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Abstract. We present a formal model that captures 
the subtle interaction between knowledge and ac- 
tion in distributed systems. We view a distributed 
system as a set of runs, where a run is a function 
from time to global states and a global state is 
a tuple consisting of an environment state and a 
local state for each process in the system. This mod- 
el is a generalization of those used in many pre- 
vious papers. Actions in this model are associated 
with functions from global states to global states. 
A protocol is a function from local states to actions. 
We extend the standard notion of a protocol by 
defining knowledge-based protocols, ones in which 
a process’ actions may depend explicitly on its 
knowledge. Knowledge-based protocols provide a 
natural way of describing how actions should take 
place in a distributed system. Finally, we show how 
the notion of one protocol implementing another 
can be captured in our model. 

Key words: Knowledge - Action - Standard proto- 
col - Knowledge-based protocol - Run - System 
- Implementation 

... you act, and you know why you act, but you 
don’t know why you know that you know what 
you do. 
- Umberto Eco, The Name of the Rose 

1 Introduction 
It has been argued (Halpern and Moses 1984) that 
the right way to understand and reason about dis- 
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tributed protocols is in terms of how the knowledge 
of the processes in a system changes. In this paper 
we look carefully at the notion of knowledge in 
distributed systems. In particular, we consider the 
interaction between knowledge and action. Intui- 
tively, a process’ actions depend on its knowledge, 
and its knowledge changes as a result of actions. 
The precise interaction between knowledge and ac- 
tion can be subtle, as is demonstrated by the analy- 
ses performed in such papers as Chandy and Misra 
(1986), Dwork and Moses (1986), Halpern and 
Moses (1984), Lehmann (1984), Moses et al. (1986), 
Moses and Tuttle (1988). Our aim is to understand 
and clarify these subtleties. 

We start by providing a formal model of dis- 
tributed systems. There are a number of ways that 
one can model a system of interacting processes 
or agents; it is doubtful that there is a “best” mod- 
el. Whereas one approach might lend itself natural- 
ly to a certain type of analysis, it might not be 
useful for another. Ideally we would like an ap- 
proach that is abstract and general, and yet can 
be easily specialized to capture important special 
cases of systems such as asynchronous message- 
passing systems, shared-memory models of parallel 
computation (PRAMS), or systems of communicat- 
ing human agents or robots. Of course, we also 
want the model to be natural and intuitive, and 
lend itself easily to most types of formal analysis. 

We describe a model here that we believe fulfills 
these properties. The model is motivated by pre- 
vious work on knowledge-based analyses of proto- 
cols (Chandy and Misra 1986; Dwork and Moses 
1986; Fagin et al. 1986; Fischer and Immerman 
1986; Hadzilacos 1987; Halpern and Fagin 1985; 
Halpern and Moses 1984; Halpern and Zuck 1987; 
Moses and Tuttle 1988; Neiger and Toueg 1987; 
Parikh and Ramanujam 1985) (see (Halpern 1987) 
for an overview). In all of these papers (and many 
others that have appeared in the literature), a pro- 
tocol is identified with a set of runs or executions. 
We intuitively think of a run as a complete descrip- 
tion of all the relevant events that occur in a system 
over time, where for convenience we think of time 
as ranging over the natural numbers. At every step 
in a run, the system is in some global state, where 
a global state is a description of each process’ cur- 
rent local state and the current state of the enuiron- 
ment. We use the environment component of the 
global state to capture everything that is relevant 
to the system that is not described by the states 
of the processes. 

Like the models of (Lynch and Fischer 1981; 
Lamport 1986) and others, our model is geared 
to describing the behavior of a distributed system 
in a natural way. However, unlike Milner’s CCS 

(Milner 1980) or Pratt’s notion of pomsets (Pratt 
1985), we do not attempt to give a calculus which 
allows us to view a protocol as being put together 
from other protocols via various combining forms 
(such as composition). While we could define ways 
of combining simpler systems to form more compli- 
cated systems, our framework does not lend itself 
naturally to such an approach. We can view the 
distinction between our type of formalism and that 
of Milner and Pratt as somewhat like the distinc- 
tion between Temporal Logic (Pnueli 1977), which 
focuses on the analysis of a given system, and Dy- 
namic Logic (Hare1 1979; Pratt 1976), which expli- 
citly allows programs to be combined into more 
complicated programs. 

We incorporate knowledge into the model by 
using the basic framework described in Halpern 
and Moses (1984). Given a global state s and a 
process i, there may be many global states consis- 
tent with i’s information in s, that is, many global 
states s‘ where i has the same local state as in s. 
We say that process i knows a fact cp at a certain 
point in a run if cp is true at all the points where 
cp has the same local state. This notion of knowl- 
edge in distributed systems can be easily shown 
to satisfy the axioms of the classical modal logic 
S5 (see Halpern and Fagin (1985) for more details). 
Note that it is an external notion of knowledge. 
We do not assume that the processes somehow 
think about the world and do some introspection 
in order to obtain their knowledge. Rather, this 
is knowledge that is ascribed by us (or the system 
designer) to the processes. A process cannot neces- 
sarily answer questions based on this notion of 
knowledge. Nevertheless, this definition has been 
shown to capture much of the intuitive reasoning 
that is done about protocols. One often hears state- 
ments such as “Process p1 should send an acknowl- 
edgment because p 2  does not know that p1 got 
the message.” The phrase “ p 2  does not know that 
p 1  got the message” can easily be given a formal 
interpretation in this model. Moreover, it is an in- 
terpretation that directly captures the intuitions of 
the system designers doing such reasoning. 

We define runs, actions, and systems formally 
in Sect. 2, and show how to ascribe knowledge to 
processes in a distributed system in Sect. 3. The 
notion of protocol is discussed in Sect. 4. We view 
a protocol as a function from a process’ local state 
to actions. This definition of protocol is quite a 
general one, and certainly includes all protocols 
that can be described in current programming lan- 
guages. However, using such standard protocols we 
cannot naturally describe situations where a pro- 
cess’ actions depend explicitly on its knowledge. 
For example, consider a protocol such as “If I 
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know that you are planning to attack, then I will 
attack too.” This is an example of what we call 
a knowledge-based protocol. Knowledge-based pro- 
tocols give us a way to directly describe the rela- 
tionship between knowledge and action, and thus 
provide a convenient high-level description of what 
a process should do in certain situations. We dis- 
cuss knowledge-based protocols in detail in 
Sect. 5.’ In Sect. 6, we consider the cheating hus- 
bands problem, informally discussed in Moses et al. 
(1986), and show how it can be captured in our 
framework. This example also shows how the same 
knowledge-based protocol corresponds to distinct 
standard protocols in different systems. In Sect. 7 
we discuss what it means for one protocol to imple- 
ment another in our context. We conclude in Sect. 8 
by suggesting some directions for further research. 

2 Runs, actions, and systems 
As we mentioned in the introduction, we identify 
a system with its set of possible runs, where a run 
is a description of the system’s behavior over time. 
But how can we best describe a system’s behavior? 

In most papers on distributed systems, two key 
notions that appear repeatedly are states and ac- 
tions. Consider a very simple distributed system, 
consisting of only one process running a sequential 
program. As Lamport points out [Lam85], a run 
of this program can be viewed as a sequence 

so 2% s, 3 s2 2 ... 
where so, sl, s!, ... are states and a,, al, az ,  ... are 
actions. In this view a process is an automaton, 
which is always in one of a (possibly infinite) 
number of internal states. We do not make any 
additional assumptions about the structure of these 
internal states, although, of course, there will in- 
variably be extra structure once we consider more 
concrete applications. In this framework, an action 
is simply a state transformer, a function mapping 
one state into another. 

We want to extend this viewpoint to more com- 
plicated systems. If we have, say, n processes in 
the system, the state of the system will clearly have 
to include the state of each of the processes. But, 
in general, more than just the state of the processes 
may be relevant when doing an analysis of the sys- 
tem. If we are analyzing a message-based system, 
we may want to know about messages that have 
been sent but not yet delivered or about the status 
of a communication link (such as whether it is up 
or down). 

‘Some of the material in Sect. 2-5 appeared in preliminary 
form in Halpern and Zuck (1987) 

Motivated by these observations, we concep- 
tually divide a system into two components: the 
processes and the environment, where we view the 
environment as “everything else that is relevant ”. 
We define a global state of a system with n pro- 
cesses or agents to be an (n + 1)-tuple (s,, s,, . . . , s,J, 
where s, is the state of the environment and si is 
the (local) state of process i. 

The way we divide the system into processes 
and environment will depend on the system being 
analyzed. In a message-based system, we could 
view the message buffer as one of the processes 
or as part of the environment. If it is viewed as 
a process, then its state could encode which mes- 
sages have been sent but not yet delivered. Similar- 
ly, we could view a communication line as a pro- 
cess¶ whose local state might describe (among other 
things) whether or not it is up, or we could have 
the status of the communication lines be part of 
the environment. 

As in the single-process case, actions change 
the global state of the system. But, unlike the sin- 
gle-process case, we can no longer look at individ- 
ual actions in isolation. Actions performed simulta- 
neously by different components of the system may 
interact. For example, we must explain what hap- 
pens when two processes simultaneously try to 
write to the same register. To this end, we define 
a joint action to be a tuple (ae,  a , ,  ..., a,), where 
a,  is an action performed by the environment, and 
a, is an action performed by process i .  We associate 
with each joint action a global state transformer. 
If z is the function that associates a global state 
transformer with every joint action, then 
z(a, ,  a , ,  ..., a,) ( g )  is the global state that results 
when the actions a,, a , ,  . . . , a, are performed simul- 
taneously by the environment and the processes 
when the system is in global state g .  Note that 
we allow the environment, not just the processes, 
to perform actions in our framework. Although 
we do require that processes perform an action 
at every step, this is not a serious restriction. We 
can use a null action to capture the possibility that 
no non-trivial action is performed. It may also 
seem that we are assuming that all actions are 
atomic, but this is not the case. We return to this 
point in our examples below. 

