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in main storage. On the other hand, if cold-start miss 
ratios are measured as a function of capacity and 
measurement length, then they are useful in studying 
systems in which operation of a program is periodically 
interrupted by task switches. It is shown how to obtain, 
under simple assumptions, the cache miss ratio for 
multiprogramming from cold-start miss ratio values and 
how to obtain approximate cold-start miss ratios from 
warm-start miss ratios. 
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I. Introduction 

In evaluation of performance of a paged, two-level 
storage hierarchy, the fraction of references which are to 
pages not in first-level storage is a basic statistic. Such 
references are called misses or page faults and the fraction 
of references that are misses is called the miss ratio. In 
practice, values of the miss ratio are obtained by simu- 
lation of operation of the storage hierarchy in response 
to a particular reference string (typically the sequence of 
page addresses referenced by a selected program). The 
values obtained depend on the storage management 
policy, the choice of the reference string, the capacity (in 
pages) of the first level of storage, the contents of the 
first level at the start of the simulation, and the length of 
the reference string. For simplicity, we will only consider 
the storage management policy that brings a page into 
the first level when it is requested (not before) and 
replaces the least recently referenced page (this is also 
called LRU or "least recently used" replacement). 

Rather than choose one reference string, the common 
practice is to analyze a number of strings obtained from 
various "typical" programs. This is done for each of a 
number of capacities. 

The dependence of miss ratio on storage management 
policy, reference string, and capacity is obvious. On the 
other hand, the dependence on initial conditions and on 
the length of the reference string is frequently ignored in 
the literature. The usual procedure is to start with first 
level storage initially empty and to process either the 
entire reference string of a program's execution or a 
"long" section of such a string. There is an initial period 
during which the first level fills. The number of  refer- 
ences required to fill the first level increases rapidly as 
its capacity increases. Nevertheless, even for large capa- 
cities, it is often assumed that miss ratio measurements 
over "long" reference strings with an initially empty 
first-level store are representative of miss ratios for op- 
eration when the program maintains a constant number 
of pages in the first level. We will show that incorrect 
application of this assumption can lead to incorrect 
interpretations of data and thus to errors in modeling of 
computer system performance. For example, the widely 
publicized "S-shape" [1, 3, 12] of plots of  the reciprocal 
of miss ratio versus capacity can be explained by the fact 
that for large capacities, most of the page faults are 
incurred while filling the first level. For similar reasons, 
an understanding of the effect of  page size on miss ratio 
is obscured by failure to consider the importance of  
initial conditions. 

In order to clarify the situation, we introduce termi- 
nology and notation that explicitly give information on 
initial conditions and on the length of the reference 
string used in the measurement. The cold-start miss ratio 
(to the first-level store) with capacity CAP measured for 
a string of length T, denoted COLD(CAP, T), is the LRU 
miss ratio starting with an initially empty first-level store. 
(If the measurement starts at time t with an initially 
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empty first-level store, then we say that the miss ratio is 
measured from a coM start at time t.) The warm-start 
miss ratio (to the first-level store) with capacity CAP 
measured over T references, denoted WARM(CAP, T), 
is the LRU miss ratio starting with a filled first-level 
store. The initial contents of the first level and LRU 
stack positions of  the stored pages are obtained from the 
portion of  the reference string prior to the start of  
measurement. An important difference between these 
miss ratios is that while WARM(CAP, T) can be zero, 
COLD(CAP, T) includes the effect of  initial misses and 
so is positive for all finite T. For many values of 
(CAP, T), these miss ratios are nearly equal. In particu- 
lar, it is easy to see that they differ by no more than 
CAP/T if both measurements start from the same point 
of  the string. However, if CAP/T is of  the same order of  
magnitude as the miss ratio, then the distinction between 
the two becomes important. 

In the following sections we argue that warm-start 
miss ratios should be measured if behavior of  a program 
running uninterrupted for indefinitely long periods of 
time is being studied. 

On the other hand, under some reasonable assump- 
tions, cold-start miss ratios of  a program obtained for 
moderate values of  T (e.g. 102-105) can be used to 
compute that program's miss ratio under multiprogram- 
ming (when the effect of  task-switching must be consid- 
ered). Thus cold-start miss ratios are useful in studying 
certain aspects of  multiprogramming performance. 

