
Distributed Computing (1989) 3: 159-177

0 Springer-Verlag 1989

Modelling knowledge and action in distributed systems*
Joseph Y. Halpern and Ronald Fagin
IBM Almaden Research Center, San Jose, CA 95120, USA

Joseph Y. Halpern received
a B.Sc. in mathematics from the
University of Toronto in 1975,
and a Ph.D. in mathematics
from Harvard University in
1981. In between, he spent two
years as the head of the Mathe-
matics Department at Bawku
Secondary School, in Ghana.
After a year as a visiting scien-
tist at MIT, he joined IBM in
1982. He is currently the man-
ager of the Mathematics and
Related Computer Science De-
partment at the IBM Almaden
Research Center, and a consult-

ing professor in the Computer Science Department at Stanford.
His major research interests are reasoning about knowledge,
distributed computation, and logics of programs. He was pro-
gram chairman and organizer of the first conference of Theoreti-
cal Aspects of Reasoning About Knowledge, program chairman
of the Fifth ACM Symposium on Principles of Distributed
Computing, and was the co-recipient (with Ronald Fagin) of
the MIT Publisher’s Prize for the Best Paper Paper at the 1985
International Joint Conference on Artificial Intelligence.

Ronald Fagin is manager of
the Foundations of Computer
Science group at the IBM Al-
maden Research Center. He re-
ceived his B.A. degree in mathe-
matics from Dartmouth College
in 1967 and his Ph.D. in mathe-
matics, specializing in mathe-
matical logic, from the Univer-
sity of California at Berkeley in
1973. He joined IBM in 1973
at the Thomas J. Watson Re-
search Center. In 1975, he
transferred to the San Jose Re-
search Laboratory (now the
IBM Almaden Research

* Some material in this paper appeared in preliminary form
in Halpern and Fagin (1985). An abridged version of the paper
appeared in Vogt F (ed) Proceeding of Concurrency 88 (Lecture
Notes in Computer Science Vol. 335) Springer-Verlag, 1988,

Offprint requests t o : J.Y. Halpern

~

pp 18-32

Center) where most of his research has centered on applications
of logic to computer science. In particular, he has done research
on the theory of relational databases and, more recently, on
theories of knowledge and belief. He has received three IBM
Outstanding Innovation Awards for his contributions to rela-
tional database theory, extendible hashing, and reasoning about
knowledge. He was co-recipient (with Joe Halpern) of the MIT
Press Publisher’s Prize for the Best Paper at the 1985 Interna-
tional Joint Conference on Artificial Intelligence.

Abstract. We present a formal model that captures
the subtle interaction between knowledge and ac-
tion in distributed systems. We view a distributed
system as a set of runs, where a run is a function
from time to global states and a global state is
a tuple consisting of an environment state and a
local state for each process in the system. This mod-
el is a generalization of those used in many pre-
vious papers. Actions in this model are associated
with functions from global states to global states.
A protocol is a function from local states to actions.
We extend the standard notion of a protocol by
defining knowledge-based protocols, ones in which
a process’ actions may depend explicitly on its
knowledge. Knowledge-based protocols provide a
natural way of describing how actions should take
place in a distributed system. Finally, we show how
the notion of one protocol implementing another
can be captured in our model.

Key words: Knowledge - Action - Standard proto-
col - Knowledge-based protocol - Run - System
- Implementation

... you act, and you know why you act, but you
don’t know why you know that you know what
you do.
- Umberto Eco, The Name of the Rose

1 Introduction
It has been argued (Halpern and Moses 1984) that
the right way to understand and reason about dis-

160 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

tributed protocols is in terms of how the knowledge
of the processes in a system changes. In this paper
we look carefully at the notion of knowledge in
distributed systems. In particular, we consider the
interaction between knowledge and action. Intui-
tively, a process’ actions depend on its knowledge,
and its knowledge changes as a result of actions.
The precise interaction between knowledge and ac-
tion can be subtle, as is demonstrated by the analy-
ses performed in such papers as Chandy and Misra
(1986), Dwork and Moses (1986), Halpern and
Moses (1984), Lehmann (1984), Moses et al. (1986),
Moses and Tuttle (1988). Our aim is to understand
and clarify these subtleties.

We start by providing a formal model of dis-
tributed systems. There are a number of ways that
one can model a system of interacting processes
or agents; it is doubtful that there is a “best” mod-
el. Whereas one approach might lend itself natural-
ly to a certain type of analysis, it might not be
useful for another. Ideally we would like an ap-
proach that is abstract and general, and yet can
be easily specialized to capture important special
cases of systems such as asynchronous message-
passing systems, shared-memory models of parallel
computation (PRAMS), or systems of communicat-
ing human agents or robots. Of course, we also
want the model to be natural and intuitive, and
lend itself easily to most types of formal analysis.

We describe a model here that we believe fulfills
these properties. The model is motivated by pre-
vious work on knowledge-based analyses of proto-
cols (Chandy and Misra 1986; Dwork and Moses
1986; Fagin et al. 1986; Fischer and Immerman
1986; Hadzilacos 1987; Halpern and Fagin 1985;
Halpern and Moses 1984; Halpern and Zuck 1987;
Moses and Tuttle 1988; Neiger and Toueg 1987;
Parikh and Ramanujam 1985) (see (Halpern 1987)
for an overview). In all of these papers (and many
others that have appeared in the literature), a pro-
tocol is identified with a set of runs or executions.
We intuitively think of a run as a complete descrip-
tion of all the relevant events that occur in a system
over time, where for convenience we think of time
as ranging over the natural numbers. At every step
in a run, the system is in some global state, where
a global state is a description of each process’ cur-
rent local state and the current state of the enuiron-
ment. We use the environment component of the
global state to capture everything that is relevant
to the system that is not described by the states
of the processes.

Like the models of (Lynch and Fischer 1981;
Lamport 1986) and others, our model is geared
to describing the behavior of a distributed system
in a natural way. However, unlike Milner’s CCS

(Milner 1980) or Pratt’s notion of pomsets (Pratt
1985), we do not attempt to give a calculus which
allows us to view a protocol as being put together
from other protocols via various combining forms
(such as composition). While we could define ways
of combining simpler systems to form more compli-
cated systems, our framework does not lend itself
naturally to such an approach. We can view the
distinction between our type of formalism and that
of Milner and Pratt as somewhat like the distinc-
tion between Temporal Logic (Pnueli 1977), which
focuses on the analysis of a given system, and Dy-
namic Logic (Hare1 1979; Pratt 1976), which expli-
citly allows programs to be combined into more
complicated programs.

We incorporate knowledge into the model by
using the basic framework described in Halpern
and Moses (1984). Given a global state s and a
process i, there may be many global states consis-
tent with i’s information in s, that is, many global
states s‘ where i has the same local state as in s.
We say that process i knows a fact cp at a certain
point in a run if cp is true at all the points where
cp has the same local state. This notion of knowl-
edge in distributed systems can be easily shown
to satisfy the axioms of the classical modal logic
S5 (see Halpern and Fagin (1985) for more details).
Note that it is an external notion of knowledge.
We do not assume that the processes somehow
think about the world and do some introspection
in order to obtain their knowledge. Rather, this
is knowledge that is ascribed by us (or the system
designer) to the processes. A process cannot neces-
sarily answer questions based on this notion of
knowledge. Nevertheless, this definition has been
shown to capture much of the intuitive reasoning
that is done about protocols. One often hears state-
ments such as “Process p1 should send an acknowl-
edgment because p 2 does not know that p1 got
the message.” The phrase “ p 2 does not know that
p 1 got the message” can easily be given a formal
interpretation in this model. Moreover, it is an in-
terpretation that directly captures the intuitions of
the system designers doing such reasoning.

We define runs, actions, and systems formally
in Sect. 2, and show how to ascribe knowledge to
processes in a distributed system in Sect. 3. The
notion of protocol is discussed in Sect. 4. We view
a protocol as a function from a process’ local state
to actions. This definition of protocol is quite a
general one, and certainly includes all protocols
that can be described in current programming lan-
guages. However, using such standard protocols we
cannot naturally describe situations where a pro-
cess’ actions depend explicitly on its knowledge.
For example, consider a protocol such as “If I

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 161

know that you are planning to attack, then I will
attack too.” This is an example of what we call
a knowledge-based protocol. Knowledge-based pro-
tocols give us a way to directly describe the rela-
tionship between knowledge and action, and thus
provide a convenient high-level description of what
a process should do in certain situations. We dis-
cuss knowledge-based protocols in detail in
Sect. 5.’ In Sect. 6, we consider the cheating hus-
bands problem, informally discussed in Moses et al.
(1986), and show how it can be captured in our
framework. This example also shows how the same
knowledge-based protocol corresponds to distinct
standard protocols in different systems. In Sect. 7
we discuss what it means for one protocol to imple-
ment another in our context. We conclude in Sect. 8
by suggesting some directions for further research.

2 Runs, actions, and systems
As we mentioned in the introduction, we identify
a system with its set of possible runs, where a run
is a description of the system’s behavior over time.
But how can we best describe a system’s behavior?

In most papers on distributed systems, two key
notions that appear repeatedly are states and ac-
tions. Consider a very simple distributed system,
consisting of only one process running a sequential
program. As Lamport points out [Lam85], a run
of this program can be viewed as a sequence

so 2% s, 3 s2 2 ...
where so, sl, s!, ... are states and a,, al, az , ... are
actions. In this view a process is an automaton,
which is always in one of a (possibly infinite)
number of internal states. We do not make any
additional assumptions about the structure of these
internal states, although, of course, there will in-
variably be extra structure once we consider more
concrete applications. In this framework, an action
is simply a state transformer, a function mapping
one state into another.

We want to extend this viewpoint to more com-
plicated systems. If we have, say, n processes in
the system, the state of the system will clearly have
to include the state of each of the processes. But,
in general, more than just the state of the processes
may be relevant when doing an analysis of the sys-
tem. If we are analyzing a message-based system,
we may want to know about messages that have
been sent but not yet delivered or about the status
of a communication link (such as whether it is up
or down).

‘Some of the material in Sect. 2-5 appeared in preliminary
form in Halpern and Zuck (1987)

Motivated by these observations, we concep-
tually divide a system into two components: the
processes and the environment, where we view the
environment as “everything else that is relevant ”.
We define a global state of a system with n pro-
cesses or agents to be an (n + 1)-tuple (s,, s,, . . . , s,J,
where s, is the state of the environment and si is
the (local) state of process i.

