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Abstract 

The spectrum of a first-order sentence is the set of cardinalities of its finite 
models. This paper is concerned with spectra of sentences over languages that 
contain only unary function symbols. In particular, it is shown that a set S of 
natural numbers is the spectrum of a sentence over the language of one unary 
function symbol precisely if S is an eventually periodic set. 

1 Introduction 

The spectrum of a first-order sentence is the set of cardinalities of its finite models. That 
is, if cp is a first-order sentence, and if n is a natural number, then n is in the spectrum of 
cp precisely if there is a structure A that  satisfies 'p where the cardinality of the universe 
of A is n. The notion of a spectrum was introduced by Scholz [Sc52]. As an example, 
if cp is a first-order sentence that gives the conjunction of the field axioms ('p says that  
+ and x are associative and commutative, that  x distributes over +, etc.), then it is 
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well-known that the spectrum of ‘p is the set of powers of primes. In 1952, Scholz [Sc52] 
posed the problem of characterizing spectra. In 1955, Asser [As551 posed the following 
key problem, which is sometimes referred to as Asser’s problem: Is the class of spectra 
closed under complement? That is, is the complement of every spectrum also a spectrum? 
These were two of the first problems ever posed in finite model theory. As is discussed 
in Fagin’s survey paper [Fa93], the investigation of Asser’s problem is what led Fagin to 
write his 1973 Ph.D. thesis [Fa731 in finite model theory. 

Since the time of Scholz and Asser, there has been only a small amount of progress 
in our understanding of spectra. Jones and Selman [JS74] (cf. [Fa74]) showed that a 
set of natural numbers is a spectrum iff it is in NEXPTIME, that is, recognizable by a 
nondeterministic Turing machine in exponential time. As pointed out in [Fa75, Fa931, 
it is an open problem as to whether there is any spectrum that is not also a spectrum 
involving only a single binary relation symbol (that is, the spectrum of a sentence over 
the language of one binary relation symbol). Fagin [Fa741 proved that there is a spectrum 
involving only a single binary relation symbol that is NEXPTIME-complete. Therefore, 
if the class of spectra is not closed under complement, then there is a spectrum involving 
only a single binary relation symbol whose complement is not a spectrum. 

Let us consider the complexity of spectra in restricted languages. It will be convenient 
in this paragraph to treat natural numbers as being written in unary. It is well-known that 
spectra involving only unary relation symbols are extremely simple: they are either finite 
or co-finite sets. As we noted, Fagin [Fa741 showed that there is a spectrum involving 
only a single binary relation symbol that is NEXPTIME-complete, which means that 
it is NP-complete when numbers are written in unary. An intermediate case (between 
spectra involving only unary relation symbols, which are extremely simple, and those 
involving only a single binary relation symbol, which are extremely complex) are spectra 
involving only unary function symbols. Are they simple or complex? It follows from 
results of Durand and Ranaivoson [DR96] that there is a spectrum involving only two 
unary function symbols that is NP-complete (when numbers are written in unary). This 
leaves open the complexity of spectra involving only a single unary function symbol. We 
show that somewhat surprisingly, these spectra are very simple. Specifically, we show 
that a set S of natural numbers is a spectrum involving only a single unary function 
symbol if and only if S is eventually periodic, that is, if and only if there are natural 
numbers N , p  with p > 0 such that for every n with n > N ,  we have n E S iff n + p E S .  
As we shall discuss, it follows that S is a spectrum involving only a single unary function 
symbol if and only if S is recognizable by a finite automaton (when numbers are written 
in unary). Furthermore, as we shall also discuss, these results continue to hold even if we 
allow not only a unary function symbol, but also an arbitrary number of unary relation 
symbols. 

An immediate consequence of our characterization of spectra involving only a single 
unary function symbol is a resolution of Asser’s problem for such sentences: the comple- 
ment of a spectrum in this restricted language is a spectrum in this restricted language. 
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Next, we consider the hierarchy based on the number of unary function symbols. The 
kth level of the hierarchy consists of spectra involving only k unary function symbols. 
Here, we know only partial results. First, we know that the first two levels of the hierarchy 
are distinct. This was first shown by Loescher [Lo97], who showed that the set of perfect 
squares (those numbers of the form n2, where n is an integer) is in the second level of 
the hierarchy but not the first level. The fact that the set of perfect squares is not in 
the first level of the hierarchy follows immediately from our characterization of the first 
level of the hierarchy as consisting precisely of the eventually periodic sets. Also, the 
NEXPTIME-complete sets in the second level of the hierarchy (whose existence follows 
from results of Durand and Ranaivoson [DR96]) are not in the first level, because of our 
characterization. 

