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We introduce a new probabilistic approach to dealing with uncertainty, based on the observation that probability 
theory does not require that every event be assigned a probability. For a nonmeasurable event (one to which we do 
not assign a probability), we can talk about only the inner measure and outer measure of the event. In addition to 
removing the requirement that every event be assigned a probability, our approach circumvents other criticisms of 
probability-based approaches to uncertainty. For example, the measure of belief in an event turns out to be represented 
by an interval (defined by the inner and outer measures), rather than by a single number. Further, this approach allows 
us to assign a belief (inner measure) to an event E without committing to a belief about its negation Y E  (since the 
inner measure of an event plus the inner measure of its negation is not necessarily one). Interestingly enough, inner 
measures induced by probability measures turn out to correspond in a precise sense to Dempster-Shafer belief func- 
tions. Hence, in addition to providing promising new conceptual tools for dealing with uncertainty, our approach shows 
that a key part of the important Dempster-Shafer theory of evidence is firmly rooted in classical probability theory. 
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Cet article prCsente une nouvelle approche probabiliste en ce qui concerne le traitement de I’incertitude; celle-ci est 
baste sur I’observation que la thkorie des probabilites n’exige pas qu’une probabilite soit assignCe k chaque CvCnement. 
Dans le cas d’un hCnement non mesurable (un Cvenement pour lequel on n’assigne aucune probabilitk), nous ne pouvons 
discuter que de la mesure intirieure et de la mesure extirieure de 1’evCnement. En plus d’eliminer la nCcessitC d’assigner 
une probabilite A I’CvCnement, cette nouvelle approche apporte une rCponse aux autres critiques des approches k I’incer- 
titude bastes sur des probabilitks. Par exemple, la mesure de croyance dans un evknement est representee par un inter- 
valle (defini par la mesure intkrieure et extCrieure) plut6t que par un nombre unique. De plus, cette approche nous 
permet d’assigner une croyance (mesure intCrieure) A un Cvenement E sans se compromettre vers une croyance a propos 
de sa nkgation 1 E (puisque la mesure inttrieure d’un CvCnement et la mesure intCrieure de sa negation ne sont pas 
necessairement une seule et unique mesure). I1 est interessant de noter que les mesures intkrieures qui rCsultent des 
mesures de probabiliti correspondent d’une maniere precise aux fonctions de croyance de Dempster-Shafer. En plus 
de constituer un nouvel outil conceptuel prometteur dans le traitement de I’incertitude, cette approche dtmontre qu’une 
partie importante de la thkorie de I’kvidence de Dempster-Shafer est fermement ancrCe dans la thCorie classique des 
probabilitks. 

Mots clis : incertitude, fonction de croyance, mesure intkrieure, ensemble non mesurable, thCorie de Dempster- 
Shafer, probabilite. 
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1. Introduction 
Dealing with uncertainty is a fundamental issue for AI. 

The most widely used approach to dealing with uncertainty 
is undoubtedly the Bayesian approach. It has the advantage 
of relying on well-understood techniques from probability 
theory, as well as some philosophical justification on the 
grounds that a “rational” agent must assign uncertainties 
to events in a way that satisfies the axioms of probability 
(Cox 1946; Savage 1954). On the other hand, the Bayesian 
approach has been widely criticized for requiring an agent 
to assign a subjective probability to every event. While this 
can be done in principle by having the agent play a suitable 
betting game (Jeffrey 1983),2 it does have a number of 
drawbacks. As a practical matter, it may not be possible to  
provide a reasonable estimate of the probability of some 
events; and even if  it is possible to estimate the probability, 

‘This is an expanded version of a paper that appears in the 
Proceedings of the 1 lth International Joint Conference on Artificial 
Intelligence, Detroit, MI, pp. 1161-1167. 

’This idea is due to Ramsey (1931) and was rediscovered by 
von Neumann and Morgenstern (1947); a clear exposition can be 
found in Luce and Raiffa (1957). 

the amount of effort required to do so (in terms of both 
data gathering and computation) may be prohibitive. There 
is also the issue of whether it is reasonable to describe con- 
fidence by a single point rather than a range. While an agent 
might be prepared to agree that the probability of an event 
lies within a given range, say, between 113 and 1/2, he might 
not be prepared to say that it is precisely 0.435. 

Not surprisingly, there has been a great deal of debate 
regarding the Bayesian approach (see Cheeseman (1985) and 
Shafer (1976) for some of the arguments). Numerous other 
approaches to dealing with uncertainty have been proposed, 
including Dempster-Shafer theory (Dempster 1968; Shafer 
1976), Cohen’s model of endorsements (Cohen 1985), and 
various nonstandard, modal, and fuzzy logics (e.g., Halpern 
and Rabin 1987; Zadeh 1985). A recent overview of the field 
can be found in Saffiotti (1988). Of particular interest to 
us here is the Dempster-Shafer approach, which uses belief 
functions and plausibility functions to attach numerical 
lower and upper bounds on the likelihoods of events. 

Although the Bayesian approach requires an agent to 
assign a probability t o  every event, probability theory does 
not. The usual reason that mathematicians deal with non- 
measurable events (those that are not assigned a probability) 
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is out of mathematical necessity. For example, it is well 
known that if the sample space of the probability space con- 
sists of all numbers in the real interval [0, 11, then we cannot 
allow every set to be measurable if (like Lebesgue measure) 
the measure is to be translation-invariant (see Royden 1964, 
p. 54). However, in this paper we allow nonmeasurable 
events out of choice, rather than out of mathematical neces- 
sity. An event E for which an agent has insufficient informa- 
tion to assign a probability is modelled as a nonmeasurable 
set. The agent is not forced to assign a probability to E in 
our approach. We cannot provide meaningful lower and 
upper bounds on our degree of belief in E by using the stan- 
dard mathematical notions of inner measure and outer mea- 
sure induced by the probability measure (Halmos 1950), 
which, roughly speaking, are the probability of the largest 
measurable event contained in E and the smallest measurable 
event containing E, respectively. 

Allowing nonmeasurable events has its advantages. It 
means that the tools of probability can be brought to bear 
on a problem without having to assign a probability to every 
set. It also gives us a solid technical framework in which 
it makes sense to assign an interval, rather than a point- 
valued probability, to an event as a representation of the 
uncertainty of the event. In a precise technical sense (dis- 
cussed below), the inner and outer measures of an event E 
can be viewed as giving the best bounds on the “true” prob- 
ability of E; thus, the interval by the inner and outer 
measures really provides a good measure of our degree of 
belief in E. (We remark that this point is also made in 
Ruspini (1987)). Rather than nonmeasurability being a 
mathematical nuisance, we have turned it here into a desir- 
able feature! 

To those familiar with the Dempster-Shafer approach to 
reasoning about uncertainty, many of the properties of inner 
and outer measures will seem reminiscent of the properties 
of the belief and plausibility functions used in that approach. 
Indeed, the fact that there are connections between inner 
measures and belief functions has been observed before (we 
discuss related literature in Sect. 6 below). What we show 
here is that the two are, in a precise sense, equivalent. One 
direction of this equivalence is easy to state and prove: every 
inner measure is a belief function (i.e., it satisfies the axioms 
that characterize belief functions). Indeed, this result can 
be shown to follow from a more general result of Shafer 
(1979, theorem 5.1( 1)). 

The converse, that every belief function is an inner mea- 
sure, is not so obvious. Indeed, the most straightforward 
way of making this statement precise is false. That is, given 
a belief function Be1 on a space S, it is not, in general, 
possible to find a probability function p on S such that 
p* = Be1 (where p. is the inner measure induced by p). To 
get the converse implication, we must view both belief func- 
tions and probability functions as functions not just on sets, 
but on formulas. The distinction between the two is typically 
ignored; we talk about the probability of the event “El and 
E2” and denote this event El A E2, using a conjunction 
symbol, rather than El n E2. While it is usually safe to 
ignore the distinction between sets and formulas, there are 
times when it is useful to make it. We provide straight- 
forward means of viewing probability and belief functions 
as functions on formulas and show that when viewed as 
functions on formulas, given a belief function Be1 we can 
always find a probability function p such that Be1 = p. 

Our technical results thus say that, in a precise sense, we 
can identify belief functions and inner measures. 

The implications of this equivalence are significant. 
Although some, such as Cheeseman (1985), consider the 
theory of belief functions as ad hoc and essentially non- 
probabilistic (see the discussion by Shafer (1986)), our results 
help show that a key part of the Dempster-Shafer theory 
of evidence is firmly rooted in classical probability theory. 
We are, of course, far from the first to show a connection 
between the Dempster-Shafer theory of evidence and prob- 
ability theory (see Sect. 6 for a detailed discussion of other 
approaches). Nevertheless, we would claim that the partic- 
ular relationship we establish is more intuitive, and easier 
to work with, than others. There is one immediate technical 
payoff: by combining our results here with those of a com- 
panion paper (Fagin et al. 1990), we are able to  obtain a 
sound and complete axiomatization for a rich propositional 
logic of evidence, and provide a decision procedure for the 
satisfiability problem, which, we show, is no harder than 
that of propositional logic (NP-complete). Our techniques 
may provide a means for automatically deducing the con- 
sequences of a body of evidence; in particular, we can com- 
pute when one set of beliefs implies another set of beliefs. 

The rest of the paper is organized as follows. In Sect. 2, 
we give a brief review of probability theory, describe our 
approach, give a few examples of its use, and show that, 
in a precise sense, it extends to Nilsson’s approach (1986). 
The remainder of the paper is devoted to examining the rela- 
tionship between our approach and the Dempster-Shafer 
approach. In Sect. 3, we review the Dempster-Shafer 
approach and show that, in a precise sense, belief and 
plausibility functions are just inner and outer measures 
induced by a probability measure. In Sect. 4, we show that 
Dempster’s rule of combination, which provides a technique 
for combining evidence from two sources, can be captured 
in our framework by an appropriate rule of combination 
for probability measures. In Sect. 5 ,  we show that, by com- 
bining the results of Sect. 3 with those of a companion paper 
(Fagin et al. 1990), we obtain a complete axiomatization for 
reasoning about belief functions. In Sect. 6, we compare 
our results with those in a number of related papers. Sec- 
tion 7 contains some concluding remarks. 

