it also
checks that r is not weakly consistent with Pg".". It simply
has to nondeterministically guess a pair 9, g' of successive
global states in r, where g = (f e , L',, .. . ,L',J, and check that
there is no joint action (ae, a,, ... ,a,,) E P,(t,) x Pg;s"(/,)x
... x Pgn",n(t,,) such that g' = z(a,, a,, ... ,a,,)(g). A similar

automaton can check that there is a run r that satisfies the
admissibility condition and is weakly consistent with
Pg".", but not weakly consistent with P. Thus, 4 + 9' if
one of these automata is nonempty. We saw in the proof of
Theorem 5.10 that this can be checked in polynomial
space. Since we can check in polynomial space if condition
(1) is violated, we can check condition (1) in polynomial
space. This completes the proof of the upper bound.

It remains to show that the problem is PSPACE-hard.
The reduction is similar to the reduction in the proof of
Theorem 5.10, and applies even if either the interpreted
context is nonrestrictive or the knowledge-based program
is atemporal.

Suppose CP = { p) and cp is a temporal formula over CP.
Let (y , n) and Pg be as described in the proof of Theorem
5.10. We define a protocol P by taking P(1) = P(2) =
{al, a2}. It is not hard to see that P implements Pg iff q is
satisfiable. This shows PSPACE-hardness even when the
knowledge-based program is atemporal. To show
PSPACE-hardness when the interpreted context is nonres-
trictive. let Pg' and y' be as in the proof of Theorem 5.10.

222

Again, it is not hard to see that P implements Pg' in (y', r)
iff cp is satisfiable. 0

Thus, in contrast to the case of an atemporal know-
ledge-based program Pg and a nonrestrictive interpreted
context (y,n), we see from Theorems 5.10 and 5.15 that
deciding whether a given protocol P implements a general
knowledge-based program Pg in a general interpreted
context (y, n) is no easier than deciding whether this know-
ledge-based program is implemented by some protocol in
this interpreted context: both problems are PSPACE-
complete.

6 Concluding remarks

Standard programs work at the level of runs; by way of
contrast, knowledge-based programs work at the know-
ledge level, which provides a higher level of abstraction.
We believe that the approach of designing a knowledge-
based program that satisfies some specification, and then
compiling it to a standard program, will give us a powerful
tool for program development. The examples given in [8]
provide some support for this belief.

In this paper, we focused on ways of determining
whether a knowledge-based program is represented by
a unique system, no system, or many systems. Such in-
formation will be crucial if we are to use knowledge-based
programs in a serious way. As pointed out in [30], i t would
also be useful to have techniques for reasoning about
knowledge-based programs without having to construct
the system(s) that represent them. The development in [S]
has already simplified the reasoning by distinguishing be-
tween programs and contexts, and allowing us to discuss
systems representing a program in a given context without
having to describe the runs of the system explicitly. Never-
theless, we still need to find ways of employing the techno-
logy that has been developed for proving correctness of
programs for the task of reasoning about knowledge-
based programs. A first step along these lines was taken by
Sanders [30], who extended UNITY in such a way as to
allow the definition of knowledge predicates (although it
appears that the resulting knowledge-based programs are
somewhat less general than those described here), and then
used proof techniques developed for UNITY to prove the
correctness of another knowledge-based protocol for the
sequence transmission problem. (We remark that tech-
niques for reasoning about knowledge obtained in CSP
programs, but not for knowledge-based programs, were
given in [18].)

One potential problem in starting with a knowledge-
based program and then implementing it is that, as we
stressed in Sect. 2.6, our definition of knowledge is an
external one. Since we do not assume that agents necessar-
ily compute their knowledge, it may not always be
straightforward to implement the tests for knowledge that
appear in knowledge-based programs. Indeed, an example
in which this problem arises appears in [24]. The
(provably optimal) knowledge-based program for simulta-
neous Byzantine agreement presented in [24] (based on
the one in [6]) has tests that are NP-hard to compute in
a context that allows generalized omission failures. (The

same tests are efficiently computable, and hence the opti-
mal program is efficiently implementable, in contexts that
allow only sending omission failures or crash failures.)
Based on the notion of resource-bounded knowledge de-
fined in [22], a notion of algorithmic knowledge is intro-
duced in [S] that is intended to capture knowledge that is
computable. In addition, algorithmic programs, which use
tests for algorithmic knowledge, are considered. Algorith-
mic programs can be viewed as a halfway point between
knowledge-based programs and standard programs, since,
although they have tests for knowledge, these tests are, in
a precise sense, guaranteed to be implementable.