The way we divide the system into processes
and environment will depend on the system being
analyzed. In a message-based system, we could
view the message buffer as one of the processes
or as part of the environment. If it is viewed as
a process, then its state could encode which mes-
sages have been sent but not yet delivered. Similar-
ly, we could view a communication line as a pro-
cess¶ whose local state might describe (among other
things) whether or not it is up, or we could have
the status of the communication lines be part of
the environment.

As in the single-process case, actions change
the global state of the system. But, unlike the sin-
gle-process case, we can no longer look at individ-
ual actions in isolation. Actions performed simulta-
neously by different components of the system may
interact. For example, we must explain what hap-
pens when two processes simultaneously try to
write to the same register. To this end, we define
a joint action to be a tuple (ae, a , , ..., a,), where
a, is an action performed by the environment, and
a, is an action performed by process i . We associate
with each joint action a global state transformer.
If z is the function that associates a global state
transformer with every joint action, then
z(a, , a , , ..., a,) (g) is the global state that results
when the actions a,, a , , . . . , a, are performed simul-
taneously by the environment and the processes
when the system is in global state g . Note that
we allow the environment, not just the processes,
to perform actions in our framework. Although
we do require that processes perform an action
at every step, this is not a serious restriction. We
can use a null action to capture the possibility that
no non-trivial action is performed. It may also
seem that we are assuming that all actions are
atomic, but this is not the case. We return to this
point in our examples below.

We can now extend the picture described above
for the single-process case by viewing a run as a
sequence of global states, joined by arcs labelled
by a joint action. It turns out that for many of
our applications we can (and do) essentially ignore
the actions and “erase” them form the picture.2

It is interesting that in Milner’s CCS the dual approach is
taken; the states are erased, leaving only the actions

162 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

Formally then, we take a run to be a function from
“real time” to global states. For convenience, we
take “real time” here to range over the natural
numbers. We could perfectly well have taken time
to range over the real numbers or, in fact, any
other linear order. We do not assume that processes
in the system necessarily have access to real time;
if they do, this would simply be encoded as part
of their local state.

Let L, be a set of possible (local) states for the
environment, and let Li, i = 1, ... , n, be local states
for each of the processes. Let YE L, x L, x . . . x L,
be a set of global states. A run over Y is a function
from the natural numbers to 9. Thus a run over
Y can be thought of as a sequence of global states.
Intuitively, r(m) is the global state of the system
at time m in run r. If r (m) = (s,, sl, . . . , s,,), we define
ri (m)=si for i = 1, ... , n. We refer to a pair (r, m)
consisting of a run r and time m as a point; thus,
ri(m) is process i’s local state at the point (r, m).
A system over Y is a set of runs over 9. We say
that (r, m) is a point in system 9 if r E 9 . We remark
that, in practice, the set of runs making up the
system will be chosen by the system designer or
the person analyzing the system, who presumably
has a model of what the possible executions of the
protocol are.

There are two major assumptions we have
made here that, while relatively common, are not
made in a number of other papers; namely, that
we can view time as a linear order, rather than
viewing it as just a partial order, and that it makes
sense to talk about the global state of the system.
While these assumptions can be relaxed, they make
our presentation far easier, and they seem to be
appropriate for the systems we wish to analyze.
(See Lampert (1985) and Pratt (1982) for some dis-
cussion about and arguments against these as-
sumptions; see Panangaden and Taylor (1988) for
a discussion of how knowledge can be captured
in a situation where we have partial orders.) There
is a third assumption that we make for simplicity,
namely, that there is a fixed set of n processes in
the system. We could easily extend the notion of
global state to allow for processes leaving and join-
ing the system; we do not do this in order for
our main points to come across clearly.

We view runs here as infinite objects, describing
events over all time. It is occasionally convenient
to consider finite runs, which are functions from
an initial segment of the natural numbers to global
states. Given a run r E 9 , let TImr the restriction of
r up to time m, to be the finite run with domain
(0, . . . , m} that agrees with r on their common do-
main. We say that p is a prefix of r if p = rim for

some m 2 0 . If a finite run p has domain (0, ... , m},
we say that its length, denoted lp \ , is m. (We can
think of IpI as the number of transitions in p .) Giv-
en a system 9, let Pref(9) consist of the runs in
9 together with all the finite prefixes of runs in
9. If p, p’~Pref(9), then we say that p is a prejix
of p‘, and write p<p’, if for some r E 9 and m l m ‘ ,
we have p = r I,,, and p’ = r I m , .

Systems can often be characterized by the types
of actions that are allowed. Typical actions in a
system might include reading and writing a shared
variable, sending a message, receiving a message,
and local computations. How these actions change
the global state of the system will depend to some
extent on the details of how we model the pro-
cesses’ local states and the state of the environment.
At this point, the choice of how to model a system,
including choosing the state space for the processes
and the environment and deciding on the set of
runs that make up the system, is more of an art
than a science. We give some examples below (and
in later sections of the paper) to show how this
formalism can be used to capture a number of situ-
ations that arise in distributed and parallel com-
puting.

Example 2.1. In an asynchronous message-based
system, we assume that there are three types of
actions : sending messages, delivering messages, and
local computations. We assume that the environ-
ment state is simply a description of the message
buffer: those messages that have been sent but not
yet delivered. When a process sends a message, the
effect of this action is to put the message (marked
with its intended recipient) into the message buffer,
and perhaps to change the sending process’ state
so as to record that the message has been sent.
The action of delivering a message is performed
by the environment; it results in that message being
removed from the message buffer and the state of
the recipient process perhaps being changed in
some way to record the fact that it has received
a message. Local computations affect only the state
of the process performing the action.

By assuming that the environment delivers only
messages that are in its buffer and removes a mes-
sage once it is delivered, we have made a number
of implicit assumptions about message delivery. Al-
though messages can come out of order, we do
not allow messages to be corrupted or duplicated.
Moreover, the environment cannot deliver a mes-
sage that was never sent (although it is possible
that a message that was sent will never be deliv-
ered). Of course, we can easily alter the model to
accommodate all of these possibilities. For exam-

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 163

ple, if we want to allow messages to be duplicated
(so that the same message can be delivered a
number of times), we simply change the semantics
of message delivery so that delivering a message
does not result in that message being removed from
the buffer. We can allow for corruption in a
number of ways. Perhaps the most elegant is to
view the delivery of a message as a nondeterminis-
tic action, which can transform a process’ state in
a number of ways (intuitively, one corresponding
to each of the ways the message could be cor-
rupted).

There are a number of other restrictions on
message delivery that one frequently wants to cap-
ture. For example, we may want to require that
all messages are eventually delivered, or that a mes-
sage is either delivered within some time T or not
delivered at all. We could capture these restrictions
in our framework in several ways. One approach
is to take the system to consist only of runs where
the restriction is met. Another is to have the envi-
ronment’s state include the time, and to attach a
delivery time to each message in its buffer. Thus,
when a process p sends the message m to q, the
effect of this action is that the tuple (p, m, q, T’)
is inserted into the message buffer, where T’ is the
time the message will be delivered, chosen (nonde-
terministically) to be consistent with the assump-
tions about message delivery. Still other ap-
proaches are possible.

We have not been specific here about exactly
how the state of a process changes as a result of
sending or receiving messages. A common choice
made in the literature is to assume that the process’
state contains a complete record of all messages
sent and delivered. Of course, this choice assumes
an unbounded number of possible states in general,
so is not always realistic. 0

Example 2.2. In the previous example we implicitly
assumed that processes were always enabled, so
that whenever a process tried to send a message,
the message was actually sent. It is often convenient
to assume that processes are not always enabled,
but rather are scheduled by a scheduler.

We can model the effect of the scheduler by
augmenting the set of actions that the environment
can perform to include actions of the form “pro-
cesses in I are not scheduled”, where I is a subset
of the set of processes. If process i sends a message
at the same time that the environment performs
a “processes in I not scheduled” action, and ieZ,
then the action is disabled (the message is not add-
ed to the message buffer, nor is process i’s state
changed to record the fact that the message is sent).

Alternatively, we can assume that the environ-
ment’s state includes a tuple (x l , ..., x,) such that
xi= 1 if i is currently enabled and 0 otherwise. If
i tries to perform a send action in a global state
where it is not enabled, then the action has no
effect. Clearly these two ways of modelling a sche-
duler are essentially equivalent.

One often wants to capture various fairness
properties of a scheduler, such as the fact that a
process is scheduled infinitely often. This is best
done by restricting the set of runs of the system
to ones where the appropriate fairness property
holds. 0

Example 2.3. Consider a CRCW PRAM (concur-
rent-read concurrent-write parallel random access
machine) (Fortune and Wyllie 1978). In this case
a system consists of n processes together with an
m-cell shared memory. Computation proceeds in
synchronous rounds. Each computation step con-
sists of three phases, each of which takes one round.
In the first phase, every process may read one mem-
ory cell. In the second phase, every process may
perform local computation. In the third phase,
every process may attempt to write into a cell of
shared memory. Any number of processes may at-
tempt to simultaneously read or write from the
same memory cell. There are a number of mecha-
nisms for resolving write conflicts that appear in
the literature. For example, in the MINIMUM
model of Goldschlager (1982), priority is given to the
process of lowest index; in the ARBITRARY mod-
el of Vishkin (1983), an arbitrary process succeeds.

Once we fix a mechanism for resolving write
conflicts, it is straightforward to model this situa-
tion in our framework. The shared memory is the
environment component of the global state. We
assume that each process’ state includes a special
read variable r. During the read phase, a process
can perform only the null action A (we always use
A to denote the special null action), or an action
of the form read(i), i = 1, ... , m, where read(i) means
that the value of the local read variable r should
be set equal to the contents of cell i of shared mem-
ory. The environment performs the A action at the
read phase (and in every other phase). Since read
actions do not interfere with each other, the effect
of performing a tuple (A , ctl, . . . , a,) of actions,
where ctj is either read(i) or A, is simply the result
of performing each of these actions separately, in
any order. Similarly, a local action performed by
process i changes just its local state, with no effect
on any other local states. Again, there is no inter-
ference between the local actions performed by the
processes in the computation phase.