We give some evidence that it might be difficult to give a characterization of spectra 
involving only two unary function symbols. We also give some evidence that the hierarchy 
based on the number of unary function symbols is strict, and that it might be difficult 
to prove this. Finally, we show that if S is a spectrum involving only k unary function 
symbols, then {kn 1 n E S )  is a spectrum involving only two unary function symbols. 

2 Eventually Periodic Sets 

As before, define a set S of natural numbers to be eventually periodic if there are natural 
numbers N , p  with p > 0 such that for every n with n > N ,  we have n E S iff n + p E 
S .  The number p is often called the period. We now give another characterization of 
eventually periodic sets, that is a little more convenient for us to work with. 

Assume that m,i are natural numbers. Define the ari thmetic  series Am,; to be the 
set of all numbers of the form rn + 82, for 8 = 0 ,1 ,2 , .  . . In particular, by taking i = 0, 
we see that every singleton set is an arithmetic series. We refer to an arithmetic series 
Am,; with i > 0 as a nontrivial  arithmetic series. Thus, an arithmetic series is nontrivial 
precisely if it is not a singleton set. The next proposition is well-known. 

Proposition 2.1 A s e t  of n a t u r a l  n u m b e r s  is e v e n t u a l l y  p e r i o d i c  i f  a n d  o n l y  i f  it is a 
f ini te  u n i o n  of ari thmetic  series.  

Proof: Let S be a finite union of arithmetic series; we now show that S is is eventually 
periodic. Clearly, S is the union of a finite set and of a set S’ that is a finite union 
UjEJ Am,,;, of nontrivial arithmetic series (so that ij > 0 for each j E J ) .  Define N to  be 
the max of the m j ’ s ,  and define p to be the least common multiple of the i j ’s .  Then for 
each n > N ,  we have: 
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* n + p E AmJ,;, for some j E J 
* + P E u Am,,%,* 

3E J 

Therefore S', and hence S ,  is eventually periodic, with period p .  
Conversely, let S be an eventually periodic set with parameters N and p .  It is clear 

that S is the union of 

0 the union of singleton sets of numbers up to N in S, and 

0 the union of all the arithmetic series A,,, with N < m 5 N + p and m E S 

This union is a finite union of arithmetic series, as desired. 0 

3 Machinery 

The next lemma is a key tool in our characterization of spectra involving only a single 
unary function symbol. 

Lemma 3.1 Assume that S is a spectrum involving only a single unary function symbol. 
There are natural numbers I c ,  N such that for each n E S with n > N ,  there is a natural 
number i with 0 < i 5 k such that An,i S .  

This lemma can be proven by using techniques of Loescher [Lo97], although this 
lemma did not appear in Loescher's paper. In the remainder of this section, we give an 
informal sketch of the proof of this lemma. Missing details can be obtained from [Lo97]. 

A language G (sometimes called a similarity t y p e ,  a signature, or a vocabulary) is 
a finite set of relation symbols and function symbols, each of which has an arity. An 
L-structure (or structure over G ,  or simply structure) is a set A (called the universe), 
along with a mapping associating a relation (resp., function) of the appropriate arity 
over A (called the interpretation) with each relation symbol (resp., function symbol) in 
C. The structure is called finite if A is. In this paper, we restrict our attention to finite 
structures. 

For definitions of a first-order formula and first-order sentence (where, intuitively, the 
only quantification is over members of the universe, and not over, say, sets of members of 
the universe) and what it means for a structure M to satisfy a sentence 'p, see Enderton 
[En721 or Shoenfield [Sh67]. If M satisfies 'p, then M is a model of 'p. An L-sentence 
is a first-order sentence over the language L.  When we refer, for example, to a sentence 
'p involving only a single unary function symbol, we mean that 'p is an L-sentence where 
C is a language consisting of a single unary function symbol. Similarly, we refer to the 
spectrum of cp as a spectrum involving only a single unary function symbol. 

