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Abstract 

The key tool in proving inexpressibility results in finite-model 
theory is Ehrenfeucht-F'rai'ss6 games. This paper surveys various 
game-theoretic techniques and tools that lead to simpler proofs 
of inexpressibility results. The focus is on first-order logic and 
monadic NP. 

1 Introduction 
The computational complexity of a problem is the amount of resources, 
such as time or space, required by a machine that solves the problem. 
Complexity theory traditionally has focused on the computational 
complexity of problems. A more recent branch of complexity 
theory focuses on the descriptive complexity of problems, which is 
the complexity of describing problems in some logical formalism 
[Imm89]. One of the exciting developments in complexity theory is 
the discovery of a very intimate connection between computational 
and descriptive complexity. In particular, the author showed [Fag741 
that the complexity class N P  coincides with the class of properties of 
finite structures expressible in existential second-order logic, otherwise 
known as C:. Because of this connection, a potential method of proving 
lower bounds in complexity theory is to prove inexpressibility results 
in the corresponding logic. 

This issue of expressive power is fundamental in mathematical logic: 
given a class C of sentences and a class M of structures, we wish to 
know which properties S can be expressed by the sentences in C about 
the structures in M .  For example, let C be the class of all first-order 
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sentences, let M be the class of all finite graphs, and let the property 
S be connectivity: then the question is whether there is a first-order 
sentence that is true about all finite graphs that are connected, but 
false about all finite graphs that are not connected (in this case, the 
answer is “No” [Fag75]). 

We are interested in both positive results (which say that certain 
properties can be expressed) and negative results (which say that 
certain properties cannot be expressed). To prove a positive result, 
it is sufficient to exhibit a specific sentence in C and prove that this 
sentence expresses the property S over the given class M of structures. 
This is usually not very difficult. On the other hand, to prove a negative 
result, it is necessary to prove that there does not exist a sentence in 
C that expresses the property over M .  Since C is usually infinite, this 
means that the proof must simultaneously show that none of an infinite 
class of sentences “works”. This is often a daunting task. 

Fortunately, logicians have various tools in their arsenal to assist 
in proving inexpressibility results. These include the Compactness 
Theorem [End72], the Lowenheim-Skolem Theorem [End721 , and 
Ehrenfeucht-F’rai’ssk games [EhrGl, F’ra541. If the class M consists 
only of finite structures (which is our main interest in this paper), 
then Ehrenfeucht-F’rai’ss6 games are the only major tool available. (For 
some discussion on the failure of standard theorems in logic in the case 
of finite structures, see [Fag93, Gur84, GurSO].) The purpose of this 
paper is to discuss some results and techniques that assist in the use 
of Ehrenfeucht-Frai’ss6 games, and in particular that make the task of 
proving inexpressibility results easier. 

There are several reasons why it is desirable to develop techniques 
that make the task of proving inexpressibility results easier. The first 
reason is to provide simpler proofs for inexpressibility results that are 
already known. This makes such results more understandable and 
accessible. The second reason is to make it possible to prove new 
and deeper inexpressibility results. Our hope is that we can develop 
such a powerful toolkit that we can eventually make a serious assault 
on such fundamental problems as the question of whether N P  = co-NP. 
The development of new techniques can often accomplish both goals 
(of providing simpler proofs for known results, and of obtaining new 
results). For example, when an easier proof was given in [FSV95] for 
the result of [Fag751 that connectivity is not in monadic N P  (which is 
defined shortly), this approach was used to show that the result remains 
true even in the presence of a larger class of built-in relations than was 
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known before. 
There are two classes C of sentences that we focus on here. The 

first consists of sentences in first-order logic: these are the primary 
sentences of interest in mathematical logic. The second class, which 
we shall discuss in more detail later, consists of sentences of the form 
3A1 ... 3Ak$, where each Ai is a unary relation symbol and where $ 
is first-order. These are called monadic C: sentences, or monadic NP 
sentences [FSV95]. 

In Section 2, we give definitions and conventions. In Section 3, 
we discuss various sufficient conditions for the duplicator to have a 
winning strategy in a first-order Ehrenfeucht-F’ra’iss6 game (played 
over two structures). These include Hanf’s condition, as given by 
Fagin, Stockmeyer and Vardi [FSV95] (Section 3.1), Arora and Fagin’s 
condition [AF94] (Section 3.2, and Schwentick’s condition [Sch94] 
(Section 3.3). These three conditions are compared in Section 3.4. 
Roughly speaking, we could say that Hanf’s condition requires 
isomorphic neighborhoods in the two structures; Arora and Fagin’s 
condition requires approximately isomorphic neighborhoods in the two 
structures, along with other assumptions (such as that there be no 
small cycles); and Schwentick’s condition requires that the structures 
be isomorphic, except in some small parts. In Section 4, we discuss 
techniques for proving inexpressibility results in monadic NP, such as 
Ajtai-Fagin games [AF90], where the rules are changed to help the 
duplicator. Some examples of the use of these techniques are given in 
Section 5. In Section 6, we make some additional comments. We give 
our conclusions in Section 7. 

2 Definitions and conventions 
A language C (sometimes called a similarity type, a signature, or a 
vocabulary) is a finite set {PI ,  . . . , Pp} of relation symbols, each of which 
has an arity, along with a finite set {el, . . . , cz }  of constant symbols. An 
C-structure (or structure over C, or structure of similarity type C ,  or 
simply structure) is a set A (called the universe), along with a mapping 
associating a relation R, over A with each Pi E C, where R, has the 
same arity as Pi, for 1 5 i 5 p ,  and associating a member of A with 
each constant symbql ci 6 L, for 1 5 i 5 d. We may call Ri the 
interpretation of pi (and similarly for the constant symbols). If the 
point a is the interpretation of the constant symbol G, then we may 
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say that a is labeled ci. The structure is called f inite if A is. 
We take a “graph’ to be a structure where the language consists of 

a single binary relation symbol. Sometimes, such as in dealing with the 
reachability’ problem, it is useful to take some liberties with standard 
terminology, by taking a “graph” to mean a directed graph with two 
distinguished points, labeled s and t respectively: then a graph is a 
structure where the language consists of a single binary relation symbol 
and two constant symbols, s and t. We are also interested in “colored 
graphs”, which are structures where the language includes also some 
finite number of unary relation symbols. If G is a colored graph, where 
the interpretations of the unary relation symbols in the language are 
U1,. . . , u k ,  then by the color of a point a in the universe of G, we mean 
the set of 2’s such that a E Ui. Thus, there are 2k colors. 

Let G be an L-structure, and let X be a subset of the universe of G. 
We write G 1 X for the substructure of G induced by X .  Thus, if Pi is a 
relation symbol of L, then the interpretation of Pi in G r X is the set of 
tuples t in R, such that every entry o f t  is in X .  In the case of constant 
symbols, there is a minor subtlety that deals with the situation where 
the vertex that is the interpretation of a constant symbol cj of L is not 
in the set, X .  So we take G 1 X to be an ,!?-structure, where L‘ contains 
all of the relation symbols of L, and only those constant symbols cj of 
L such that the interpretation of cj is in X .  For such constant symbols 
c j ,  the interpretation of cj in G 1.X is the same as the interpretation 
of cj in G. 

We shall write (XI,. . . , zm) to represent a tuple (an m-tuple) in an 
rn-ary relation. In particulax, we write ( 2 1 , ~ )  to represent the directed 
edge from z1 to x2 in a directed graph. For an undirected graph, we 
write (q, z2) to represent the undirected edge between z1 and x2. 