164 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

In the write phase, a process can perform either
a A action or one of the form write(i, u), i = 1, . .. , m.
If, for a fixed value of i, only one process performs
a write(i, u) action, the result is that the value u
is written into cell i in the environment; the local
state of the process performing the action changes
to record the fact that a write was attempted. If
more than one process performs a write(i, v) action,
then the result depends on how we choose to re-
solve write conflicts. For example, in the MINI-
MUM model, the resulting value is that written
by the process of lowest index. In the ARBI-
TRARY model, the result of a write conflict is
nondeterministic. Note that a process will not
know whether it has succeeded after a write action
in the ARBITRARY model. This is reflected in
the fact that its state changes in the same way
whether or not the write succeeds. 0

This example should already indicate the flexibility
of this formalism; it also serves to point out that
the state transformer associated with a joint action
cannot necessarily be computed by just somehow
composing the effects of each of the individual ac-
tions.

Example 2.4. In the previous example, reading and
writing were viewed as atomic, taking place in one
round. We could easily modify this example to al-
low non-atomic reads and writes. The intuition
here is that although we may want to think at
a high level of the reads and writes as taking one
unit of time, they may in fact be implemented by
a sequence of lower level actions, and thus take
place over a period of time. This means we will
have to describe what happens if a read starts dur-
ing one write and finishes after that write (possibly
after several other writes have completed and dur-
ing yet another write). Again, a number of choices
are possible (cf., Lamport 1986). We describe one
here.

The basic idea is quite simple: the effect of a
read action is now to indicate that the process has
begun trying to read. The environment decides
when the read is complete (by performing a
read.ended action). Similar comments hold in the
case of writing. Suppose for simplicity that we are
trying to model an n-reader, 1-writer register. This
means that exactly one process can write to that
register, and n processes can try to read it. For
definiteness, let us assume that we have n + 1 pro-
cesses; processes 1, ..., n are the only ones that can
read the register and n+ 1 is the only process that
can write into it. We take the environment state
now to consist not only of the value of the register,

but also of a description of which processes are
currently trying to read or write into the register,
the value that is currently being written (if any),
and the value currently in the register. Thus we
can view the environment’s state as an (n + 3)-tuple
(xl, ..., x,+~). Wetakexi , i=l , ..., n,tobe lifpro-
cess i is currently trying to read, and 0 otherwise.
Similarly, x,+ is 1 if process n + 1 is currently try-
ing to write, and 0 otherwise. We take x , + ~ to
be the value that n+ 1 is currently trying to write
if process n+ 1 is trying to write. Finally, x , + ~ is
the current value of the register. Similarly, we as-
sume that process i, i = 1, .. . , n, has a special vari-
able reading that is 1 if process i is trying to read,
and 0 otherwise. Similarly process n + 1 has a writ-
ing variable.

We assume that a process can perform a read
action only if its reading variable is set to 0 (i.e.,
it cannot start reading while it has another read
in progress). When process i, i = 1, . . . , n, performs
a read action, its effect is simply to set the xi com-
ponent to 1 and to set the reading variable in its
local state to 1. Thus the fact that it is reading
is recorded in both its state and the environment’s
state. Similarly, when process n+ 1 performs a wri-
te(v) action, which it can only do if its writing vari-
able is 0, its effect is simply to set x, + to 1 and
x , + ~ to u and to set its writing variable to 1. Since
reading and writing actions are not assumed to
be atomic, they can go on for a number of steps.
The environment can now perform actions which
we call read.ended(i), i = 1, ... , n, and write.ended.
As the names suggest, these actions signal that a
read (resp. write) action has ended. The action
read.ended (i) can be performed only if i is currently
trying to read the register, i.e., if xi = 1. By recording
in the environment state the fact that i is reading,
we allow the environment’s actions to depend only
on its state. Had we not done this, the environ-
ment’s actions would also have to depend on the
state of the processes. The effect of read.ended (i)
is to set x i to 0, set i’s reading variable to 0, and
set i’s read variable I to x , + ~ , the current value
of the register. Similarly, write.ended, which can
only be performed if x, + = 1, sets both x, + and
process n + 1’s writing variable to 0, and sets x, +

to%+,. 0

It should be clear by now that many naturally-
occurring systems can be captured in this frame-
work in a straightforward way. We remark that
not all aspects of systems behavior can be defined
in terms of runs. In particular, the “branching be-
havior” of programs cannot be defined (although
it can be defined, for example, in the framework

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 165

of CCS (Milner 1980)). The branching behavior of
a process becomes visible only when it is composed
with other processes. Since our concern in applying
the tools of knowledge is usually in analyzing par-
ticular protocols, rather than composing them, this
branching behavior will not be of great concern
to us.

3 Incorporating knowledge
It is easy to incorporate knowledge into our frame-
work. As we mentioned in the introduction, the
intuition we want to capture is that a process
knows a given fact at a certain point in a system
if that fact is true at all other points in the system
where the process has the same local state. To
make this precise, suppose we have a set @ of primi-
tive propositions, which we can think of as describ-
ing basic facts about the system. These might be
such facts as “the value of the variable x is 0”,
“process 1’s initial input was 17”, “process 3 sends
the message m at round 5 of this run”, or “the
system is deadlocked”. In practice, basic facts de-
pend only on the global state, although we do not
make this a requirement (so that we allow a fact
such as “the protocol eventually terminates” to
be a basic fact, although its truth might depend
on a future global state). In fact, in many cases
a basic fact p will be local to a particular process
i, so that the truth of p depends only on the local
state of i.

Starting with the basic facts in @, we can extend
the language to have formulas that express con-
junctions, negations, and statements about knowl-
edge. Thus, if cp and 11/ are formulas, then so are
cp A t+b, i t,b, and K i 11/ (read “process i knows I,$”).

In order to assign truth values to these formulas,
we need to first assign truth values to the basic
facts in Qi.

Definition. An interpreted system 9 consists of a
pair (9, n), where 9 is a system and n assigns truth
values to the basic facts at each point in 9, so
that for every p ~ @ and point (r, rn) in 9, we have
n(r, rn) @)€{true, false}. We say that the point (r, rn)
is in interpreted system 9 =(a,n) if reB.

Given an interpreted system 4=(9, n) and a point
(r, rn) in 4, we define a satisfiability relation !=
between the tuple (3, r, rn) and a formula cp. For
a basic fact p E @, we have
(9, r, rn)t= p iff n(r, rn) (p) = true.

We extend the k= relation to conjunctions and ne-
gations in the obvious way:

(4, I, m)!= 1 cp iff (9, r, m)+ cp

(9 , r ,m)kcpA* iff (Y,r,rn)bcp
and (4, r, rn)k $.

In order to capture the intuition described
above for formulas involving knowledge, define
two points (r, rn) and (r’, rn‘) to be indistinguishable
to i, written (r, rn) N i(r’, rn’), if ri(rn)= r;(rn’). Thus
(r, rn) and (r’, m’) are indistinguishable to i if i has
the same local state at both of these points. Now
define

(9, I , rn)k Kicp iff (9, r’, rn’)l=cp
for all r’ and rn’ such that (Y, rn) - i(r’, rn’).

This interpretation of knowledge is well known
to satisfy the axioms of the modal logic S5. In par-
ticular, it satisfies the axioms:

K i V J V
(KiV ~ K i (q 5 1 1 /)) * K i $
Kicpp=.KiKiq
i Ki cp* K i i Ki cp,

together with the rule of inference:

From cp infer K i cp

This first of these axioms says that a process
knows only true facts. The next one says that a
process’ knowledge is closed under logical implica-
tion. In combination with the rule of inference,
which says that processes know all valid formulas
(i.e., formulas that are true at every point), this says
that we can view processes as “perfect reasoners”.
Although this property may be inappropriate for
analyzing the notion of knowledge as applied to
humans, recall that we are considering here an ex-
ternal notion of knowledge, one ascribed by the
system designer to the processes. We do not assume
that the processes compute their knowledge in any
way. The last two axioms are axioms of introspec-
tion. They say that a process knows what it knows
and knows what it does not know. It can be shown
that these axioms and inference rule, together with
the axioms and inference rules of propositional log-
ic, give a complete axiomatization for the logic (see
Halpern and Moses (1985) for a discussion and
proof).

We can easily extend this logic further to cap-
ture the important notion of common knowledge
(see Halpern and Moses (1984) for further discus-
sion and applications to distributed systems). Intui-
tively, a group G has common knowledge of a fact
cp if everyone in G knows cp, everyone in G knows
that everyone in G knows q, etc. In order to deal
with this, we add two further operators to the logic,

166 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

E , and C,, for each subgroup G of processes, read
“everyone in the group G knows cp” and “cp is
common knowledge among the group G”, respec-
tively.

(M,s)!==E,cp iff (M , s)l==Kicp for all i E G

(M , ~)!=C,cp iff (M , s)i=Ekcp for all k > 1,

where Ekcp is an abbreviation for E G q , and Ek,+’cp
is an abbreviation for E , Ek,cp.

It is well known (again, see Halpern and Moses
(1985)) that we can get a complete axiomatization
for this extended language by adding the axioms:

E G c p Kiq
ieG

(cGcp A cG(qp=>$))*cG$

cGcp EG(cp A cGV),

together with the rule of inference:

From q* E , cp infer (p* C, cp.

The first axiom just describes the semantics of
the E , operator, while the second corresponds to
the analogous property for knowledge. The third
axiom (called the fixed point axiom) captures the
fact that C,cp is a solution to the fixed point equa-
tion X-E, (cpr \X) . (Actually, in a precise sense
it is the greatest such solution; cf. Halpern and
Moses (1984).) The rule of inference is called the
induction rule, because using the fact that cp- E,cp
is valid, we can show by induction on k that
cp*Ek,cp is valid for all k > 1.

We can further extend the language so that we
can talk about time, by adding standard temporal
operators like of‘always”), 0 (“eventually”), and
U(“unti1”). This allows us to make statements like
“process 3 will eventually know the value of vari-
able x”. Doing this gives us quite a rich language
for reasoning about knowledge and time. We re-
mark that in general, the temporal operators will
be used for reasoning about events that happen
along a single run (there is no deadlock, eventually
the transaction completes, etc.), while the knowl-
edge operators will be used for reasoning about
events that might be happening on other runs,
which could be the real run, as far as a given pro-
cess knows.

If we reason about knowledge and time, we
might want to make some assumptions about the
relationship between knowledge and time. We dis-
cuss two typical assumptions here, referring the
reader to Halpern and Vardi (1989) for more details
(as well as a discussion of the impact of these as-
sumptions on the complexity of the validity prob-
lem).