4 



The quantifier depth QD( 'p) of a first-order formula 'p is defined recursively as follows: 
QD(cp) = 0 if cp is quantifier-free; &D(-'p) = QD('p); QD('plr\'p2) = max{ QD('pl) ,  QD('p2)); 

Two L-structures are said to be r-equivalent if they satisfy the same L-sentences of 
quantifier depth up to r. 

For the rest of this section, let L be the language consisting of a single unary function 
symbol. We now show how to obtain larger and larger models of an L-sentence, given 
such a model that is large enough. Assume that 'p is an L-sentence of quantifier depth r ,  
that an L-structure M satisfies cp, and that the universe of M is "large enough" (that 
is, bigger than some number depending only on r). The graph of the structure M (as of 
any total unary function on a finite set) is a collection of connected components, each of 
which consists of some mutually disjoint trees whose roots form a cycle (see Figure 1). 
Intuitively, there is an edge from z to y in the graph if f(z) = y,  where f is the function 
in M .  By a cutting and pasting argument, we can show that there is an r-equivalent 

QWd = 1 + QD(cp). 

Figure 1: The graph of M 

such structure of the same size (that is, whose universe is of the same size) such that 

0 each tree in this structure is of depth bounded above by a constant, and 

0 each cycle is of length bounded above by a constant. 
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(“Constant” means here always that the bound depends only on r . )  The idea behind this 
cutting and pasting argument is as follows. First, we deal with shortening the length of 
long branches. If a branch is sufficiently long, then it has two points a and b that are 
far away from each other, and have the same “type” (although we do not wish to define 
Ehrenfeucht-Frai’ssC games here, having the same type means intuitively that the points 
a and b behave identically if either is chosen in a game in the first round and there are 
r - 1 rounds left to play). Without loss of generality, assume that a is an ancestor of 
b. Let a+ be the son of a that is also an ancestor of b, and let b+ be the son of b such 
that ( a ,  a+) and ( b ,  b+) have the same type (here, intuitively, this means that the pairs 
behave identically if either is chosen in a game in the first two rounds and there are T - 2 
rounds left to play). Such a point b+ is guaranteed to exist by the choice of a and b. As 
in Figure 2, we remove the edges from b+ to b and from a+ to a ,  and add edges from 
b+ to a and from a+ to b. We thereby shorten the branch, and create a new connected 

a 

\ 

Figure 2: How to shorten branches 

component that contains a long cycle. 
After we have shortened all the long branches, we then shorten the long cycles by 

splitting them, in the same spirit as Fagin, Stockmeyer and Vardi’s approach in [FSV95]. 
If some cycle is sufficiently long, then it has two points a and b that are far away from 
each other, and have the same type. Let f ( a )  and f ( b )  be the images of a and b with 
respect to the function in M .  Then ( a ,  f ( a ) )  and ( b ,  f ( b ) )  have the same type. As in 
Figure 3, we remove the edges from b to f ( b )  and from a to f ( a ) ,  and add edges from b 
to f(u) and from a to f ( b ) .  (The triangles in Figure 3 represent trees whose roots are on 
the cycles. Such trees may have roots anywhere on the cycles, including at the points a, 
b, f ( a ) ,  and f(b).) We thereby create two shorter cycles. 

Then there is a constant c such that: 

0 If there is a connected component bigger than c, then it must contain a tree of a high 
width: so high that there must be at least r subtrees that are r-equivalent (when 
viewed as L-structures), are of size bounded above by a constant s, and whose 
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Figure 3: How to split cycles 

roots have the same father z (because the number of mutually non-r-equivalent 
C-structures is bounded above by a constant). The reason for the size bound s 
is that we select the father z as far as possible from the root of the tree, which 
guarantees that the width of the subtrees is bounded. Inserting copies of one of 
these subtrees does not change the r-equivalence class of M. If t is the size of one 
of these subtrees, then we take i in Lemma 3.1 to be t. We take k in Lemma 3.1 
to be bigger than the size bound s. 

0 If not, then there must be many connected components: enough to have at least r 
isomorphic ones (because the number of mutually non-isomorphic components of a 
bounded size is bounded above by a constant). Adding copies of one of these does 
not change the r-equivalence class of M .  If d is the size of one of these connected 
components, then we take i in Lemma 3.1 to be d. We take k in Lemma 3.1 to  be 
bigger than the constant c that bounds the size of the connected components. 