If  a long reference string is available, then a reason- 
able procedure for obtaining cold-start miss ratio values 
is to determine for each pair (CAP, T) an average value 
of  COLD(CAP, T). To obtain this value we compute the 
number of  misses to an initially empty first-level store of  
size CAP, for each substring of  length T, and then we 
average the results. A practical procedure for carrying 
out this computation is described in [8]. If  CAP is greater 
than the number of  distinct pages in every substring of  
length T, then this procedure is equivalent to finding 
average working-set size (i.e. the average number of  
distinct references in a substring of  T references). Figure 
1 shows average values of  COLD(CAP, T) measured for 
two values of CAP and several values of  T. The mea- 
surement was carried out on a string of  references to 32- 
byte pages (a typical page size for a cache) generated by 
an astronomical orbit calculation program. 

If  a reference string is available, then one can obtain 
estimates of COLD( CA P, T) for specific ( CA P, T ) values 
by direct measurement. However, there is a considerable 
body of  existing miss ratio data for various values of  
CAP obtained using a single "large" value of  T. We will 
give a method for obtaining approximate values of  
COLD( CA P, T) for various values of  T from such data. 

2. Shape of the Lifetime Function 

In modeling of  computer system behavior, the usual 
assumption is that the reference string is a realization of  
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a stationary stochastic process (we will formally define 
stationarity in Section 4). More specifically, there is a set 
of  integers called the set of page names and a sequence 
of  random variables ...R-2, R_,, Ro, R,, R2... whose values 
are page names (intuitively, the value of  R, is the name 
of  the page referenced at time t). Therefore for a partic- 
ular value of  CAP, under LRU management, there is a 
random variable W~.t(CAP) whose value is the number 
of  (warm-start) page faults generated by (R,,, R,,+, . . . . .  
R,,+t-,), where Ri generates a (warm-start) page fault (a 
_< i _< a + t - 1) iff the value of  Ri is not con- 
tained among the previous CAP distinct values of  
( . . . .  Ri-2, Ri-1 ). 

For a stationary sequence we define the (limiting) 
miss ratio to be 

M( CA P) = lim W,,.t( CA P) (2. l) 
t ~  t 

The strong law of  large numbers [5] implies existence of  
M(CAP) with probability one. A little thought shows 
that this limit does not depend on cc 

For a stationary sequence, we define the (limiting) 
lifetime to be 

t 
L(CAP) = lim . (2.2) 

, 4 .  W,,, ,(CAP) 

By existence of  M(CAP) with probability one and by 
(2.1), with probability one L(CAP) exists and L(CAP) 
= I/M(CAP). The lifetime can be thought of  as the 
average time between page faults. 

A reasonable method for estimating the value of  
L(CAP) is by measuring t/(W,,.t(CAP)) for finite t. Note 
that this estimate is the reciprocal of  a warm-start miss 
ratio. If  the first reference recorded is the value of  R1, 
then the value of  CAP must be such that the set of  values 
taken by {R1, R2 .... .  R,-,} contains at least CAP distinct 
values. It is not possible to obtain the value of  W,.t(CAP) 
otherwise, since then it depends o n  Ri for i < 1 and this 
information is not available. If  the first a - 1 references 
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of the recorded string contain fl distinct references then, Fig. 3. 
using the ath reference as a starting point, we can IO000 
compute warm-start miss ratios over the remainder of  
the string for CAP = l, 2 . . . . .  fl and thus estimate 
L(CAP) for these values, by finding the reciprocal of  the 
warm-start miss ratio. 8000  

However, a number of measurements of lifetime 
functions have been obtained by measuring 
I/COLD(CAP, K) where K is the length of the available ~ 6 0 0 0  
reference string. Using this method, Belady and Kuehner ~ m 
[l] observed that plots of the lifetime as a function of to 

to 
capacity for several programs have approximately an S- • 4 0 0 0  
shape, that is, a convex ("up") portion followed by a x 
concave ("down") portion. They comment that the flat- 
tening out of the lifetime function curve for large capac- 2000  
ities might be due to two factors: | 

(I) The effect of  initial loading misses, so that the ~ o .  o, 
lifetime function for large capacities is bounded by the i 
length of the recorded string divided by the number of 0 

0 
initial loading misses (misses caused by the first reference 
to each page). 