A (completely) synchronous system 9 is one
where, intuitively, there is a global clock and the
clock time is part of each process’ state. Thus, all
processes “know” the time. Formally, 9 is a syn-
chronous system if for all processes i and points
(r, m), (r’, m’) in 9, if (r, m)- i (r’ , m’), then m=m’.
We say that an interpreted system 9 = (B, n) is syn-
chronous if B is synchronous. Note that a system
is synchronous exactly if a process can always dis-
tinguish points in the present from points in the
future.

We say that processes do not forget if, intuitive-
ly, their set of possibilities always stays the same
or decreases over time (this notion has also been
called unbounded memory (Halpern and Vardi 1986)
or cumulative knowledge (Fagin et al. 1986; Moore
1985). To make this precise, we define process i’s
state sequence at the point (r, m) to be the sequence
of local states it has gone through in run r up
to time m, without consecutive repetitions. Thus,
if from time 0 through time 4 in run r process
i has gone through the sequence (s, s, s‘, s, s) of
local states, then its state sequence at (r, 4) is
(s, s’,s). We say that process i does not forget in
system 9 if at all points (r, m) and (r’, m’) in 9,
if (r, rn)ff i (r’ , m’), then process i has the same state
sequence at both (r, m) and (r’, m’). Thus process
i does not forget if it “remembers” its state se-
quence. It is easy to see that no forgetting requires
an unbounded number of local states in general
(one for each distinct state sequence). A typical sit-
uation where we obtain no forgetting is if a process
records its complete message history, as discussed
in Example 2.1. However, as we pointed out, this
assumption is often unreasonable in practice.

4 Protocols
Processes usually perform actions according to
some protocol (or algorithm, or strategy; we tend
to use the words interchangeably). Intuitively, a
protocol for process i is a description of what ac-
tions process i takes as a function of its local state.
To make this precise, we fix a set Ai of actions
for process i, and define a protocol over state space
Li to be a function (possibly probabilistic) from
Li to nonempty sets of actions in A i . The fact that
a protocol maps a local state into a set of actions
is used to capture the possible nondeterminism of
the protocol. As we shall see, at any step only one
of the possible actions of the protocol is actually
performed. Of course, a deterministic protocol
maps states to singleton sets of actions. For now
we leave the set Ai unspecified, but in typical appli-
cations it consists of a small set of basic actions

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 167

such as reading a data element, writing a value,
sending a message, or making a move in a game.

Just as it is useful to view the environment as
performing an action, it is also useful to view the
environment as running a protocol. We can use
the environment’s protocol to capture the possibili-
ty that messages are lost or that messages may
be delivered out of order; input from the outside
world can be modelled by messages from the envi-
ronment. Thus, we fix a set A , of actions for the
environment, and define a protocol for the environ-
ment to be a function from L, to nonempty sets
of actions in A,.

We remark that our notion of protocol is quite
general. For example, we do not constrain the func-
tion defining the protocol to be computable, al-
though we could easily do so. But note that in
contrast to, for example, Fischer and Immerman
(1986), we require a protocol to be a function from
local states to sets of actions, rather than a function
on global states. It is crucial to most of our knowl-
edge-based analyses that what a process does can
depend only on its local state, and not on the whole
global state.

We define a joint protocol P to be a tuple
(e, PI, ... , P,) consisting of a protocol P, for the
environment, and protocols q, i = 1, . . . , n for each
of the processes. When analyzing a protocol, it is
often convenient to associate with it a system,
which intuitively consists of the set of runs of the
protocol. In order to associate a set of runs with
the joint protocol P = (P , , 4, ..., c), where P,:
Le+ 2A‘ - 8 and 4: Li+2Ai-@, i = l , ..., n, fix a
set 3 z L , x L, x ... x L, of global states, a set
3 0 ~ 3 of initial states, and a transition function
z that associates with every joint action
(ae, a,, ..., u ,) E A , x A , x ... x A, a global state
transformer z(a,, a,, ..., a,), i.e., a function from 9
to 3. We say that a run r is consistent with the
joint protocol P if

1. r (0)E30(so r(0) is a legal initial state).
2. For all m 2 0, if r (m) = (s,, sl, . . . , s,), then there is a

joint action (a,, a,, . .. , a,)~P,(s,) x 4 (s,) x _ _ . x
P,(s,) such that r (m + l)=z(ae , a,, ..., a,) (r(m))
(so r (m+ 1) is the result of transforming r(m) by
a joint action that could have been performed
from r(m) according to P).

We use B (P) to denote the set of all runs consis-
tent with the joint protocol P. It is usually the
system B (P) we refer to when we speak of “the
runs of protocol P”. However, if we are given some
global constraint on the system (such as a fairness
constraint), then we would consider the subset of
9 (P) satisfying that constraint.

5 Knowledge-based protocols
While we have argued that our notion of protocol
is sufficiently general to include all algorithms that
can be written in any programming language cur-
rently in use, it cannot be used to give a high-level
system-independent description of the relationship
between knowledge and action. This issue is per-
haps best understood by considering the type of
problems that one sees in puzzle books (for exam-
ple, Smullyan (1978), where a man meets someone
on the road who is known to be either a Truth-
teller (who always tells the truth) or a Liar (who
always lies). The problem is to determine which
he is by asking some questions. The rules of the
game are that in response to a question of the form
“Is cp the case?”, the Truth-teller answers “Yes”
if cp is true and “No” if cp is false. Similarly, the
Liar answers “Yes” if cp is false and “No” if cp
is true.

A closer inspection shows that these rules are
not well specified. Suppose the Truth-teller is asked
about cp and he doesn’t know whether cp is true
or false. Then he cannot follow this protocol appro-
priately (unless he manages to guess right). It seems
clear that we should reinterpret these rules so that,
when asked about (p, the Truth-teller responds
“Yes” if he knows that (p is true, “NO” if he knows
that (p is false, and “ I don’t know” otherwise. The
Liar is similarly con~trained.~

With this reinterpretation, both the Truth-teller
and Liar can be viewed as running protocols with
explicit tests for knowledge. For example, if we take
the Truth-teller to be process 1, then we can view
his protocol P, as a function that, in a state where
the question cp is asked, has the form

if K , (p then say “Yes”
else if K l i p then say “No”
else say “ I don’t know”.

This cannot be viewed as a standard protocol, since
the truth value of the test K,(p cannot be deter-
mined by looking at process 1’s local state in isola-
tion. Its truth depends on the truth of cp at other
points (all the ones with global states that process
1 cannot distinguish from the current global state).
Thus, whereas a standard protocol for process i
is a function from i’s local states to actions, we
can view a knowledge-based protocol for process
i as a program that contains statements of the form

It is not clear exactly how the Liar should respond if he doesn’t
know whether cp is true or false. In the solutions to such Truth-
teller/Liar puzzles, the questions are always carefully chosen
so that the person answering knows the answer; thus, this issue
does not arise

168 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

“if Ki cp, then a else if Ki cpz then a’ ...”, where
a and a’ are actions in Ai. We then need to have
an interpreted system to decide whether the tests
are true.

Although it is useful to think of a knowledge-
based protocol as a function from states to if-then-
else statements with tests for knowledge, it is techn-
ically more convenient to view it as a function from
a pair consisting of a local state and an interpreted
system to actions. (We essentially took the former
approach in Halpern and Fagin (1985), where the
notion of knowledge-based protocol was intro-
duced; the approach we take here to the definition
of knowledge-based protocols was taken in Neiger
and Toueg (1987).) Formally, fix a set ’3 c L, x L,
x ... x L, of global states and a set Ai of actions
for process i, and let I N T (9) be the set of all inter-
preted systems 4=(&?, n) such that for every run
r e g , all the global states in r are in 9. Then a
knowledge-based protocol for process i is a func-
tion 8 from L i x I N T (9) to nonempty sets of ac-
tions in Ai. For example, suppose the Truth-teller
is in state L after being asked the question “Is cp
the case?”. Then we have

p , (I,$) =
say“Yes” if (4,r,m)t=cp for all points (r,m)

if (X , r , m) + i p for all points (r,m)
where rl (m) = L

where r l (m) = L
say “No”

say ‘‘I don’t
know ” otherwise.

Note that the only difference between the for-
mal definition of knowledge-based protocols and
standard protocols is that a knowledge-based pro-
tocol takes an interpreted system as one of its argu-
ments. Once we fix an interpreted system 4, then
a knowledge-based protocol reduces to a standard
protocol. Thus we can view knowledge-based pro-
tocols as functions from interpreted systems to
standard protocols. A standard protocol can be
viewed as a special case of a knowledge-based pro-
tocol where the function is independent of the in-
terpreted system.

Like our definitions for standard protocols, we
can define a joint knowledge-based protocol to be
a tuple (e, 4, .. . , P,) of knowledge-based proto-
cols, all defined with respect to the same set $9
(i.e., there is a set 9~ L, x L, x ... x L, such that
P, is a function from L, x I N T (9) to nonempty sets
of actions in A , and 8 is a function from Li
x I N T (9) to nonempty sets of actions in Ai, i
- - 1, . . . , n). We would also like to define the notion
of a run being consistent with a knowledge-based

protocol, in analogy to our definition for standard
protocols. In order to do this, we must also specify
an interpreted system, since a knowledge-based
protocol takes an interpreted system as one of its
arguments. Given a joint knowledge-based proto-
col P as above, a set 93,, G 93 of initial states, a tran-
sition function z, and an interpreted system 4, we
define a run r to be consistent with P relative to
4 just as we defined the notion of a run being
consistent with a standard protocol P, except that
now the joint action (a,, a,, ..., a,) in clause (2)
is in P,(s,, 9) x Pl(s,, 4) x ... x P,(s,, 4) rather
than P,(s,) x PI (s,) x . . . x P,(s,). An interpreted sys-
tem 4=(&?, n) is consistent with knowledge-based
protocol P if every run rE&? is consistent with P
relative to 9.

This completes our description of standard pro-
tocols and knowledge-based protocols. A detailed
example of how the semantics of both standard
and knowledge-based protocols can be specified
in this framework is given in Halpern and Zuck
(1987).

The definition of an interpreted system being
consistent with a knowledge-based protocol has
some inherent circularity. This can perhaps be bet-
ter seen if we define Con(P,(%?, n)) to be the set
of runs consistent with knowledge-based protocol
P relative to the interpreted system S=(&?, n).
Then 3 is consistent with P if B s C o n (P , (9 , n)).
Given this circularity, it may not seem too surpris-
ing that, in contrast with the situation for standard
protocols, we cannot talk about the interpreted sys-
tem consistent with a knowledge-based protocol.
There may not be any interpreted systems consis-
tent with a given knowledge-based protocol; more
often, there will be many interpreted systems con-
sistent with a given knowledge-based protocol.