4 Characterization of Spectra Involving only a Sin- 
gle Unary Function Symbol 

A set S of natural numbers is said to be definable in Presburger arithmetic [En721 if it is 
definable with a formula involving only addition. 

We can now state the main theorem. 

Theorem 1 Let C be the language that contains only one unary function symbol. Let k 
be a natural number and let Ck be the language that contains one unary function symbol 
and k unary relation symbols. 

Let S be a set of natural numbers. The following properties of S are equivalent: 

1. S is the spectrum of a first-order C-sentence. 
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2. S is the spectrum of a first-order L-sentence, where the interpretation of the func- 
tion symbol f is restricted to be a permutation. 

3. S is the spectrum of a first-order &-sentence. 

4. S is eventually periodic. 

5. S is a finite union of arithmetic series. 

6. S is definable in Presburger arithmetic. 

7. When numbers are written in unary, S is recognizable b y  a finite automaton. 

Proof: (4) (7) is well known; see for instance [Ei74, Proposition 1.1, p. 1011. 
(4) w (6) is also well known; see for instance [En72, Theorem 32F, p. 1881. 
(4) w ( 5 )  was shown in Proposition 2.1. 
(2) + (1) is trivial. 
(1) + (3) is also trivial. 
(5) + (2): Let m,i be natural numbers. The arithmetic series Am,i is the spectrum 

of a sentence that says that except for a set of exactly m points, the remaining points all 
lie on cycles of size i: 

l<kLm l < k < i  

where we define fk(y)  recursively by letting fk(y)  be y if k = 0, and f( f”’(y)) if k > 0. 
Of course, f can be interpreted by a permutation (which, intuitively, is the identity on 
the xi’s). 

We have shown that each arithmetic series is the spectrum of a first-order G-sentence. 
A finite union of arithmetic series is then the spectrum of a sentence that is a disjunction 
of the corresponding sentences. 

(1) + (5): Assume that S is the spectrum of an L-sentence with quantifier depth r.  
Let k, N be numbers whose existence is guaranteed by Lemma 3.1. Assume 0 < i 5 k. 

Let us say that j is i-good if 0 5 j < i and there is m > N with m 3 j mod i and 
Am,i C S .  For each j that is i-good, define mij to be the least m where m j mod i 
and Am,* S. 

We now show that the set of members of S that are greater than N is the union of the 
sets Am,,j,,  such that 0 < i 5 k and j is i-good. Since this is a finite union of arithmetic 
series, as are the set of numbers bounded above by N ,  it follows that S is a finite union 
of arithmetic series, as desired. 
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By construction, each such set Am,,],, is a subset of S. So we need only show that if 
n > N and n E S, then there are i,j such that 0 < i 5 k and j is i-good, and n E Am%,,,,. 
Let i be the number whose existence is guaranteed by Lemma 3.1, so that A,,% S. Let 
j be such that 0 <_ j < i and n G j mod i. So j is i-good. Since m2,3 E j mod i, it 
follows by minimality of m2,3 that m2,3 5 n. Therefore, since n m2,3 mod i, it follows 
that A,,$ 5 

(3) + (4): Loescher observed [Lo971 that his construction works also in the presence 
of an arbitrary finite number of unary relation symbols. From this, we obtain an analogue 
of Lemma 3.1 for the language Ck, and we can repeat the same argument as before. 0 

Since n E A,,,, we have n E as desired. 

We view the equivalence of (1) and (4) as our main result, since it gives a simple 
characterization of the spectra of sentences involving only a single unary function symbol. 
Since the set of perfect squares is not eventually periodic, the following corollary is 
immediate. 

Corollary 4.1 [Lo971 The set of perfect squares is  not a spectrum involving only a single 
unary function symbol. 

Since the set of perfect squares is a spectrum involving only two unary function 
symbols, this gives us the following result. 

Corollary 4.2 [Lo971 There is a spectrum involving only two unary function symbols 
that is not a spectrum involving only a single unary function symbol. 

Since the class of eventually periodic sets is closed under complement, we obtain the 
following additional corollary from the equivalence of (1) and (4) in Theorem 1. 