We can now extend the picture described above 
for the single-process case by viewing a run as a 
sequence of global states, joined by arcs labelled 
by a joint action. It turns out that for many of 
our applications we can (and do) essentially ignore 
the actions and “erase” them form the picture.2 

It is interesting that in Milner’s CCS the dual approach is 
taken; the states are erased, leaving only the actions 
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Formally then, we take a run to be a function from 
“real time” to global states. For convenience, we 
take “real time” here to range over the natural 
numbers. We could perfectly well have taken time 
to range over the real numbers or, in fact, any 
other linear order. We do not assume that processes 
in the system necessarily have access to real time; 
if they do, this would simply be encoded as part 
of their local state. 

Let L, be a set of possible (local) states for the 
environment, and let Li, i =  1, ... , n, be local states 
for each of the processes. Let YE L, x L,  x . . . x L, 
be a set of global states. A run over Y is a function 
from the natural numbers to 9. Thus a run over 
Y can be thought of as a sequence of global states. 
Intuitively, r(m) is the global state of the system 
at time m in run r. If r (m) = (s,, sl, . . . , s,,), we define 
ri (m)=si  for i =  1, ... , n. We refer to a pair (r,  m) 
consisting of a run r and time m as a point; thus, 
ri(m) is process i’s local state at the point (r,  m). 
A system over Y is a set of runs over 9. We say 
that (r, m) is a point in system 9 if r E 9 .  We remark 
that, in practice, the set of runs making up the 
system will be chosen by the system designer or 
the person analyzing the system, who presumably 
has a model of what the possible executions of the 
protocol are. 

There are two major assumptions we have 
made here that, while relatively common, are not 
made in a number of other papers; namely, that 
we can view time as a linear order, rather than 
viewing it as just a partial order, and that it makes 
sense to talk about the global state of the system. 
While these assumptions can be relaxed, they make 
our presentation far easier, and they seem to be 
appropriate for the systems we wish to analyze. 
(See Lampert (1985) and Pratt (1982) for some dis- 
cussion about and arguments against these as- 
sumptions; see Panangaden and Taylor (1988) for 
a discussion of how knowledge can be captured 
in a situation where we have partial orders.) There 
is a third assumption that we make for simplicity, 
namely, that there is a fixed set of n processes in 
the system. We could easily extend the notion of 
global state to allow for processes leaving and join- 
ing the system; we do not do this in order for 
our main points to come across clearly. 

We view runs here as infinite objects, describing 
events over all time. It is occasionally convenient 
to consider finite runs, which are functions from 
an initial segment of the natural numbers to global 
states. Given a run r E 9 ,  let TImr the restriction of 
r up to time m, to be the finite run with domain 
(0, . . . , m} that agrees with r on their common do- 
main. We say that p is a prefix of r if p = rim for 

some m 2 0 .  If a finite run p has domain (0, ... , m},  
we say that its length, denoted lp \ ,  is m. (We can 
think of IpI as the number of transitions in p . )  Giv- 
en a system 9, let Pref(9) consist of the runs in 
9 together with all the finite prefixes of runs in 
9. If p, p’~Pref(9),  then we say that p is a prejix 
of p‘, and write p<p’, if for some r E 9  and m l m ‘ ,  
we have p = r I,,, and p’ = r I m , .  

Systems can often be characterized by the types 
of actions that are allowed. Typical actions in a 
system might include reading and writing a shared 
variable, sending a message, receiving a message, 
and local computations. How these actions change 
the global state of the system will depend to some 
extent on the details of how we model the pro- 
cesses’ local states and the state of the environment. 
At this point, the choice of how to model a system, 
including choosing the state space for the processes 
and the environment and deciding on the set of 
runs that make up the system, is more of an art 
than a science. We give some examples below (and 
in later sections of the paper) to show how this 
formalism can be used to capture a number of situ- 
ations that arise in distributed and parallel com- 
puting. 

Example 2.1. In an asynchronous message-based 
system, we assume that there are three types of 
actions : sending messages, delivering messages, and 
local computations. We assume that the environ- 
ment state is simply a description of the message 
buffer: those messages that have been sent but not 
yet delivered. When a process sends a message, the 
effect of this action is to put the message (marked 
with its intended recipient) into the message buffer, 
and perhaps to change the sending process’ state 
so as to record that the message has been sent. 
The action of delivering a message is performed 
by the environment; it results in that message being 
removed from the message buffer and the state of 
the recipient process perhaps being changed in 
some way to record the fact that it has received 
a message. Local computations affect only the state 
of the process performing the action. 

By assuming that the environment delivers only 
messages that are in its buffer and removes a mes- 
sage once it is delivered, we have made a number 
of implicit assumptions about message delivery. Al- 
though messages can come out of order, we do 
not allow messages to be corrupted or duplicated. 
Moreover, the environment cannot deliver a mes- 
sage that was never sent (although it is possible 
that a message that was sent will never be deliv- 
ered). Of course, we can easily alter the model to 
accommodate all of these possibilities. For exam- 
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ple, if we want to allow messages to be duplicated 
(so that the same message can be delivered a 
number of times), we simply change the semantics 
of message delivery so that delivering a message 
does not result in that message being removed from 
the buffer. We can allow for corruption in a 
number of ways. Perhaps the most elegant is to 
view the delivery of a message as a nondeterminis- 
tic action, which can transform a process’ state in 
a number of ways (intuitively, one corresponding 
to each of the ways the message could be cor- 
rupted). 

There are a number of other restrictions on 
message delivery that one frequently wants to cap- 
ture. For example, we may want to require that 
all messages are eventually delivered, or that a mes- 
sage is either delivered within some time T or not 
delivered at all. We could capture these restrictions 
in our framework in several ways. One approach 
is to take the system to consist only of runs where 
the restriction is met. Another is to have the envi- 
ronment’s state include the time, and to attach a 
delivery time to each message in its buffer. Thus, 
when a process p sends the message m to q, the 
effect of this action is that the tuple (p, m, q, T’) 
is inserted into the message buffer, where T’ is the 
time the message will be delivered, chosen (nonde- 
terministically) to be consistent with the assump- 
tions about message delivery. Still other ap- 
proaches are possible. 

We have not been specific here about exactly 
how the state of a process changes as a result of 
sending or receiving messages. A common choice 
made in the literature is to assume that the process’ 
state contains a complete record of all messages 
sent and delivered. Of course, this choice assumes 
an unbounded number of possible states in general, 
so is not always realistic. 0 

Example 2.2. In the previous example we implicitly 
assumed that processes were always enabled, so 
that whenever a process tried to send a message, 
the message was actually sent. It is often convenient 
to assume that processes are not always enabled, 
but rather are scheduled by a scheduler. 

We can model the effect of the scheduler by 
augmenting the set of actions that the environment 
can perform to include actions of the form “pro- 
cesses in I are not scheduled”, where I is a subset 
of the set of processes. If process i sends a message 
at the same time that the environment performs 
a “processes in I not scheduled” action, and ieZ, 
then the action is disabled (the message is not add- 
ed to the message buffer, nor is process i’s state 
changed to record the fact that the message is sent). 

Alternatively, we can assume that the environ- 
ment’s state includes a tuple ( x l ,  ..., x,) such that 
xi= 1 if i is currently enabled and 0 otherwise. If 
i tries to perform a send action in a global state 
where it is not enabled, then the action has no 
effect. Clearly these two ways of modelling a sche- 
duler are essentially equivalent. 

One often wants to capture various fairness 
properties of a scheduler, such as the fact that a 
process is scheduled infinitely often. This is best 
done by restricting the set of runs of the system 
to ones where the appropriate fairness property 
holds. 0 

Example 2.3. Consider a CRCW PRAM (concur- 
rent-read concurrent-write parallel random access 
machine) (Fortune and Wyllie 1978). In this case 
a system consists of n processes together with an 
m-cell shared memory. Computation proceeds in 
synchronous rounds. Each computation step con- 
sists of three phases, each of which takes one round. 
In the first phase, every process may read one mem- 
ory cell. In the second phase, every process may 
perform local computation. In the third phase, 
every process may attempt to write into a cell of 
shared memory. Any number of processes may at- 
tempt to simultaneously read or write from the 
same memory cell. There are a number of mecha- 
nisms for resolving write conflicts that appear in 
the literature. For example, in the MINIMUM 
model of Goldschlager (1982), priority is given to the 
process of lowest index; in the ARBITRARY mod- 
el of Vishkin (1983), an arbitrary process succeeds. 

Once we fix a mechanism for resolving write 
conflicts, it is straightforward to model this situa- 
tion in our framework. The shared memory is the 
environment component of the global state. We 
assume that each process’ state includes a special 
read variable r. During the read phase, a process 
can perform only the null action A (we always use 
A to denote the special null action), or an action 
of the form read(i), i =  1, ... , m, where read(i) means 
that the value of the local read variable r should 
be set equal to the contents of cell i of shared mem- 
ory. The environment performs the A action at the 
read phase (and in every other phase). Since read 
actions do not interfere with each other, the effect 
of performing a tuple ( A ,  ctl, . . . , a,) of actions, 
where ctj is either read(i) or A,  is simply the result 
of performing each of these actions separately, in 
any order. Similarly, a local action performed by 
process i changes just its local state, with no effect 
on any other local states. Again, there is no inter- 
ference between the local actions performed by the 
processes in the computation phase. 
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In the write phase, a process can perform either 
a A action or one of the form write(i, u), i =  1, . .. , m. 
If, for a fixed value of i, only one process performs 
a write(i, u) action, the result is that the value u 
is written into cell i in the environment; the local 
state of the process performing the action changes 
to record the fact that a write was attempted. If 
more than one process performs a write(i, v)  action, 
then the result depends on how we choose to re- 
solve write conflicts. For example, in the MINI- 
MUM model, the resulting value is that written 
by the process of lowest index. In the ARBI- 
TRARY model, the result of a write conflict is 
nondeterministic. Note that a process will not 
know whether it has succeeded after a write action 
in the ARBITRARY model. This is reflected in 
the fact that its state changes in the same way 
whether or not the write succeeds. 0 

This example should already indicate the flexibility 
of this formalism; it also serves to point out that 
the state transformer associated with a joint action 
cannot necessarily be computed by just somehow 
composing the effects of each of the individual ac- 
tions. 