This contrast between standard protocols and
knowledge-based protocols is quite relevant when
proving that these protocols are correct or satisfy
certain specifications. In order to prove that a stan-
dard protocol P satisfies certain specifications, we
typically prove that these specifications hold for
all the runs in 9 (P) (or perhaps all the runs satisfy-
ing some constraint such as fairness). In order to
prove that a knowledge-based protocol P satisfies
certain specifications, what we prove is that these
specifications hold for all the interpreted systems
consistent with P (cf. the proofs in Halpern and
Zuck (1987)).

We would often like to think of a knowledge-
based protocol as specifying a unique set of runs.
To understand what may prevent us from doing
so, fix a knowledge-based protocol P, a set 9 of
global states, a subset $9, ~ $ 9 , and a transition func-

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 169

tion z. The obvious way of constructing a set of
runs is to proceed by constructing all prefixes of
consistent runs of length m, by induction on m.
Suppose we have managed to construct the prefixes
of length m. In order to know what action to per-
form next at a certain point (r, m), we must know
the result of a test of the form K , q . However, this
result depends on the truth value of rp at other
points where i has the same state as the current
point. Thus, there are two reasons why we cannot
determine the truth value of K , q . The first is that
there may be points in the future, that we have
not yet constructed, where i has the same local
state as it does at (r, m). And even if i can always
distinguish points in the present from points in the
future, it may be the case that the truth of rp itself
depends on the future (for example, q~ may be of
the form 0 p , so it is true only if p eventually holds).

Recall that in a synchronous systems, processes
have access to a global clock, so they can always
distinguish points in the present from points in the
future. Thus, we can avoid the first problem by
restricting attention to synchronous systems. If we
also restrict attention to knowledge-based proto-
cols whose actions depend only on the past, we
can avoid the second problem. Once we do this,
we still do not get a unique set of runs correspond-
ing to the knowledge-based protocol, but we do
get in some sense a canonical set of runs, which
we can think of as the set of runs determined by
the knowledge based protocol. We now make this
intuition precise.

Suppose we are given a joint knowledge-based
protocol P =(&, Pl, . . . , P,), defined with respect to
a set 9 of global states and a transition function
z. Since we now must consider interpreted systems
rather than just systems, we must also have a func-
tion n that assigns truth values to the primitive
propositions in our language. We assume (as is the
case in most real-world protocols) that the truth
value of a primitive proposition depends only on
the global state. Thus, we assume that we have
a function CJ such that for each global state g E 9
and each primitive proposition PEG, we have
a(g) (p) ~ {true, false}. Given an interpreted system
4=(9, n), we say that n is based on CJ if
n(r, m)=a(r(m)) for all points (r, m) in 9. For the
remainder of this section, we restrict our attention
to synchronous interpreted systems 4 = (9, z) in
ZNT(9) where z is based on c.

Since we restrict attention to synchronous sys-
tems in any case, we assume for simplicity that
process i’s local state is of the form (m, ...), where
the first component is the time; similarly for the
environment’s local state. Thus, the global state

at a point (r, m) of a synchronous system is of the
form ((m, . . .), (m, . . .), . . . , (m, . . .)). We assume that
the global states in 9 are of this form. We further
assume that our transition function z has the prop-
erty that an action always result in an increase
in time by one unit. Thus, for any joint action
(a l , . . . , a,), we have
z(a, , ..., a,) ((m, ...), ..., (m, ...))=
((m + l , ...), ..., (m + 1 , ...)).

Finally, as mentioned above, in order to con-
struct a unique system consistent with P , we must
also assume that the actions in P depend only on
the past. To make this precise, given a system 9,
let Brn consist of all the prefixes of runs in 9 of
length m. We say that two interpreted systems
9=(92, n) and 4’=(92’, n’) agree up to time m if
9m=(9‘)rn. We say that q s actions depend only
on the past if, for all times m, given two synchro-
nous interpreted systems 4, 9’ that agree up to
time m and points (r, m) in Y and (r’, m) in 9’ such
that r,(m) = ri(m) = s, then S(s, 9) = e(s, 9’). We can
similarly define what it means for the environment
protocol c s actions to depend only on the past.
We say that the actions of P = (e, 4, . . . , P,) depend
only on the past if the actions of each of its compo-
nents do. Note that if we had viewed a knowledge-
based protocol as a function that maps local states
to objects such as if K,cp then ..., then a knowl-
edge-based protocol where the tests cp were re-
stricted to involve only past-time temporal operators
(cf. Lichtenstein et al. 1985), whose truth at a point
(r , m) depends only on the prefix of the run up
to time m, would in fact be a protocol whose ac-
tions depended only on the past.

Theorem 5.1. Fix 9, CJ, and z as above, and suppose
that the actions of P depend only on the past. Let
goz9 be such that all the global states in go are
of the form ((0, . . .), ~. . , (0, . . .)). Then there is a syn-
chronous interpreted system 4 = (9, z) consistent
with P , such that the initial global states of the runs
in 9 are precisely the elements of go and z is based
on CJ, and such that 4 is a maximal interpreted sys-
tem with this property (i.e., i f 9’=(9’, z‘) is a syn-
chronous interpreted system such that the initial
global states of the runs in B’ are precisely the ele-
ments of 9,, and z’ is based on CJ, then it is not
the case that 9 is a proper subset of 9’).

Proof: We just sketch the construction of 4 here.
We first construct all the prefixes of runs in 9 of
length 0. These are the functions p with domain
(0) such that p (O) ~ 9 ~ . Suppose we have con-
structed all the prefixes of length m; call this set
of prefixes grn. Let (9?:”)* consist of all runs extend-

170 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

ing 5%'"' whose global states at all times m' have
the form ((m', . . .), . . . , (mr, . . .)). Let 9"' = ((Bm)*, d),
where nr is determined by D. Let Bm+' consist of
all those finite runs pr of length m+ 1 such that
there is a prefix p in (Wm)* of length m and a joint
action (ae, a,, . . . , a,) satisfying

1. p<p',

2. ifp(m)=(se,sl, ..., sn),
then (ue, a,, . . . , an)€
p, (s, , 9") x P1 (s 1 , P) x . . . x p, (s, , P),

(i.e., p'(m + 1) is the result of performing
the joint action (a,, a , , .. ., a,) in p(m)).

3. pr(m+ z((ae, a,, 7 an)) (~ (m))

It is easy to see that every prefix in B"' has some
extension in B"'+'. Moreover, our assumptions on
z guarantee that all the global states in gm+ ' have
the right form, so that we stay within the frame-
work of synchronous systems.

Let W consist of all runs r such that for all
m, the prefix of r of length m is in Bm. Let n be
the truth assignment of 92 determined by D. Using
the fact that (by construction) Y and 9"' agree
up to time m and that P's actions depend only
on the past, it is easy to check that Y=(B, x) is
consistent with P. Roughly speaking, we have con-
structed Y so that at every step m+ 1, we have
all possible extensions of runs at step m that allow
us to remain consistent with P. From this it easily
follows that 9 is maximal in the sense given by
the statement of the theorem. 0

It may seem that we require quite a few assump-
tions for this construction to go through, but sys-
tems meeting all these assumptions arise regularly
in the literature. A typical example is provided in
the next section.

6 An example:
the "cheating husbands" puzzle
In this section we examine the "cheating hus-
bands" puzzle and some of its variants, dealt with
at great length in Moses et al. (1986). We show
how it can be captured in our framework, and how
viewing it as a knowledge-based protocol, it gets
tranformed into a number of different standard
protocols, depending on the assumptions about the
system. The cheating husbands puzzle is essentially
isomorphic to the "muddy children" puzzle dis-
cussed in Halpern and Moses (1984), so our analy-
sis holds for the latter puzzle as well.

We begin by reviewing the essential elements

of the puzzle. The following passage is taken from
Moses et al. (1986).

It has always been common knowledge among
the women of Mamajorca [that all of them are
perfect reasoners], their queens are truthful,
and that the women are obedient to the queens.
It was also common knowledge that all women
hear every shot fired in Mamajorca. Queen
Henrietta I awoke one morning with a firm res-
olution to do away with the male infidelity
problem in Mamajorca. She summoned all of
the women heads of households to the town
square, and read them the following statement:

There are (one or more) unfaithful husbands
in our community. Although none of you
knew before this gathering whether your
own husband was unfaithful, each of you
knows which of the other husbands are un-
faithful. I forbid you to discuss the matter
of your own husband's fidelity with anyone.
However, should you discover that your
husband is unfaithful, you must shoot him
on the midnight of the day you find out
about it.

Thirty-nine silent nights went by, and on the
fortieth night, shots were heard.

Of course, the puzzle is to explain how many cheat-
ing husbands there were, and why they were shot
on the fortieth night.

We can in fact show that there must have been
forty unfaithful husbands. We prove by induction
that if there were exactly k unfaithful husbands,
they would have been shot on the kth night, and
no earlier. Clearly if there were only one unfaithful
husband, his wife, not knowing of any other un-
faithful husbands, would realize as soon as she
heard the queen say that there were some unfaithful
husbands, that her own husband was unfaithful.
Thus, if k = 1, the one unfaithful husband is shot
on the first night. For the general case, suppose
there are k + 1 unfaithful husbands. Their wives
know of k unfaithful husbands (since they know
of all unfaithful husbands besides their own). When
no shots are heard on the kth night, they realize
that there could not have been exactly k unfaithful
husbands, since if there were, by the induction hy-
pothesis, they would have been shot on the kth
night. Thus each wife of an unfaithful husband can
deduce on the (k + l),' day that her husband is un-
faithful, and so will shoot him on that night. She
could not have deduced this fact any earlier, be-
cause she could not have distinguished before then
the actual situation from the one where her hus-

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 171

band was faithful and there really were only k un-
faithful husbands.

As is pointed out in Halpern and Moses (1984),
there is a somewhat deeper puzzle here. In the
story, there were actually forty unfaithful husbands.
Thus it seems that the queen’s initial statement that
there were unfaithful husbands in the community
is unnecessary. All the wives were already aware
of this fact. Yet, as is shown in Halpern and Moses
(1984), none of the women would have been able
to conclude anything about their own husbands’
faithfulness without this apparently useless state-
ment. It is clear that our proof by induction breaks
down in the base case without the queen’s state-
ment, but this does not seem to be a very satisfacto-
ry explanation as to why the queen’s statement
is necessary. As is shown in both Halpern and
Moses (1984) and Moses et al. (1986), we can get
a better understanding of what is going on here
by doing an analysis of the state of knowledge of
the women, and how it changes over time. We now
do this in our formal framework.