Corollary 4.3 The class of spectra involving only a single unary function symbol is  
closed under complement. 

This corollary gives a resolution of Asser’s problem when we restrict our attention to 
spectra involving only a single unary function symbol. 

The equivalence of (1) and (2) in Theorem 1 tells us that our characterization con- 
tinues to hold even if we “tighten up” by demanding that the unary function symbol 
be interpreted by a permutation. Thus, this equivalence gives a certain sense in which 
permutations and general unary functions have the same “expressive power”. There are 
other contexts in which this is not the case. For example, in Durand, Lautemann and 
Schwentick’s study of binary NP [DLS96], they showed that there is strictly less expres- 
sive power in existentially quantifying over permutations than in existentially quantifying 
over arbitrary unary functions. 

The equivalence of (1) and (3) in Theorem 1 tells us that our characterization contin- 
ues to hold even if we “loosen up” by allowing, in addition to a unary function symbol, 
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also an arbitrary number of unary relation symbols. Thus, intuitively, adding an arbi- 
trary number of unary relation symbols to the language C does not increase the expressive 
power. By contrast, doing the same with the language of addition-which has the same 
expressive power as C, by the equivalence of (1) and (6) in Theorem l-does have an 
effect. In fact, Lynch [Ly82, Lemma 1, p. 1341 showed that multiplication is first-order 
definable in the language of addition and two unary relation symbols. 

Since eventual periodicity is such a natural and simple notion, it is not surprising that 
there are various conditions that arise in mathematics that are characterized by being 
eventually periodic. Conditions (6) and (7) of Theorem 1 are simply two examples. 

5 Allowing Multiple Unary Function Symbols 

The equivalence of (1) and (6) in Theorem 1 says that the class of spectra involving only 
a single unary function symbol coincides with the class of sets definable in Presburger 
arithmetic. Can we similarly characterize the class of spectra involving only two unary 
function symbols by means of arithmetic tools? We now give some evidence that such a 
characterization may be hard to prove. 

A set of integers is said to be rudimentary (for short, in RUD) if it can be defined 
with addition, multiplication and variable-bounded quantification. As an example, the 
following formula (with free variable p )  defines the set of prime numbers: 

It has been proved that every rudimentary set is a spectrum involving only two unary 
function symbols (see [0196]). The converse is still an open problem. 

Let us examine the consequences of the converse holding, that is, of the assumption 
that every spectrum involving only two unary function symbols is a rudimentary set. It 
can be shown, using results of [DR96] (together with Proposition 5.2 below), that if S 
is a spectrum, then there exist positive integers h and Ic such that hSk = {hnkIn E S }  
is in the class of spectra involving only two unary function symbols. Now suppose that 
latter class corresponds exactly to RUD. Harrow [Ha731 proved that RUD is closed under 
“polynomial substitution”, in which a polynomial is substituted for a variable. Since 
R UD allows variable-bounded quantification, Harrow’s result implies in particular that 
if hSk is in RUD, then S = (nI(3rn 5 hnk)((rn = hnk) A (rn E h S k ) ) }  is also in RUD. 
Finally, as the complement of every rudimentary set is also a rudimentary set, we obtain 
that NEXPTIME = co-NEXPTIME. Using directly arguments of Woods [Wo81], it can 
also be shown that another consequence of the converse holding is that NP # co-NP. 

Because of the implication that NEXPTIME = co-NEXPTIME, it is probably un- 
likely (and certainly very hard to prove!) that spectra involving only two unary function 
symbols are precisely the rudimentary sets. We do not know of any other candidates for a 
natural number-theoretic characterization of the spectra of sentences involving only two 
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unary function symbols. As we noted, it follows from results of Durand and Ranaivo- 
son [DR96] that there is a spectrum involving only two unary function symbols that is 
NEXPTIME-complete. 

In the remainder of this section, we consider the hierarchy determined by the number 
of unary function symbols. Corollary 4.2 says that the first two levels of this hierarchy are 
distinct. We shall present some evidence that the hierarchy is strict, and some evidence 
that it is hard to prove this. 