2. Probability theory 
To make our discussion precise, it is helpful to recall some 

basic definitions from probability theory (see Halmos (1950) 
for more details). A probability space ( S ,  X, p )  consists of 
a set S (called the sample space), a u-algebra X of subsets 
of S (i.e., a set of subsets of S containing S and closed under 
complementation and countable union, but not necessarily 
consisting of all subsets of S) whose elements are called 
measurable sets, and a probability measure p: X - [0, 11, 
satisfying the following properties: 

P1. p ( X )  2 0 for all X E X 
P2. p ( S )  = 1 
P3. p(UE Xi)  = EE p(Xj), if the Xi’s are pairwise dis- 

Property P3 is called countable additivity. Of course, the 
fact that X is closed under countable union guarantees that 
if each Xi E X, then so is U;, Xi. If X is a finite set, then 
we can simplify property P3 above to 

joint members of X. 
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P3‘. p ( X  U Y) = p ( X )  + p( Y), if X and Y are disjoint 

This property is called finite additivity. Properties P1, P2, 
and P3 ’ characterize probability measures in finite spaces. 
Observe that from P2 and P3’,  it follows (taking Y = X, 
the complement of X) that p ( X )  = 1 - p ( X ) .  Taking 
X = S, we also get that p(0)  = 0. We remark for future 
reference that P3’ is equivalent to the following axiom: 

members of ‘X. 

~ 3 ” .  p c ( ~ )  = p ( ~  n Y )  + y ( ~  n 7) 
Clearly, P3” is a special case of P3 ’, since X n Y and 
X fl P a r e  disjoint and X = (X n Y )  U (X n P). To see 
that P3’ follows from P3“, just replace the X in P3” by 
XU Y, and observe that if X and Y are disjoint, then 
X = ( X U  Y ) n ? ,  while Y = ( X U  Y ) n  Y. 

A subset X’ of X is said to be a basis (of X) if the 
members of ‘X ’ are nonempty and disjoint, and if X con- 
sists precisely of countable unions of members of X ’. It is 
easy to see that if X is finite then it has a basis. Moreover, 
whenever X has a basis, it is unique: it consists precisely 
of the minimal elements of X (the nonempty sets in X, none 
of whose proper nonempty subsets are in X). Note that if 
X has a basis, once we know the probability of every set 
in the basis, we can compute the probability of every measur- 
able set by using countable additivity. 

In a probability space (S, X, p) ,  the probability measure 
p is not defined on 2’ (the set of all subset of S), but only 
on X. We can extend p to 2’ in two standard ways, by 
defining functions p* and p * ,  traditionally called the inner 
measure and the outer measure induced by p (Halmos 1950). 
For an arbitrary subset A E S, we define 

p ( A )  = sup(p(X)IX E A and X E ‘X) 
y * ( A )  = inf(p(X)IX 2 A and X E XI 

(where, as usual, sup denotes “least upper bound” and inf 
denotes “greatest lower bound”). If there are only finitely 
many measurable sets (in particular, if S is finite), then it 
is easy to see that the inner measure of A is the measure 
of the largest measurable set contained in A ,  while the outer 
measure of A is the measure of the smallest measurable set 
containing A.3 In any case, it is not hard to show by count- 
able additivity that for each set A, there are measurable sets 
B and C, where B G A c C such that p ( B )  = p . ( A )  and 
p ( C )  = p * ( A ) .  Note that if there are no nonempty measur- 
able sets contained in A ,  then p . ( A )  = 0, and if there are 
no measurable sets containing A other than the whole 

’We would have begun this sentence by saying “If there are 
only countably many measurable sets,” except that it turns out 
that if there are countably many measurable sets, then there are 
only finitely many! The proof is as follows. Let 9 C % be the 
set of all nonempty minimal measurable sets. If every point in the 
sample space S is in a, then ’y is a basis; in this case, TC is finite 
if  y is finite, and uncountable if y is infinite (since the existence 
of an infinite, pairwise disjoint family of  measurable sets implies 
that there are uncountably many measurable sets). So we can 
assume that S # Uy, or else we are done. Let To = S - Uy 
f 0. Since To is nonempty, measurable, and not in y, it follows 
that To is not minimal. So To has a proper nonempty measurable 
subset T , .  Similarly, TI has a proper nonempty measurable subset 
T2. etc. Now the set differences T, - T,,  I ,  for i = 0, 1 ,  ... form 
an infinite, pairwise disjoint family of measurable sets. Again, this 
implies that there are uncountably many measurable sets. 

space S, then p * ( A )  = 1 .  The properties of probability 
spaces guarantee that if X is a measurable set, then p ( X )  
= p * ( X )  = p ( X ) .  In general, we have p* (A)  = 1 - p * ( X ) .  

The inner and outer measures of a set A can be viewed 
as our best estimate of the “true” measure of A, given our 
lack of knowledge. To make this precise, we say that a prob- 
ability space (S, X ’ , p ’ ) is an extension of the probability 
space (S, X, p )  if X‘ 2 X, and p’ (A)  = p(A)  for all 
A E X (so that p and p’  agree on X, their common 
domain). If (S, X’, p ‘ )  is an extension of (S, ‘X, p) ,  then 
we say that p ‘  extends p. The following result seems to be 
well known. (A proof can be found in Ruspini (1987); see 
also Fagin and Halpern (1990) for further discussion.) 
Theorem 2.1 

If (S, X’ , p ‘ )  is an extension of (S, ‘X, p)  and A E X’ , 
then p ( A )  5 p’(A) I p*(A).  Moreover, there exist exten- 
sions (S, X I ,  pl) and (S, X2, p2) of (S, X, p )  such that 
A E X , ,  A E X2, p l ( A )  = p ( A )  and p 2 ( A )  = 

Although we shall not need this result in the remainder 
of the paper, it provides perhaps the best intuitive motiva- 
tion for using inner and outer measures. 

Now, suppose we have a situation we want to reason 
about. Typically, we do so by fixing a finite set a = 
(pl, ..., pn] of primitive propositions, which can be thought 
of as corresponding to basic events, such as “it is raining 
now” or “the coin landed heads.” The set ,C(+) of (propo- 
sitional) formulas is the closure of @ under the Boolean 
operations A and 1. For convenience, we assume also that 
there is a special formula true. We abbreviate 1 true by false. 
The primitive propositions in do not, in general, describe 
mutually exclusive events. To get mutually exclusive events, 
we can consider all the atoms, that is, all the formulas of 
the form pi A ... A p;, where p/ is either pi or ip;. Let 
At denote the set of atoms (over 4’). 

We have been using the word “event” informally, some- 
times meaning “set” and sometimes meaning “formula.” 
As we mentioned in the introduction, we are typically rather 
loose about this distinction. However, this distinction turns 
out to be crucial in some of our technical results, so we must 
treat it with some care here. Formally, a probability mea- 
sure is a function on sets, not formulas. Fortunately, it is 
easy to shift focus from sets to formulas. 

Using standard propositional reasoning, it is easy to see 
that any formula can be written as a disjunction of atoms. 
Thus, a formula cp can be identified with the unique set 
{a1, ..., ak) of atoms such that cp es a1 V ... V tik. If we 
want to assign probabilities to all formulas, we can simply 
assign probabilities to each of the atoms, and then use the 
finite additivity property of probability measures to compute 
the probability of an arbitrary formula. This amounts to 
taking a probability space of the form (At, 2A‘, p).  The 
states in the probability space are just the atoms, and the 
measurable subsets are all the sets of atoms (i.e., all for- 
mulas). Once we assign a measure to the singleton sets (i.e., 
to the atoms), we can extend by additivity to any subset. 
We call such a probability space a Nilsson structure, since 
this is essentially what Nilsson used to give meaning to for- 
mulas in his probability logic (Nilsson 1986).4 Given a 

P*(A 1. 

4Actually, the use of possible worlds in giving semantics to 
probability formulas goes back to Carnap (1950). 
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Nilsson structure N = (At, 2A‘, p)  and a formula cp, let 
WN(cp) denote the weight or probability of cp in N, which 
is defined to be p(At(cp)), where At(cp) is the set of atoms 
whose disjunction is equivalent to cp. 

A more general approach is to take aprobability structure 
to be a tuple (S, X, p, a), where (S, X, p)  is a probability 
space, and T associates with each s E S a truth assignment 
~ ( s ) :  9 - (true, false). We say that p is true at s if a(s ) (p )  
= true; otherwise, we say that p is false at s. 

We think of S as consisting of the possible states of the 
world. We can associate with each state s in S a unique atom 
describing the truth values of the primitive propositions in s. 
For example, if 9 = { p , ,  p2 ) ,  and if a(s)@,) = true and 
7r(s)(p2) = false, then we associate with s the atom 
p 1  A 1p2. It is perfectly all right for there to be several 
states associated with the same atom (indeed, there may be 
an infinite number, since we allow S to be infinite, even 
though 9 is finite). This situation may occur if a state is 
not completely characterized by the events that are true 
there. This is the case, for example, if there are features of 
worlds that are not captured by the primitive propositions. 
It may also be the case that there are some atoms not 
associated with any state. 