It is clear that all of the women are following
a very simple knowledge-based protocol, namely
“For all days k = 1,2, 3, . .. , if you know that your
husband is unfaithful, then shoot him at midnight;
otherwise do nothing”. This is a protocol that is
being run in a synchronous system whose actions
depend only on the past, so we can construct a
canonical interpreted system consistent with this
protocol, as discussed in the previous section. In
order to understand the structure of this system,
we first present a fairly complete informal discus-
sion, and then sketch how it can be formalized.

Suppose there are n couples in the village. We
number them 1, ..., n. We can describe the situa-
tion in the village by an n-tuple of 0’s and 1’s of
the form (xl, ..., x,), where x i = 1 if husband i is
unfaithful, and xi = O otherwise. Thus, if n = 5, then
a tuple of the form (1,0, I,O, 0) would say that
there are exactly two unfaithful husbands, that of
woman number 1 and that of woman number 3.
Suppose the actual situation is described by the
tuple (xl, . . . , x,). Because wife number 1 knows
of all the unfaithful husbands besides her own, she
initially considers two situations possible:
(0, x2, ... , x,) and (1, x2, ... , x,). Her husband may
be faithful or may be unfaithful. Similarly, wife
number 2 considers two situations possible:
(xl, 0, x3, ..., x,) and (xl, 1, x3, ..., x,). Note that,
in general, two tuples cannot be distinguished by
woman i exactly iff they differ only in the ith compo-
nent. Thus, on day 0 (before the queen has spoken),
we have 2” possible initial situations, described by
these n-tuples. We can also describe the indistingu-

ishability relationship easily. Suppose we join two
n-tuples by an edge (labelled i) if they are indistin-
guishable by i. Then it is easy to see that we have
precisely an n-dimensional cube.4

What happens on day 1, after the queen has
spoken? The queen said that there were some un-
faithful husbands in the village. This eliminates the
situation (0, 0, . . . , 0) from the picture. Thus we end
up with a “truncated” cube, which is missing one
vertex. Going back to our example with n = 5, if
the initial situation were (1,0, l ,O,O), although
everyone knew before the queen spoke that there
were some unfaithful husbands, woman 1 consid-
ered the situation (0, 0, 1,0,0) possible before the
queen spoke. In that situation, woman 3 would
consider (0, 0, 0, 0 ,O) possible. Thus, before the
queen spoke, woman 1 thought it was possible that
woman 3 thought it was possible that there were
no cheating husbands. After the queen spoke, it
was common knowledge that there were some cheat-
ing husbands. This is represented by the fact that
the cube is truncated. Thus, the queen’s initial
statement does change the group’s knowledge.
Even though every woman knew there were some
unfaithful husbands before the queen spoke, it
wasn’t common knowledge.

On day 2, when no shots were heard the night
before, all the women can further truncate the cube.
They can eliminate all vertices with exactly one
1. The reasoning parallels that which we did above.
If the actual situation were described by, say, the
tuple (1,0, ... , 0), then initially woman 1 would
have considered two situations possible:
(1,0, ... , 0) and (0, 0, ... ,O). Since it is common
knowledge that (0, 0, ..., 0) is not possible, she
would know that the situation is described by
(1,0, ..., 0), so she would know that her husband
was unfaithful. Since there were no shots, she could
not know this. Thus, the situation cannot be
(l,O, . . . , 0). Similar reasoning allows all the women
to eliminate every situation with exactly one 1.
Since it is common knowledge that all of the wom-
en are perfect reasoners, on day 2 (before mid-
night), it is common knowledge that there are at
least 2 unfaithful husbands.

Every day we can truncate the cube a little
more. Similar reasoning to that above shows that
we can eliminate all the vertices with exactly k 1’s
after midnight of day k. Thus, on day k + 1 (before
midnight), it is common knowledge that there are
at least k + l unfaithful husbands. (Notice that
knowledge is changing here even in the absence
of communication!) If the true situation is de-
4This graphical interpretation of the situation as an n-cube
was pointed out to us by Moshe Vardi

172 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

scribed by a tuple with exactly k + 1 l’s, then on
the (k + lrt day, those women with unfaithful hus-
bands will know the exact situation, and conse-
quently shoot their husbands on that night.

We now capture this situation formally in our
framework. Our first step is to describe the possible
local states. We take the environment’s state to
consist of a pair (m, x), where m is the day and
x is a complete description of which husbands are
faithful (a tuple of 0’s and l’s, as described above).
We take woman i’s state to be a triple of the form
(m, y , h), where again m is the day, y is a description
of what woman i originally knows about which
husbands are unfaithful, and h is a sequence of
length m describing what woman i has heard on
all the previous days. If x is a complete description
of which husbands are faithful, then y is xi, where
xi is just like x except that there is a * in the ith
component, indicating that woman i does not
know whether her own husband is unfaithful (al-
though she does know about everyone else). The
initial global states are thus of the form ((0, x),

We assume that Queen Henrietta sends her
message on day 0. For ease of exposition, we as-
sume that she sends either the message described
above, or no message at all. On later days we just
append 1 or 0 to h, depending on whether or not
there were shots the previous day. There are some
obvious constraints on the global state: all the
times must be the same (ie., the first components
of each woman’s state and the environment’s state
must be the same); woman i’s view of the situation
must be the same as the true situation (as described
in the environment’s state), except with a * in the
i component; and all the woman must hear the
same thing (so that the h components are all the
same). Note that this embodies the implicit as-
sumptions that it is common knowledge that all
the women can see and hear, and are paying atten-
tion. If some woman considered it possible that
some other woman considered it possible . . . that
some woman was deaf or not paying attention,
then there would be a global state in the model
where the h components were different.

The only non-null action performed by the
women is that of shooting; the only non-null action
performed by the environment is that of possibly
broadcasting the queen’s message on day 0. Since
we assume the queen is telling the truth, this mes-
sage can be broadcast only if the environment’s
state (0, x) is such that there is at least one 1 in
the tuple x (so that there is at least one unfaithful
husband).

As we remarked before, woman i is following

(0, xl, < >), . . - 7 (0, X”, (>)).

the knowledge-based protocol “for day
k = 1, 2, 3 . .. , if Ki (husband i unfaithful) then
shoot”. The environment is running the protocol
which (nondeterministically) either sends the
queen’s message or does nothing on day 0 (and
does nothing on all later days). This captures the
fact that, a priori, the women do not know whether
the queen will send a message.

We can now construct the runs corresponding
to this knowledge-based protocol by induction, as
described in the previous section, using the ideas
in the informal analysis above. A straightforward
induction shows that at any day k > 1, we have
precisely 2” - 1 prefixes of length k of runs where
the queen sends a message, one corresponding to
each of the initial states where at least one of the
husbands is unfaithful, and a further 2” prefixes
of length k of runs where the queen does not send
a message. Moreover, if we put an edge between
two time k points if some process cannot distin-
guish them, then we get a “truncated cube” at the
points corresponding to runs where at least k hus-
bands are unfaithful and the queen does send a
message. On this subset of runs, woman i knows
that her husband is unfaithful (and therefore shoots
him) at time k on those runs where are exactly
k unfaithful husbands, one of whom is woman i’s.
These observations allow us to extend from pre-
fixes of length k to prefixes of length k + 1. In this
interpreted system, the knowledge-based protocol
is equivalent to a simple standard protocol: “If
you heard the queen’s initial statement, your initial
state has k 1’s (i.e., if you initially knew of k unfaith-
ful husbands), and there are no shots on the kth
night, then shoot your husband on the (k+l)”‘
night; otherwise do nothing.”

Several other variants of the cheating husband
problem are considered in Moses et al. (1986). For
example, the next queen of Mamajorca introduces
a mail system, and sends out to all her subjects
an exact copy of her mother’s message, as well as
a letter describing the crucial property of the mail
system, namely, that all letters are guaranteed to
eventually arrive. In this setting, it is shown that
if there is more than one unfaithful husband, then
no husband will ever be shot. In our formal model,
what is going on here is that although the initial
situations now are the same as they were before,
and each woman still follows the same knowledge-
based protocol as before (once she gets the queen’s
message), the set of possible runs has changed be-
cause the environment’s protocol has changed. It
is still nondeterministic, but now not only is it pos-
sible that the queen sent no message, but, if she
did send a message, there is nondeterminism in

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 173

how long it takes to arrive (so that different women
can append the message to the history component
h on different days). In this system, it can be shown
that the women can never deduce whether their
husbands are unfaithful whenever there is more
than one unfaithful husband.

In another variant considered in Moses et al.
(1986), the mail system is improved so that all mes-
sages are guaranteed to arrive no later than one
day after they are sent (i.e., either on the same day
or on the next day). This fact is also made known
to all the women by a letter. In our framework,
this means that in any given run, the women all
receive the queen’s message within one day of each
other. Moreover, the women are told to shoot their
husbands on midnight of the day after they first
know he is unfaithful. In this situation, it is shown
that all the unfaithful husbands (and only the un-
faithful husbands!) are shot, but the reasoning is
much different from that in the first story. We do
not go through the details here, but observe that
although the wives execute essentially the same
knowledge-based protocol here as in the case dis-
cussed above, the corresponding standard protocol
becomes: “If your initial state has k 1’s and there
are no shots for the first 3 k nights after you get
the queen’s message, then shoot your husband on
the (3k-1-2Yd night; otherwise do nothing.” The
difference between this standard protocol and the
one that was equivalent to the knowledge-based
protocol in the original scenario is due to the differ-
ence in the environment’s protocol. It is the envi-
ronment’s protocol that is being used to capture
the different assumptions about the system. By us-
ing the high-level language of knowledge-based
protocols, we can capture the intuition that the
women are in some sense running the same proto-
col.

7 What is means for one protocol
to implement another
It is often convenient when designing protocols to
first design a joint protocol P that uses high-level
constructs, then implement these constructs in a
protocol P‘ using low-level commands. It is usually
relatively straightforward to prove the correctness
of P ; one then proves the correctness of P by show-
ing that in a precise sense it is an implementation
of P. This is particularly the case when starting
with knowledge-based protocols (see Halpern and
Zuck (1987) for examples). Although system de-
signers have good intuitions about when one pro-
tocol implements another, making this notion pre-
cise has not been so easy. Lamport gives a defini-

tion of what it means for one system to implement
another in Lamport (1986), using the framework
developed there. We now consider this question
in our framework.