We first present some evidence that the hierarchy is strict. Grandjean [Gr85, Gr90] 
considers nondeterministic RAMS that, when given the number n as input, run for cn 
steps (any of which may be nondeterministic), for some constant c. In Grandjean’s model, 
(a) at each moment every register stores an integer whose value is at most linear in the 
input n, and (b) the value of a register may be “guessed” in a single nondeterministic 
step. Grandjean shows that a set S of positive integers is recognizable by such a machine 
precisely if S is the spectrum of a sentence ‘p of the form t/z$J, where $J is a quantifier- 
free formula involving only unary function symbols (thus, ‘p has only a single universal 
quantifier). If S is a spectrum involving only Ic unary function symbols (i.e., if only 
a fixed number k of unary function symbols is needed in formulas to characterize any 
such set of integers), then it is easy to see that in Grandjean’s model, S is recognized 
by a nondeterministic RAM that on input the positive integer n, runs for at most kn 
nondeterministic steps and a polynomial in n number of deterministic steps. So we get 
the following proposition. 

Proposition 5.1 Assume that every spectrum involving only unary function symbols is a 
spectrum involving only k unary function symbols. Let S be a set of positive integers that 
is recognized b y  a nondeterministic RAM that, when given the number n as input, runs for 
cn steps (nondeterministic and deterministic), for some constant c. Then S is recognized 
by a nondeterministic RAM that on input n runs for at most kn nondeterministic steps 
and a polynomial in n number of deterministic steps. 

Intuitively, Proposition 5.1 tells us that a collapse is unlikely, since such a collapse 
implies that there is some constant k such that cn nondeterministic steps (for arbitrary c)  
can be simulated by kn nondeterministic steps and a polynomial number of deterministic 
steps. 

We now give some evidence that it will be hard to prove that the hierarchy is strict, 
and in particular does not collapse to the second level. 

Let CT be the language {fl, . . . , fm} consisting of m distinct unary function symbols 
for some m with m 2 3. Let -r be the language {fi, f2, U }  consisting of two distinct unary 
function symbols and one unary relation symbol. Let (*) be the following statement: 

(*) There is a a-sentence cp whose spectrum does not coincide with the spectrum of 
any -r-sentence 1c, on the set of perfect squares-that is, 

S P ( ‘ p )  n {squares} # S P ( + )  n {squares) 
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Figure 4: f simulates 3 functions, and g matches corresponding points 

Loescher and Share11 [LS] have recently shown that (*) implies that there is a graph 
property that is in NP but not in binary NP (definable by an existential second order 
sentence with quantification only over binary relation symbols). So a proof of (*) would 
resolve the long-standing open problem [Fa75, Fa931 as to whether there is a graph 
property that is in N P  but not in binary NP. Although Loescher and Sharell’s result does 
not directly deal with our hierarchy (because they allow also a unary relation symbol), 
their result at least provides some evidence that the strictness of our hierarchy might be 
hard to prove. 

We conclude this section with a proposition that gives a weak sense in which k unary 
function symbols can be “simulated by” only two. 

Proposition 5.2 Let Ic be a positive integer. Assume that S is a spectrum involving 
only k unary function symbols. Then ( k n  1 n E S )  is a spectrum involving only two 
unary function symbols. 

Proof: Let cp be a first-order sentence involving only the unary function symbols f1, . . . , f k ,  

and let f ,  g be two additional unary function symbols. Let A(z) be the following 
with z as its free variable: 

formula 

k-1 

3 2 2 . .  . j Z k [ (  A Z i  # Z 3 )  A ( g ( z )  = Z 2 )  A ( A g ( Z i )  = Z i + i )  A ( g ( z k )  = Z k ) ] .  

The intuition is that in Figure 4 (which deals with the case k = 3, of 3 unary function 
symbols), A(z) represents the points in the first column, and z; is the point “correspond- 
ing” to z in the i th column. 