We use the usual Tarskian truth semantics (see, for example, 
[End72]) to define what it means for a structure G to obey or satisfy 
a sentence 0, written G 0. It is assumed that G and 0 are both 
over the same language L. Let M be a fixed class of structures (such 
as the class of finite L-structures for a given language L). After this 
section, we shall suppress mention of M .  We define a property S to be 
a subset of M closed under isomorphism. For example, the property 
of connectivity is identified with the class of connected graphs. (In the 

’The reachability (or “(s, t)-connectivity” ) problem is the problem of deciding, 
given a graph and two distinguished vertices s and t in it, whether there is a path 
from s to t. In the case of directed graphs, the problem is called the directed 
reachability problem. 
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case of finite-model theory, where we restrict our attention to finite 
structures, “connectivity” would refer to the class of finite connected 
graphs.) We write s for M \ S, the complement of S in M .  Let C be 
a class of sentences (such as the class of first-order sentences). When 
we say that the property S is expressible (or definable) in the class C 
of sentences over the class M of structures, we mean that there is a 
sentence o E C such that 

1. if A E S, then A 

2. if A E 3, then A 

o, and 

u. 

3 First-order games 
In this section, we focus on first-order Ehrenfeucht-Fraiss6 games, 
and give three sufficient conditions for one player (the duplicator) 
to win. These conditions are based on techniques of Hanf [Han65] 
(and given a new interpretation by Fagin, Stockmeyer and Vardi 
[FSV95]), Arora and Fagin [AF94], and Schwentick [Sch94]. As we shall 
discuss, such techniques and conditions are valuable tools for obtaining 
inexpressibility results. 

We begin with an informal definition of an r-round first-order 
Ehrenfeucht-Fraisse‘ game (where T is a positive integer), which we 
shall call an r-game for short. It is straightforward to give a formal 
definition, but we shall not do so. There are two players, called the 
spoiler and the duplicator, and two structures, Go and GI. In the first 
round, the spoiler selects a point in one of the two structures, and 
the duplicator selects a point in the other structure. Let p1 be the 
point selected in Go, and let q1 be the point selected in G1. Then 
the second round begins, and again, the spoiler selects a point in one 
of the two structures, and the duplicator selects a point in the other 
structure. Let p2 be the point selected in Go, and let q2 be the point 
selected in GI. This continues for r rounds. After T rounds, p l ,  . . . , p ,  
have been selected in Go, and q1,. . . , q, have been selected in GI. If 
the language contains constant symbols c1, . . . , c,, then let p,+i denote 
the interpretation in Go of ci, and let Q , + ~  denote the interpretation 
in GI of G, for 1 5 i 5 2. The duplicator wins if the substructure 
of Go induced by p l ,  . . . ,P,+~ is isomorphic to the substructure of GI 
induced by q l , .  . . , q,+z, under the function that maps pi onto qi for 
1 5 i 5 r + z .  That is, the duplicator wins precisely if (a) pi = p j  iff 
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qi = q j ,  for each i and j ,  and (b) (pil, . . . ,p i , )  is a tuple in a relation 
in Go iff ( q i l , .  . . , qie) is a tuple in the corresponding relation in GI, 
for each choice of i l ,  . . . , it. Otherwise, the spoiler wins. We say that 
the spoiler or the duplicator has a winning.strategy if he can guarantee 
that he will win, no matter how the other player plays. Since the 
game is finite, and there are no ties, the spoiler has a winning strategy 
iff the duplicator does not. If the duplicator has a winning strategy, 
then we write Go N~ GI. In this case, intuitively, Go and GI are 
indistinguishable by an r-game. 

The following important theorem shows why these games are of 
interest. 

Theorem 3.1 [EhrGl, F!ra54] S is expressible in first-order logic ifl 
there is r such that whenever Go E S and G1 E 3, then the spoiler has 
a winning strategy in the r-game over Go, GI. 

In practice, we make use of what is essentially the contrapositive 
of Theorem 3.1, to prove that some property is not expressible in 
first-order logic. That is, we use the following theorem, which follows 
immediately from Theorem 3.1. 

Theorem 3.2 S is not expressible in first-order logic ifl fo r  every r ,  
there are Go E S and GI E 3 such that Go -7. GI. 

We see from Theorem 3.2 that to prove first-order inexpressibility, 
we would like tools for showing that the duplicator has a winning 
strategy in an r-game. As we shall see, such tools are also valuable as 
a step in proving inexpressibility in richer logics, such as monadic NP. 
We now discuss three sufficient conditions for the duplicator to have a 
winning strategy in an r-game, that is, for showing that Go N~ G1 for 
two structures Go, GI. 

3.1 Hanf’s condition 
Fagin, Stockmeyer and Vardi [FSV95] provide a simple but very useful 
sufficient condition for guaranteeing that Go -r G1 for two structures 
Go, GI. The proof is based on a technique of Hanf [Han65]. They used 
this condition as a part of a simple proof that connectivity is not in 
monadic N P  (much simpler than the author’s original proof [Fag75]). 

Let G be an L-structure, where L consists of the relation symbols 
PI,. . . , Pp, possibly along with some constant symbols c1,. . . , c,, and 
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where R, is the interpretation in G of the relation symbol Pi, for 1 5 
i 5 p. The Gaifman graph [Gai82] of G is the undirected graph with 
the same universe as G, and with an edge ( z 1 , ~ )  whenever z1 and z2 
are distinct and appear together in a tuple of some relation of G. Let 
a and b be two points in (the universe of) G. We say that a and b 
are adjacent (in G) if either a = b, or (a ,  b) is an edge of the Gaifman 
graph of G. Intuitively, two points a and b are adjacent if they are 
either identical or directly related by some relation of G. The degree 
of a point in G is defined to be the degree in the Gaifman graph of G. 

Define Ball(a, k), the ball of radius k about a,  recursively as follows: 

Ball(a, 0) = { a }  

BalZ(a, k + 1) = {z 1 z is adjacent to some b E Ball(a, k)} 

Define the d-type of a point a to be the isomorphism type of the ball of 
radius d - 1 about a with a as a distinguished point.2 Thus, the points 
a in Go and b in GI have the same d-type precisely if 

Go 1 BdZ(a, d - 1) GI 1 BdZ(b, d - l), 

under an isomorphism mapping a to b. We say that the structures 
Go and GI are d-equivalent if for every d-type r ,  they have exactly 
the same number of points with d-type r. Intuitively, d-equivalence 
corresponds to a type of local isomorphism. 

The next theorem gives a useful sufficient condition (“Hanf’s 
condition”) for the duplicator to have a winning strategy in a first- 
order game. 

Theorem 3.3 [FSV95] Let r be a positive integer. There is a positive 
integer d such that Go N r  G1 whenever Go and GI are d-equivalent 
structures. 

In fact, as shown in [FSV95], we can take d = 3‘-l in Theorem 3.3.3 

’This means that we are effectively considering the open ball of radius d, rather 
than the closed ball of radius d. We are doing this for compatibility with [FSV95], 
where this choice was made for technical convenience. 

3This assumes that, as in [FSV95], there are no constant symbols. If there are 
z constant symbols, then we would take d = 3Tcz-1, since, intuitively, z constant 
symbols effectively increase the number of rounds by z (OUT definition of a winning 
strategy for the duplicator assumes effectively that there are “t extra rounds” where 
the points that are interpretations of the z constant symbols are selected). A similar 
comment applies to the estimates following Theorems 3.6, 3.7, and 3.8. 
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We now give a simple example of the use of Hanf’s condition, to 
show that connectivity is not first-order. We remark that this example 
is sufficiently simple that each of the three conditions (Hanf’s, Arora- 
Fagin’s, and Schwentick’s) that we consider in this paper can prove 
this result. We make use here of Hanf’s condition. By Theorem 3.2, 
we need only show that for each r ,  there is a graph Go that is connected 
and a graph G1 that is not connected, such that Go -, GI. Given r ,  
find d as in Theorem 3.3. Let Go be a cycle with 4d nodes, and let 
G1 be the disjoint union of two cycles, each with 2d nodes. It is easy 
to see that every point in Go and G1 has the same d-type. Since Go 
and G1 have the same number of points, and all with the same d-type, 
it follows that Go and GI are d-equivalent. By Theorem 3.3 and our 
choice of d, it follows that Go -, GI, which was to be shown. Later, in 
Section 5, we shall see a variation (from [FSV95]) of this proof applied 
to colored cycles, as a part of a simple proof that connectivity is not 
in monadic NP. 