We can easily extend a(s) to a truth assignment on all 
formulas by taking the usual rules of propositional logic. 
Then if M is a probability structure, we can associate with 
every formula cp the set cpM consisting of all the states in M 
where cp is true (i.e., the set (s E SIa(s)(cp) = true)). Of 
course, we assume that a is defined so that trueM = S. If 
p M  is measurable for every primitive proposition p E 9, 
then cpM is also measurable for every formula cp (since the 
set X of measurable sets is closed under complementation 
and countable union). We say Mis  a measurableprobability 
structure if cpM is measurable for every formula cp. 

It makes sense to talk about the probability of cp in M 
only if cpM is measurable; we can then take the probability 
of cp, which we denote WM(cp), to be p(cp’). If cpM is not 
measurable, then we cannot talk about its probability. How- 
ever, we can still talk about its inner measure and outer mea- 
sure, since these are defined for all subsets. Intuitively, the 
inner and outer measures provide lower and upper bounds 
on the probability of cp. In general, if c p M  is not 
measurable, then we take WM(cp) to be p*(cpM), i.e., the 
inner measure of cp in M. 

We define a probability structure M a n d  a Nilsson struc- 
ture N to be equivalent if WM(cp) = WN(cp) for every for- 
mula q. Intuitively, a probability structure and a Nilsson 
structure are equivalent if they assign the same probability 
to every formula. The next theorem shows that there is a 
natural correspondence between Nilsson structures and 
measurable probability structures. 

Theorem 2.2 
1. For every Nilsson structure there is an equivalent 

2. For every measurable probability structure there is an 

’Note that in the possible world semantics for temporal logic 
(Manna and Pnueli 1981), there are in general many states 
associated with the same atom. There is a big difference between 
pI A ’p2 being true today and its being true tomorrow. A similar 
phenomenon occurs in the multi-agent case of epistemic logic 
(Halpern and Moses 1992; Rosenschein and Kaelbling 1986). 

measurable probability structure. 

equivalent Nilsson structure. 

Pro0 f 
Given a Nilsson structure N = (At, 2At, p),  let MN be 

the probability structure (At, 2A‘, p,  a), where for each 
6 E At, we define a(6)(p)  = true iff 6 logically implies p 
(that is, iff p “appears positively’’ as a conjunct of 6). 
Clearly, MN is a measurable probability structure. Further, 
it is easy to see that N a n d  MN are equivalent. Conversely, 
suppose M = (S, X, p, T )  is a measurable probability struc- 
ture. Let N M  = (At, 2A’, p ’ ) ,  where p’(6) = p ( s M )  for 
each 6 E At. We leave it to the reader to verify that M a n d  
N M  are equivalent. Note that this construction does not 
work if 6M is not a measurable set for some 6 E At. rn 

Why should we even allow nonmeasurable sets? As the 
following examples show, using nonmeasurability allows us 
to avoid assigning probabilities to those events for which 
we have insufficient information to  assign a probability. 

Example 2.3 (This is a variant of an example found in 

Suppose we want to  know the probability of a projectile 
landing in water. Unfortunately, the region where the pro- 
jectile might land is rather inadequately mapped. We are 
able to divide the region up into (disjoint) regions, and we 
know for each of these subregions (1) the probability of the 
projectile landing in that subregion and (2) whether the sub- 
region is completely covered by water, completely contained 
on land, or has both land and water in it. Suppose the sub- 
regions are R , ,  ..., R,. We now construct a probability 
structure M = (S, X, p, a) to represent this situation. For 
every subregion R,  we have a state (R, w ) ,  if R has some 
water in it and a state ( R ,  I )  if it has some land in it. Thus, 
S has altogether somewhere between n and 2n states. Note 
that to every subregion R, there corresponds a set R’ consist- 
ing of either (R, w )  or ( R ,  I )  or both. Let S be the u-algebra 
generated by the basis Ri,  ..., RA. Define p(Rj’) to be the 
probability of the projectile landing in Ri. Thus, we have 
encoded all the information we have about the subregion 
R into R ’ ;  R‘  tells us whether there is land and water or 
both in R,  and (through p) the probability of the projectile 
landing in R. We have two primitive propositions in the lan- 
guage: land and water. We define a in the obvious way: land 
is true at states of the form (Ri ,  I )  and false at others, while 
just the opposite is true for water. This completes the 
description of M. 

We are interested in the probability of the projectile land- 
ing in water. Intuitively, this is the probability of the set 
WATER = waterM. However, this set is not measurable 
(unless every region is completely contained in either land 
or water). We do have lower and upper bounds on the 
probability of the projectile landing in water, given by 
p.(WATER) and p’(WATER). It is easy to see that 
p.( WATER) is precisely the probability of landing in a 
r5gion that is completely covered by water, while 
p (WATER) is the probability of landing in a region that 
has some water in it. 

Example 2.4 
Ron has two blue suits and two gray suits. He has a very 

simple method for deciding what color suit to wear on any 
particular day: he simply tosses a (fair) coin: if it lands heads, 
he wears a blue suit; and if it lands tails, he wears a gray 
suit. Once he’s decided what color suit to wear, he just 
chooses the rightmost suit of that color on the rack. Both 

Dempster (1 968).) 

rn 
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of Ron’s blue suits are single-breasted, while one of Ron’s 
gray suits is single-breasted and the other is double-breasted. 
Ron’s wife, Susan, is (fortunately for Ron) a little more 
fashion-conscious than he is. She also knows how Ron 
makes his sartorial choices. So, from time to time, she makes 
sure that the gray suit she considers preferable is to the right 
(which it is depends on current fashions and perhaps on 
other whims of Susan).6 Suppose we don’t know about the 
current fashions (or about Susan’s current whims). What 
can we say about the probability of Ron’s wearing a single- 
breasted suit on Monday? 

In terms of possible worlds, it is clear that there are four 
possible worlds, one corresponding to each of the suits that 
Ron could choose. For definiteness, suppose states s1 and 
s2 correspond to the two blue suits, s3 corresponds to the 
single-breasted gray suit, and s4 corresponds to the double- 
breasted gray suit. Let S = Isl, s2, 4, s4). There are two 
features of interest about a suit: its color and whether it is 
single-breasted or double-breasted. Let the primitive prop- 
osition g denote “the suit is gray” and let db denote “the 
suit is double-breasted,” and define the truth assignment 
a in the obvious way. Note that the atom -g A i d b  is 
associated with both states s1 and s2. Since the two blue 
suits are both single-breasted, these two states cannot be dis- 
tinguished by the formulas in our language. 

What are the measurable events? Besides S itself and the 
empty set, the only other candidates are [sl, s2) (“Ron 
chooses a blue suit”) and (s3, s4) (“Ron chooses a gray 
suit”). However, SB = (sl, s2, s3J (“Ron chooses a single- 
breasted suit”) is nonmeasurable. The reason is that we do 
not have a probability on the event “Ron chooses a single- 
breasted suit, given that Ron chooses a gray suit,” since this 
in turn depends on the probability that Susan put the single- 
breasted suit to the right of the other gray suit, which we 
do not know. Susan’s choice might be characterizable by 
a probability distribution; it might also be deterministic, 
based on some complex algorithm which even she might not 
be able to describe; or it might be completely nondetermin- 
istic, in which case it is not technically meaningful to talk 
about the “probability” of Susan’s actions! Our ignorance 
here is captured by nonmeasurability. Informally, we can 
say that the probability of Ron choosing a single-breasted 
suit lies somewhere in the interval [1/2, 11, since it is bounded 
below by the probability of Ron choosing a blue suit. This 
is an informal statement, because formally it does not make 
sense to talk about the probability of a nonmeasurable event. 
The formal analogue is simply that the inner measure of SB 
is 112, while its outer measure is 1. 

3. The Dempster-Shafer theory of evidence 
The Dempster-Shafer theory of evidence (Shafer 1976) 

provides another approach to attaching likelihoods to 
events. This theory starts out with a belief function (some- 
times called a support function). For every event (i.e., set) 
A, the belief in A, denoted Bel(A), is a number in the inter- 
val [0, 13 that places a lower bound on the likelihood of A. 
We have a corresponding number Pl(A) = 1 - Bel(A), 
called the plausibility of A,  which places an upper bound 
on the likelihood of A. Thus, to every event A we can attach 

rn 

6Any similarity between the characters in this example and the 
first author of this paper and his wife Susan is not totally accidental. 

the interval [Bel(A), Pl(A)]. Like a probability measure, 
a belief function assigns a “weight” to subsets of a set S, 
but unlike a probability measure, the domain of a belief 
function is always taken to be all subsets of S .  Just as we 
defined probability structures, we can define a DS structure 
(where, of course, DS stands for Dempster-Shafer) to be 
a tuple (S, Bel, a), where S and a are as before, and where 
Bel: 2‘ - [0, 11 is a function satisfying: 

B1. Bel(0) = 0 
B2. Bel(S) = 1 
B3. Bel(A1 U ... UAk) 2 &[I  ,..., k ) , d - l )  111 + 1 

Bel(niE1 A;) .  

A belief function is typically defined on a frame of 
discernment, consisting of mutually exclusive and exhaustive 
propositions describing the domain of interest. We think of 
the set S of states in a DS structure as being this frame of 
discernment. We could always choose S to be some subset 
of At, the set of atoms, so that its elements are in fact prop- 
ositions in the language. In general, given a DS structure 
D = (S, Bel, a) and formula cp, we define the weight 
WD(cp) to be Bel(cpD), where cpD is the set of states where 
cp is true. Thus, we can talk about the degree of belief in 
cp in the DS structure D, described by WD(p), by identify- 
ing cp with the set cpD and considering the belief in c p D .  As 
before, we define a probability structure M (respectively, 
a Nilsson structure N, a DS structure D’) and a DS struc- 
ture D to be equivalent if WM(cp) = WD(cp) (respectively, 
W~(cp) = WD(P), WD,(cp) = Wo(cp)) for every formula 9. 