An extension of the framework of knowledge-based
programs is presented in [23]. Moses and Kislev argue
that actions, as well as a program's internal tests, should be
thought of at the knowledge level. The effect of sending
a single message in a context with reliable communication
can be considered similar to sending many messages in an
unreliable context. As a result, they define knowledge-
oriented programs, which are knowledge-based programs
involving high-level actions that are defined in terms of
knowledge. They illustrate how knowledge-oriented pro-
grams can be used to unify solutions to well-known prob-
lems in different contexts, as well as to generate efficient
programs in a given context by way of top-down design.

It is clear that there is more work to be done in
understanding the knowledge-based approach. We feel
that the potential advantages of this approach make the
effort worthwhile.

Acknow(edgenwrits. We would like to thank the two anonymous
referees for their careful reading of the paper.

References

1. Abadi M, Lamport L: The existence of refinement mappings.
Theor Comput Sci 82(2): 253-284 (1991)

2. Barwise J: Scenes and other situations. J Phil 78(7): 369-397
(1981)

3. Chandy KM, Misra J: Parallel program design: a foundation.
Addison-Wesley, Reading, MA 1988

4. Choueka Y: Theories of automata on w-tapes: a simplified
approach. J Comput Syst Sci 8: 117-141 (1974)

5. Clarke EM, Emerson EA, Sistla AP: Automatic verification of
finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans Prog Lang Syst 8(2): 244-263 (1986) [An early
version appeared in: Proc 10th ACM Symposium on Principles
of Programming Languages (1983)]

6. Dwork C, Moses Y: Knowledge and common knowledge in
a Byzantine environment: crash failures. Inform Comput 88(2):

7. Fagin R, Halpern JY, Moses Y, Vardi MY: An operational
semantics for knowledge bases. In: Proc National Conference on
Artificial Intelligence (AAAI '94), pp 1142-1 144 (1994)

8. Fagin R, Halpern JY, Moses Y, Vardi MY: Reasoning about
knowledge. MIT Press, Cambridge, MA 1995

9. Fudenberg D, Tirole J: Game theory. MIT Press, Cambridge,
MA 1991

10. Garey M, Johnson DS: Computers and intractability: A guide to
the theory of NP-completeness. Freeman, San Francisco, CA
1979

11. Halpern JY, Fagin R: A formal model of knowledge, action, and
communication in distributed systems: preliminary report. In:
Proc 4th ACM Symp on Principles of Distributed Computing,

156-186 (1990)

pp 224-236 (1985)

223

12. Halpern JY, Fagin R: Modelling knowledge and action in dis-
tributed systems. Distrib Comput 3(4): 159-179 (1989). [A pre-
liminary version appeared in: Proc 4th ACM Symposium on
Principles of Distributed Computing (1985) with the title "A
formal model of knowledge, action, and communication in dis-
tributed systems: preliminary report"]

13. Halpern JY, Moses Y: Knowledge and common knowledge in
a distributed environment. J ACM 37(3): 549-587 (1990). [A
preliminary version appeared in: Proc 3rd ACM Symposium on
Principles of Distributed Computing (1984)]

14. Halpern JY, Moses Y: A guide to completeness and complexity
for modal logics of knowledge and belief. Artif Intell 54: 319-379
(1 992)

15. Halpern JY, Moses Y, Waarts 0: A characterization of eventual
Byzantine agreement. In: Proc 9th ACM Symp on Principles of
Distributed Computing, pp 333-346 (1990)

16. Halpern JY, Zuck LD: A little knowledge goes a long way:
knowledge-based derivations and correctness proofs for a family
of protocols. J ACM 39(9): 449-478 (1992)

17. Jerrum MR, Valiant LG, Vazirani VV: Random generation of
combinatorial structures from a uniform distribution. Theoret
Comput Sci 43: 169-188 (1986)

18. Katz S, Taubenfeld G: What processes know: definitions and
proof methods. In: Proc 5th ACM Symp on Principles of
Distributed Computing, pp 249--262 (1986)

19. Kurki-Suonio R: Towards programming with knowledge expres-
sions. In: Proc. 13th ACM Symp on Principles of Programming
Languages, pp 140- 149 (1 986)

20. Manna Z . Pnueli A: The temporal logic of reactive and concur-
rent systems, vol 1. Springer. Berlin Heidelberg New York 1992