Example 2.4. In the previous example, reading and 
writing were viewed as atomic, taking place in one 
round. We could easily modify this example to al- 
low non-atomic reads and writes. The intuition 
here is that although we may want to think at 
a high level of the reads and writes as taking one 
unit of time, they may in fact be implemented by 
a sequence of lower level actions, and thus take 
place over a period of time. This means we will 
have to describe what happens if a read starts dur- 
ing one write and finishes after that write (possibly 
after several other writes have completed and dur- 
ing yet another write). Again, a number of choices 
are possible (cf., Lamport 1986). We describe one 
here. 

The basic idea is quite simple: the effect of a 
read action is now to indicate that the process has 
begun trying to read. The environment decides 
when the read is complete (by performing a 
read.ended action). Similar comments hold in the 
case of writing. Suppose for simplicity that we are 
trying to model an n-reader, 1-writer register. This 
means that exactly one process can write to that 
register, and n processes can try to read it. For 
definiteness, let us assume that we have n + 1 pro- 
cesses; processes 1, ..., n are the only ones that can 
read the register and n+ 1 is the only process that 
can write into it. We take the environment state 
now to consist not only of the value of the register, 

but also of a description of which processes are 
currently trying to read or write into the register, 
the value that is currently being written (if any), 
and the value currently in the register. Thus we 
can view the environment’s state as an (n + 3)-tuple 
(xl, ..., x,+~).  Wetakexi , i=l ,  ..., n,tobe lifpro- 
cess i is currently trying to read, and 0 otherwise. 
Similarly, x,+ is 1 if process n + 1 is currently try- 
ing to write, and 0 otherwise. We take x , + ~  to 
be the value that n+ 1 is currently trying to write 
if process n+ 1 is trying to write. Finally, x , + ~  is 
the current value of the register. Similarly, we as- 
sume that process i, i = 1, .. . , n, has a special vari- 
able reading that is 1 if process i is trying to read, 
and 0 otherwise. Similarly process n + 1 has a writ- 
ing variable. 

We assume that a process can perform a read 
action only if its reading variable is set to 0 (i.e., 
it cannot start reading while it has another read 
in progress). When process i, i =  1, . . . , n, performs 
a read action, its effect is simply to set the xi  com- 
ponent to 1 and to set the reading variable in its 
local state to 1. Thus the fact that it is reading 
is recorded in both its state and the environment’s 
state. Similarly, when process n+ 1 performs a wri- 
te(v) action, which it can only do if its writing vari- 
able is 0, its effect is simply to set x, + to 1 and 
x , + ~  to u and to set its writing variable to 1. Since 
reading and writing actions are not assumed to 
be atomic, they can go on for a number of steps. 
The environment can now perform actions which 
we call read.ended(i), i =  1, ... , n, and write.ended. 
As the names suggest, these actions signal that a 
read (resp. write) action has ended. The action 
read.ended (i) can be performed only if i is currently 
trying to read the register, i.e., if xi = 1. By recording 
in the environment state the fact that i is reading, 
we allow the environment’s actions to depend only 
on its state. Had we not done this, the environ- 
ment’s actions would also have to depend on the 
state of the processes. The effect of read.ended ( i )  
is to set x i  to 0, set i’s reading variable to 0, and 
set i’s read variable I to x , + ~ ,  the current value 
of the register. Similarly, write.ended, which can 
only be performed if x, + = 1, sets both x,  + and 
process n + 1’s writing variable to 0, and sets x, + 

to%+,.  0 

It should be clear by now that many naturally- 
occurring systems can be captured in this frame- 
work in a straightforward way. We remark that 
not all aspects of systems behavior can be defined 
in terms of runs. In particular, the “branching be- 
havior” of programs cannot be defined (although 
it can be defined, for example, in the framework 
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of CCS (Milner 1980)). The branching behavior of 
a process becomes visible only when it is composed 
with other processes. Since our concern in applying 
the tools of knowledge is usually in analyzing par- 
ticular protocols, rather than composing them, this 
branching behavior will not be of great concern 
to us. 

3 Incorporating knowledge 
It is easy to incorporate knowledge into our frame- 
work. As we mentioned in the introduction, the 
intuition we want to capture is that a process 
knows a given fact at a certain point in a system 
if that fact is true at all other points in the system 
where the process has the same local state. To 
make this precise, suppose we have a set @ of primi- 
tive propositions, which we can think of as describ- 
ing basic facts about the system. These might be 
such facts as “the value of the variable x is 0”, 
“process 1’s initial input was 17”, “process 3 sends 
the message m at round 5 of this run”, or “the 
system is deadlocked”. In practice, basic facts de- 
pend only on the global state, although we do not 
make this a requirement (so that we allow a fact 
such as “the protocol eventually terminates” to 
be a basic fact, although its truth might depend 
on a future global state). In fact, in many cases 
a basic fact p will be local to a particular process 
i, so that the truth of p depends only on the local 
state of i. 

Starting with the basic facts in @, we can extend 
the language to have formulas that express con- 
junctions, negations, and statements about knowl- 
edge. Thus, if cp and 11/ are formulas, then so are 
cp A t+b, i t,b, and K i  11/ (read “process i knows I,$”). 

In order to assign truth values to these formulas, 
we need to first assign truth values to the basic 
facts in Qi. 

Definition. An interpreted system 9 consists of a 
pair (9, n), where 9 is a system and n assigns truth 
values to the basic facts at each point in 9, so 
that for every p ~ @  and point (r,  rn) in 9, we have 
n(r, rn) @)€{true, false}. We say that the point (r, rn) 
is in interpreted system 9 =(a,n) if reB.  

Given an interpreted system 4=(9, n) and a point 
(r,  rn) in 4, we define a satisfiability relation != 
between the tuple (3, r, rn) and a formula cp. For 
a basic fact p E @, we have 
(9, r, rn)t= p iff n(r,  rn) (p) = true. 

We extend the k= relation to conjunctions and ne- 
gations in the obvious way: 

(4, I, m)!= 1 cp iff (9, r, m)+ cp 

(9 , r ,m)kcpA* iff (Y,r,rn)bcp 
and (4, r, rn)k $. 

In order to capture the intuition described 
above for formulas involving knowledge, define 
two points (r, rn) and (r’, rn‘) to be indistinguishable 
to  i, written (r, rn) N i(r’, rn’), if ri(rn)= r;(rn’). Thus 
(r, rn) and (r’, m’) are indistinguishable to i if i has 
the same local state at both of these points. Now 
define 

(9, I ,  rn)k Kicp iff (9, r’, rn’)l=cp 
for all r’ and rn’ such that (Y, rn) - i(r’, rn’). 

This interpretation of knowledge is well known 
to satisfy the axioms of the modal logic S5. In par- 
ticular, it satisfies the axioms: 

K i V J V  
(KiV ~ K i ( q 5 1 1 / ) ) * K i $  
Kicpp=.KiKiq 
i Ki  cp* K i i  Ki cp, 

together with the rule of inference: 

From cp infer K i  cp 

This first of these axioms says that a process 
knows only true facts. The next one says that a 
process’ knowledge is closed under logical implica- 
tion. In combination with the rule of inference, 
which says that processes know all valid formulas 
(i.e., formulas that are true at every point), this says 
that we can view processes as “perfect reasoners”. 
Although this property may be inappropriate for 
analyzing the notion of knowledge as applied to 
humans, recall that we are considering here an ex- 
ternal notion of knowledge, one ascribed by the 
system designer to the processes. We do not assume 
that the processes compute their knowledge in any 
way. The last two axioms are axioms of introspec- 
tion. They say that a process knows what it knows 
and knows what it does not know. It can be shown 
that these axioms and inference rule, together with 
the axioms and inference rules of propositional log- 
ic, give a complete axiomatization for the logic (see 
Halpern and Moses (1985) for a discussion and 
proof). 

We can easily extend this logic further to cap- 
ture the important notion of common knowledge 
(see Halpern and Moses (1984) for further discus- 
sion and applications to distributed systems). Intui- 
tively, a group G has common knowledge of a fact 
cp if everyone in G knows cp, everyone in G knows 
that everyone in G knows q, etc. In order to deal 
with this, we add two further operators to the logic, 
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E ,  and C,, for each subgroup G of processes, read 
“everyone in the group G knows cp” and “cp is 
common knowledge among the group G”, respec- 
tively. 

(M,s)!==E,cp iff ( M ,  s)l==Kicp for all i E G  

( M ,  ~)!=C,cp iff ( M ,  s)i=Ekcp for all k >  1, 

where Ekcp is an abbreviation for E G q ,  and Ek,+’cp 
is an abbreviation for E ,  Ek,cp. 

It is well known (again, see Halpern and Moses 
(1985)) that we can get a complete axiomatization 
for this extended language by adding the axioms: 

E G c p  Kiq 
ieG 

(cGcp A cG(qp=>$))*cG$ 

cGcp EG(cp A cGV), 

together with the rule of inference: 

From q* E ,  cp infer (p* C, cp. 