Property B3 may seem unmotivated. Perhaps the best way 
to understand it is as an analogue to the usual inclusion- 
exclusion rule for probabilities (Feller 1957, p. 89), which 
is obtained by replacing the inequality by equality (and the 
belief function Be1 by a probability measure p). In particu- 
lar, B3 holds for probability measures (we prove a more 
general result, namely that it holds for all inner measures 
induced by probability measures, in proposition 3.1 below). 
Hence, if (S, X, p) is a probability space and X = 2’ 
(making every subset of S measurable), then p is a belief 
function. (This fact has been observed frequently before; 
see, for example, Shafer (1976).) It follows that every 
Nilsson structure is a DS structure. 

It is easy to see that the converse does not hold. For exam- 
ple, suppose there is only one primitive proposition, say p, 
in the language, so that At = (p, i p ] ,  and let Do = 
(At, Bel, a) be such that Bel((pJ) = 1/2, Bel(( i p ) )  = 0, 
and a is defined in the obvious way. Intuitively, there is 
weight of evidence 112 for p, and no evidence for l p .  Thus 
WDo<p) = 1/2 and WDp( i p )  = 0. Do is not equivalent to 
any Nilsson structure, since if N is a Nilsson structure such 
that W,&) = 1/2, then we must have W N ( l p )  = 1/2. 

These observations tell us that, in some sense, belief func- 
tions are more general than probability measures, provided 
we restrict attention to probability spaces where all sets are 
measurable. This fact is well known. Indeed, Shafer (1976) 
makes explicit use of the greater generality of belief func- 
tions. While he does consider events E such that Bel( i E )  = 
1 - Bel(E) (he calls such events probabilistic), he also 
wants to allow nonprobabilistic events. He gives examples 
of events where the fact that we would like to assign weight 
0.8 to our belief in event E does not mean that we want to 
assign weight 0.2 to oul belief in 1 E .  In our framework, 
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where we allow nonmeasurable sets, we can view probabi- 
listic events as corresponding to measurable sets, while non- 
probabilistic events do not. We can push this analogy much 
further. Not only do nonmeasurable sets correspond to non- 
probabilistic events, but the inner measures induced by prob- 
ability measures correspond to belief functions. 

The following result is the first step to proving the corre- 
spondence between inner measures and belief functions. It 
says that every inner measure is a belief function (and thus 
generalizes the statement that every probability measure is 
a belief function). As we mentioned in the introduction, the 
result actually follows from a more general result in Shafer 
(1979). We give proof here to keep this paper self-contained. 
(Later, we give an easier proof for the case where the prob- 
ability space is finite.) 

Proposition 3.1 

function on S .  

Pro0 f 
Clearly pr satisfies B1 and B2, so it suffices to show that 

it satisfies B3. Given sets A ] ,  ..., Ak,  let B1,  ..., Bk be 
measurable sets such that B; E A; and p r ( A i )  = p(Bj ) ,  
i = 1, ..., k (as we noted earlier, there are such sets Bi) .  
We now show that for any subset Z of [ 1, . . . , kJ ,  we have 
p*(njE,Aj) = p ( n i E ,  B,) .  Since njEl B; c niE, A;, we 
must have p * ( f I i E 1  A ; )  L p ( n i E 1  BJ.  To see that equality 
holds, let C be a measurable set such that C E n i E r A ;  
and p ( C )  = p*(n;ElA;). We can assume that ( n ; E I B ; )  E C 
(by re lacin C by C U ( n ; E 1  B;) if necessary). Let D = 
C n M. Since D is a Boolean combination of mea- 
surable sets, it is measurable. We now show that p ( D )  = 0. 
Let i be a fixed member of I .  We know that D 5 C E A;. 
If p ( D  n R) # 0, then B j U D  would be a subset of A; 
with bigger measure than B;, which would contradict our 
choice of B;. So p(D n 6.) = 0, for each i E Z. Since D 
E = UjE, &, it follows that p(D)  = p(D n 
UjElq)  = p ( U j E 1 ( ~  n T))  I CjE1 p ( ~  n B .  = 0, as 

= 0, it follows that p ( ~ )  = p(niE, B ~ ) .  SO p r ( n i E 1  A;)  
= p(njE,B;), as desired. Since UiE,Aj 2 Ui,,Bj, we also 
get pI(U;E~ A,) 2 p ( u j E I  B;) (although in this case we do 
not, in general, get equality). 
Now, applying the inclusion-exclusion rule for probabil- 

ities, we get 
p.(A1 u ... u A,)  

If (S, X, p )  is a probability space, then p. is a belief 

desired. Since ( n i E I B ; )  !Z C and p ( C  fl ir3 i E I B j )  = p(D)  

2 p(B ,  u ... UB,) 

= ~ , ~ ~ l , . . . , m ~ , , ~ ~ ( - l ) ' A +  ' ~ * ( n i E ,  A ; )  

This completes the inductive proof. 

Corollary 3.2 

structure. 

Pro0 f 
Given a probability structure M = (S, T, p, T) ,  consider 

the DS structure D = (S, pr ,  T ) ,  where pr is the inner 
measure on S induced by p. By proposition 3.1, pr is an 

For every probability structure, there is an equivalent DS 

inner measure. Clearly, wM(p) = p.(pM) = p. (pD)  = 
wD(p) for all formulas p, so D and M are equivalent. 

Proposition 3.1 says that every inner measure is a belief 
function. The converse does not quite hold. For example, 
consider the DS structure Do defined above. There is no 
probability measure p that we can define on ( p ,  i p )  such 
that p = Bel. However, it is easy to define a probability 
structure Mo such that p(pMo) = 1/2 and pb(ipMo) = 0. 
For example, we can take Mo to consist of three states sl, 
s2, s3, such that p is true at st and s2, and p is false at s3. 
Further suppose that the only nontrivial measurable sets are 
(sl) and Is2, s3), each of which has probability 1/2. It is 
now easy to  check that Mo is equivalent to Do. Thus, 
although in this case we could not find an inner measure 
equal to Be1 when viewed as a function on sets, we can find 
an inner measure equivalent to Be1 when viewed as a func- 
tion on formulas. 

This observation generalizes to give us the converse of cor- 
ollary 3.2. 

Theorem 3.3 
For every DS structure, there is an equivalent probability 

structure. 

In order to prove theorem 3.3, we first need to consider 
finite DS structures (those with only finitely many states). 
In much of the work on belief functions (e.g. Shafer 1976), 
the sets of states in a DS structure is assumed to  be finite. 
As we now show, as far as equivalence is concerned, restrict- 
ing to a finite set of states does not result in any loss of 
generality. 

Proposition 3.4 
Every DS structure is equivalent to a finite DS structure. 

Pro0 f 
Fix a DS structure D = (S, Bel, T) .  Let At be the set of 

atoms. Since we have assumed that there are only finitely 
many primitive propositions in the language, At is finite. 
For every subset A = (&, ..., ak) C At, define = V 
... V 6,; we identify +* with the formula fake. Let D = 
(At, Bel', T ' ) ,  where ~'(6)0,) = true iff p is one of the 
conjuncts of the atom 6, and Bel'(A) = Bel((+A)D) for 
A E At. We need to check that Be1 ' is indeed a belief func- 
tion. It clearly satisfies B1 and B2. For B3, observe that 

Bel'(Al U ... U A k )  

Thus, Bel' is a belief function. Moreover, for every 
formula p we have WDp(p)  = Bel'(pD') = Bel'(At(p)) = 
Bel(($At(+,))D) = Bel(pD) = WD(p) ,  so D and D' are 
equivalent. 
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We remark that this proof depends on the fact that 9 is 
finite, so that At is finite. This is the one place we use the 
finiteness of 9. However, even if 9 is infinite, for any finite 
subset 9' C 9, we can construct a finite DS D' which is 
equivalent to  D for all formulas in C(9'). As we shall see, 
this suffices for the results we are interested in, even if 9 
is infinite. 

In the case of finite DS structures, we can characterize 
belief functions in terms of mass functions. A mass function 
on S is simply a function m: 2' - [0, I ]  such that 

M1. m(0) = 0 
M2. C A G s m ( A )  = 1 

Intuitively, m ( A )  is the weight of evidence for A that has 
not already been assigned to some proper subset of A. With 
this interpretation of mass, we would expect that an agent's 
belief in A is the sum of the masses he has assigned to all 
the subsets of A;  i.e., Bel(A) = C B , A  m ( B ) .  Indeed, this 
intuition is correct. 

Proposition 3.5 (Shafer 1976, p. 39) 
1. If rn is a mass function on S, then the function 

Bel: 2' - [0, 11 defined by Bel(A) = CBcA m ( B )  is 
a belief function on S. 

2. If Be1 is a belief function on Sand S is finite, then there 
is a unique mass function m on S such that Bel(A) = 
CB&A m ( B )  for every subset A of S. 

We remark that the assumption that S is finite in part (2) 
of proposition 3.5 is needed. 

We remark that if we restrict to finite structures, then 
proposition 3.5 gives us an easy way of proving the result 
of proposition 3.1, that every inner measure is a belief func- 
tion. Suppose (S, X, y) is a probability space, and S is finite. 
Let y be a basis of !X (since S is finite, 3c must have a basis). 
Define m ( A )  = y ( A )  for A E 3, and m ( A )  = 0 other- 
wise. Clearly, m is a mass function on S. Moreover, 

By proposition 3.5, p* is the belief function corresponding 
to m. 

We now have the machinery we need to prove theorem 3.3: 

Proof of theorem 3.3 
Let D = (S, Bel, a) be a DS structure. By theorem 3.4, 

we can assume without loss of generality that D is a finite 
structure. Let m be the mass function corresponding to the 
belief function Be1 as in part (2) of proposition 3.5. Let 
M = (S', X, p,  a'), be defined as follows. Define S' = 
((A, s ) (A  C S,  s E A J. For A C S, let A,* = ( ( A ,  s)ls 
E A 1. Note that if A # B, then A* and B are disjoint; 
moreovy, U,,+I* = s ' .  Since S is finite, so is S ' .  We 
take (A IA 5 SJ to be the basis for 'X; thus every eleTent 
of X is a union of sets of the form A'. Define p ( A  ) = 
m ( A ) ;  we then extend p to all of !X by finite additivity. 
Finally, let ?r ' (A,  s) = a(s). 