21. Mazer MS: Implementing distributed knowledge-based proto-
cols. Submitted for publication (1991)

22. Moses Y: Resource-bound knowledge. In: Vardi MY (ed) Proc
Second Conference on Theoretical Aspects of Reasoning about
Knowledge. pp 261-276. Morgan Kaufmann, San Francisco, CA
1988

23. Moses Y, Kislev 0: Knowledge-oriented programming. In: Proc
12th ACM Symp. on Principles of Distributed Computing, pp

24. Moses Y, Tuttle MR: Programming simultaneous actions using
common knowledge. Algorithmica 3: 121-169 (1988)

25. Neiger G: Knowledge consistency: a useful suspension of dis-
belief. In: Vardi MY (ed) Proc. Second Conference on Theoret-
ical Aspects of Reasoning about Knowledge, pp 295-308, Mor-
gan Kaufmann, San Francisco, CA 1988

26. Neiger G, Bazzi R: Using knowledge to optimally achieve coord-
ination in distributed systems. In: Moses Y (ed) Theoretical
aspects of reasoning about knowledge: Proc Fourth Conference,
pp 43-59. Morgan Kaufmann, San Francisco, CA 1992

27. Neiger G, Toueg S : Simulating real-time clocks and common
knowledge in distributed systems. J ACM 40(2): 334-367 (1993)

28. Owicki S, Lamport L: Proving liveness properties of concurrent
programs. ACM Trans. Progr Lang Syst 4(3): 455-495 (1982)

29. Papadimitriou CH, Yanakakis M: The complexity of facets (and
some facets of complexity). J Comput Syst Sci 28(2):

30. Sanders B: A predicate transformer approach to knowledge and
knowledge-based protocols. In: Proc 10th ACM Symp on Prin-
ciples of Distributed Computing, pp 217-230 (1991). [A revised
report appears as: ETH Informatik Technical Report 181 (1992)l

31. Savitch WJ: Relationships between nondeterministic and deter-
ministic tape complexities. J Comput Syst Sci 4: 177-192 (1970)

32. Shoham Y: Agent oriented programming. Artif Intell 60(1):

33. Sistla AP, Clarke EM: The complexity of propositional linear
temporal logics. J ACM 32(3): 733-749 (1985)

34. Vardi MY, Wolper P: An automata-theoretic approach to auto-
matic program verification. In: Proc 1st IEEE Symp on Logic in
Computer Science, pp 332-344 (1986)

35. Vardi MY, Wolper P: Reasoning about infinite computations.
Inform Comput 115(1): 1-37 (1994)

261-270 (1993)

244-259 (1982)

51-92 (1993)

A Appendix: Proofs

In this appendix, we fill in the missing details of some of the proofs.
We first establish two useful lemmas.

Lemma A.l I f P is a protocol and y = (P e , Yo, T, Y) is nonexcluding,
then Pref0(RreP(P, y)) = ~ o n P r e f o (Y) .

Proof: Clearly, Prefo(RrpP(P, y)) 5 Y o n P r e f o (Y) . We now must show
that for each state g E 9 o n P r e f o (Y) , there is a run r E Rrep(P , y) such
that r(0) = g. It is immediate from the definition of a protocol that
there is a run r" weakly consistent with P in context y such that
r"(0) = g. It then follows immediately from part (b) of the definition
of nonexcluding that there is a run r E Rrep(P , y) such that r (0) = g, as
desired. 0

The next lemma is the key lemma, which shows that our inductive
construction has the right properties. Intuitively, this lemma says
that, for each interpreted system 9' E 2, the actions of the protocol
Pg" at time m depend only on the prefixes of 9' up to time m. This
lemma is the only place in the proof where we use the assumption
that Pg depends on the past in 2; this and the preceding lemma are
the only ones that use the assumption that y is nonexcluding.

Lemma A.2 Assume that P g depends on the past in &t and
that y is nonexcluding. Suppose Y,, Y2 E 2 und Pref,(.F,) =
Pref,(Y,) = Prefm(IreP(Pg", y , n)) = Pref,(IreP(Pg'Z, y , n)). Then
Pref,. l(I'EP(Pg'l, Y . n)) = Pref,+ l(I'ep(pg'z, Y, n)).