The first axiom just describes the semantics of 
the E ,  operator, while the second corresponds to 
the analogous property for knowledge. The third 
axiom (called the fixed point axiom) captures the 
fact that C,cp is a solution to the fixed point equa- 
tion X-E, (cpr \X) .  (Actually, in a precise sense 
it is the greatest such solution; cf. Halpern and 
Moses (1984).) The rule of inference is called the 
induction rule, because using the fact that cp- E,cp 
is valid, we can show by induction on k that 
cp*Ek,cp is valid for all k >  1. 

We can further extend the language so that we 
can talk about time, by adding standard temporal 
operators like of‘always”), 0 (“eventually”), and 
U(“unti1”). This allows us to make statements like 
“process 3 will eventually know the value of vari- 
able x”.  Doing this gives us quite a rich language 
for reasoning about knowledge and time. We re- 
mark that in general, the temporal operators will 
be used for reasoning about events that happen 
along a single run (there is no deadlock, eventually 
the transaction completes, etc.), while the knowl- 
edge operators will be used for reasoning about 
events that might be happening on other runs, 
which could be the real run, as far as a given pro- 
cess knows. 

If we reason about knowledge and time, we 
might want to make some assumptions about the 
relationship between knowledge and time. We dis- 
cuss two typical assumptions here, referring the 
reader to Halpern and Vardi (1989) for more details 
(as well as a discussion of the impact of these as- 
sumptions on the complexity of the validity prob- 
lem). 

A (completely) synchronous system 9 is one 
where, intuitively, there is a global clock and the 
clock time is part of each process’ state. Thus, all 
processes “know” the time. Formally, 9 is a syn- 
chronous system if for all processes i and points 
(r,  m), (r’, m’) in 9, if (r, m)- i (r’ ,  m’), then m=m’. 
We say that an interpreted system 9 = (B, n) is syn- 
chronous if B is synchronous. Note that a system 
is synchronous exactly if a process can always dis- 
tinguish points in the present from points in the 
future. 

We say that processes do not forget if, intuitive- 
ly, their set of possibilities always stays the same 
or decreases over time (this notion has also been 
called unbounded memory (Halpern and Vardi 1986) 
or cumulative knowledge (Fagin et al. 1986; Moore 
1985). To make this precise, we define process i’s 
state sequence at the point (r, m) to be the sequence 
of local states it has gone through in run r up 
to time m, without consecutive repetitions. Thus, 
if from time 0 through time 4 in run r process 
i has gone through the sequence (s, s, s‘, s, s) of 
local states, then its state sequence at (r,  4) is 
(s, s’,s). We say that process i does not forget in 
system 9 if at all points (r, m) and (r’, m’) in 9, 
if (r,  rn)ff i (r’ ,  m’), then process i has the same state 
sequence at both (r,  m) and (r’, m’). Thus process 
i does not forget if it “remembers” its state se- 
quence. It is easy to see that no forgetting requires 
an unbounded number of local states in general 
(one for each distinct state sequence). A typical sit- 
uation where we obtain no forgetting is if a process 
records its complete message history, as discussed 
in Example 2.1. However, as we pointed out, this 
assumption is often unreasonable in practice. 

4 Protocols 
Processes usually perform actions according to 
some protocol (or algorithm, or strategy; we tend 
to use the words interchangeably). Intuitively, a 
protocol for process i is a description of what ac- 
tions process i takes as a function of its local state. 
To make this precise, we fix a set Ai of actions 
for process i, and define a protocol over state space 
Li to be a function (possibly probabilistic) from 
Li to nonempty sets of actions in A i .  The fact that 
a protocol maps a local state into a set of actions 
is used to capture the possible nondeterminism of 
the protocol. As we shall see, at any step only one 
of the possible actions of the protocol is actually 
performed. Of course, a deterministic protocol 
maps states to singleton sets of actions. For now 
we leave the set Ai unspecified, but in typical appli- 
cations it consists of a small set of basic actions 
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such as reading a data element, writing a value, 
sending a message, or making a move in a game. 

Just as it is useful to view the environment as 
performing an action, it is also useful to view the 
environment as running a protocol. We can use 
the environment’s protocol to capture the possibili- 
ty that messages are lost or that messages may 
be delivered out of order; input from the outside 
world can be modelled by messages from the envi- 
ronment. Thus, we fix a set A ,  of actions for the 
environment, and define a protocol for the environ- 
ment to be a function from L, to nonempty sets 
of actions in A,.  

We remark that our notion of protocol is quite 
general. For example, we do not constrain the func- 
tion defining the protocol to be computable, al- 
though we could easily do so. But note that in 
contrast to, for example, Fischer and Immerman 
(1986), we require a protocol to be a function from 
local states to sets of actions, rather than a function 
on global states. It is crucial to most of our knowl- 
edge-based analyses that what a process does can 
depend only on its local state, and not on the whole 
global state. 

We define a joint protocol P to be a tuple 
(e, PI, ... , P,) consisting of a protocol P, for the 
environment, and protocols q, i = 1, . . . , n for each 
of the processes. When analyzing a protocol, it is 
often convenient to associate with it a system, 
which intuitively consists of the set of runs of the 
protocol. In order to associate a set of runs with 
the joint protocol P = ( P , ,  4, ..., c), where P,: 
Le+ 2A‘ - 8 and 4: Li+2Ai-@, i = l ,  ..., n, fix a 
set 3 z L ,  x L,  x ... x L, of global states, a set 
3 0 ~ 3  of initial states, and a transition function 
z that associates with every joint action 
(ae,  a,, ..., u , ) E A , x A ,  x ... x A, a global state 
transformer z(a,, a,, ..., a,), i.e., a function from 9 
to 3. We say that a run r is consistent with the 
joint protocol P if 

1. r (0)E30(so  r(0)  is a legal initial state). 
2. For all m 2 0, if r (m)  = (s,, sl, . . . , s,), then there is a 

joint action (a,, a,, . .. , a,)~P,(s,)  x 4 (s,) x _ _ .  x 
P,(s,) such that r ( m +  l )=z(ae ,  a,, ..., a,) (r(m)) 
(so r (m+ 1) is the result of transforming r(m) by 
a joint action that could have been performed 
from r(m) according to P). 

We use B ( P )  to denote the set of all runs consis- 
tent with the joint protocol P. It is usually the 
system B ( P )  we refer to when we speak of “the 
runs of protocol P”. However, if we are given some 
global constraint on the system (such as a fairness 
constraint), then we would consider the subset of 
9 ( P )  satisfying that constraint. 

5 Knowledge-based protocols 
While we have argued that our notion of protocol 
is sufficiently general to include all algorithms that 
can be written in any programming language cur- 
rently in use, it cannot be used to give a high-level 
system-independent description of the relationship 
between knowledge and action. This issue is per- 
haps best understood by considering the type of 
problems that one sees in puzzle books (for exam- 
ple, Smullyan (1978), where a man meets someone 
on the road who is known to be either a Truth- 
teller (who always tells the truth) or a Liar (who 
always lies). The problem is to determine which 
he is by asking some questions. The rules of the 
game are that in response to a question of the form 
“Is cp the case?”, the Truth-teller answers “Yes” 
if cp is true and “No” if cp is false. Similarly, the 
Liar answers “Yes” if cp is false and “No” if cp 
is true. 

A closer inspection shows that these rules are 
not well specified. Suppose the Truth-teller is asked 
about cp and he doesn’t know whether cp is true 
or false. Then he cannot follow this protocol appro- 
priately (unless he manages to guess right). It seems 
clear that we should reinterpret these rules so that, 
when asked about (p, the Truth-teller responds 
“Yes” if he knows that (p is true, “NO” if he knows 
that (p is false, and “ I  don’t know” otherwise. The 
Liar is similarly con~trained.~ 

With this reinterpretation, both the Truth-teller 
and Liar can be viewed as running protocols with 
explicit tests for knowledge. For example, if we take 
the Truth-teller to be process 1, then we can view 
his protocol P, as a function that, in a state where 
the question cp is asked, has the form 

if K ,  (p then say “Yes” 
else if K l i  p then say “No” 
else say “ I  don’t know”. 

This cannot be viewed as a standard protocol, since 
the truth value of the test K,(p cannot be deter- 
mined by looking at process 1’s local state in isola- 
tion. Its truth depends on the truth of cp at other 
points (all the ones with global states that process 
1 cannot distinguish from the current global state). 
Thus, whereas a standard protocol for process i 
is a function from i’s local states to actions, we 
can view a knowledge-based protocol for process 
i as a program that contains statements of the form 

It is not clear exactly how the Liar should respond if he doesn’t 
know whether cp is true or false. In the solutions to such Truth- 
teller/Liar puzzles, the questions are always carefully chosen 
so that the person answering knows the answer; thus, this issue 
does not arise 
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“if Ki cp, then a else if Ki cpz then a’ ...”, where 
a and a’ are actions in Ai. We then need to have 
an interpreted system to decide whether the tests 
are true. 

Although it is useful to think of a knowledge- 
based protocol as a function from states to if-then- 
else statements with tests for knowledge, it is techn- 
ically more convenient to view it as a function from 
a pair consisting of a local state and an interpreted 
system to actions. (We essentially took the former 
approach in Halpern and Fagin (1985), where the 
notion of knowledge-based protocol was intro- 
duced; the approach we take here to the definition 
of knowledge-based protocols was taken in Neiger 
and Toueg (1987).) Formally, fix a set ’3 c L, x L,  
x ... x L, of global states and a set Ai of actions 
for process i, and let I N T ( 9 )  be the set of all inter- 
preted systems 4=(&?, n) such that for every run 
r e g ,  all the global states in r are in 9. Then a 
knowledge-based protocol for process i is a func- 
tion 8 from L i x I N T ( 9 )  to nonempty sets of ac- 
tions in Ai. For example, suppose the Truth-teller 
is in state L after being asked the question “Is cp 
the case?”. Then we have 

p ,  (I,$) = 
say“Yes” if (4,r,m)t=cp for all points (r,m) 

if ( X , r , m ) + i  p for all points (r,m) 
where rl (m) = L 

where r l  (m) = L 
say “No” 

say ‘‘I don’t 
know ” otherwise. 