We now want to show that M is equivalent to D. For each 
formula p, we have A c pM iff ( A ,  s) E pM for all s E 
A iff ?r(s)(cp) = true for all s E A i f f  A C pD. Thus, the 
largest measurable set contained in qM is U,,,D A'.  It 
now follows that 

= w D ( ( D )  

Thus, D and M are equivalent, as desired. 
Intuitively, corollary 3.2 and theorem 3.3 show that belief 

functions and inner measures induced by probability 
measures are precisely the same if their domains are con- 
sidered to be formulas rather than sets. Recall the DS struc- 
ture Do introduced above, with wDo(p) = 1/2 and w 4 ( i p )  
= 0. Although we saw that there is no probability measure 
p that we can define on [p, i p ]  such that p. = Bel, we 
also showed that there is a probability structure Mo such 
that p(pMo)  = 1/2 and p.(ip'o) = 0.  This is a special 
case of theorem 3.3, which says intuitively that every belief 
function is an inner measure, provided we consider the 
domains to be formulas rather than sets. Of course, we can 
still relate belief functions and inner measures if we look 
at sets, although the relationship is not quite as elegant. One 
connection is provided by the following corollary to  the 
proof of theorem 3.3, which can be viewed as a partial con- 
verse to proposition 3.1. In the language of Shafer (1976, 
chap. 6), it says that every belief function is the restriction 
of some probability function (although we do not restrict 
attention - as Shafer (1976) does - to probability func- 
tions with respect to which every subset of the sample space 
is measurable). 

Corollary 3.6 
Given a belief function Be1 defined on a finite set S, there 

is a probability space (S' , X, p )  and a surjection f : S' - 
S such that for each A C S, we have Bel(A) = p * ( f - I ( A ) ) .  

Pro0 f 
Given S and Bel, construct the probability space (S'  , 3c. p) 

as in the proof of theorem 3.3. Define f ((A, s)) = s, for 
s E A s S. Clearly, f is a surjection from S' to S. 
Moreover, it is easy to see that f - I ( A )  = ((B, s)ls E A n 
B). It follows that B* c f - ' ( A )  iff B c A ,  where B' = 
((B, s)ls E B), as defined in the proof of theorem 3.3. 
From this observation, we get 

P*( f  - ' ( A ) )  = CB,, AB* )  

= C B E A  m ( B )  

= Bel(A) W 

Thus, we proved our claim that inner measures and belief 
functions are identical, providing we view them both as being 
functions on formulas rather than on sets. Note that all that 
is required for this equivalence is that the formulas be 
allowed to correspond to nonmeasurable sets. As our earlier 
examples have shown, this possibility arises in a natural way 
in many examples. As we shall see in Sect. 5 ,  one conse- 
quence of the equivalence of inner measures and belief func- 



FAGIN AND HALPERN 167 

tions is that the same axioms characterize both. But first 
we show how our approach can capture the spirit of 
Dempster's rule of combination. 

4. Combining evidence 
An important issue for belief functions, each of which 

can be viewed as representing a distinct body of evidence, 
is how to combine them to obtain a new belief function that 
somehow reflects the combined evidence. A way of doing 
so is provided by Dempster's rule of combination, which 
was introduced by Dempster (1968) and was further devel- 
oped and studied in an elegant and rather complete manner 
by Shafer (1976). Since the definition of rule of combination 
is usually given in terms of mass functions and finite 
Dempster-Shafer structures, we do so here as well. (We 
remark that a more general version of the rule of combina- 
tion for infinite Dempster-Shafer structures is given in 
Shafer (1976). All our results can be extended to the infinite 
case as well.) 

If m1 and m2 are mass functions with the same domain 
2', let ml @ m2 be the mass function m where m ( A )  = 

and where c is normalizing constant chosen so that the sum 
of all of the m(A)'s is 1 .  It is easy to check that c = 
(~lB,,B2~s,nB2t01 m,(Bl)m2(B2))-'.  Note that if there is no 
pair B 1 ,  B2 where B, n B2 # 0 and ml(Bl)m2(B2) > 0, 
then we cannot find such a normalizing constant c. In this 
case ml @ m2 is undefined. If Bell and Be12 are belief func- 
tions with mass functions m1 and m2 respectively, then the 
belief function (denoted Bell @ Bel,) that is the result of 
combining Bell and Be12 is the belief function with mass 
function ml @ m2 (and is undefined if m, @ m2 is 
undefined). If D, = (S, Bell, a) and D2 = (S, Be12, a) are 
DS structures with the same sample space S and the same 
truth assignment function a, then D1 @ D2 is the DS struc- 
ture (S, Bell @ Be12, a) (and is undefined if Bell @ Be12 is 
undefined). 

We now give a natural way (in the spirit of Dempster's 
rule) to define the combination of two probability spaces 
(S, XI, p I )  and (S, X2, p,) with the same finite sample 
space S. Suppose 'Xi has basis Xi: i = 1 ,  2. (We restrict 
S to be finite in order to ensure that 'Xi has a basis.) Let 
XI @ X2 be the a-algebra generated by the basis consisting 
of the nonempty sets of the form Xl n X2,  Xi E Xi, 
i = 1, 2. Define p1 @ p2 to be the probability measure on 
XI @ XZ such that oL1 @ PZ)(& n XZ)  = CF~(XI)P,(X~) 
for Xl E X,' and X2 E Xi, where c = (ElxIEEC;,~,Eg;,l  
x,n~,z*lpl(X~)p2(X2)) - is a normalizing constant chosen 
so that the measure of the whole space is 1 .  (If there is no 
pair X I ,  X2 where p1(X1)p2(X2) > 0, then, as before, p1 @ 

p2 is undefined.) Finally, if MI = (S, XI, pl, a) and M2 = 
(S, 'X2, p2, r )  are probability structures with the same 
finite sample space S and same truth assignment function a, 
then we define MI @ M2 to be the probability structure (S, 
XI @ X2, PI  @ PZ, a) (as before, M I  @ M2 is undefined if 
p1 @ p2  is undefined). 

Providing a detailed discussion of the motivation of this 
way of combining probabilities is beyond the scope of this 
paper. The intuition behind it is very similar to that behind 
the rule of combination. Suppose we have two tests, Tl and 
T2. Further suppose that, according to test Ti, an element 
s E S is in Xi E X/ with probability pi(X;) ,  i = 1 ,  2. In 

C ~ I B , , B , I B , n B * ~ A J  m,(B1)m2(Bz) for each nonempty A 5z S ,  

that case, if we combine the results of both tests and we 
assume that they are independent, we might say that the 
probability of a randomly s E S being in X I  n X2 is 
cp1(X1)p2(X2), where c is the appropriate normalizing 
constant. 

The next theorem shows how the spirit of Dempster's rule 
of combination can be captured within our framework. 

Theorem 4.1 
@ D2 is 

defined. There are probability structures Ml and M2 such 
that (a) D1 is equivalent to  M l ,  (b) D2 is equivalent to M2, 
and (c) D1 @ D2 is equivalent to  Ml @ M2. 
Pro0 f 

We give a construction which is a variation of that in the 
proof of theorem 3.3. Let D; be (S, Bel, a) and let mi be 
the mass function corresponding to Beli, i = 1 ,  2. We now 
define Mi = (S', Xi, p;, x) ,  i = 1 ,  2, as follows. Let S' = 
((A, B, s)lA, B E S and s E A n B ] .  For A C S, define 
A '  = ((A, B, s)lB 5 S and s E A n B) and A 2  = ((B, 
A,  s)lB E Sand s E A n BJ.  Recall that we have restricted 
to finite DS structures for the purposes of this section. It 
follows that there are only finitely many sets of the form 
A', i = 1 ,  2. Let Xi be the a-algebra generated by the basis 
sets A'  and let p;(A') = mi(A),  i = 1 ,  2. Extend pi to all 
of X i  by finite additivity. Finally, define x ' ( A ,  B, s) = 
a(s). The same arguments as those used in theorem 3.3 can 
now be used to show that Di is equivalent to Mi, i = 1 ,  2; 
we leave details to the reader. 

We now want to  show that D1 @ D2 is equivalent to M I  
@ M2. Let us denote D1 @ D2 by D, MI @ M2 by M ,  
ml @ m2 by m, and pl @ p2 by p. Note that A'  n B2 = 
( ( A ,  B,  s)ls E A n B), so that A '  n B2 is nonempty iff 
A fl B is nonempty. Since m1 @ m2 is defined by assump- 
tion, it follows that ml(A)m2(B) > 0 for some A,  B C S, 
and hence that pl(A')p2(B2) > 0, so that p1 @ p2 is 
defined. Moreover, we have CtA,BpnB#oI ml(A)m2(B) = 
ClAl,B2~AlnB~+0J p1 (A ')p2(B2), so that the normalizing con- 
stant for ml e m2 is the same as that for p1 @ p2; let us 
call them both c. 

Just as in the proof of theorem 3.3, we can show that for 
any formula q, we have A' n B2 c qM iff A n B c c p D .  
Thus we have 

Let D1 and D2 be DS structures where D, 

Thus D and M are equivalent, as desired. 