(2) The effect of diminishing returns due to program 
locality. Possible factor number (2) is repeated frequently Fig. 4. 
in the literature [3, 6]. Under the scenario of factor (2), 
the program has already accumulated its "working set" tO000 
somewhere near the point of  inflection [7]. Indeed, the 
lifetime function is modeled in [3] by a curve with this 
assumption built in, and values of this function are used 8 0 0 0  
as parameters of a stationary page fault process. 

In order to examine the plausibility of  the two expla- 
nations suggested above, we examined several program _o 6 0 0 0  - - -  
traces of length 1.5 X 10 6 references, with measurements 
beginning after 5 x 10 '~ references. The page size was a: 

to 
2048 bytes. We found that the lifetime function measured to 
by the warm-start method did not usually flatten out for ~ 4 0 0 0  
large capacities. Figures 2-4 show the startling difference -- 

Fig. 2. 
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between lifetime functions obtained by cold-start and 
warm-start method for three different program address 
traces. (Because of statistical uncertainties, the graphs 
were plotted only at capacities such that at least one 
hundred warm-start misses were observed.) In each case, 
the cold-start and warm-start measurements were carried 
out over identical portions of a reference string. The \ 
cold-start lifetime in each case levels off at a value equal 
to the number of references (106 ) divided by the number 
of distinct references in the measured portion of the 
string. The results indicate that for large capacities, far 
more page faults occur in filling the initially empty first- 
level store than in the remainder of the string. Thus, the 
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cold-start miss ratios do not represent behavior of  a filled 
first-level store for large capacities and factor (1) seems 
to explain the flattening. We suggest use of  warm-start 
miss ratios as estimates for the limiting lifetime function. 
Furthermore we suggest that in analyses of  systems in 
which a program maintains a constant number of  pages 
in main storage, the lifetime for the program should not 
be assumed to be S-shaped. 

3. Effect of  Page Size on Miss Ratio 

In this section we note another difference between 
cold-start and warm-start miss ratios. In [10] and [11] it 
is shown that in certain simple models of  page reference 
strings, the expected miss ratio is nearly independent of  
page size, if the size of  first-level storage (in bytes) is held 
fixed. (In these models the expected miss ratio is equal 
to the limiting miss ratio M ( C A P )  defined in the previous 
section, with probability one.) This steady-state analysis 
corresponds to using warm-start miss ratios; indeed, 
when simulations are carried out using these models, 
observed warm-start miss ratios are approximately in- 
dependent of  page size, as predicted. On the other hand, 
if cold-start miss ratios are measured for a very large 
capacity, then doubling the page size causes the cold- 
start miss ratio to be approximately halved (this effect 
appears dramatically in the miss ratio curves of  Chu and 
Opderbeck [4]). The reason is simple: if first-level storage 
is large enough to hold the entire program, then all cold- 
start page faults occur while filling the initially empty 
first-level store. If  the first level can hold the entire 
program, then there are approximately half as many of  
these initial loading misses when the page size is twice as 
large. 

Thus in order to understand the effect of  page size 
on miss ratio, the effect of  page size on the number of  
initial loading misses should be separated from the effect 
of  page size on the limiting miss ratio. The relative 
importance of  the two factors depends on the length of  
time the program runs. 

4. Effect of Task Interruptions on Miss Ratio 

We now discuss cases in which initial loading misses 
play a major role in determining miss ratio. Miss ratios 
are usually obtained from reference strings generated by 
a single program. In such an analysis, it is assumed that 
once CA P distinct pages have been referenced, from then 
on first-level storage always contains the C A P  pages that 
have been referenced most recently. In multiprogram- 
ming systems, however, task switches often interrupt the 
execution of  a particular program. Before execution of  
the program resumes, some or all of  its pages in first- 
level storage may be replaced by pages of  other tasks. 