Note that the only difference between the for- 
mal definition of knowledge-based protocols and 
standard protocols is that a knowledge-based pro- 
tocol takes an interpreted system as one of its argu- 
ments. Once we fix an interpreted system 4, then 
a knowledge-based protocol reduces to a standard 
protocol. Thus we can view knowledge-based pro- 
tocols as functions from interpreted systems to 
standard protocols. A standard protocol can be 
viewed as a special case of a knowledge-based pro- 
tocol where the function is independent of the in- 
terpreted system. 

Like our definitions for standard protocols, we 
can define a joint knowledge-based protocol to be 
a tuple (e, 4, .. . , P,) of knowledge-based proto- 
cols, all defined with respect to the same set $9 
(i.e., there is a set 9~ L, x L,  x ... x L, such that 
P, is a function from L, x I N T ( 9 )  to nonempty sets 
of actions in A ,  and 8 is a function from Li 
x I N T ( 9 )  to nonempty sets of actions in Ai, i 
- - 1, . . . , n). We would also like to define the notion 
of a run being consistent with a knowledge-based 

protocol, in analogy to our definition for standard 
protocols. In order to do this, we must also specify 
an interpreted system, since a knowledge-based 
protocol takes an interpreted system as one of its 
arguments. Given a joint knowledge-based proto- 
col P as above, a set 93,, G 93 of initial states, a tran- 
sition function z, and an interpreted system 4, we 
define a run r to be consistent with P relative to 
4 just as we defined the notion of a run being 
consistent with a standard protocol P, except that 
now the joint action (a,, a,, ..., a,) in clause (2) 
is in P,(s,, 9) x Pl(s,, 4) x ... x P,(s,, 4) rather 
than P,(s,) x PI (s,) x . . . x P,(s,). An interpreted sys- 
tem 4=(&?, n) is consistent with knowledge-based 
protocol P if every run rE&? is consistent with P 
relative to 9. 

This completes our description of standard pro- 
tocols and knowledge-based protocols. A detailed 
example of how the semantics of both standard 
and knowledge-based protocols can be specified 
in this framework is given in Halpern and Zuck 
(1987). 

The definition of an interpreted system being 
consistent with a knowledge-based protocol has 
some inherent circularity. This can perhaps be bet- 
ter seen if we define Con(P,(%?, n)) to be the set 
of runs consistent with knowledge-based protocol 
P relative to the interpreted system S=(&?, n). 
Then 3 is consistent with P if B s C o n ( P , ( 9 ,  n)). 
Given this circularity, it may not seem too surpris- 
ing that, in contrast with the situation for standard 
protocols, we cannot talk about the interpreted sys- 
tem consistent with a knowledge-based protocol. 
There may not be any interpreted systems consis- 
tent with a given knowledge-based protocol; more 
often, there will be many interpreted systems con- 
sistent with a given knowledge-based protocol. 

This contrast between standard protocols and 
knowledge-based protocols is quite relevant when 
proving that these protocols are correct or satisfy 
certain specifications. In order to prove that a stan- 
dard protocol P satisfies certain specifications, we 
typically prove that these specifications hold for 
all the runs in 9 ( P )  (or perhaps all the runs satisfy- 
ing some constraint such as fairness). In order to 
prove that a knowledge-based protocol P satisfies 
certain specifications, what we prove is that these 
specifications hold for all the interpreted systems 
consistent with P (cf. the proofs in Halpern and 
Zuck (1987)). 

We would often like to think of a knowledge- 
based protocol as specifying a unique set of runs. 
To understand what may prevent us from doing 
so, fix a knowledge-based protocol P,  a set 9 of 
global states, a subset $9, ~ $ 9 ,  and a transition func- 
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tion z. The obvious way of constructing a set of 
runs is to proceed by constructing all prefixes of 
consistent runs of length m, by induction on m. 
Suppose we have managed to construct the prefixes 
of length m. In order to know what action to per- 
form next at a certain point (r, m), we must know 
the result of a test of the form K , q .  However, this 
result depends on the truth value of rp at other 
points where i has the same state as the current 
point. Thus, there are two reasons why we cannot 
determine the truth value of K , q .  The first is that 
there may be points in the future, that we have 
not yet constructed, where i has the same local 
state as it does at (r, m). And even if i can always 
distinguish points in the present from points in the 
future, it may be the case that the truth of rp itself 
depends on the future (for example, q~ may be of 
the form 0 p ,  so it is true only if p eventually holds). 

Recall that in a synchronous systems, processes 
have access to a global clock, so they can always 
distinguish points in the present from points in the 
future. Thus, we can avoid the first problem by 
restricting attention to synchronous systems. If we 
also restrict attention to knowledge-based proto- 
cols whose actions depend only on the past, we 
can avoid the second problem. Once we do this, 
we still do not get a unique set of runs correspond- 
ing to the knowledge-based protocol, but we do 
get in some sense a canonical set of runs, which 
we can think of as the set of runs determined by 
the knowledge based protocol. We now make this 
intuition precise. 

Suppose we are given a joint knowledge-based 
protocol P =(&, Pl, . . . , P,), defined with respect to 
a set 9 of global states and a transition function 
z. Since we now must consider interpreted systems 
rather than just systems, we must also have a func- 
tion n that assigns truth values to the primitive 
propositions in our language. We assume (as is the 
case in most real-world protocols) that the truth 
value of a primitive proposition depends only on 
the global state. Thus, we assume that we have 
a function CJ such that for each global state g E 9  
and each primitive proposition PEG, we have 
a(g) ( p ) ~  {true, false}. Given an interpreted system 
4=(9, n), we say that n is based on CJ if 
n(r, m)=a(r(m))  for all points (r,  m) in 9. For the 
remainder of this section, we restrict our attention 
to synchronous interpreted systems 4 = (9, z) in 
ZNT(9)  where z is based on c. 

Since we restrict attention to synchronous sys- 
tems in any case, we assume for simplicity that 
process i’s local state is of the form (m, ...), where 
the first component is the time; similarly for the 
environment’s local state. Thus, the global state 

at a point (r, m) of a synchronous system is of the 
form ((m, . . .), (m, . . . ), . . . , (m, . . .)). We assume that 
the global states in 9 are of this form. We further 
assume that our transition function z has the prop- 
erty that an action always result in an increase 
in time by one unit. Thus, for any joint action 
( a l ,  . . . , a,), we have 
z(a, ,  ..., a,) ((m, ...), ..., (m, ...))= 
( ( m + l ,  ...), ..., ( m + 1 ,  ...)). 

Finally, as mentioned above, in order to con- 
struct a unique system consistent with P ,  we must 
also assume that the actions in P depend only on 
the past. To make this precise, given a system 9, 
let Brn consist of all the prefixes of runs in 9 of 
length m. We say that two interpreted systems 
9=(92, n) and 4’=(92’, n’) agree up to time m if 
9m=(9‘)rn. We say that q s  actions depend only 
on the past if, for all times m, given two synchro- 
nous interpreted systems 4, 9’ that agree up to 
time m and points (r, m) in Y and (r’, m) in 9’ such 
that r,(m) = ri(m) = s, then S(s, 9) = e(s, 9’). We can 
similarly define what it means for the environment 
protocol c s  actions to depend only on the past. 
We say that the actions of P = (e, 4, . . . , P,) depend 
only on the past if the actions of each of its compo- 
nents do. Note that if we had viewed a knowledge- 
based protocol as a function that maps local states 
to objects such as if K,cp then ..., then a knowl- 
edge-based protocol where the tests cp were re- 
stricted to involve only past-time temporal operators 
(cf. Lichtenstein et al. 1985), whose truth at a point 
( r , m )  depends only on the prefix of the run up 
to time m, would in fact be a protocol whose ac- 
tions depended only on the past. 

Theorem 5.1. Fix 9, CJ, and z as above, and suppose 
that the actions of P depend only on the past. Let 
goz9 be such that all the global states in go are 
of the form ((0, . . .), ~. . , (0, . . .)). Then there is a syn- 
chronous interpreted system 4 = (9, z) consistent 
with P ,  such that the initial global states of the runs 
in 9 are precisely the elements of go and z is based 
on CJ, and such that 4 is a maximal interpreted sys- 
tem with this property (i.e., i f  9’=(9’, z‘) is a syn- 
chronous interpreted system such that the initial 
global states of the runs in B’ are precisely the ele- 
ments of 9,, and z’ is based on CJ, then it is not 
the case that 9 is a proper subset of 9’). 

Proof: We just sketch the construction of 4 here. 
We first construct all the prefixes of runs in 9 of 
length 0. These are the functions p with domain 
(0)  such that p ( O ) ~ 9 ~ .  Suppose we have con- 
structed all the prefixes of length m; call this set 
of prefixes grn. Let (9?:”)* consist of all runs extend- 



170 J.Y. Halpern and R. Fagin: Knowledge and action in distributed systems 

ing 5%'"' whose global states at all times m' have 
the form ((m', . . . ), . . . , (mr, . . . )). Let 9"' = ((Bm)*, d), 
where nr is determined by D. Let Bm+' consist of 
all those finite runs pr of length m+ 1 such that 
there is a prefix p in (Wm)* of length m and a joint 
action (ae, a,, . . . , a,) satisfying 

1. p<p', 

2. ifp(m)=(se,sl, ..., sn), 
then (ue, a,, . . . , an)€ 
p, (s, , 9") x P1 (s 1 , P )  x . . . x p, (s, , P), 

(i.e., p'(m + 1) is the result of performing 
the joint action (a,, a , ,  .. ., a,) in p(m)).  