We have shown that given DS structures D1 and D2, 
there exist probability structures Ml and M2 such that D1 
is equivalent to M 1 ,  D2 is equivalent to M2, and D1 @ 0 2  
is equivalent to  MI @ M2. The reader might wonder if it is 
the case that for any probability structures MI and M2 such 
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that Di is equivalent to Mi, i = 1, 2, we have that D1 e Dz 
is equivalent to MI e M2. This is not the case, as the fol- 
lowing example shows. Let D1 = 0 2  = Do, where Do is 
the DS structure defined in the previous section. The mass 
function rn associated with both D1 and Dz has m ( f p ) )  = 
1/2, rn((p, l p ) )  = 1/2, and m ( A )  = 0 for all other 
subsetsA G Ip, i p ) .  Now, letMl = M2 = ( (a ,  b, c, 4, 
x, p9 x ’ ) ,  where x(a)(p)  = x(b ) (p )  = x(c )@)  = true, 
a(d ) (p )  = false, the sets (a),  (b) ,  and (c, d) form a basis 
for X, and p((a)) = p((bJ) = 1/4, p(c, d) = 112. It is easy 
to see that Mi is equivalent to Di, for i = 1, 2. However, 
it is also easy to check that p @ p assigns probability 11’6 
to each of [a)  and (b) ,  and probability 213 to (c, d), while 
m @ m = m. It now follows that Dl e D2 is not 
equivalent to MI e M2. 

While theorem 4.1 shows that there is a sense in which 
we can define a rule of combination on probability spaces 
that simulates Dempster’s rule of combination, it does not 
provide an explanation of the rule of combination in terms 
of inner measures. (This is in contrast to our other results 
that show how we can view belief functions in terms of inner 
measures.) There is good reason for this: we feel that 
Dempster’s rule of combination does not fit into the frame- 
work of viewing belief functions in terms of inner measures. 
A discussion of this point is beyond the scope of this paper; 
for more details, the reader is encouraged to consult Fagin 
and Halpern (1990) and Halpern and Fagin (1990). 

5. Reasoning about belief and probability 
We are often interested in the inferences we can make 

about probabilities or beliefs, given some information. In 
order to do this, we need a language for doing such reason- 
ing. In Fagin et al. (1990), two languages are introduced for 
reasoning about probability, and results regarding complete 
axiomatizations and decision procedures are proved. We 
review these results here, and show that by combining them 
with corollary 3.2 and theorem 3.3, we obtain analogous 
results for reasoning about belief functions. We consider 
the simpler language first. A term in this language is an 
expression of the form alw(p,) + ... +akw(pk) ,  where 
al ,  ..., ak are integers and pl, ..., p k  are propositional for- 
mulas. A basic weight formula is one of the form t 2 b, 
where t is a term and b is an integer. A weight formula is 
a Boolean combination of basic weight formulas. We some- 
times use obvious abbreviations, such as w(p) ? w($) for 
w(p) - w($) 10, w(p) 5 b for -w(p) z -b, w(p) > b 
for y ( w ( p )  I b) ,  and w(p) = b for (w(p) 2 6 )  A (w(p) 
I b) .  A formula such as w(p) z 1/3 can be viewed as an 
abbreviation for 3w((p) 1 1; we can always allow rational 
numbers in our formulas as abbreviations for the formula 
that would be obtained by clearing the denominator. 

We give semantics to the formulas in our language with 
respect to all the structures we have been considering. Let 
K be either a Nilsson structure, a probability structure, or 
a DS structure, and let f be a weight formula. We now define 
what it means for K to satisfy f, written K I= f. For a basic 
weight formula, 

K I= alw(cpl) + ... + akw(cpk) 2 b 

iff a l W ~ ( p I )  + ... + akWK(pk) ? b 

We then extend I= in the obvious way to conjunctions and 

negations. The interpretation of w(p) is either “the proba- 
bility of p” (if we are dealing with Nilsson structures or 
measurable probability structures), “the inner measure of 
p” (if we are dealing with general probability structures), 
or “the belief in p” (if we are dealing with DS structures). 
Consider, for example, the formula w(pl) 2 2w((pz). In a 
Nilsson structure N, we would interpret this as “pl is twice 
as probable as (02.” In a DS structure D, the formula would 
look structurally identical, but the interpretation would be 
that our belief in cpI is twice as great as our belief in cp2. 
Notice how allowing linear combinations of weights adds 
to  the expressive power of our language. 

Let X be a class of structures (in the cases of interest to 
us, X is either probability structures, measurable probability 
structures, Nilsson structures, or DS structures). As usual, 
we define a weight formula f to be satisfiable with respect 
to X if K I= f for some K E X. Similarly, f is valid with 
respect to X if K I= f for all K E X. 

We now turn our attention to complete axiomatizations. 
Consider the following axiom system AX,,, for reasoning 
about measurable probability structures, taken from Fagin 
et al. (1990). The system divides nicely into three parts, 
which deal respectively with propositional reasoning, 
reasoning about linear inequalities, and reasoning about 
probabilities. 

Propositional reasoning: 
Taut. All instances of propositional tautologies’ 
MP. From f and f j g infer g (modus ponens) 

Reasoning about inequalities: 
I f .  (alw((pl) + ... + akw(pk) 2 b )  * 

12. (alw(cp~) + ... + akw(pk) 2 b )  =) 

( ~ I ~ ( P I )  + ... + a k ~ ( ( ~ k )  + O W ( ( P ~ + I )  2 b )  
(adding and deleting 0 terms) 

(a,,whj.,) + ... + ajkw(v,k) 1 b) ,  if 
j l ,  ..., jk is a permutation of 1, ..., k 

(permutation) 
13. (a lw(p l )  + ... + akw(pk) 1 b )  A 

( a { w ( p , )  + ... + ULW((pk)  1 b ’ )  
j (al + a/)w(pl) + ... + (ak + aL)w(pk) 2 ( b  + 6 ’ )  

(ca,w(pl) + ... + cakw(pk) 2 cb) if c > 0 

(addition of coefficients) 
14. (al~(pp,) + ... + ~ k ~ ( r p k )  2 b )  

(multiplication and division by nonzero coefficients) 
15. ( t  1 b )  V ( t  5 b )  if t is a term (dichotomy) 
16. ( t  2 b )  * ( t  > b ’ )  if t is a term and b > 6’ 

(monotonicity) 
Reasoning about probabilities 
W 1. w(p) ? 0 (nonnegativity) 
W2. w(true) = 1 (the probability of the event true is 1) 
W3. w((p A $) + w((p A i$) = w(q)  (additivity) 
W4. w(p) = w($) if (p * $ is a propositional tautology 

(distributivity)8 

’We remark we could replace Taut by a simpler collection of 
axioms that characterize propositional tautologies (see, for exam- 
ple, Mendelson (1964)). We have not done so here because we want 
to focus on the other axioms. 

*Just as in the case of Taut, we could make use of a complete 
axiomatization for propositional equivalences to create a collection 
of elementary axioms that could replace W4. Again, we have not 
done so here because we want to focus on the other axioms. 
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Note that axioms W1, W2, and W3 correspond precisely 
to P1, P2, and P3”, the axioms that characterize probability 
measures in finite spaces. We could replace axioms 11-16 
by a single axiom that represents all instances of valid for- 
mulas about Boolean combinations of linear inequalities, 
analogously to what we did with the axioms Taut and W4. 
Axioms 11-16, along with the axiom w(cp) 1 w(cp), the 
axiom Taut, and the rule MP, were shown in Fagin et a/ .  
(1990) to be a sound and complete axiomatization for 
Boolean combinations of linear inequalities (where w(cpj) is 
treated like a variable xi ) .  The axiom w(p) L w ( p )  is 
redundant here, because of the axiom W4. 

As is shown in Fagin et al. (1990), AX,,,, characterizes 
the valid formulas for measurable probability structures. 
Every formula that is valid with respect to measurable prob- 
ability structures is provable from AXMEAS, and only these 
formulas are provable. 

Theorem 5.1 (Fagin et al. 1990) 
AXME,, is a sound and complete axiomatization for 

weight formulas with respect to measurable probability 
structures. 

This result, together with theorem 2.2, immediately gives 
us 

Corollary 5.2 
AX,,,, is a sound and complete axiomatization for 

weight formulas with respect to Nilsson structures. 

Of course, AX,,,, is not sound with respect to arbitrary 
probability structures, where w(cp) is interpreted as the inner 
measure of c p M .  In particular, axiom W3 no longer holds: 
inner measures are not finitely additive. Let AX be obtained 
from AX,, by replacing W3 by the following two axioms, 
which are obtained from conditions B1 and B3 for belief 
functions in an obvious way: 

W5. w(false) = 0 
W6. w(cp1 v 
(We remark that w(false) = 0 no longer follows from the 
other axioms as it did in the system AX,,, so we explicitly 
include it in AX.) 

v cpd 1 ~ , ~ , l , . . . , ~ , , , ~ ~ ( - l ) ’ ~ + l  W i € I c p i )  

Theorem 5.3 

formulas with respect to  probability structures. 

get 

Corollary 5.4 
AX is a sound and complete axiomatization for weight 

formulas with respect to DS structures. 
Thus, using AX, we can derive all consequences of a col- 

lection of beliefs. This result holds even if we allow a, the 
set of primitive propositions, to be infinite. Given a weight 
formula cp with primitive propositions in a, let a’ consist 
of the primitive propositions that actually appear in cp. 
Clearly, 9‘  is finite. Since for every DS structure D there 
is a probability structure that is equivalent to D with respect 
to all formulas whose primitive propositions are contained 
in 9 ’ , it follows that cp is valid with respect to DS structures 
iff cp is valid with respect to probability structures. 

AX is a sound and complete axiomatization for weight 

Applying corollary 3.2 and theorem 3.3, we immediately 

Combining the preceding results with results of Fagin 
et al. (1990), we can also characterize the complexity of 
reasoning about probability and belief. 

Theorem 5.5 
The complexity of deciding whether a weight formula is 

satisfiable with respect to probability structures (respectively, 
measurable probability structures, Nilsson structures, DS 
structures) is NP-complete. 