Since we identify a protocol with a system, it
is clear that an implementation should be a func-
tion from one system to another. Thus, if 9 (resp.
R) is the system corresponding to protocol P (resp.
P), the fact that P‘ implements P is captured by
having a function h from B’ to 9. However, our
intuition about implementations will surely not be
captured by simply having an arbitrary function
from one system to another. An implementation
is only interesting if it preserves certain relevant
features of the runs (such as reads and writes). We
make this notion precise below, but first we consid-
er a number of other properties that we might want
an implementation to have.

One condition we might impose is that not only
do we have a function from runs to runs, but also
from prefixes of runs to prefixes of runs. The intu-
ition is that a prefix of a run of P’ should map
to a prefix of a run of P where the corresponding
steps have been performed. Of course, we would
expect that longer prefixes of runs of P‘ map to
longer prefixes of runs of P. Thus we get the follow-
ing definition.

Definition. A mapping h from (finite and infin-
ite) runs to runs is monotonic if p<p’ implies
h (p) < h (p ’) . 92’ is a monotonic implementation of 92
if there is a monotonic mapping
h: Pref(B’)--+Pref(9). 0
We can impose an additional requirement; that
of continuity. The intuition here is that a low-level
protocol can take several steps to implement a step
of a high-level protocol, but it eventually does so.
Thus, if P‘ implements P , then a prefix of a run
of P’ should correspond to a prefix of a run of
P where the corresponding high-level steps have
been performed. By taking longer and longer pre-
fixes of a run in P’ we should be able to reconstruct
the run of P that it implements. This leads us to
the following definition.

Definition. A mapping h taking runs into runs is
continuous if, given that p l < p 2 5 ... and Uip ,= r ,
and that pi, i = 1,2, ... and r are all in the domain
of h, then h(p1)<h(p2)$... and h(r)=Uih(pi).
Note that continuity implies monotonicity. 9‘ is
a continuous implementation of 92 if there is a con-
tinuous mapping h: Pref(B’)+Pref(%). 0

As Martin Abadi has pointed out to us, both of
these requirements (monotonicity and continuity)

174 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

on implementations may be too strong. For exam-
ple, consider the simple situation where a message
is sent by p to q and, at the high level, the environ-
ment decides how many steps it will take before
delivering a message by tossing an infinite-sided
coin, with faces labelled 1,2, 3, ..., 00. The out-
come of the coin toss determines when the message
will be delivered; if the coin lands co then the mes-
sage is never delivered. One way to capture this
by having the delivery time (the outcome of the
coin toss) be part of the environment’s initial state.
Thus, we can take the system 9 to consist of all
runs where p sends the message m to q at time
0, and this message is delivered at the time k speci-
fied by the environment’s initial state. We can im-
plement this by having the environment toss a two-
sided coin at every step, and deliver the message
when the coin lands heads the first time. This corre-
sponds to a set fl of runs where the environment’s
state at time k is determined by whether it tossed
heads or tails at the last coin toss. Unfortunately,
there is no monotonic mapping from Pref(9’) to
Pref(9). The problem is that for a prefix of a run
in 9‘ where the environment has tossed tails at
every step, we do not know what prefix of a run
in 9i’ to map it to. We cannot commit yet to deliver-
ing the message at a fixed time and still maintain
monotonicity.

If we modify 9 so that the environment’s state
contains the outcome of the infinite-sided coin toss
only after time 1 (and at time 0 the environment
was in some special initial state), we can get a
monotonic map. It is easy to check, however, that
we can do this only by mapping a prefix of a run
of 9‘ where the environment tosses tails at every
step to a length 0 prefix of a run of 9 (all length
0 prefixes are the same, so it does not matter which
run we choose). But this map is not continuous.

. Consider the run of 3’ where the environment
tosses tails at every step. All of its prefixes are
mapped to a length 0 prefix of 9. Thus we do
have monotonicity, but not continuity.

Despite this counterexample, it still seems to
be the case that most examples of implementations
that arise in practice are continuous (and hence
also monotonic). Indeed, we usually expect even
more of an implementation. We want certain prop-
erties of runs to be preserved, for example, what
data elements are read or written onto a disk. The
fact that a certain property holds at a certain point
corresponds to a formula being true. Thus, in order
to capture this intuition, we need to consider inter-
preted systems.

We say that the formula q depends only on the
past in interpreted system 9 if (9, r, m)t=cp and

r I m = r’lm implies (9, r’, m) k cp. Intuitively, a formu-
la depends only on the past if its truth at the point
(r, m) depends only on the global states in r up
to time m.’ Formulas depending only on the past
arise frequently in practice. Typical examples in-
clude “there were three reads and two writes up
to this time” and “the message m was sent”. Note
that if a formula depends only on the past in inter-
preted system 9, then it makes sense to write
(9, p, m)t=cp, where p is a finite prefix of a run
of length at least m. We can view this as an abbre-
viation of the statement (9, r, m)kcp, where r is
any run extending p (it does not matter which one
we take, since cp depends only on the past).

Suppose 9=(9, n) and 9’=(fl, n’) are inter-
preted systems, and @ is a collection of formulas
that depend only on the past in 9 and 4’. The
reader should think of the formulas in @ as describ-
ing the properties of interest in 9 and 4’.

Definition. 4’ is a monotonic implementation of 9
with respect to Q, if there is a monotonic function
h: Pref(9’)+Pref(%) such that for all formulas
q ~ @ and pEPref(B‘), we have (9’, p, Ipl)l=cp iff
(9, h(p), Ih(p)l)t=qx6 Similarly, 4’ is a continuous
implementation of 9 with respect to @ if there is
a map h as above which is continuous.

These last definitions do seem to come close
to the spirit of the notion of implementation as
used in practice. In particular, in Halpern and Zuck
(1987) the correctness of a knowledge-based proto-
col for the sequence transmission problem (where
a sender must transmit a sequence of data elements
to a receiver over a potentially faulty channel) is
proved; it is shown that every interpreted system
consistent with the knowledge-based protocol sat-
isfies appropriate safety and liveness properties.
The correctness of certain standard protocols (in-
cluding ones which correspond to the well-known
Alternating Bit Protocol (Bartlett et al. 1969) and
protocols given by Aho, Ullman, and Yannakakis
(Ah0 et al. 1979, 1982), is proved by showing that
the system consisting of the set of runs for the stan-
dard protocol is a continuous implementation with
respect to a certain set Q, of one of the interpreted
systems consistent with the knowledge-based pro-
tocol. The set @ is chosen so that the implementa-

The notion of a formula depending on the past is different
from, but related to, the previously defined notion of a knowl-
edge-based protocol’s actions depending only the past. If we
restrict attention to systems based on a function 0, then it is
easy to see that any formula cp that involves only past-time
temporal operators depends only on the past

This notion of implementation was inspired by the notion
of an isomorphism between two interpreted systems, as defined
in the revised version of Hadzilacos (1987)

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 175

tion preserves the reading and writing of data ele-
ments. Thus @ consists of formulas of the form
“the value of the ith data element is j ” , “the ith
data element has been read”, and “the ith data ele-
ment was written”, for i = 1, 2, 3, . . .’

8 Conclusions
We have presented a general model of knowledge
and action in distributed systems. This area has
seen quite an upsurge of interest recently. The main
contribution of this work has been to focus in on
the interaction between knowledge and action, and,
in particular, to define and give a formal treatment
of knowledge-based protocols.

There are a number of obvious directions for
further work along these lines. We have not careful-
ly considered probabilistic or randomized proto-
cols in our discussion. Such protocols give rise in
a natural way to a probability measure on the set
of runs. In order to reason about probability in
our framework, we want probabilities on the
points, not the runs. This allows us to extend our
language with such formulas as Kq q, which holds
if q holds on a set of measure at least c(of the
points that process i considers possible. Probability
has always been incorporated into the economists’
models of knowledge (cf. Aumann (1976), Mertens
and Zamir (1985)), although the economists do not
use a formal language for reasoning about knowl-
edge and probability. We have recently extended
the model presented here in order to deal with rea-
soning about knowledge and probability; see Fa-
gin and Halpern (1988b) for details.

Another interesting line of research is that of
trying to axiomatize certain properties of commu-
nication (eg , the fact that communication is guar-
anteed, or, for that matter, that communication is
not guaranteed). The idea would be to capture
these notions by describing how they affect a pro-
cess’ knowledge. Some work along these lines is
described in Fagin et al. (1988) and Fagin and Var-
di (1986).

Perhaps most interesting of all is the continued
investigation of knowledge-based protocols.
Knowledge-based protocols seem to be a particu-
larly useful high-level tool for analyzing many nat-
ural situations that arise in distributed computing.
It is certainly much more natural to describe the
wives’ protocol in essentially all the variants of the
cheating husbands puzzle presented in Moses et al.

’ In Halpern and Zuck (1987) the set @ is not explicitly de-
scribed, but it is clear from the description there that a continu-
ous implementation with respect to the set @ described above
is actually constructed

(1986) as “For all days k = 1, 2, 3, .. . , if you know
that your husband is unfaithful, then shoot him
at midnight; otherwise do nothing”, rather than
trying to explain the appropriate standard protocol
for each variant.

A particularly intriguing notion is that of hav-
ing a programming language that would directly
allow us to write knowledge-based protocols, with
details of how the knowledge is computed being
invisible to the programmer. Such a high-level pro-
gramming language would require a “compiler”
that could translate knowledge-based tests to
knowledge-free tests. Presumably this could only
be done by imposing restrictions on both the lan-
guage of communication and the environment (per-
haps restricting attention to a situation where com-
munication is guaranteed and proceeds in rounds,
and there are no failures).

Before we could hope to have such a language,
of course, much further work needs to be undertak-
en to understand all the subtleties of translating
knowledge-based protocols to standard protocols.
The work of Dwork and Moses (1986) and Moses
and Tuttle (1988) can be viewed as taking some
steps in this direction. Dwork and Moses (1986)
give a simple knowledge-based protocol that guar-
antees simultaneous Byzantine agreement in an op-
timal number of rounds for all runs, under the as-
sumption that the only failures are crash failures
(where a process can fail only by crashing, and
once it does so, it sends no further messages). They
show that this knowledge-based protocol can be
efficiently transformed into a standard protocol.
Moses and Tuttle (1988) extend these results
by showing how the knowledge-based protocol can
be converted to a standard protocol if the only
failures are omission failures (where the only faulty
behavior a process may exhibit is in not sending
a message, but all the messages it sends are those
it should send according to the protocol). The con-
version to a standard protocol is more difficult
here, but it can still be done efficiently (in time
polynomial in the number of processes in the net-
work). However, it is also shown that for a slightly
more general notion of failure, where a process may
either fail to send a message or fail to receive one,
although the knowledge-based protocol is still cor-
rect and can be converted to a standard protocol,
this conversion is NP-hard (in the size of the net-
work).