For the sake of later comparisons with Arora and Fagin’s approach, 
we now give a slightly different version of Theorem 3.3. 

Theorem 3.4 Let r be a positive integer. There is  a positive integer 
d such that Go -, GI whenever GO and G1 are structures of the same 
similarity type that have the same set of vertices and that satisfy the 
condition that each vertex has the same d-type an Go as in GI. 

On the face of it, the assumptions of Theorem 3.4 are stronger 
than those of Theorem 3.3, since the assumptions of Theorem 3.4 
demand that each vertex have the same d-type in Go as in GI, rather 
than simply requiring that for each d-type r, the structures Go and 
G1 have the same number of vertices of d-type r. However, we can 
apply Theorem 3.4 whenever we could apply Theorem 3.3, by simply 
replacing G1 by an isomorphic copy of G1 (with the same set of vertices 
as Go, and with each vertex having the same d-type in Go as in GI). 

The condition in Theorem 3.3 (that the two structures are d- 
equivalent for some large d) is sufficiently strong that it can be used 
to obtain indistinguishability results not just in first-order logic, but in 
stronger logics, as we now discuss. Let us write Go w, G1 if it happens 
that not only does the duplicator have a winning strategy in the r- 
game over Go, GI, but also the duplicator’s strategy in each round is 
bijective. This means that for each i (with 0 5 i 5 1- - 1) and each 
choice of p l ,  q l , .  . . ,pi ,  qi (where, intuitively, p j  is the point chosen in 
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Go in round j, and qj is the point chosen in GI in round j), there is a 
bijection f from the universe of Go to the universe of GI, such that 

1. if the spoiler selects pi+l in Go in round i + 1, then the duplicator 
selects f (pi+l) in GI in round i + 1, and 

2. if the spoiler selects qi+1 in GI in round i + 1, then the duplicator 
selects f-l(qi+l) in Go in round i + 1. 

When the duplicator’s strategy in each round is bijective, then 
we say that the duplicator has a bijective strategy. By a result of 
Hella [He192], the duplicator’s having a bijective winning strategy 
is sufficient to imply inexpressibility in first-order logic extended by 
unary generalized quantifiers4 Thus, Hella’s result is the following 
analogue to Theorem 3.2. Unlike Theorem 3.2, this theorem gives only 
a sufficient condition, not a necessary and sufficient condition. 

Theorem 3.5 [He1921 S is not  expressible in first-order logic extended 
by unary  generalized quantifiers if for  every r ,  there are Go E S and 
G1 E s such that Go M, GI. 

We note that Hella defines the Ehrenfeucht-Frai’ssk game for unary 
generalized quantifiers slightly differently from how we do. Rather 
than simply requiring that the duplicator have a bijective strategy, as 
we do, Hella requires the duplicator to exhibit the bijection in each 
round before the spoiler makes his move. Hella’s requirement does not 
change the notion of xT.  

Immerman and Lander [IL90] defined a game, which we shall call 
the “counting game”. The rules of the r-round counting game are as 
follows. On round i (for 1 5 i 5 r ) ,  the spoiler selects a set of points 
in one structure, and the duplicator must respond with a set of points 
of the same cardinality in the other structure. Then the spoiler selects 
a point in the set chosen by the duplicator, and the duplicator selects 
a point in the set chosen by the spoiler. Let pi be the point selected 
in Go, and let qi be the point selected in G1. As before, the duplicator 
wins if the substructure of Go induced by p l ,  . . . , p,  is isomorphic to 
the substructure of G1 induced by q l , .  . . , q,, under the function that 
maps pi onto qi for 1 5 i 5 T .  

4See [He1921 for the definition of unary generalized quantifiers. With unary 
generalized quantifiers, it is possible to express sentences like “there are an even 
number of points x such that P x  holds” and “the number of points x where P x  
holds is less than the number of points y where Qy holds”. 
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It is clear that if the duplicator has a bijective winning strategy in 
the (first-order) r-game, then he also has a winning strategy in the T- 

round counting game: the duplicator responds to moves of the spoiler 
by using his bijection, in an obvious way. (For example, if f is the 
bijection in round i between the universe of Go and the universe of GI, 
and if in round i the spoiler selects the set S ,  which is a subset of the 
universe of Go, then the duplicator responds by selecting {f(x) I x E S }  
as his chosen subset of the universe of GI.) What is not so clear (but 
is true) is that the converse also holds.5 Thus, the duplicator has a 
winning strategy in the r-round counting game over Go,G1 iff Go M, 

GI. 
Nurmonen [Nur96] showed the following strengthening of 

Theorem 3.3. 

Theorem 3.6 [Nur96] Let r be a positive integer. There is a positive 
integer d such that whenever Go and G1 are d-equivalent structures, 
then Go M, GI. 

In fact, as shown in [Nur96], we can take d = 3‘ in Theorem 3.6. 
Etessami [Ete95] considered the following problem of defining an 

order: in a structure with a successor relation and constant symbols s 
and t, does s precede t? He proved that order is not expressible in first- 
order logic extended by unary generalized quantifiers, in the presence 
of a built-in successor relation.6 His proof proceeds as follows. 

Define two graphs Go and GI, each of which are long chains, where 
the (i + 1)st point in the chain is the successor of the ith point in the 
chain. In the graph Go, the point labeled s precedes the point labeled 
t ,  and in GI, the opposite is true. The graph Go has a long stretch of 
points, followed by s, followed by another long stretch, followed by t, 
followed by another long stretch; and similarly for G1, with the roles of 
s and t reversed. Etessami makes use of the counting game, and gives 
a long, involved proof that the duplicator has a winning strategy. The 
inexpressibility result then follows. 

’The fact that the duplicator has a bijective winning strategy in the r-game iff 
he has a winning strategy in the r-round counting game was apparently fist noted 
by Hella (personal communication). It is not hard to see that the equivalence of 
the two games follows from Observation 5.3 in [CFI92]. The equivalence is noted 
in the full version of [He192], but only for the w-round version. 

6Actually, Etessami stated his-result by saying that order is not expressible in 
“first-order logic with counting” in the presence of a built-in successor relation, but 
his proof amounts to essentially the same thing. 
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Instead of Etessami’s long proof, we now show that it is simple to 
use Theorem 3.6 to show that for each T ,  there is a pair Go, G1 as above 
such that Go M, GI. Etessami’s result then follows immediately from 
Theorem 3.5. By Theorem 3.6, we need only show that for each d, 
there is a pair Go, G1 as above such that Go and G1 are d-equivalent. 
Let Go have universe { 1,. . . , 3d  - l}, where the interpretation of 
the successor relation is the usual successor relation restricted to 
{ 1, . . . ,3d - l}, where the interpretation of s is the point d, and where 
the interpretation o f t  is the point 2d. Thus, intuitively, Go consists of 
a chain, with d - 1 points, followed by s, followed by d - 1 more points, 
followed by t ,  followed by d - 1 more points. We define G1 the same, 
except that we reverse s and t ,  so that t precedes s. In each structure, 
a d-type consists of a sequence of points, where one of the points in 
the sequence may be labeled by s or t. It is easy to see that for every 
d-type, Go and G1 have exactly the same number of points with that 
d-type. That is, Go and G1 are d-equivalent, which was to be shown. 