3. pr(m+ z((ae,  a,, 7 an)) ( ~ ( m ) )  

It is easy to see that every prefix in B"' has some 
extension in B"'+'. Moreover, our assumptions on 
z guarantee that all the global states in gm+ ' have 
the right form, so that we stay within the frame- 
work of synchronous systems. 

Let W consist of all runs r such that for all 
m, the prefix of r of length m is in Bm. Let n be 
the truth assignment of 92 determined by D.  Using 
the fact that (by construction) Y and 9"' agree 
up to time m and that P's actions depend only 
on the past, it is easy to check that Y=(B, x) is 
consistent with P. Roughly speaking, we have con- 
structed Y so that at every step m+ 1, we have 
all possible extensions of runs at step m that allow 
us to remain consistent with P. From this it easily 
follows that 9 is maximal in the sense given by 
the statement of the theorem. 0 

It may seem that we require quite a few assump- 
tions for this construction to go through, but sys- 
tems meeting all these assumptions arise regularly 
in the literature. A typical example is provided in 
the next section. 

6 An example: 
the "cheating husbands" puzzle 
In this section we examine the "cheating hus- 
bands" puzzle and some of its variants, dealt with 
at great length in Moses et al. (1986). We show 
how it can be captured in our framework, and how 
viewing it as a knowledge-based protocol, it gets 
tranformed into a number of different standard 
protocols, depending on the assumptions about the 
system. The cheating husbands puzzle is essentially 
isomorphic to the "muddy children" puzzle dis- 
cussed in Halpern and Moses (1984), so our analy- 
sis holds for the latter puzzle as well. 

We begin by reviewing the essential elements 

of the puzzle. The following passage is taken from 
Moses et al. (1986). 

It has always been common knowledge among 
the women of Mamajorca [that all of them are 
perfect reasoners], their queens are truthful, 
and that the women are obedient to the queens. 
It was also common knowledge that all women 
hear every shot fired in Mamajorca. Queen 
Henrietta I awoke one morning with a firm res- 
olution to do away with the male infidelity 
problem in Mamajorca. She summoned all of 
the women heads of households to the town 
square, and read them the following statement: 

There are (one or more) unfaithful husbands 
in our community. Although none of you 
knew before this gathering whether your 
own husband was unfaithful, each of you 
knows which of the other husbands are un- 
faithful. I forbid you to discuss the matter 
of your own husband's fidelity with anyone. 
However, should you discover that your 
husband is unfaithful, you must shoot him 
on the midnight of the day you find out 
about it. 

Thirty-nine silent nights went by, and on the 
fortieth night, shots were heard. 

Of course, the puzzle is to explain how many cheat- 
ing husbands there were, and why they were shot 
on the fortieth night. 

We can in fact show that there must have been 
forty unfaithful husbands. We prove by induction 
that if there were exactly k unfaithful husbands, 
they would have been shot on the kth night, and 
no earlier. Clearly if there were only one unfaithful 
husband, his wife, not knowing of any other un- 
faithful husbands, would realize as soon as she 
heard the queen say that there were some unfaithful 
husbands, that her own husband was unfaithful. 
Thus, if k =  1, the one unfaithful husband is shot 
on the first night. For the general case, suppose 
there are k +  1 unfaithful husbands. Their wives 
know of k unfaithful husbands (since they know 
of all unfaithful husbands besides their own). When 
no shots are heard on the kth night, they realize 
that there could not have been exactly k unfaithful 
husbands, since if there were, by the induction hy- 
pothesis, they would have been shot on the kth 
night. Thus each wife of an unfaithful husband can 
deduce on the ( k +  l),' day that her husband is un- 
faithful, and so will shoot him on that night. She 
could not have deduced this fact any earlier, be- 
cause she could not have distinguished before then 
the actual situation from the one where her hus- 
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band was faithful and there really were only k un- 
faithful husbands. 

As is pointed out in Halpern and Moses (1984), 
there is a somewhat deeper puzzle here. In the 
story, there were actually forty unfaithful husbands. 
Thus it seems that the queen’s initial statement that 
there were unfaithful husbands in the community 
is unnecessary. All the wives were already aware 
of this fact. Yet, as is shown in Halpern and Moses 
(1984), none of the women would have been able 
to conclude anything about their own husbands’ 
faithfulness without this apparently useless state- 
ment. It is clear that our proof by induction breaks 
down in the base case without the queen’s state- 
ment, but this does not seem to be a very satisfacto- 
ry explanation as to why the queen’s statement 
is necessary. As is shown in both Halpern and 
Moses (1984) and Moses et al. (1986), we can get 
a better understanding of what is going on here 
by doing an analysis of the state of knowledge of 
the women, and how it changes over time. We now 
do this in our formal framework. 

It is clear that all of the women are following 
a very simple knowledge-based protocol, namely 
“For all days k =  1,2, 3,  . .. , if you know that your 
husband is unfaithful, then shoot him at midnight; 
otherwise do nothing”. This is a protocol that is 
being run in a synchronous system whose actions 
depend only on the past, so we can construct a 
canonical interpreted system consistent with this 
protocol, as discussed in the previous section. In 
order to understand the structure of this system, 
we first present a fairly complete informal discus- 
sion, and then sketch how it can be formalized. 

Suppose there are n couples in the village. We 
number them 1, ..., n. We can describe the situa- 
tion in the village by an n-tuple of 0’s and 1’s of 
the form (xl, ..., x,), where x i =  1 if husband i is 
unfaithful, and xi = O  otherwise. Thus, if n = 5,  then 
a tuple of the form (1,0, I,O, 0) would say that 
there are exactly two unfaithful husbands, that of 
woman number 1 and that of woman number 3. 
Suppose the actual situation is described by the 
tuple (xl, . . . , x,). Because wife number 1 knows 
of all the unfaithful husbands besides her own, she 
initially considers two situations possible: 
(0, x2, ... , x,) and (1, x2, ... , x,). Her husband may 
be faithful or may be unfaithful. Similarly, wife 
number 2 considers two situations possible: 
(xl, 0, x3, ..., x,) and (xl, 1, x3, ..., x,). Note that, 
in general, two tuples cannot be distinguished by 
woman i exactly iff they differ only in the ith compo- 
nent. Thus, on day 0 (before the queen has spoken), 
we have 2” possible initial situations, described by 
these n-tuples. We can also describe the indistingu- 

ishability relationship easily. Suppose we join two 
n-tuples by an edge (labelled i) if they are indistin- 
guishable by i. Then it is easy to see that we have 
precisely an n-dimensional cube.4 

What happens on day 1, after the queen has 
spoken? The queen said that there were some un- 
faithful husbands in the village. This eliminates the 
situation (0, 0, . . . , 0) from the picture. Thus we end 
up with a “truncated” cube, which is missing one 
vertex. Going back to our example with n = 5, if 
the initial situation were (1,0, l ,O,O),  although 
everyone knew before the queen spoke that there 
were some unfaithful husbands, woman 1 consid- 
ered the situation (0, 0, 1,0,0) possible before the 
queen spoke. In that situation, woman 3 would 
consider (0, 0, 0, 0 ,O)  possible. Thus, before the 
queen spoke, woman 1 thought it was possible that 
woman 3 thought it was possible that there were 
no cheating husbands. After the queen spoke, it 
was common knowledge that there were some cheat- 
ing husbands. This is represented by the fact that 
the cube is truncated. Thus, the queen’s initial 
statement does change the group’s knowledge. 
Even though every woman knew there were some 
unfaithful husbands before the queen spoke, it 
wasn’t common knowledge. 

On day 2, when no shots were heard the night 
before, all the women can further truncate the cube. 
They can eliminate all vertices with exactly one 
1. The reasoning parallels that which we did above. 
If the actual situation were described by, say, the 
tuple (1,0, ... , 0), then initially woman 1 would 
have considered two situations possible: 
(1,0, ... , 0 )  and (0, 0, ... ,O).  Since it is common 
knowledge that (0, 0, ..., 0) is not possible, she 
would know that the situation is described by 
(1,0, ..., 0), so she would know that her husband 
was unfaithful. Since there were no shots, she could 
not know this. Thus, the situation cannot be 
(l,O, . . . , 0). Similar reasoning allows all the women 
to eliminate every situation with exactly one 1. 
Since it is common knowledge that all of the wom- 
en are perfect reasoners, on day 2 (before mid- 
night), it is common knowledge that there are at 
least 2 unfaithful husbands. 

Every day we can truncate the cube a little 
more. Similar reasoning to that above shows that 
we can eliminate all the vertices with exactly k 1’s 
after midnight of day k.  Thus, on day k +  1 (before 
midnight), it is common knowledge that there are 
at least k + l  unfaithful husbands. (Notice that 
knowledge is changing here even in the absence 
of communication!) If the true situation is de- 
4This graphical interpretation of the situation as an n-cube 
was pointed out to us by Moshe Vardi 
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scribed by a tuple with exactly k +  1 l’s, then on 
the (k  + lrt day, those women with unfaithful hus- 
bands will know the exact situation, and conse- 
quently shoot their husbands on that night. 