As before, define ga(y) recursively to be y if i = 0, and g(gi-l(y)) if i > 0. Let $1 be a 
sentence that says intuitively that the k sets gi(A), for i = 0, . . . , k - 1, which correspond 
to the Ic columns of Figure 4, form a partition of the universe, and that g is one-to-one. 
Define $2 to be a sentence that says intuitively that f (ga(A)) C_ gi (A)  for i = 0, .  . . , k -  1. 
(It is clear how to write such sentences $1 and $ 2 . )  Intuitively, the sentence $2 says that 
f maps points in the i th column into points in the i th column. 

i#j i = 2  
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Define $3 to be the formula obtained from cp as follows. First, we replace the formula 
by an equivalent formula where every subformula that is an inequality is of the form 
x # y,  where z and y are variables (and in particular, do not involve function symbols). 
We do this by replacing each inequality tl # tz by 3a:3y[(tl = a:) A ( t 2  = y) A (a: # y)], 
where a: and y are new variables. Next, we replace the formula by an equivalent formula 
where no subformula has a function symbol on the right-hand side of an equality. We 
do this by replacing each subformula tl = fi(t2) by 3z[(t1 = x) A ( f ; ( t z )  = z)], where x 
is a new variable. Next, we “de-nest” the fi’s, by recursively replacing each subformula 
f i ( f j ( t ) )  = a: by 3y[(fj(t) = y) A (f;(y) = z)], where y is a new variable. We have now 
reduced to the case where every subformula involving a function symbol is of the form 
fi(a:) = y, where x and y are variables. Next, we replace every subformula of the form 
f;(z) = y by f(g*-’(a:)) = gi-’(y). Intuitively, the function fa is simulated by the action 
of f in the ith column of Figure 4. Finally, we relativize every variable 2 to A. 

It is not hard to see that if the spectrum of cp is S, then the spectrum of $1 A $2 A $3 

0 

This proposition is analogous to Fagin’s result [Fa751 that for every spectrum S ,  there 
is a positive integer k such that {nk 1 n E S }  is a spectrum involving only a single binary 
relation symbol. However, Proposition 5.2 is much easier to prove than Fagin’s result. 

is {kn  ( n  E S ) .  

6 Extension to Richer Logics 

We can of course consider the spectrum of a sentence cr not only in first-order logic, but 
in richer logics as well, by again taking the spectrum of 0 to be the set of cardinalities 
of the finite models of 0. Consider statement (**) below, which (in the case when c is 
first-order) is simply the equivalence of (1) and (4) in Theorem 1. 

(**) A set S of natural numbers is the spectrum of a sentence cr over the language of a 
single unary function symbol precisely if S is an eventually periodic set. 

Let f be a unary function symbol, let U1,. . . , Uk be unary relation symbols, and 
let ‘p be a first-order sentence over the language { f ,  U1,. . . , u k }  (we may write cp as 
‘p(f, UI,. . . , u k )  to emphasize the language). Then 

is a monadic NP sentence [FSV95] over the language of a single unary function symbol 
(since the unary relation symbols are quantified out). 

It follows from the equivalence of (3) and (4) in Theorem 1 and from the fact that cp 
and 3U1 . . .3Ukcp have the same spectrum that our characterization (**) holds even if 0 
is allowed to be a monadic NP sentence. 
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After hearing our results, Gurevich and Shelah [GS] extended our characterization 
(**) even further, to hold even if c is allowed to be a monadic second-order sentence 

where the Q;’s may be either universal or existential second-order quantifiers. 
We now show that our characterization (**) does not hold when we extend yet further 

by allowing CT to be a sentence 3 P y ( f ,  P ) ,  where P is a binary relation symbol. In fact, 
we shall show that (**) need not hold even when cr is allowed to be a sentence 3gy(f,g), 
where g is a unary function symbol. Let y(f,g) be a first-order sentence involving 
only two unary function symbols whose spectrum is not an eventually periodic set. For 
example, we can let y(f,g) be the sentence Loescher [Lo971 defined whose spectrum is 
the set of perfect squares, or we can let c p ( f , g )  be the sentence Durand and Ranaivoson 
[DR96] showed has an NEXPTIME-complete spectrum. Then the spectrum of 3gy(f, g) 
is the same as the spectrum of c p ( f , g ) ,  and hence is not an eventually periodic set. 

7 Summary 

We show that a set S of natural numbers is the spectrum of a first-order sentence involving 
only a single unary function symbol precisely if S is an eventually periodic set. We show 
that is true also if the unary function symbol is restricted to represent a permutation, 
and this is true also if we allow not only a unary function symbol but also an arbitrary 
number of unary relation symbols. Finally, we consider the hierarchy that is based on 
the number of unary function symbols, and obtain some preliminary results. 
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