Although Theorem 3.3 is sufficient for their purposes, Fagin, 
Stockmeyer and Vardi actually prove a slightly stronger version of this 
theorem. Instead of demanding that Go and G1 be d-equivalent (that 
is, for each d-type r ,  have exactly the same number of points with d- 
type r ) ,  they show that it is sufficient instead to require only that for 
every d-type r ,  either Go and G1 have the same number of points with 
d-type r ,  or else both have at least m points with d-type r (for some 
large m that depends only on the number T of rounds and the maximal 
degree of any point in Go and GI). Intuitively, this latter condition 
says that for each d-type r ,  the structures Go and G1 have the same 
number of points with d-type r ,  where we can count only as high as m. 
Thomas [Tho911 proves a similar result. Theorem 3.3 is also related 
to a result by Gaifman [Gai82], who proved that in a precise sense, 
first-order logic talks only about neighborhoods. 

3.2 Arora and Fagin’s condition 
Arora and Fagin [AF94] introduced another sufficient condition for 
guaranteeing that Go -T G1 for two structures Go,G1. They used 
their condition as a part of a proof that directed reachability is not 
in monadic N P  (much simpler than Ajtai and Fagin’s original proof 
[AF90] of this result). Intuitively, their condition requires a weaker 
local isomorphism than does the Hanf condition, but at the expense of 
extra assumptions (such as that there are no small cycles). 
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Before we can state the theorem, we need to define the notions of a 
cycle in a structure and of the (r ,  k)-color of a vertex in a structure. In 
the case of (colored) graphs, a cycle is the usual notion of an undirected 
cycle, where we ignore the directions of the edges. The definition in 
the case of general structures is more complicated, and we defer it till 
later. The definition of the (r,k)-color is also simpler in the case of 
colored graphs, and we give it now; later we give the definition in the 
general case. We note that the case of colored graphs is what is needed 
when using Arora and Fagin’s condition as a “subroutine” in proving 
that some graph property is not in monadic NP. 

Let T and k be integers, and let G be a colored graph. We now define 
the notion of the (T, k)-color of each vertex in G. Intuitively speaking, 
the ( r, k)-color approximately describes a small neighborhood around 
the vertex. Define the (r,O)-color of a vertex w to be the color of w 
in the colored graph, along with a description of whether or not there 
is an edge (a “self-loop”) from the vertex w to itself. If (as in the 
case of reachability) there are also distinguished vertices s , t ,  then the 
(r,O)-color of a vertex w also tells whether or not the vertex w is the 
distinguished point labeled s ,  and whether or not the vertex w is the 
distinguished point labeled t. Inductively, define the (r ,  k + 1)-color of 
the vertex w (where k 2 0) to be (a) a description of its (r,k)-color, 
along with (b) a complete description, for each possible (T ,  k)-color T ,  

as to whether there are 0,1, .  . . , r - 1, or at least r points w with ( r ,  k) -  
color r such that (w, w) is an edge of the graph, but (w, w) is not an 
edge, (c) a complete description, for each possible ( r ,  k)-color r ,  as to 
whether there are 0,1, .  . . , r - 1, or at least r points w with (r ,  k)- 
color r such that (w, v) is an edge but (v, w) is not an edge, and (d) 
a complete description, for each possible (r ,  k)-color r ,  as to whether 
there are 0,1, .  . . , T - 1, or at least T points w with (T,  k)-color r such 
that (v, w) and (w, w) are each edges. Thus, the (T,  k + 1)-color of a 
vertex v tells the (T,  k)-color of w, and also tells how many vertices there 
are of each (T ,  k)-color with just an outedge from w, just an inedge into 
w, and both an outedge from and an inedge into w, where in all cases 
we do not count beyond r.  

The (r,  k)-color of a tuple (XI,. . . ,x,) is the tuple ( T ~ ,  . . . , T ~ ) ,  

where ~i is the (r,  k)-color of xi, for 1 5 i 5 m. 
The next theorem gives Arora and Fagin’s sufficient condition for 

the duplicator to have a winning strategy in the r-game over structures 
Go, G1. 
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Theorem 3.7 [AF94] Let r, f be positive integers. There is a positive 
integer k that depends only on r such that Go G1 whenever Go and 
G1 are structures of the same similarity type that have the same set of 
vertices and that satisfy the following conditions: 

1. the degree of every vertex in Go or GI is  at most f ;  

2. there is  no cycle in either Go or G1 of length less than k; 

3. each vertex has the same (r,  k)-color in Go as in GI; and 

4. if e is a tuple that is present in some relation in one structure 
but not in the corresponding relation in the other structure, then 
there are at least f IC tuples in both of these relations that have the 
same ( r ,  k)-color as e .  

In fact, as shown in [AF94], we can take Ic  = 32‘ in Theorem 3.7. 
A good example of where the Arora-Fagin condition might be 

applicable but the Hanf condition might not is when Go is a graph and 
G1 is the result of deleting one edge of Go (this situation arises in the 
proof that directed reachability is not in monadic NP;  see Example 2 of 
Section 5). In this example, the d-type in Go of each of the endpoints 
of the edge that is deleted to form GI would typically not be a d-type 
of any point of GI. 

Arora and Fagin also give a strengthening of Theorem 3.7, in which 
small cycles are allowed under certain circumstances. They use the 
strengthened version to deal with inexpressibility in the presence of 
certain built-in relations. 

In the remainder of this subsection, we give definitions of “cycle” 
and “ ( T ,  k)-color” for structures G that are not necessarily graphs. This 
(somewhat technical) material can be skipped by those interested only 
in the case of graphs. 

If t = ( x l , .  . . , x k )  is a tuple, define [t] to be the set ( 5 1 , .  . . , z k }  of 
points that appear in t. Define the hypergraph associated with structure 
G to be a hypergraph (V ,F)  whose universe V is the same as the 
universe of G and whose set F of (hyper)edges is 

{ [ t ]  : t is a tuple in some relation of G} . 

A (sample) path of length k between two points u , u  of G consists of a 
set of edges S1, . . . , SIC E F and a set of points z1,. . . , Xk-1 E V such 
that (i) the xi’s are distinct from each other and from u and v, (ii) 
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u E 5’1) (iii) v E Sk) and (iv) xi E Si n Si+l, for 1 5 i < k. The distance 
between distinct points u and v is the smallest k such that there is 
a path of length k between them, and the distance between a point 
and itself is 0. In particular, an alternate way to define BaZZ(a,k) in 
Section 3.1 is to take BaZZ(a, k )  to be all points whose distance from a 
is at most k .  

If k 2 3, then a cycle of length k in a structure G is a path of 
length k from a vertex to itself. (Shortly, we shall mention why cycles 
of length 1 or 2 are not considered.) Except for the fact that cycles 
of length 2 are not considered, this definition corresponds to Berge’s 
notion [Ber76] of a cycle in a hypergraph. (There are various other 
notions of a cycle in a hypergraph that are not equivalent to Berge’s; 
see [Fag83].) Note that if G is a structure over a language with a single 
binary relation) then its hypergraph is an ordinary undirected graph, 
and the concept of distance and cycle are the familiar ones. 