We now capture this situation formally in our 
framework. Our first step is to describe the possible 
local states. We take the environment’s state to 
consist of a pair (m, x), where m is the day and 
x is a complete description of which husbands are 
faithful (a tuple of 0’s and l’s, as described above). 
We take woman i’s state to be a triple of the form 
(m, y ,  h), where again m is the day, y is a description 
of what woman i originally knows about which 
husbands are unfaithful, and h is a sequence of 
length m describing what woman i has heard on 
all the previous days. If x is a complete description 
of which husbands are faithful, then y is xi, where 
xi is just like x except that there is a * in the ith 
component, indicating that woman i does not 
know whether her own husband is unfaithful (al- 
though she does know about everyone else). The 
initial global states are thus of the form ((0, x), 

We assume that Queen Henrietta sends her 
message on day 0. For ease of exposition, we as- 
sume that she sends either the message described 
above, or no message at all. On later days we just 
append 1 or 0 to h, depending on whether or not 
there were shots the previous day. There are some 
obvious constraints on the global state: all the 
times must be the same (ie., the first components 
of each woman’s state and the environment’s state 
must be the same); woman i’s view of the situation 
must be the same as the true situation (as described 
in the environment’s state), except with a * in the 
i component; and all the woman must hear the 
same thing (so that the h components are all the 
same). Note that this embodies the implicit as- 
sumptions that it is common knowledge that all 
the women can see and hear, and are paying atten- 
tion. If some woman considered it possible that 
some other woman considered it possible . . . that 
some woman was deaf or not paying attention, 
then there would be a global state in the model 
where the h components were different. 

The only non-null action performed by the 
women is that of shooting; the only non-null action 
performed by the environment is that of possibly 
broadcasting the queen’s message on day 0. Since 
we assume the queen is telling the truth, this mes- 
sage can be broadcast only if the environment’s 
state (0, x) is such that there is at least one 1 in 
the tuple x (so that there is at least one unfaithful 
husband). 

As we remarked before, woman i is following 

(0, xl, < >), . . - 7 (0, X”, ( >)). 

the knowledge-based protocol “for day 
k =  1, 2, 3 . .. , if Ki (husband i unfaithful) then 
shoot”. The environment is running the protocol 
which (nondeterministically) either sends the 
queen’s message or does nothing on day 0 (and 
does nothing on all later days). This captures the 
fact that, a priori, the women do not know whether 
the queen will send a message. 

We can now construct the runs corresponding 
to this knowledge-based protocol by induction, as 
described in the previous section, using the ideas 
in the informal analysis above. A straightforward 
induction shows that at any day k >  1, we have 
precisely 2” - 1 prefixes of length k of runs where 
the queen sends a message, one corresponding to 
each of the initial states where at least one of the 
husbands is unfaithful, and a further 2” prefixes 
of length k of runs where the queen does not send 
a message. Moreover, if we put an edge between 
two time k points if some process cannot distin- 
guish them, then we get a “truncated cube” at the 
points corresponding to runs where at least k hus- 
bands are unfaithful and the queen does send a 
message. On this subset of runs, woman i knows 
that her husband is unfaithful (and therefore shoots 
him) at time k on those runs where are exactly 
k unfaithful husbands, one of whom is woman i’s. 
These observations allow us to extend from pre- 
fixes of length k to prefixes of length k +  1. In this 
interpreted system, the knowledge-based protocol 
is equivalent to a simple standard protocol: “If 
you heard the queen’s initial statement, your initial 
state has k 1’s (i.e., if you initially knew of k unfaith- 
ful husbands), and there are no shots on the kth 
night, then shoot your husband on the (k+l)”‘  
night; otherwise do nothing.” 

Several other variants of the cheating husband 
problem are considered in Moses et al. (1986). For 
example, the next queen of Mamajorca introduces 
a mail system, and sends out to all her subjects 
an exact copy of her mother’s message, as well as 
a letter describing the crucial property of the mail 
system, namely, that all letters are guaranteed to 
eventually arrive. In this setting, it is shown that 
if there is more than one unfaithful husband, then 
no husband will ever be shot. In our formal model, 
what is going on here is that although the initial 
situations now are the same as they were before, 
and each woman still follows the same knowledge- 
based protocol as before (once she gets the queen’s 
message), the set of possible runs has changed be- 
cause the environment’s protocol has changed. It 
is still nondeterministic, but now not only is it pos- 
sible that the queen sent no message, but, if she 
did send a message, there is nondeterminism in 
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how long it takes to arrive (so that different women 
can append the message to the history component 
h on different days). In this system, it can be shown 
that the women can never deduce whether their 
husbands are unfaithful whenever there is more 
than one unfaithful husband. 

In another variant considered in Moses et al. 
(1986), the mail system is improved so that all mes- 
sages are guaranteed to arrive no later than one 
day after they are sent (i.e., either on the same day 
or on the next day). This fact is also made known 
to all the women by a letter. In our framework, 
this means that in any given run, the women all 
receive the queen’s message within one day of each 
other. Moreover, the women are told to shoot their 
husbands on midnight of the day after they first 
know he is unfaithful. In this situation, it is shown 
that all the unfaithful husbands (and only the un- 
faithful husbands!) are shot, but the reasoning is 
much different from that in the first story. We do 
not go through the details here, but observe that 
although the wives execute essentially the same 
knowledge-based protocol here as in the case dis- 
cussed above, the corresponding standard protocol 
becomes: “If your initial state has k 1’s and there 
are no shots for the first 3 k  nights after you get 
the queen’s message, then shoot your husband on 
the (3k-1-2Yd night; otherwise do nothing.” The 
difference between this standard protocol and the 
one that was equivalent to the knowledge-based 
protocol in the original scenario is due to the differ- 
ence in the environment’s protocol. It is the envi- 
ronment’s protocol that is being used to capture 
the different assumptions about the system. By us- 
ing the high-level language of knowledge-based 
protocols, we can capture the intuition that the 
women are in some sense running the same proto- 
col. 

7 What is means for one protocol 
to implement another 
It is often convenient when designing protocols to 
first design a joint protocol P that uses high-level 
constructs, then implement these constructs in a 
protocol P‘ using low-level commands. It is usually 
relatively straightforward to prove the correctness 
of P ;  one then proves the correctness of P by show- 
ing that in a precise sense it is an implementation 
of P.  This is particularly the case when starting 
with knowledge-based protocols (see Halpern and 
Zuck (1987) for examples). Although system de- 
signers have good intuitions about when one pro- 
tocol implements another, making this notion pre- 
cise has not been so easy. Lamport gives a defini- 

tion of what it means for one system to implement 
another in Lamport (1986), using the framework 
developed there. We now consider this question 
in our framework. 

Since we identify a protocol with a system, it 
is clear that an implementation should be a func- 
tion from one system to another. Thus, if 9 (resp. 
R) is the system corresponding to protocol P (resp. 
P), the fact that P‘ implements P is captured by 
having a function h from B’ to 9. However, our 
intuition about implementations will surely not be 
captured by simply having an arbitrary function 
from one system to another. An implementation 
is only interesting if it preserves certain relevant 
features of the runs (such as reads and writes). We 
make this notion precise below, but first we consid- 
er a number of other properties that we might want 
an implementation to have. 

One condition we might impose is that not only 
do we have a function from runs to runs, but also 
from prefixes of runs to prefixes of runs. The intu- 
ition is that a prefix of a run of P’ should map 
to a prefix of a run of P where the corresponding 
steps have been performed. Of course, we would 
expect that longer prefixes of runs of P‘ map to 
longer prefixes of runs of P.  Thus we get the follow- 
ing definition. 

Definition. A mapping h from (finite and infin- 
ite) runs to runs is monotonic if p<p’ implies 
h ( p ) < h ( p ’ ) .  92’ is  a monotonic implementation of 92 
if there is a monotonic mapping 
h: Pref(B’)--+Pref(9). 0 
We can impose an additional requirement; that 
of continuity. The intuition here is that a low-level 
protocol can take several steps to implement a step 
of a high-level protocol, but it eventually does so. 
Thus, if P‘ implements P ,  then a prefix of a run 
of P’ should correspond to a prefix of a run of 
P where the corresponding high-level steps have 
been performed. By taking longer and longer pre- 
fixes of a run in P’ we should be able to reconstruct 
the run of P that it implements. This leads us to 
the following definition. 

Definition. A mapping h taking runs into runs is 
continuous if, given that p l < p 2 5  ... and Uip ,= r ,  
and that pi, i =  1,2, ... and r are all in the domain 
of h, then h(p1)<h(p2)$ ... and h(r)=Uih(pi). 
Note that continuity implies monotonicity. 9‘ is 
a continuous implementation of 92 if there is a con- 
tinuous mapping h: Pref(B’)+Pref(%). 0 

As Martin Abadi has pointed out to us, both of 
these requirements (monotonicity and continuity) 
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on implementations may be too strong. For exam- 
ple, consider the simple situation where a message 
is sent by p to q and, at the high level, the environ- 
ment decides how many steps it will take before 
delivering a message by tossing an infinite-sided 
coin, with faces labelled 1,2, 3, ..., 00. The out- 
come of the coin toss determines when the message 
will be delivered; if the coin lands co then the mes- 
sage is never delivered. One way to capture this 
by having the delivery time (the outcome of the 
coin toss) be part of the environment’s initial state. 
Thus, we can take the system 9 to consist of all 
runs where p sends the message m to q at time 
0, and this message is delivered at the time k speci- 
fied by the environment’s initial state. We can im- 
plement this by having the environment toss a two- 
sided coin at every step, and deliver the message 
when the coin lands heads the first time. This corre- 
sponds to a set fl of runs where the environment’s 
state at time k is determined by whether it tossed 
heads or tails at the last coin toss. Unfortunately, 
there is no monotonic mapping from Pref(9’) to 
Pref(9). The problem is that for a prefix of a run 
in 9‘ where the environment has tossed tails at 
every step, we do not know what prefix of a run 
in 9i’ to map it to. We cannot commit yet to deliver- 
ing the message at a fixed time and still maintain 
monotonicity. 