(This result, in the case of Nilsson structures, was obtained 
independently in Georgakopoulos et al. (1988).) Note that 
theorem 5.5 says that reasoning about probability and belief 
is, in a precise sense, exactly as difficult as propositional 
reasoning. This is the best we could expect, since it is easy 
to  see that reasoning about probability and belief is at least 
as hard as propositional reasoning (the propositional 
formula cp is satisfiable iff the weight formula w(cp) > 0 is 
satisfiable). 

The key to obtaining these results is to reduce the problem 
of reasoning about weight formulas to a linear programming 
problem, and then to apply well-known techniques from 
linear programming. The details can all be found in Fagin 
et al. (1990). We can use linear programming, exactly 
because weight formulas allow only linear combinations of 
terms such as w(cp). However, this restriction prevents us 
from doing general reasoning about conditional probabilities. 

To see why, suppose we interpret the formula w(pllp2)  
L 112 to say “the probability of p1 givenp2 is at least 1/2” 
We can express this in the language described above by 
rewriting w(pl [p2)  as w ( p l  A p2) /w(p2)  and then clearing 
the denominator to  get w ( p l  A p2)  - 2w(p2) 1 0. How- 
ever, we cannot express more complicated expressions such 
as w(p21pl) + w(pIIp2) 1 1/2 in our language, because 
clearing the denominator in this case leaves us with a non- 
linear combination of terms. We can deal with conditional 
probabilities by extending the language to allow products 
of terms, such as 2w(p1 A p2)w(p2) + 2w(p1 A p2)  w ( p l )  
1 w ( p l ) w ( p 2 )  (this is what we get when we clear the 
denominator in the conditional expression above). In Fagin 
et al. (1990), the question of decision procedures and com- 
plete axiomatizations for this extended language is 
addressed. We briefly review the results here and discuss how 
they relate to reasoning about beliefs. 

Although we can no longer reduce the question of the 
validity of a formula to a linear programming problem as 
we did before, it turns out that we can reduce it to  the 
validity of a quantifier-free formula in the theory of real 
closed fields (Shoenfield 1967). By a recent result of Canny 
(1988), it follows that we can get a polynomial space deci- 
sion procedure for validity (and satisfiability) with respect 
to all classes of structures in which we are interested. We 
also consider the effect of further extending our language 
to allow quantification over probabilities (thus allowing such 
formulas as 3y(w(cp) 1 y ) .  We exploit the fact that the 
quantified theory of real closed fields has an elegant com- 
plete axiomatization (Tarski 1951; Shoenfield 1967). If we 
extend our language to allow quantification over probabil- 
ities, we can get a complete axiomatization with respect to 
measurable probability structures and Nilsson structures by 
combining axioms W 1-W4 and the complete axiomatization 
for real closed fields. If we replace W3 by W5 and W6, we 
get a complete axiomatization with respect to probability 
structures and DS structures. Finally, by using the results 
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of Ben-Or et a/. (1986) on the complexity of the decision 
problem for real closed fields, we can get an exponential 
space decision procedure for the validity problem in all cases. 
See Fagin et al. (1990) for further details. 

To summarize this discussion, by combining the results 
of this paper with those of Fagin et al. (1990), we are able 
to provide elegant complete axiomatizations for reasoning 
about belief and probability, as well as giving a decision pro- 
cedure for the validity problem. The key point is that reason- 
ing about belief functions is identical to reasoning about 
inner measures induced by probability measures. 

6 .  Related work 
Although we believe we are the first to propose using inner 

and outer measures as a way of dealing with uncertainty, 
there are a number of other works with similar themes. We 
briefly discuss them here. 

A number of authors have argued that we should think 
in terms of an interval in which the probability lies, rather 
than a unique numerical probability (see, for example, 
Kyburg (1961, 1968)). Good (1962), Koopman (1940a, 
1940b), and Smith (1961) try to derive reasonable properties 
for the intuitive notions of lower and upper probabilities, 
which are somehow means to capture lower and upper 
bounds on an agent’s belief in a proposition. Good observes 
that “The analogy [between lower and upper probability 
and] inner and outer measure is obvious. But the axioms 
for upper and lower probability do not all follow from the 
theory of inner and outer measure.” 

In some papers (e.g., Smith 1961; Walley’; Walley and 
Fine 1982), the phrase “lower probability” is used to denote 
the inf of a family of probability functions. That is, given 
a set 6 of probability functions defined on a a-algebra ‘X, 
the lower probability of 6 is taken to be the function f such 
that for each A E ‘X, we havef(A) = inf(p(A) : p E 6). 
The upper probability is then taken to be the corresponding 
sup. We use the phrases lower envelope and upper envelope 
to denote these notions, in order to distinguish them from 
Dempster’s definition of lower and upper probabilities 
(Dempster 1967, 1968), which we now discuss. 

Dempster starts with a tuple (S, ‘X, p,  T, r), where 
(S, ‘X, p )  is a probability space, T is another set, and 
r : S - 2 T  is a function which Dempster calls a “multi- 
valued mapping from S to T” (since r(s) is a subset of T 
for each s E S). We call such a structure a Dempster struc- 
ture. Given A E T, we define subsets A* and A *  of S as 
follows: 

A ;  = ( S  E slr(s) # 0, r(s) G A )  
A = ( S  E slr(s) n A z 01 

It is easy to check that T* and T* both equal (s E S II‘(s) 
f 01, and so T. = T*. Provided T* E ‘X and p( T*) f 0, 
Dempster defines the lower and upper probabilities of A for 
all sets A such that A* and A * are in ‘X, written P.(A)  and 
P’(A ) respectively, as follows: 

P;(A)  = Y(Ar)/AT:) 
p ( A )  = P(A ) / A T )  

’Walley, P. 1981. Coherent lower (and upper) probabilities. 
Unpublished manuscript, Department of Statistics, University of 
Warwick, Coventry, United Kingdom. 

(Notice that dividing by p( T‘) has the effect of normalizing 
so that P.( T )  = P*( T )  = 1.) 

It is well known that there is a straightforward connec- 
tion between Dempster’s lower and upper probabilities and 
belief and plausibility functions. The connection is sum- 
marized in the following two propositions. The first essen- 
tially says that every lower probability is a belief function. 
Since it is easy to check that P * ( A )  = 1 - P*(A) ,  it fol- 
lows that the upper probability is the corresponding plausi- 
bility function. 

Proposition 6. I 
Let (S, ‘X, p, T, r) be a Dempster structure such that 

A* E 3c for all A E T. Then the lower probability P. is 
a belief function on T. 

Pro0 f 
It is easy to see that P* satisfies B1 and B2: P40) = 0 

and Pa( T )  = 1. To see that it satisfies B3, first observe 
that ( C  n D). = C. n D* and (C U D)* 2 C* U D* for 
all C, D E T. Using these observations and the standard 
inclusion-exclusion rule for probabilities, we get 

* 

P*(Aj U ... U A , )  

= p((A1 U ... U A,)*)/p( T*) 

L ( (A*)*  u ... u (A,)*)/p( T*) 

Thus P1 satisfies B3, and so is a belief function. 

We can get a more direct proof that P. is a belief func- 
tion if T is finite. In fact, if we define the function m on 
Tby  taking m ( A )  = p((s : r(s) = A))/p( T’) for A # 0, 
then m is easily seen to be a mass function, and P* is the 
belief function corresponding to m. (We remark that if we 
assume that the set A .  is measurable for every set A, then 
by induction on the cardinality of A,  it can be shown that 
the set Is : r(s) = A ]  is also measurable.) However, our 
original proof of theorem 6.1, besides holding even when 
T is not finite, has an additional advantage. Suppose we 
extend the definition of P* to sets A such that A* ct X by 
taking P. (A)  = p.(A.). Then a slight modification of our 
proof (using ideas in the proof of proposition 3.1) shows 
that this extension still makes P* a belief function. This 
observation was first made by de FCriet (1982). 

The converse to proposition 6.1 essentially holds as well, 
and seems to be somewhat of a folk theorem in the com- 
munity. A proof can be found (using quite different notions) 
in (Nguyen 1978). We also provide a proof here, since the 
result is so straightforward. 
Proposition 6.2 

Let Be1 be a belief function on a finite space T. There 
exists a Dempster structure (S, CT, p,  T, r) with lower prob- 
ability P. such that Be1 = P.. 
Pro0 f 

Let m be the mass function corresponding to Bel, and let 
(2T, 22 , p,  T, I?) be the Dempster structure where we 

rn 

* 

T 
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define p((A)) = m ( A )  for A C T, and then extend p by 
additivity to  arbitrary subsets of 2T, and define 
r ( ( A ) )  = A and r ( B )  = 0 if B is not a singleton subset of 
2T. Then it is easy to see that Ab = ( ( B )  : B C A ] ,  from 
which it follows that 

P.(A) = p(A.) = c m ( B )  = Bel(B) rn 

As might be expected, there is also a close connection 
between Dempster’s lower probability and the notion of a 
lower envelope. In fact, it is well known that every lower 
probability (and hence, every belief function) is a lower 
envelope. We briefly sketch why here. (The observation is 
essentially due to  Dempster (1967); see Ruspini (1987) or 
Fagin and Halpern (1990) for more details.) Given a belief 
function Be1 on a finite set S with corresponding plausibility 
function P1, we say that a probability function p defined 
on 2’ is consistent with Be1 if Bel(A) I p(A) I Pl(A) for 
all A G S.” Let PBel consist of all probability functions 
consistent with Bel. It is then not hard to show that Be1 is 
the lower envelope of PBel. 
Theorem 6.3 

have 

B E A  

If Be1 is a belief function on S, then for all A C S, we 

Bel(A) = inf p(A)  

Although this result shows that every belief function is 
a lower envelope, the converse does not hold. Again, this 
remark can already be found in Dempster (1967); a counter- 
example with further discussion appears in Kyburg (1987). 
Intuitively, the fact that every belief function is a lower 
envelope means that we can view the belief function to be 
the result of collecting a group of experts, and taking the 
belief in an event E to be the minimum of the probabilities 
that the experts assign to E. However, since not every lower 
envelope is a belief function, we cannot characterize belief 
functions in this way. Further discussion on the relationship 
between lower envelopes and belief functions can also be 
found in Fagin and Halpern (1990) and Halpern and Fagin 
(1990). 