The notions of a cycle in structure G and a cycle in the Gaifman 
graph of G are different in general. For example, if there is a tuple 
(XI, x2, x3) in a ternary relation of a structure G with all entries distinct, 
then there is a cycle of length 3 in the Gaifman graph (with edges 
(XI, Q), (Q, 2 3 ) )  and (x3, xl)), but not necessarily a cycle in G. In 
general, a cycle in a structure gives rise to a cycle in the Gaifman 
graph, but not vice versa. Note that an assumption of Theorem 3.7 
is that there are no small cycles in the structure. Thus, the fact that 
the notion of “cycle’) we have given is restrictive only increases the 
applicability of Theorem 3.7. This is also why cycles of length less 
than 3 are not considered; such very small cycles would have no effect 
on the theorem, and so we do not want to forbid them. 

We now discuss how to define the (r,k)-color of each vertex w 
in a structure G over an arbitrary language L. We begin with a 
preliminary notion. A basic m-type (among the m variables 21,. . . , xm) 
is a conjunction such that (a) for each i and j between 1 and m, 
exactly one of xi = xj or x, # xj is a conjunct, and (b) for each 
arity l, each relation symbol P E L of arity l ,  and each choice of 
21,. . . ,it where 1 5 i, 5 m for each j ,  exactly one of Pxil . . . xie or 
+xZl . . . xie is a conjunct. Intuitively, a basic m-type tells exactly 
how the variables XI,. . . ) xm relate to each other in a quantifier-free 
way. We say that the variable x has a positive occurrence in the basic 
m-type F if Pxi, . . . xie (as opposed to +’xil . . . xie) is a conjunct of F 
for some relation symbol P E L and some variables xil, . . . , xit where 
x E {xil, . . . ) x i e } .  We define a basic m-type of vertices (as opposed 
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to variables) analogously. Specifically, if v1, . . . , v, are m vertices of 
G, then we define their basic m-type to be a basic m-type among m 
variables xl , .  . . , x, that holds in G when x1,. . . , z, are interpreted 
by v1, . . . , v, respectively. Intuitively, a basic m-type among the m 
vertices wl, . . . , v, of G tells exactly how these vertices relate to each 
other in G. Similarly, we define what it means for a vertex to have a 
positive occurrence in a basic m-type. 

We are now ready to define the (r,k)-color of each vertex 21 in 
a structure G over an arbitrary language C. Let m be the largest 
arity among relation symbols of L. The (r,O)-color of v is a complete 
description of which relations of G have the tuple (v, . , . , v) as a 
member (where, of course, the length of the tuple is the arity of the 
relation), and which constant symbols label w. Inductively, define the 
(r ,  k + 1)-color of the vertex w (where k 2 0) to be a description of 
its (r, k)-color, along with a complete description, for each possible 
choice 71, . . . , rTn-l of (r,  k)-colors and each possible basic m-type F 
among m vertices where v has a positive occurrence, as to whether 
there are 0,1, . . . , r - 1, or at least r choices of (211, . . . , v,-1) such that 
v, q, . . . , vm-l have the basic m-type F and vi has (T ,  k)-color ri for 
1 l a  I m -  1. 

3.3 Schwentick’s condition 
Schwentick [Sch94] introduced still another sufficient condition for 
guaranteeing that Go mT G1 for two structures Go, GI. He used 
this condition and some variations of it to prove several results, most 
importantly the result that connectivity is not in monadic NP, even 
in the presence of a built-in linear order. The Hanf condition and the 
Arora-Fagin condition cannot be applied when there is a built-in linear 
order, since then all of the vertices are in a ball of radius one. 

The intuition behind Schwentick’s condition is as follows. Assume 
that Ho mT HI. Assume further that we extend HO and H1 “in the 
same way” to larger structures Go and GI. Then Go mT GI. Before we 
present Schwentick’s condition formally, we need some more notation 
and definitions. 

Let G be a structure. If x , y  are points of G, let d ~ ( z , y )  be the 
distance between x and y in G (as defined in Section 3.2). For simplicity 
of notation, we shall write simply d(z,  y) for dG(x, y), since it should be 
clear which structure we are taking the distance in. A substructure H of 
G is one induced by a set of nodes (as in the definition of Ehrenfeucht- 
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Fra’iss6 games). If x is a point of G, and H is a substructure of G, 
define d ( x ,  H )  to be the minimum of d ( z ,  y )  over all points y of H .  
Define Bal l (H ,k )  to be the set of points x of G such that they are 
within distance k of H ,  that is, such that d ( z ,  H )  5 k. Define N ( H ,  k) 
to be the substructure of G induced by Ball(H, k). 

Let Go, G1 be structures with substructures Ho, H1 respectively. 
Say that the duplicator has a distance-respecting winning strategy in the 
r-game o n  N(H0,  k) and N(H1 ,  k) if he has a winning strategy in the 
r-game over N (Ho, k) , N ( H I ,  k) such that whenever pi (resp., qi) is the 
point picked in round i in N(H0,  k) (resp., N(H1, k)), then d(pi,  Ho) = 
d(qi, H I ) .  Say that there is  a distance-preserving isomorphism f rom 
Go - Ho to  GI - HI if there is an isomorphism f between (a) the 
substructure of Go with universe those points not in Ho and (b) the 
substructure of G1 with universe those points not in HI,  such that 
d ( x ,  Ho) = d( f (x), H I )  for every point x of Go - Ho. 

We can now state Schwentick’s sufficient condition. 

Theorem 3.8 [Sch94] Let r be a positive integer. There is  a positive 
integer Ic that depends only on  r such that Go wT GI whenever Go and 
GI are structures of the same similarity type, with substructures Ho, HI 
respectively, that satisfy the following conditions: 

1. the duplicator has a distance-respecting winning strategy in the 
r-game on N(H0 ,  k) and N(H1 ,  k); and 

H1. 

2. there is  a distance-preserving isomorphism f rom Go - Ho to  GI- 

In fact, as shown in [Sch94], we can take k = 2T in Theorem 3.8. 
As we noted earlier, Schwentick’s condition (like Hanf’s, and Arora- 

Fagin’s) can be used to prove that connectivity is not first-order, by 
considering one cycle versus two cycles. We now show how, and note 
how the result can be strengthened. As before, by Theorem 3.2 we 
need only show that for each r ,  there is a graph Go that is connected 
and a graph G1 that is not connected, such that Go mT GI. Given T ,  

find k as in Theorem 3.8. Let Go be a cycle with 4k + 4 nodes, and let 
G1 be the disjoint union of two cycles, each with 2k + 2 nodes. Let HO 
be the subgraph of Go that contains two nodes that are as far apart as 
possible. Let HI be the subgraph of G1 that contains two nodes that are 
in different cycles. It is easy to see that the conditions of Theorem 3.8 
are satisfied. Hence Go wT GI, which was to be shown. In [Sch95], 
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Schwentick shows how to extend this argument (again, by using only 
Theorem 3.8) to show that connectivity is not in monadic NP, even 
in the presence of built-in relations of degree no('). This strengthens 
Fagin, Stockmeyer and Vardi's result [FSV95] that connectivity is not 
in monadic NP, even in the presence of built-in relations of degree 
(log n ) O ( ' ) .  

Schwentick presents several variations of his condition, that get 
increasingly powerful, but, unfortunately, also increasingly hard to 
understand. The most powerful (and hardest to understand) variation 
is used to prove his key result, that connectivity is not in monadic 
NP, even in the presence of a built-in linear order. At the end of this 
subsection, we comment on the idea behind how Theorem 3.8 must 
be modified to deal with a built-in linear order. Some modification is 
clearly required, since in the presence of a built-in linear order, each 
point has distance at most one from every other point. See [Sch95, 
Sch96] for other applications of Schwentick's method. Fortunately, 
the underlying proof of each of Schwentick's variations is essentially 
identical, and is elegant and easy to understand. Schwentick's 
argument is as follows. 