Proof: Suppose p E Pref,. I (R'eP(Pg'l , 7)). Thus, there must exist
a run r E Rrep(Pg'l, y) such that p = Pref,, l (r) . Suppose r(m)
= (fe, d,, . . . ,fn). It follows that there must be a tuple (ae, a , , ... , a ,)
E Pe(fe) x Pg:l(&,) x ' . . x PgLl(dn) such that r (m + 1) =
.r(a,, a , , ... ,a , ,) (r(m)) . We now show that a i E P g p (t i) for each agent
i. By the assumptions of the lemma, there is a run r' of 9, and a run
r2 of .$, such that Pref,(r) = Pref,(r') = Prefm(r2). Furthermore,
PreJ"(4 ,) = Pref , (4 ,) . We know that a i E P g , f l (f z) . This means that
either

(I) there is a line in the knowledge-based program Pg, of the form
"if t A k do a;', where i is a standard test and k is a knowledge
test, and (9,> fi) + t A k , or

(2) a i is the null action A and for each line "if t A k do a" of Pg,,
necessarily (Y,, f,)

First assume that (1) holds. Then (n, fi) /= t and (Y,, r ' , ni) I= k (the
latter holds since, r ! (m) = ri (m) = t,). Since (a) Pg depends on
the past in y , (b) .-O, E and 9, E 2, (c) (Y,, r l , m) b k ,
(d) P r e f J 9 ,) = Pref,(Y,), and (e) Pref,(r') = Pref,(r'), i t follows
that (.-02, r z , m) + k. So (9,. fi) + k , since rZ(m) = t,. Also (Y,, fi) t ,
since (n, !,)I= t. Hence, (9,, f,) + t A k . Therefore, under the assump-
tion that (1) holds, we have shown that a, E Pg{.(/,), as desired.
A similar argument goes through when (2) holds. Hence,
(a,,a,, ..., a ,) ~ P , (f ~) x P g : 2 (L ,) x ... x P g i 2 (f n) . It follows that
there is a run with prefix p that is weakly consistent with Pg'' in
context y . Since p is in Pref,+,(R'eP(Pg'l, y)) , and hence in
P r e f , , it follows from the fact that y is nonexcluding that there
is a run with prefix p that is consistent with Pg'z in context y. This
shows that Pref,, , (R r e P (P g f ' , y)) E Pref,, ,(R'"P(Pg'2, y)). Using
symmetric arguments, we get that Pref,, , (R e p (P g g 2 , 7)) c Pref,.
(ReP(Pgfl, y)). Therefore, Pref,+ , (Rep(Pg': y)) = Pref,, ,(Rep(Pg'2, y)),
as desired. 0

We now complete the proof of Theorem 4.7. Recall that we want
to show that the system Yw+' defined by our inductive construction
represents Pg in c j , n). To do this, we need to show that Y w + ' =
Y"'+'. As unfinished business, we also need to prove that the se-
quence Yo, Y', ... is prefix-compatible.

Claim A.3 I f 0 5 m 5 m' < w, then Pref,(Y"') = Pref,(S").

Proof: We proceed by induction on m. The case m = 0 follows
immediately from Lemma A.1. Suppose we have proved the result for
m = k and wish to prove i t for m = k + 1. Suppose that m' 2 k + 1.

t A k .

224

We want to show that Prefk+,(Yrn') = P r e f k + , (Y k + l) . By the induc-
tion hypothesis, Prefk(4""') = P r 4 (Y k) = Preh(4"') = Prtfk(fkkl).
We can now apply Lemma A.2 (where the roles of 4, and 42 are
played by Ykm'-'and fk), since by definition Irep(Pg"" -I, y, n) = 9"'
and IreP(Pg' , y , n) = fk+ '. We then obtain that Pref,. ,(4"") =
Prefk + (Yk+ I), as desired. 0

Incidentally, the reason we named the system in 2 that we began
our fixed-point construction with to be 9-' rather than 4' is that,
as Claim A.3 tells us, the m-ary prefix of 9"' is preserved for m 2 0.
That is, every 9'"' for m' 2 m 2 0 has the same m-ary prefix as 9".
This would not necessarily have been true when m = 0 had we
started our fixed-point construction by taking .go to be an arbitrary
member of 8.

Since Y o , 4', . . . is prefix-compatible sequence of elements in
&t and 2 has limits, it follows that there is a limit 9" of this sequence
in 2. (This is the only place in the proof where we use the fact that
2 has limits.) We now define go+' and 4"+' as before, by letting
9''' = lrep(Pgfe, y , n), for 0 = w and 0 = w + 1. Since Y W E f and
2 is Pg-closed, it follows that 9*+' E 2.