If we modify 9 so that the environment’s state 
contains the outcome of the infinite-sided coin toss 
only after time 1 (and at time 0 the environment 
was in some special initial state), we can get a 
monotonic map. It is easy to check, however, that 
we can do this only by mapping a prefix of a run 
of 9‘ where the environment tosses tails at every 
step to a length 0 prefix of a run of 9 (all length 
0 prefixes are the same, so it does not matter which 
run we choose). But this map is not continuous. 

. Consider the run of 3’ where the environment 
tosses tails at every step. All of its prefixes are 
mapped to a length 0 prefix of 9. Thus we do 
have monotonicity, but not continuity. 

Despite this counterexample, it still seems to 
be the case that most examples of implementations 
that arise in practice are continuous (and hence 
also monotonic). Indeed, we usually expect even 
more of an implementation. We want certain prop- 
erties of runs to be preserved, for example, what 
data elements are read or written onto a disk. The 
fact that a certain property holds at a certain point 
corresponds to a formula being true. Thus, in order 
to capture this intuition, we need to consider inter- 
preted systems. 

We say that the formula q depends only on the 
past in interpreted system 9 if (9, r, m)t=cp and 

r I m  = r’lm implies (9, r’, m ) k  cp. Intuitively, a formu- 
la depends only on the past if its truth at the point 
(r,  m) depends only on the global states in r up 
to time m.’ Formulas depending only on the past 
arise frequently in practice. Typical examples in- 
clude “there were three reads and two writes up 
to this time” and “the message m was sent”. Note 
that if a formula depends only on the past in inter- 
preted system 9, then it makes sense to write 
(9, p, m)t=cp, where p is a finite prefix of a run 
of length at least m. We can view this as an abbre- 
viation of the statement (9, r, m)kcp, where r is 
any run extending p (it does not matter which one 
we take, since cp depends only on the past). 

Suppose 9=(9, n) and 9’=(fl, n’) are inter- 
preted systems, and @ is a collection of formulas 
that depend only on the past in 9 and 4’. The 
reader should think of the formulas in @ as describ- 
ing the properties of interest in 9 and 4’. 

Definition. 4’ is a monotonic implementation of 9 
with respect to  Q, if there is a monotonic function 
h: Pref(9’)+Pref(%) such that for all formulas 
q ~ @  and pEPref(B‘), we have (9’, p, Ipl)l=cp iff 
(9, h(p),  Ih(p)l)t=qx6 Similarly, 4’ is a continuous 
implementation of 9 with respect to  @ if there is 
a map h as above which is continuous. 

These last definitions do seem to come close 
to the spirit of the notion of implementation as 
used in practice. In particular, in Halpern and Zuck 
(1987) the correctness of a knowledge-based proto- 
col for the sequence transmission problem (where 
a sender must transmit a sequence of data elements 
to a receiver over a potentially faulty channel) is 
proved; it is shown that every interpreted system 
consistent with the knowledge-based protocol sat- 
isfies appropriate safety and liveness properties. 
The correctness of certain standard protocols (in- 
cluding ones which correspond to the well-known 
Alternating Bit Protocol (Bartlett et al. 1969) and 
protocols given by Aho, Ullman, and Yannakakis 
(Ah0 et al. 1979, 1982), is proved by showing that 
the system consisting of the set of runs for the stan- 
dard protocol is a continuous implementation with 
respect to a certain set Q, of one of the interpreted 
systems consistent with the knowledge-based pro- 
tocol. The set @ is chosen so that the implementa- 

The notion of a formula depending on the past is different 
from, but related to, the previously defined notion of a knowl- 
edge-based protocol’s actions depending only the past. If we 
restrict attention to systems based on a function 0, then it is 
easy to see that any formula cp that involves only past-time 
temporal operators depends only on the past 

This notion of implementation was inspired by the notion 
of an isomorphism between two interpreted systems, as defined 
in the revised version of Hadzilacos (1987) 
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tion preserves the reading and writing of data ele- 
ments. Thus @ consists of formulas of the form 
“the value of the ith data element is j ” ,  “the ith 
data element has been read”, and “the ith data ele- 
ment was written”, for i =  1, 2, 3, . . .’ 

8 Conclusions 
We have presented a general model of knowledge 
and action in distributed systems. This area has 
seen quite an upsurge of interest recently. The main 
contribution of this work has been to focus in on 
the interaction between knowledge and action, and, 
in particular, to define and give a formal treatment 
of knowledge-based protocols. 

There are a number of obvious directions for 
further work along these lines. We have not careful- 
ly considered probabilistic or randomized proto- 
cols in our discussion. Such protocols give rise in 
a natural way to a probability measure on the set 
of runs. In order to reason about probability in 
our framework, we want probabilities on the 
points, not the runs. This allows us to extend our 
language with such formulas as Kq q, which holds 
if q holds on a set of measure at least c( of the 
points that process i considers possible. Probability 
has always been incorporated into the economists’ 
models of knowledge (cf. Aumann (1976), Mertens 
and Zamir (1985)), although the economists do not 
use a formal language for reasoning about knowl- 
edge and probability. We have recently extended 
the model presented here in order to deal with rea- 
soning about knowledge and probability; see Fa- 
gin and Halpern (1988b) for details. 

Another interesting line of research is that of 
trying to axiomatize certain properties of commu- 
nication (eg ,  the fact that communication is guar- 
anteed, or, for that matter, that communication is 
not guaranteed). The idea would be to capture 
these notions by describing how they affect a pro- 
cess’ knowledge. Some work along these lines is 
described in Fagin et al. (1988) and Fagin and Var- 
di (1986). 

Perhaps most interesting of all is the continued 
investigation of knowledge-based protocols. 
Knowledge-based protocols seem to be a particu- 
larly useful high-level tool for analyzing many nat- 
ural situations that arise in distributed computing. 
It is certainly much more natural to describe the 
wives’ protocol in essentially all the variants of the 
cheating husbands puzzle presented in Moses et al. 

’ In Halpern and Zuck (1987) the set @ is not explicitly de- 
scribed, but it is clear from the description there that a continu- 
ous implementation with respect to the set @ described above 
is actually constructed 

(1986) as “For all days k =  1, 2, 3, .. . , if you know 
that your husband is unfaithful, then shoot him 
at midnight; otherwise do nothing”, rather than 
trying to explain the appropriate standard protocol 
for each variant. 

A particularly intriguing notion is that of hav- 
ing a programming language that would directly 
allow us to write knowledge-based protocols, with 
details of how the knowledge is computed being 
invisible to the programmer. Such a high-level pro- 
gramming language would require a “compiler” 
that could translate knowledge-based tests to 
knowledge-free tests. Presumably this could only 
be done by imposing restrictions on both the lan- 
guage of communication and the environment (per- 
haps restricting attention to a situation where com- 
munication is guaranteed and proceeds in rounds, 
and there are no failures). 

Before we could hope to have such a language, 
of course, much further work needs to be undertak- 
en to understand all the subtleties of translating 
knowledge-based protocols to standard protocols. 
The work of Dwork and Moses (1986) and Moses 
and Tuttle (1988) can be viewed as taking some 
steps in this direction. Dwork and Moses (1986) 
give a simple knowledge-based protocol that guar- 
antees simultaneous Byzantine agreement in an op- 
timal number of rounds for all runs, under the as- 
sumption that the only failures are crash failures 
(where a process can fail only by crashing, and 
once it does so, it sends no further messages). They 
show that this knowledge-based protocol can be 
efficiently transformed into a standard protocol. 
Moses and Tuttle (1988) extend these results 
by showing how the knowledge-based protocol can 
be converted to a standard protocol if the only 
failures are omission failures (where the only faulty 
behavior a process may exhibit is in not sending 
a message, but all the messages it sends are those 
it should send according to the protocol). The con- 
version to a standard protocol is more difficult 
here, but it can still be done efficiently (in time 
polynomial in the number of processes in the net- 
work). However, it is also shown that for a slightly 
more general notion of failure, where a process may 
either fail to send a message or fail to receive one, 
although the knowledge-based protocol is still cor- 
rect and can be converted to a standard protocol, 
this conversion is NP-hard (in the size of the net- 
work). 

This leads us to one last issue. As we mentioned 
before, the notion of knowledge we consider is an 
external one, ascribed by the system designer to 
the processes. There is no notion of a process com- 
puting its knowledge. Thus it may seem somewhat 
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strange to consider knowledge-based protocols 
where processes perform actions based on their 
knowledge, if this is knowledge that they might 
not be able to compute. To the extent that we view 
a knowledge-based protocol as a convenient speci- 
fication used by the system designer, there is no 
problem here. For many applications, it may also 
be the case that the necessary knowledge to carry 
out a knowledge-based protocol can be computed 
easily (although the results in Moses and Tuttle 
(1988) mentioned above show that this is not al- 
ways the case). These observations point out the 
need for a notion of knowledge in distributed sys- 
tems that takes into account the computation re- 
quired to obtain that knowledge. Such a notion 
of knowledge would not satisfy all the axioms and 
rules of inference discussed in Sect. 4. In particular, 
we would not expect a process’ knowledge to be 
closed under logical implication. Abstract models 
for notions of knowledge where agents are not per- 
fect reasoners are discussed in many papers in the 
philosophy and A1 literature (cf. Fagin and Hal- 
pern (1988a), Levesque (1984)); a semantics that 
seems to be appropriate for distributed systems is 
given in Moses (1988). 

We feel that a deeper analysis of the interaction 
of knowledge, action, and communication will be 
useful in order to improve our understanding of 
distributed systems. We have clearly only scratched 
the surface here; we hope that much more work 
will be done. 
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