At the beginning of the game we view the vertices in Ho and HI as 
inner vertices, and the vertices outside of BaZZ(Ho,2') and BaZZ(H1,2') 
as outer vertices. The other vertices are considered to be in a buffer 
area. The boundaries of the inner vertices and of the outer vertices 
may change on each round. Note that at the beginning of the game, 
the distance from every inner vertex to every outer vertex is greater 
than 2'. 

What the duplicator does in a given round depends on whether 
the spoiler selects an inner vertex, an outer vertex, or a vertex in the 
buffer area. If the spoiler selects an inner vertex, then the duplicator 
responds, based on his winning strategy on the inner vertices. If the 
spoiler selects an outer vertex, then the duplicator responds, based 
on the isomorphism. If the spoiler selects a vertex in the buffer area, 
then there are two possibilities, depending on whether the vertex is 
closer to the inner vertices or the outer vertices. Assume without loss 
of generality that the spoiler selects vertex p in Go. Let D be the 
distance from p to the inner vertices, that is, the minimum of d ( p ,  x) 
where x is an inner vertex of Go. 

Case 1: If p is closer to the inner vertices than the outer vertices, then 
expand the inner vertices to include all of BaZZ(H0,D) and 
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Bull( HI ,  0). The duplicator now responds, based on his winning 
strategy on the (new) inner vertices. 

Case 2: Otherwise, expand the outer vertices to include all vertices 
outside of BaZZ(H0, D - 1) and BaZZ(H1, D - 1). The duplicator 
now responds, based on the isomorphism. 

It is straightforward to show, by induction on i, that after round i, 
the distance from every outer vertex to every inner vertex is more than 
2r--i . In particular, at the end of the game, no inner vertex is adjacent 
to any outer vertex. 

The duplicator wins the game, since (a) the substructure induced 
by vertices chosen during the game that are contained in the final set of 
inner vertices of Go is isomorphic to the analogous substructure in GI; 
(b) the substructure induced by vertices chosen during the game that 
are contained in the final set of outer vertices of Go is isomorphic to 
the analogous substructure in GI; and (c) there are no edges between 
the final set of inner vertices and the final set of outer vertices. This 
concludes the proof. 

We close this subsection by giving the idea behind how Schwentick 
extends Theorem 3.8 to prove that connectivity is not in monadic NP, 
even in the presence of a built-in linear order. What we shall explain 
is not quite enough to prove this result, but at least it gives the proper 
in t~ i t i on .~  We take Go and GI in Theorem 3.8 to be structures that 
involve not only the graph relation but also the (built-in) linear ordering 
relation. The distance between two points is taken to be the distance 
using only the graph relation (and thus ignoring the linear ordering 
relation). This way, it is no longer the case that each point necessarily 
has distance at most one from every other point. A third condition 
is added to the two conditions of Theorem 3.8. This third condition 
is a homogeneity condition, which says that if x and y are points of 
GO such that the distance d(z ,Ho)  is less than the distance d(y ,Ho) ,  
then J: is less than y in the linear order (of course, we assume also that 
the symmetric condition holds for GI). In particular, the points in Ho 
form an initial segment of the linear order in Go (and similarly for HI 
in GI). Once again, essentially the same proof shows that Go mT GI. 
The third condition ensures that in both graphs, after the game every 
inner vertex is less than every outer vertex in the linear order. 

'The extension we now describe does not appear as such in any of Schwentick's 
papers. Schwentick mentioned this extension to the author in it private 
correspondence. 
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3.4 Comparison of the approaches 

In this subsection, we discuss and compare the three sufficient 
conditions we have seen (Theorems 3.3, 3.7, and 3.8 and their 
variations) for the duplicator to have a winning strategy in a first-order 
game. 

We begin by noting that the three conditions are incomparable: for 
each of the three conditions, there are situations where it can be applied 
but the other two cannot. Each corresponds to a different “reason)’ why 
the duplicator has a winning strategy, 

Let us compare the Hanf condition (in the variation given by 
Theorem 3.4) with the Arora-Fagin condition (Theorem 3.7). We 
see that the assumptions of both theorems require that Go and 
GI have the same set of vertices. The Hanf condition requires 
isomorphic neighborhoods, whereas the Arora-Fagin condition requires 
only “approximately isomorphic neighborhoods” (by dealing only with 
(T ,  k)-colors, rather than isomorphism types). But the Arora-Fagin 
condition requires additional assumptions (such as that there be no 
small cycles). Just after the statement of Theorem 3.7, we mentioned 
an example where the Arora-Fagin condition is applicable but the Hanf 
condition is not. 

Schwentick’s condition requires even a stronger type of isomorphism 
than either the Hanf condition or the Arora-Fagin condition. 
Intuitively, Schwentick’s condition requires that the structures be 
isomorphic, except in some small parts. 

Historically, the importance of Schwentick’s approach is that it is 
the first to be able to deal with a built-in linear order (this requires 
the strongest of Schwentick’s variations). As we noted earlier, the Hanf 
condition and the Arora-Fagin condition cannot be applied in this case, 
since all of the vertices are in a ball of radius one. 

We recommend that in applying Schwentick’s approach, his 
underlying proof technique, as discussed in Section 3.3, be used 
rather than his theorems (except for the simplest variation, namely 
Theorem 3.8, and the unpublished extension mentioned at the end of 
Section 3.3). This is because, as we discussed, the stronger variations 
of his condition are hard to understand, whereas the proof technique 
is simple and elegant. By contrast, in applying Hanf’s approach or 
Arora and Fagin’s approach, we recommend that the theorems be 
used directly. This is because the proofs of correctness of these latter 
two approaches are much harder to understand and apply than the 
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statements of the theorems. 

4 Monadic NP 
As mentioned earlier, the complexity class NP  coincides with the class 
of properties of finite structures expressible in existential second-order 
logic [Fag74]. A consequence of this equivalence is that the famous 
question in complexity theory as to whether NP=co-NP is equivalent 
to the question in logic of whether existential and universal second- 
order logic have the same expressive power over finite structures, i.e., 
whether or not C: = II;. Since our best available tool for attacking 
the question of whether C: = Il: is Ehrenfeucht-Fraissk games, Fagin, 
Stockmeyer and Vardi [FSV95] announced a program to build a toolkit 
of game-theoretic techniques. To help develop the toolkit, we restrict 
our attention to a “tractable” subclass of C:, called monadic NP. We 
now give some definitions. 

When we pass from first-order logic to second-order logic, we allow 
quantification over sets and relations. In particular, a C: sentence is 
a sentence of the form 3A1...3Ak?+h, where ?+h is first-order and where 
the Ai’s are relation symbols. As an example, we now construct a C: 
sentence that says that a graph (with edge relation denoted by E )  is 
3-colorable. In this sentence, the three colors are represented by the 
unary relation symbols A1, A2, and As. Let $1 say “Each point has 
exactly one color”. Thus, $1 is 

Let $9 say “No two points with the same color are connected by an 
edge”. Thus, $2 is 

The C: sentence 3A13A23A3($1 A $2) then says “The graph is 3- 
colorable” . 

A C: sentence 3A1 ... 3Ak$, where $ is first-order, is said to be 
monadic if each of the Ai’s is unary, that is, the existential second- 
order quantifiers quantify only over sets. A class S of structures is 
said to be (monadic) C: if it is the class of all structures (of a given 
similarity type) that obey some fixed (monadic) C: sentence. When we 
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restrict our attention to finite structures, a (monadic) C: class is also 
called a (monadic) generalized spectrum. Because of the equivalence 
between C: and NP, Fagin, Stockmeyer and Vardi [FSV95] refer to the 
collection of monadic C: classes (again, when we restrict attention to 
finite structures) as monadic NP. We often refer to a class of graphs 
by a defining property, for example, 3-colorability. As we saw above, 
3-colorability is in monadic NP. 