The next claim provides a tool for providing that fW+' = 4"+z.
Let Pg be a knowledge-based program and (y, x) an interpreted
context. Then d(Pg, y, x), as defined after Theorem 4.9, consists of all
interpreted systems Irep(Pg', y , A) where 9 is of the form (92, x). Note
that Ye, for 0 5 0 < w or w < f3 5 w + 2, is in &t(Pg, y, n).

Claim A.4 I f 9,, Y2 E &t(Pg, y, z) and Prefm(Y1) = Prefm(Y2)for all
m, then f, = f,.

Proof Suppose 9, = Irep(Pg':, y, n) and 42 = lrep(pg'i, y , n). Let
r be a run in 4,; we now show that r is a run in fz. Since
Prefm(9,) = Prefm(9J for all m, r is weakly consistent with Pg'; in 11.

Clearly every run in 9, (and, in particular r) is in Y. It follows that
r is consistent with Pg 'i in y . Therefore, r is a run in 9z. By
a symmetric argument, we can show that every run in Y z is in 9,.
Thus, 4, = 9,. 0

Claim A.5 Pref,(9"") = Pref , (9wt2)for all m.

Proof. We first show that Pref,(4"+') = Pref,(S") for each m. The
case of m = 0 follows directly from Lemma A.l. So assume that
m = k + 1 for some nonnegative integer k . By definition of I " , we
know that Prefk(9") = Pref , (Sk) . By the induction hypothesis, we
have Pref , (4"+') = Prefk(fk). By Claim A.3, we have =
Pref , (Yk+') , so Pref,(Y*) = Pre&(Yk) = Pref , (y"+') = P r e f , (Y k + +) .
We can now apply Lemma A.2, where the roles of 9, and 4, are
played by 9" and 9k. It follows that Prefk+l(I'U+l) =
Prefk+,(Y'+'), as desired.

Using the fact that Prefm(9"+') = Prefm(9") for each m, a sim-
ilar argument (where the roles of 9, and 4, in Lemma A.2 are played
by 4"" and Y k) shows that Pref,(YW+') = P r e f , (Y ") for each m.
Therefore, P r e f , (9 " + ') = Pref,(9"+2) for each m. 0

By Claims A.4 and AS, we must have $"+I = Ymt ', as desired.
This completes the proof of Theorem 4.7. (Note that Pref,(f") =
Pref,(9"'+ I) for all m. We cannot, however, apply Claim A.4 to show
that 9" = 9"+', since 4" is not necessarily in kp(Pg, y , A).)

We now give the rest of the proof of Theorem 4.8 (i.e., the "if"
direction). Recall that we want to show that if y is nonexcluding and
Pg depends on the past in REP(Pg, y , n), then there is at most one
system representing Pg in (y , z).

Suppose that 9, and 9, are two systems in REP(Pg, y, n); we
want to show that 9, = 9,. To do this, we want to apply Claim A.4.
Thus, we first show the following claim.

Claim A.6 I f f1 and 9, are two systems in REP(Pg, y, n), then
Pref,(.Y,) = Prefm(Yz)for all m.

Proof. We prove this by induction on m. Since Y1 and 9, are in
REP(Pg, y, x), we know that 9, = I'ep(Pg'l, y, n) and Y2 =
I"p(Pg'2, y, n). The base case m = 0 is now immediate from Lemma
A.l. For the inductive step, assume that Prefm(4,) = Prefm(Y2).

By Lemma A.2, Pref,. ,(IreP(Pgf1, y, x)) = Prefm+ l(i'"p(Pg'z, y , x)).
Therefore, Prefm+1(YJ = Pref;,+l(I"eP(Pgfl, Y, n)) = Prefmt 1

(I"p(Pg'2, y , x)) = Pref,, '(Y2), as desired. 0

As we said above, the fact that 4, = fz now follows from Claim
A.4, since REP(Pg, 7 , n) c f(Pg, y, n). This completes the proof of
Theorem 4.8.

Ronald Fagin is manager of the Foundations of Computer Science
group at the IBM Almaden Research Center in San Jose, California.
He received his B.A. degree in mathematics from Dartmouth College
in 1967 and his Ph.D. in mathematics, with his thesis in finite-model
theory, from the University of California at Berkeley in 1973.