We next turn our attention to the connection between 
Dempster’s lower probabilities and inner measures. Since, 
as we have shown, lower probabilities are equivalent to belief 
functions, which in turn are essentially equivalent to inner 
measures, we know that they are closely related. In fact, the 
relationship is quite direct. Let us reconsider example 2.3, 
where we estimate the probability of the projectile landing 
in water. In this example, we constructed a probability struc- 
ture M = (S ,  X, p, T ) .  Consider the Dempster structure 
(S‘  , p ’ ,  T, I’) defined as follows. S’ consists of the sets Rf 
that form a basis for X. We define p’ ( (RI ) )  = p ( R j ) ,  and 
extend to  arbitrary subsets of S‘ by additivity. We take T 
to consist of all the propositional formulas in the language 
(where the only primitive propositions are land and water). 
Finally, r(R ’) consists of all the propositional formulas that 
are true at some point in the set R’ . It is easy to  check that 
(water). consists of all R’ such that R is completely con- 
tained in water, while (water)’ consists of all R’ such that 
R has some water in it. It immediately follows that 

‘we remark that it suffices to require Bel(A) 5 p(A) for all 
A C S. It then follows that PI(A) = 1 - Bel(z) 2 1 - p(A) 

PE6Bel 

= P(Ah 

P*(( water)) = p.( waterM) and P’(( water)) = p*( waterM). 
This close relationship between lower and upper proba- 

bilities and inner and outer measures induced by a proba- 
bility measure holds in general. Given a probability structure 
M = (S, X, p, T )  where S is finite, let (X’, p’  , T, I’) be 
the Dempster structure where (1) X’ is a basis for ‘X, (2) p ‘  
is a probability measure defined on 23c’ by taking p’ 
((A)) = p(A) for A E X‘ and then extending to all subsets 
of X’ by finite additivity, (3) Tconsists of all propositional 
formulas, and (4) for A E X ’ , we define r ( A )  to consist 
of all formulas p such that p is true at some point in A (in 
the structure M). Thus r is a multivalued mappin from 
X’ to T. It is easy to check that P.((p)) = p.(p ) and 
P’((p)) = p*( (pM)  for all formulas p. This shows that every 
inner measure is a lower probability, and thus corresponds 
to proposition 3.1 (or, more accurately, the proof of prop- 
osition 3.1 in the case of finite sample spaces given after 
the proof of proposition 3.5). It also follows from our results 
that every lower probability is equivalent to an inner mea- 
sure (when viewed as a function on formulas, rather than 
sets); the proof is an analogue to that of theorem 3.3. 

Ruspini (1 987) also considers giving semantics to proba- 
bility formulas by using possible worlds, but he includes 
epistemic notions in the picture. Briefly, his approach can 
be described as follows (where we have taken the liberty of 
converting some of this notation to ours, to make the ideas 
easier to compare). Fix a set ( p , ,  ..., p n )  of primitive prop- 
ositions. Instead of considering just propositional formulas, 
Ruspini allows epistemic formulas; be obtains his language 
by closing off under the propositional connectives A, V, * , 
and 1, as well as the epistemic operator K. Thus, a typical 
formula in his language would be K ( p ,  * K ( p z  A p3)). 
(A formula such as Kp should be read “the agent knows 
(p. ”) Rather than considering arbitrary sample spaces as we 
have done here, where at each point in the sample space 
some subset of primitive propositions is true, Ruspini con- 
siders one fixed sample space S (which he calls a sentence 
space) whose points consist of all the possible truth assign- 
ments to these formulas consistent with the axioms of the 
modal logic S5. (See, for example, Halpern and Moses 
(1992) for an introduction to  S5. We remark that it can be 
shown that there are less than 2”22“ consistent truth assign- 
ments, so that S is finite.) We can define an equivalence rela- 
tion - on S by taking s - t if s and t agree on the truth 
values of all formulas of the form K p .  The equivalence 
classes form a basis for a a-algebra of measurable subsets 
of S. Let X be this a-algebra. For any formula p, let ps 
consist of all the truth assignments in S that make p true. 
It is easy to  check that (Kp)’, the set of truth assignments 
that make Kp true, is the union of equivalence classes, and 
hence is measurable. Let p be any probability measure 
defined on X. Given p, we can consider the probability struc- 
ture (S, X, p, T), where we take ~ ( s ) ( p )  = s ( p ) .  (Since s 
is a truth assignment, this is well defined.) The axioms of 
S5 guarantees us that (Kp)’ is the largest measurable subset 
contained in p M ;  thus p.(p’) = p((Kp)’). 

Ruspini then considers the DS structure (At, Bel, p ’ ) ,  
where p’ is defined in the obvious way on the atoms in At, 
and Bel(pD) = p((Kp) ’) (= pb(pM)). Ruspini shows that 

8 

”Ruspini actually defines the belief function directly on for- 
mulas; i.e., he defines Bel(cp). In our notation, what he is doing 
is defining a weight function W,. 
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Be1 defined in this way is indeed a belief function. (Since 
Bel(cpD) = p.(cpM), the result follows using exactly the same 
techniques as those in the proof of proposition 3.1 .) Thus, 
Ruspini shows a close connection between probabilities, 
inner measures, and belief functions in the particular struc- 
tures that he considers. He does not show a general relation- 
ship between inner measures and belief functions; in par- 
ticular, he does not show that DS structures are equivalent 
to probability structures, as we do in theorem 3.3. Neverthe- 
less, Ruspini’s viewpoint is very similar in spirit to ours. He 
states and proves theorem 2.1, and stresses the idea that the 
inner and outer measures (and hence the belief and plausibil- 
ity functions) can be viewed as the best approximation to 
the “true” probability, given our lack of information. 
Ruspini also considers ways of combining two probability 
structures defined on sentence spaces and shows that he can 
capture Dempster’s rule of combination in this way. Although 
his results are not the same as theorem 4.1, again, they are 
similar in spirit. 

We have characterized belief functions as being essentially 
inner measures induced by probability measures. Another 
characterization of belief functions in terms of probability 
theory is discussed in Shafer (1979). He shows that it fol- 
lows directly from the integral representation of Choquet 
(1953) that under natural assumptions, every belief function 
is of the form p o r, where p is a probability measure and 
r is an n-homomorphism (that is, r maps the empty set onto 
the empty set and the whole space onto the whole space, 
and r(A f l  B) = r ( A )  f7 r (B)) .  Moreover, every function 
of the form p o r is a belief function. Thus, belief functions 
can be characterized as the result of composing probability 
measures and n-homomorphisms. 

Finally, Pearl (1 988) informally characterizes belief func- 
tions in terms of “probability of provability.” Although the 
details are not completely spelled out, it appears that this 
characterization is equivalent to  that of proposition 3.5, 
which shows that a belief function can be characterized in 
terms of a mass function; the mass of a formula can be 
associated with its probability of provability. We can slightly 
reformulate Pearl’s ideas as follows: we are given a collec- 
tion of theories (sets of formulas) T,,  ..., T,, each with a 
probability, such that the probabilities sum to 1. The belief 
in a formula cp is the sum of the probabilities of the theories 
from which (p follows as a logical consequence. Note that 
both a formula and its negation might have belief 0, since 
neither might follow from any of the theories. This approach 
can be shown to be closely related to that of Ruspini (1987), 
and, just as Ruspini’s, can be put into our framework as 
well. 

7. Conclusions 
We have introduced a new way of dealing with uncer- 

tainty, where nonmeasurability of certain events turns out 
to be a crucial feature, rather than a mathematical nuisance. 
This approach seems to correspond to  our intuitions in a 
natural way in many examples, and gets around some of 
the objections to the Bayesian approach, while still retaining 
many of the attractive features of using probability theory. 
Surprisingly, our approach helps point out a tight connection 
between the Dempster-Shafer approach and classical prob- 
ability theory. In particular, we are able to characterize belief 
functions as being essentially inner measures induced by 
probability measures. We hope that this characterization will 

give added insight into belief functions, and lead to better 
tools for reasoning about uncertainty. It has already enabled 
us to provide a complete axiomatization and decision pro- 
cedure for reasoning about belief functions. More recently, 
it has led us to define new approaches to updating belief 
functions, different from those defined using Dempster’s 
rule of combination (see Fagin and Halpern (1990) for 
details). The idea is to first consider what it means to take 
a conditional probability with respect to a nonmeasurable 
set, by defining notions of inner and outer conditional prob- 
abilities and then proving a result analogous to theorem 2.1. 
Given the tight connection between inner measures and belief 
functions described here, this quickly leads us to notions 
of conditional belief and conditional plausibility. Our defini- 
tions seem to avoid many of the problems that arise when 
using the more standard definition (see, for example, 
Aitchison 1968; Black 1987; Diaconis 1978; Diaconis and 
Zabell 1986; Hunter 1987; Lemmer 1986; Pearl 1989). These 
results are reported in Fagin and Halpern (1990). 

While our approach seems natural, and works well in a 
number of examples we have considered, we do  not feel it 
is necessarily the right approach to take in all cases. More 
experience is required with real-world examples in order to  
understand when it is appropriate. We feel that our ideas 
and approach will also lead to a deeper understanding of 
when belief functions can be used. We report some prelim- 
inary results along these lines in Halpern and Fagin (1990). 
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