The author proved the first result about monadic NP, by showing 
that connectivity is not in monadic N P  [Fag75]. We now discuss the 
original proof, in order to see the difficulties involved. Then we will see 
how the proof can be simplified by using various tools. 

In [Fag75], the author introduced an Ehrenfeucht-Fraiss6 game 
corresponding to monadic NP. Let Go, G1 be structures) and let c, r 
be positive integers (where c represents the number of colors and r the 
number of rounds). We call this game the (c, r)-game over Go, GI. The 
rules are as follows. 

1. The spoiler colors Go with the c colors. 

2. The duplicator colors G1 with the c colors. 

3. The spoiler and duplicator play an r-game on the colored Go, GI. 

The winner is decided as before. Of course, the isomorphism must 
respect colors. 

Note that unlike the first-order game, the rules are asymmetric 
in Go, GI, in that the spoiler must color Go. We have the following 
theorem, analogous to Theorem 3.1. 

Theorem 4.1 [Fag751 S is in monadic NP i f  there are c, r such that 
whenever Go E S and GI E 3, then the spoiler has a winning strategy 
in the (c, r)-game over Go, GI. 

We now sketch how the author used Theorem 4.1 to prove that 
connectivity is not in monadic NP. Given c,r it was shown that there 
are cycles CO, C1 such if Go = Co and G1 = Co@Cl (where @ represents 
the disjoint union) such that the duplicator can win the (c,r)-game 
over Go,G1. Since Go is connected and G1 is not, this shows that 
connectivity is not in monadic NP. 

The idea of the duplicator’s coloring strategy was to color Co in G1 
by mimicking the coloring of Go, and to color C1 in a way where every 
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d-type in Cl appears many times in Co. The duplicator’s pebbling 
strategy (that is, his strategy in the remaining r-game) was given 
explicitly. We note that for the duplicator’s pebbling strategy, we could 
instead have made use of the extended version of Hanf’s condition, 
mentioned at the end of Section 3.1. 

For the sake of future discussions, let us consider what the 
difficulties are in this original proof. They are: 

D1: The selection of the graphs Go, 

D2: The duplicator’s coloring strategy. 

D3: The duplicator’s pebbling strategy. 

In addition to considering games over pairs Go,GI of structures, 
Ajtai and Fagin [AF90] found it convenient, for reasons we shall see 
shortly, to consider games over a class S. The rules of the game are as 
follows: 

1. The duplicator selects a member of S to be Go, 

2. The duplicator selects a member of s to  be GI. 

3. The spoiler colors Go with the c colors. 

4. The duplicator colors GI with the c colors. 

5. The spoiler and duplicator play an r-game on the colored Go, GI. 

We refer to this game as the original (c ,  r )  game over S (to contrast it 
with the Ajtai-Fagin (c ,  r)-game over S, which we shall define shortly). 

The next theorem follows easily from Theorem 4.1. 

Theorem 4.2 S is  in monadic NP ifl there are c,r such that the 
spoiler has a winning strategy in the original (c, r)-game over S.  

8The issue is what the size of the cycles CO and Cl should be. It is not sufficient 
that they simply be ‘‘sufficiently large”. For example, we leave it to the reader to 
verify that if CO and C1 are both odd cycles, if Go = CO and G1 = CO @ Cl, and 
if c 2 2 and r 2 3, then the spoiler has a winning strategy in the (c,r)-game over 
Go, GI. 
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We now explain why Ajtai and Fagin allow Go and G1 to be selected 
by the duplicator, rather than inputs to the game. By considering 
the choice of Go and G1 to be moves of the duplicator, they were 
able to define a variation of (c,r)-games, in which the choice of G1 
by the duplicator is delayed until after the spoiler has colored Go. 
They successfully used the new game to prove a result (that directed 
reachability is not in monadic NP) that they were not able to obtain 
using the original game. Their new game, called the Ajtai-Fugin (c, r)- 
game, is, on the face of it, easier for the duplicator to win. The rules of 
the new game are obtained from the rules of the (c ,  r)-game by reversing 
the order of two of the moves. Specifically, the rules of the Ajtai-Fagin 
(c, r)-game (over S) are as follows. 

1. The duplicator selects a member of S to be Go. 

2. The spoiler colors Go with the c colors. 

3. The duplicator selects a member of s to be GI. 

4. The duplicator colors G1 with the c colors. 

5. The spoiler and duplicator play an r-game on the colored Go, G1. 

The winner is decided as before. Thus, in the Ajtai-Fagin (c,r)- 
game, the spoiler must commit himself to a coloring of Go with the 
c colors before knowing what G1 is. Intuitively, the Ajtai-Fagin game 
is harder for the spoiler to win than the original game. This can be 
made precise: it is shown in [Fag951 that in some situations, the spoiler 
requires strictly more resources (colors) to win the Ajtai-Fagin game 
than the original game. In spite of this, we have the following analogue 
to Theorem 4.2. 

Theorem 4.3 [AF90] S is in monadic NP ifl there are c, r such that 
the spoiler has a winning strategy in the Ajtai-Fagin ( c ,  r)-game over 
S. 

Since the Ajtai-Fagin game is “easier for the duplicator to win”, this 
makes our inexpressibility proofs easier. We now give two examples. 
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5 Examples 
In this section, we discuss examples of the use of the techniques we 
have mentioned. 

Example 1: Connectivity. Our first example deals with the 
proof that connectivity is not in monadic NP. We saw a sketch of the 
author’s original proof in Section 4. We now give a simplified proof by 
Fagin, Stockmeyer and Vardi [FSV95]. 

Simplified proof: Let S be the class of connected graphs, 
and let C , T  be arbitrary. We now show that the duplicator has a 
winning strategy in the Ajtai-Fagin (c,  r)-game over S. It follows from 
Theorem 4.3 that S is not in monadic NP. 

Let d be given by Theorem 3.3 for this T .  The duplicator chooses 
Go to be a directed cycle of length n, for a sufficiently large n. Let 
C Y O , ~ ~ , .  . . , a,-1 denote the points in order around the cycle, so that 
there is an edge from ai to ai+l for 0 5 i < n. Here and subsequently, 
subscripts are reduced modulo n to belong to the interval [0, n - 11. 

The spoiler now colors Go with c colors. Let x(ai) denote the color 
of ai. Assuming that n 2 2d, the d-type of the point ai in the resulting 
structure is fully described by the following vector of 2d - 1 colors: 

The number of possible d-types is some constant, depending on c and 
d, but not on n. So it is clear that, for n sufficiently large, there must 
be at least 4d points with the same d-type. Therefore, there must exist 
points ap and aq that have the same d-type and are at least distance 
2d apart (that is, ap @ BaZZ(a,, 2d)). 

The duplicator now forms GI, a pair of disjoint directed cycles, by 
pinching Go together at the points ap and aq (see Figure 1). 

More precisely, let GI be a structure with universe consisting of n 
distinct points Po, PI, . . . , @,-I. There is an edge from pi to for all 
i with 0 5 i < n, i # p ,  and i # q, there is an edge from ,Op to &+I, 
and there is an edge from Pq to &+I. There are no other edges. The 
duplicator’s coloring of G1 is given by x(,Oi) = x(ai) for all i. 