This leads us to one last issue. As we mentioned
before, the notion of knowledge we consider is an
external one, ascribed by the system designer to
the processes. There is no notion of a process com-
puting its knowledge. Thus it may seem somewhat

176 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems

strange to consider knowledge-based protocols
where processes perform actions based on their
knowledge, if this is knowledge that they might
not be able to compute. To the extent that we view
a knowledge-based protocol as a convenient speci-
fication used by the system designer, there is no
problem here. For many applications, it may also
be the case that the necessary knowledge to carry
out a knowledge-based protocol can be computed
easily (although the results in Moses and Tuttle
(1988) mentioned above show that this is not al-
ways the case). These observations point out the
need for a notion of knowledge in distributed sys-
tems that takes into account the computation re-
quired to obtain that knowledge. Such a notion
of knowledge would not satisfy all the axioms and
rules of inference discussed in Sect. 4. In particular,
we would not expect a process’ knowledge to be
closed under logical implication. Abstract models
for notions of knowledge where agents are not per-
fect reasoners are discussed in many papers in the
philosophy and A1 literature (cf. Fagin and Hal-
pern (1988a), Levesque (1984)); a semantics that
seems to be appropriate for distributed systems is
given in Moses (1988).

We feel that a deeper analysis of the interaction
of knowledge, action, and communication will be
useful in order to improve our understanding of
distributed systems. We have clearly only scratched
the surface here; we hope that much more work
will be done.

Acknowledgements. Yoram Moses made numerous invaluable
suggestions that helped improve the style and presentation of
the ideas; chief among these was his suggestion (and insistence!)
that a system should be viewed as a set of runs. Lenore Zuck
also made a number of useful suggestions, including ones that
helped simplify the presentation of the material on knowledge-
based protocols which determine a canonical set of runs. We
would also like to thank Martin Abadi, Peter van Emde Boas,
She1 Finkelstein, Vassos Hadzilacos, Leslie Lamport, Nimrod
Megiddo, Michael Merritt, Ray Strong, Moshe Vardi, and
Pierre Wolper for their helpful comments and criticisms.

References

Aho AV, Ullman JD, Yannakakis M (1979) Modeling commu-
nication protocols by automata. Proc 20th IEEE Symp on
Foundations of Computer Science, pp 267-273

Aho AV, Ullman JD, Wyner AD, Yannakakis M (1982) Bounds
on the size and transmission rate of communication proto-
cols. Comp Math Appl 8:205-214 (this is a later version
of Aho et al. (1979))

Aumann RJ (1976) Agreeing to disagree. Ann Stat 4: 12361239
Bartlett KA, Scantlebury RA, Wilkinson PT (1969) A note on

reliable full-duplex transmission over half-duplex links.
Commun ACM 12:26&261

Chandy KM, Misra J (1986) How processes learn. Distrib Com-
put 1:40-52

Dwork C, Moses Y (1986) Knowledge and common knowledge
in a Byzantine environment I: crash failures (extended ab-
stract). In: Halpern JY (ed) Theoretical aspects of reasoning
about knowledge: Proceedings of the 1986 Conference. Mor-
gan Kaufmann, San Mateo, CA, pp 149-170 (to appear in
Information and Computation)

Fagin R, Vardi MY (1986) Knowledge and implicit knowledge
in a distributed environment: preliminary report. In: Hal-
pern JY (ed) Theoretical aspects of reasoning about knowl-
edge: Proceedings of the 1986 Conference. Morgan Kauf-
mann, San Mateo, CA, pp 187-206

Fagin R, Halpern JY, Vardi MY (1986) What can machines
know? On the epistemic properties of machines. Proc Nat
Conf on Artificial Intelligence (AAAI-86), pp 428434 (A
revised and expanded version appears as IBM Research Re-
port RJ 6250, 1988, under the name What can machines
know? On the properties of knowledge in distributed sys-
tems)

Fagin R, Halpern JY (1988a) Belief, awareness, and limited
reasoning. Artif Intell 34: 39-76

Fagin R, Halpern JY (1988b) Reasoning about knowledge and
probability: preliminary report. In: Vardi MY (ed) Proceed-
ings of the 2nd Conference on Theoretical Aspects of reason-
ing about knowledge (1986). Morgan Kaufmann, San Ma-
teo, CA, pp 277-293

Fischer MJ, Immerman N (1986) Foundations of knowledge
for distributed systems. In: Halpern JY (ed) Theoretical as-
pects of reasoning about knowledge: Proceedings of the 1986
Conference. Morgan Kaufmann, San Mateo, CA, pp 171-
186

Fortune S, Wyllie J (1978) Parallelism in random access ma-
chines. Proc. 10th ACM Symp on Theory of Computing,
pp 114118

Goldschlager L (1982) A unified approach to models of synchro-
nous parallel machines. J ACM 29: 1073-1086

Hadzilacos V (1987) A knowledge-theoretic analysis of atomic
commitment protocols. Proc 6th ACM Symp on Principles
of Database Systems, pp 129-134

Hare1 D (1979) First-Order Dynamic Logic (Lect Not Computer
Sci, vol68) Springer, Berlin Heidelberg New York

Halpern JY (1987) Using reasoning about knowledge to analyze
distributed systems. In: Traub J (ed) Annual Review of
Computer Science, vol 2. Annual Reviews, pp 37-
68

Halpern JY, Fagin R (1985) A formal model of knowledge,
action, and communication in distributed systems: prelimi-
nary report. Proc 4th ACM Symp on Principles of Distrib-
uted Computing, pp 224-236

Halpern JY, Moses Y (1984) Knowledge and common knowl-
edge in a distributed environment. Proc 3rd ACM Symp
on Principles of Distributed Computing, pp 50-61 (a revised
and expanded version appears as IBM Research Report
RJ 4421, 1988)

Halpern JY, Moses Y (1985) A guide to the modal logics of
knowledge and belief. 9th Int Joint Conf on Artificial Intelli-
gence (IJCAI-85), pp 480-490

Halpern JY, Vardi MY (1986) The complexity of reasoning
about knowledge and time. Proc 18th ACM Symp on
Theory of Computing, pp 304315

Halpern JY, Vardi MY (1989) The complexity of reasoning
about knowledge and time, I : Lower bounds. J Comput
Syst Sci 38: 195-237

Halpern JY, Zuck LD (1987) A little knowledge goes a long
way: simple knowledge-based derivations and correctness
proofs for a family of protocols. Proc 6th ACM Symp on

J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 117

Principles of Distributed Computing, pp 269-280 (a revised
and expanded version appears as IBM Research Report
RJ 5857, 1987)

Lamport L (1985) Paradigms for distributed computing. In:
Methods and tools for specification, an advanced course.
Paul M, Siegert HJ (eds) (Lect Notes Comput Sci, vol 190)
Springer, Berlin Heidelberg New York Tokyo, pp 19-30,
454468

Lamport L (1986) On interprocess communication, Part I: Basic
formalism. Distrib Comput 77-85

Lehmann DJ (1984) Knowledge, common knowledge, and relat-
ed puzzles. Proc 3rd ACM Symp on Principles of Distrib-
uted Computing, pp 6 2 4 7

Levesque H (1984) A logic of implicit and explicit belief. Proc
Nat Conf on Artificial Intelligence (AAAI-84), pp 198-202

Lynch NA, Fischer M (1981) On describing the behavior and
implementation of distributed systems. Theor Comput Sci
13: 17-13

Lichtenstein 0, Pnueli A, Zuck L (1985) The glory of the past.
In: Rohit Parikh (ed) Proc of the Workshop on Logics of
Programs. (Lect Notes Comput Sci, vol 193) Springer, Berlin
Heidelberg New York Tokyo, pp 196-218

Mertens JF, Zamir S (1985) Formulation of Bayesian analysis
for games of incomplete information. Int J Game Theory

Milner R (1980) A calculus of communicating systems (Lect
Not Comput Sci, vol92) Springer, Berlin Heidelberg New
York

Moore RC (1985) A formal theory of knowledge and action.
In: Hobbs J, Moore RC (eds) Formal Theories of the Com-
monsense World. Ablex, Norwood, NJ

Moses Y (1988) Resource-bounded knowledge. In: Vardi MY
(ed) 2nd Conf on Theoretical Aspects of Reasoning about

14: 1-29

Knowledge. Morgan Kaufmann, San Mateo, CA, pp 261-
276

Moses Y, Tuttle MR (1988) Programming simultaneous actions
using common knowledge. Algorithmica 3: 121-169

Moses Y, Dolev D, Halpern JY (1986) Cheating husbands and
other stories: a case study of knowledge, action, and commu-
nication. Distrib Comput 1 : 167-176

Neiger G, Toueg S (1987) Substituting for real time and com-
mon knowledge in asynchronous distributed systems. Proc
6th ACM Symp on Principles of Distributed Computing,

Panangaden P, Taylor S (1988) Concurrent common knowl-
edge: a new definition of agreement for asynchronous sys-
tems. Proc 7th ACM Symp on Principles of Distributed
Computing, pp 197-209

Parikh R, Ramanujam R (1985) Distributed processes and the
logic of knowledge. In: Parikh R (ed) Proc of the Workshop
on Logic of Programs. (Lect Notes Comput Sci, vol 193)
Springer, Berlin Heidelberg New York Tokyo, pp 256-268

Pnueli A (1977) The temporal logic of programs. Proc 18th
IEEE Symp on Foundations of Computer Science, pp 46-57

Pratt VR (1976) Semantical considerations on Floyd-Hoare log-
ic. Proc 17th IEEE Symp on Foundations of Computer Sci-
ence, pp 109-121

Pratt VR (1982) On the composition of processes. Proc 9th
ACM Symp on Principles of Programming Languages,

Pratt VR (1985) Modelling concurrency with partial orders. Int

Smullyan R (1978) What is the Name of this Book? Prentice-

Vishkin U (1983) Implementation of simultaneous memory ac-

pp 281-293

pp 213-223

J Parallel Program 15 : 33-7 1

Hall, Englewood Clifts, NJ

cess in models that forbid it. J Algorithms 4:45-50