He joined IBM in 1973 at the Thomas J. Watson Research
Center. In 1975, he transferred to the San Jose Research Laboratory
(now the IBM Almaden Research Center) where most of his research
has centered on applications of logic to computer science. In particu-
lar, he has done research in finite-model theory, on the theory of
relational databases, and on theories of knowledge and belief. He has
received four IBM Outstanding Innovation Awards for his contribu-
tions to relational database theory, extendible hashing, reasoning
about knowledge, and zero-one laws. He was co-recipient of the MIT
Press Publisher's Prize for the Best Paper at the 1985 International
Joint Conference on Artificial Intelligence, jointly with Joseph
Halpern. He was Conference Chair for the 1983 ACM Symposium
on Principles of Database Systems and the 1992 Conference on
Theoretical Aspects of Reasoning about Knowledge. He was Pro-
gram Committee Chair for the 1984 ACM Symposium on Principles
of Database Systems and the 1994 Conference on Theoretical
Aspects of Reasoning about Knowledge. He serves on the editorial
boards of Journal of Computer and System Sciences, Chicago
Journal of Theoretical Computer Science, and Methods of Logic in
Computer Science. He was recently named a Fellow of the Institute
of Electrical and Electronic Engineers.

Joseph Y. Halpern received a BSc. in mathematics from the
University of Toronto in 1975 and a Ph.D. in mathematics from
Harvard in 1981. In between, he spent two years as the head of the
Mathematics Department at Bawku Secondary School, in Ghana.
After a year as a visiting scientist at MIT, he joined the IBM
Almaden Research Center in 1982, where he remained as a researcher
until 1996, when he joined the Cornell University Computer Science
Department. He was also a consulting professor in the Computer
Science Department at Stanford University from 1984-1996. From
1988 to 1990, he was the manager of the Mathematics and Related
Computer Science Department at IBM. His major research interests
are in reasoning about knowledge and uncertainty, distributed com-
putation, and logics of programs. He has coauthored five patents and
over 100 technical papers.

Halpern was program chairman and organizer of the first confer-
ence on Theoretical Aspects of Reasoning about Knowledge,
program chairman of the fifth ACM Symposium on Principles of
Distributed Computing, and program chairman of the 23rd ACM
Symposium on Theory of Computing. He received the Publishers'
Prize for Best Paper at the International Joint Conference on Artifi-
cial Intelligence in 1985 (joint with Ronald Fagin) and in 1989, the
1997 Godel Prize (joint with Yoram Moses), and two IBM Outstand-
ing Innovation Awards. He is a Fellow of the American Association of
Artificial Intelligence. He has just become editor-in-chief of Journal
of the ACM. He also serves on the editorial board of em Information
and Computation, Journal of Logic and Computation, em Chicago
Journal of Theoretical Computer Science, and Artificial Intelligence.

Yoram Moses is interested in various aspects of knowledge, coord-
ination and management in distributed and multi-agent systems.

He received a B.Sc. in Mathematics from the Hebrew University
in 1981, and a Ph.D. from Stanford University in 1986 with a thesis

225

on knowledge in a distributed environment. Yoram spent 1986 as
a post-doctoral fellow at M.I.T. In 1987 he joined the Weizmann
Institute, where he spent the next decade except for a sabbatical at
Oxford in 1993-1994. Yoram was the program chair of the 15th
ACM Symposium on Principles of Distributed Computing (PODC
’96) in 1996, and of the Fourth Conference on Theoretical Aspects of
Reasoning about Knowledge (TARK IV) in 1992. He received the
1997 Godel Prize (joint with Joseph Halpern).

Moshe Y. Vardi is the Noah Harding Professor and Chair of
Computer Science at Rice University. His research interests include
databases, complexity theory, multi-agent systems, and design speci-
fication and verification. Before joining Rice University in 1993,

Vardi was a department manager at the IBM Almaden Research
Center, where he received 3 IBM Outstanding Innovation Awards.
He is the author of close to 100 technical papers, as well as a co-
author of the book “Reasoning about Knowledge”. Vardi was the
program chair of the 6th ACM Symposium on the Principles of
Database Systems (1987), the 2nd Conference on Theoretical Aspects
of Reasoning about Knowledge (1988), the 8th IEEE Symposium on
Logic in Computer Science (1993), the International Conference on
Database Theory (1995), and the 4th Israeli Symposium on Theory
of Computing and Systems (1996). He is currently an editor of ACM
Transaction on Databases, the Chicago Journal of Theoretical Com-
puter Science, Formal Methods in System Design, Information and
Computation, the Journal of Computer and System Sciences, and
SIAM Journal on Computing.