Note that each component cycle of Go or G1 contains at least 2d 
points, since ap and aq are at least distance 2d apart. Since also ap and 
aq have the same d-type, it follows that ai and Pi have the same d-type 
for all i, so Go and G1 are d-equivalent. It follows from Theorem 3.3 
that Go N~ G1, so the duplicator wins. This concludes the proof. I 
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It is instructive to see why the use of the Ajtai-Fagin (c,r)-game, 
as opposed to the original (c, r)-game, is important in this proof. The 
choice of G1 depends on the coloring by the spoiler of Go. Our proof 
would not work if, as in the original (c,r)-game, the duplicator were 
required to select Go and G1 before the spoiler colors Go. 

Let us consider now the three difficulties that we mentioned in 
Section 4 about the author’s original proof, and see how they have 
been ameliorated by Fagin, Stockmeyer and Vardi’s proof. 

The selection of the graphs. In the original proof, the sizes 
of the cycles had to be carefully selected. In the new proof, we simply 
pick Go to be a sufficiently large cycle. 

D2: The duplicator’s coloring strategy. In the new proof, this 
could not be simpler: the duplicator simply mimics the spoiler’s 
coloring. 

D3: The duplicator’s pebbling strategy. In the new proof, we 
simply appeal to Hanf’s condition. 

Example 2: Directed reachability. Our second example deals 
with the proof that directed reachability is not in monadic NP. We 
sketch the idea of the proof, as given by Arora and Fagin [AF94], which 
is a simplification of the proof of Ajtai and Fagin [AF90]. 

Sketch of proof: Let S be the class of (s, t)-connected graphs. Let 
v1,. . . , v, be n points, which are used as the set of vertices of the graph 
Go. The vertex v1 is labeled s, and the vertex v, is labeled t .  Then Go, 
the member of S selected by the duplicator in the Ajtai-Fagin (c,r)-  
game over S ,  has “forward edges” (vi, vi+1) for 1 5 i < n; these form 
a path from s to t. In addition, Go has certain “backedges” (vi,vj) 
where j < i .  The choice of these backedges are made by probabilistic 
means; for the proof to work, there cannot be too few or too many 
backedges. Small cycles are eliminated in the construction by deleting 
one backedge from each small cycle. We refer to each such graph Go 
we obtain as an (s , t ) -path with backedges. If e is one of the forward 
edges of Go, then denote by Go - e the graph that results by deleting 
the edge e. It is clear that (a) there is a path from s to t in Go, but 
(b) for each forward edge e,  there is no path from s to t in Go - e. 
Thus, Go E S, but Go - e E for each forward edge e. It is now 
shown probabilistically that for a certain choice of Go and for each 
coloring of Go by the spoiler, a forward edge e can be selected (also 
probabilistically) so that if (a) GI is taken to be Go - e ,  and (b) the 
duplicator mimics the coloring of Go on G1, then Arora and Fagin’s 
condition (Theorem 3.7) is satisfied. Therefore, the duplicator can win 

D1: 
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the remaining r-game. By Theorem 4.3, this is sufficient to show that 
directed reachability is not in monadic NP. This concludes the proof. I 

Again, it is instructive to see why the use of the Ajtai-Fagin (c, r)- 
game, as opposed to the original (c, r)-game, is important in this proof. 
If the spoiler knew which edge e were deleted from Go to form G1 = 
G- e, this might dramatically influence his coloring of Go (for example, 
the spoiler might color the endpoints of e with a special color, say red, 
not used anywhere else). Then the duplicator would not be able to 
use the strategy of simply mimicking the spoiler’s coloring, since there 
would be an edge between the red nodes in Go but not between the red 
nodes in G1. 

Again, let us consider the three difficulties mentioned earlier, and 
see how this proof helps bypass them. 

D1: The selection of the graphs. In this proof, the graphs 
are selected by a random procedure, rather than being constructed 
explicitly. It is shown that with high probability, the duplicator 
succeeds. Since in particular the probability is nonzero, there exists 
a winning strategy for the duplicator. This probabilistic approach is 
potentially very powerful. 

The duplicator’s coloring strategy. Once again, the duplicator 
simply mimics the spoiler’s coloring. 

The duplicator’s pebbling strategy. Here we simply appeal to 
Arora and Fagin’s condition. 

D2: 

D3: 

6 Some additional comments 
Ajtai and Fagin invented the Ajtai-Fagin game because they did not see 
how to prove that directed reachability is not in monadic N P  by using 
the original game. They posed the question as to whether the same 
types of graphs they used (a graph Go that is (s, t)-path with backedges, 
and a graph G1 that is the result of deleting a forward edge e from Go) 
could have, in principle, been used in the original game to prove the 
same result. A theorem was proven in [Fag951 that implies that this 
is indeed the case: in general, the same types of graphs can be used 
in the original game as in the Ajtai-Fagin game. On the other hand, 
a more complicated coloring strategy may be required in the original 
game than the Ajtai-Fzgin game. For example, let us consider Go and 
GI = Go - e as above. As we noted earlier, in the original game over 
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these graphs the duplicator cannot simply mimic the spoiler’s coloring 
(as the duplicator did in the Ajtai-Fagin game). This is because, as we 
noted, the spoiler can color the endpoints of the edge e with a special 
color. 

Finally, we comment on the fact that in the two proofs we discussed 
in Section 5 ,  the duplicator was able to simply mimic the spoiler’s 
coloring. That is, the duplicator has a winning strategy not just in the 
Ajtai-Fagin game, but in a game where GI is required to be colored just 
like Go. Not surprisingly, the fact that the duplicator has a winning 
strategy even when G1 must be colored just like Go corresponds to 
inexpressibility in a richer logic than that of monadic NP. We now 
discuss what this richer logic is. 

Let Al,  . . . , Ak be unary relation symbols. Let us define a color 
to be a (formal) conjunction of the form A: A . . . . . . A;, where each 
A: is either Ai or -Ai. Let R be a 
(possibly infinite) relation over the natural numbers, with 2k columns. 
For each such relation R we define a new quantifier 3AR, that is 
interpreted as follows: 3ARp(A1,. . . , Ak) holds iff there are unary 
relations Ul, .  . . , U k  such that p(A1,.  . . , A k )  holds when A l , .  . . , A k  

are interpreted by U1,. . . , U k ,  respectively, and such that the 2k-tuple 
of the cardinalities of the colors corresponding to Ul, . . . , U k  is in 
the relation R. Thus, intuitively, R tells the set of possibilities for 
the distribution of colors. For example, if R consists of the tuples 
(2001,47,9,12), (0,10000,96,4), . . ., and if we call the four colors red, 
blue, green, and yellow, then, intuitively, 3ARp says “There exists a 
coloring such that either there are exactly 2001 red points, 47 blue 
points, 9 green points, and 12 yellow points, or there are exactly 0 red 
points, 10000 blue points, 96 green points, and 4 yellow points, or there 
are exactly . . . and cp holds.” 

It is not hard to show that the fact that the duplicator has a 
winning strategy when G1 must be colored just like Go corresponds 
to inexpressibility even by sentences of the form 3AR$, where $ is 
first-order . 

Thus, there are 2k colors. 

7 Conclusions 
As Fagin, Stockmeyer and Vardi observe [FSV95], if we are to 
make serious progress on resolving difficult problems in computational 
complexity through using descriptive complexity techniques, we need to 
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develop our descriptive complexity toolkit. Ehrenfeucht-Fkaiss6 games 
are the current major tools in our arsenal. In this paper, we discuss 
some steps that have been taken to ease our task in proving descriptive 
complexity lower bounds. 

In looking back at progress in descriptive complexity, one moral 
that can be drawn is that we should try to use general principles, 
rather than ad hoc arguments, in proving inexpressibility results. This 
makes it easier for others to use these techniques in the future. We 
also suggest that it would be a useful exercise to go back and look 
at previous inexpressibility results, to see if general principles can be 
extracted. 
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