One specific case in which this occurs is in storage 
hierarchies .using a cache (high-speed first-level store). 
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(For a description and bibliography see [16].) The unit 
of  transfer between cache and main storage is called a 
line. During execution, the lines referenced by a program 
enter the cache, pushing out lines of  other tasks. When 
one of  these other tasks resumes execution, some or all 
of  its lines have been displaced, so its miss ratio is 
generally higher than when running uninterrupted. 
(Compare columns 5 and 6 of  Table I, which contain 
some empirical results. These results were obtained from 
the string of  references generated by an astronomical 
calculation program, ORBIT, and from a PL/ I  compiler, 
PLCOMP. In both cases the reference string consisted of  
5 × 10 '~ references to 32-byte lines.) 

A similar phenomenon can occur under certain man- 
agement policies for main storage. If  a task is considered 
to be currently inactive (e.g. no human response to an 
interactive program has occurred for a period of  time), 
then the pages associated with the task are replaced by 
pages requested by other tasks. Later, when the task 
becomes active again, its pages are brought into main 
storage on demand. As in the cache case, the loss of  
pages during an inactivity period causes the miss ratio to 
increase over the value when run without interruption. 

We will discuss the cache case in some detail. We will 
assume throughout that all cache lines belonging to a 
program are pushed out of  the cache between that pro- 
gram's execution intervals. In many systems this is nearly 
always true. Otherwise, this can be considered a "worst 
case" assumption. 

We will describe a rather general stochastic model 
for the reference sequence and task switch process. In 
this context, we consider the cold-start miss ratio to be a 
random variable. We show that the long-run cache miss 
ratio for a program under task switching can be ex- 
pressed as a weighted average of  expected cold-start miss 
ratios for that program's uninterrupted reference string. 
The weights are determined by the probability distribu- 
tion of  lengths of  execution intervals. When the latter 
distribution is not known, we show that the assumption 
that all execution intervals are of  equal length yields the 
maximum cache miss ratio for a given task switch rate. 

We begin by defining precisely our notion of  station- 
arity. A sequence of  random variables ...H-2, H-l ,  H0, 
H~, //2 each having as range the set G = {gj, g2 . . . .  } is 
said to be stationary if  for every two sets of  a integers 
{il,/2 . . . . .  i,} and { f i , j2  . . . . .  j,,) and for every integer fl: 

Pr (Hi, = gi, . . . . .  Hi,, = g~o} 

= Pr (Hi,+B = g j  . . . . . .  Hi,,+B = gi,,}. 

Taking a = 1, for example, we see that E[HI] is the same 
for all 1. 

We assume that the reference string is a realization 
of  (Ri), a stationary sequence. Let C A P  be the number 
of  cache lines available to the task. In this section, we 
will use C O L D (  CA P , T )  to denote the expected cold-start 
miss ratio, i.e., the expected value of the random variable 
equal to I / T  times the number of  misses generated by 
Rt . . . . .  R t + T - ]  with a cold start at time t. Let ~'i, i = 1, 2, 
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Table 1. Execution Interval Determined by Main Storage Page Faults; Cache Line Size = 32 Bytes. 

Col I 2 3 4 

Mean length Cache Cache miss ratio from 
of  execution capacity Average value of  application of  (4.3) or 

Program interval ~r (lines) CAP COLD(CAP,?') equivalently, of  (4.4) 

5 
Measured cache miss ratio 

assuming none o f  program's  
lines are present in cache 

at start of  each 
execution interwd 

6 

Measured cache miss 
ratio when program 
is run uninterrupted 

ORBIT 2910 

PLCOMP 5510 

256 0.10 0.089 0.087 0.077 
512 0.10 0.082 0.079 0.064 

1024 0.10 0.057 0.057 0.014 
256 0.050 0.042 0.045 0.033 
512 0.050 0.040 0.04 1 0.028 

1024 0.050 0.037 0.037 0.021 

... be a random variable giving the length of  the ith 
execution interval. Thus if ~'1 -- j then the first execution 
interval contains R1 . . . . .  Rj. The second interval begins 
with Rj÷~, etc. Let ~Ii(CAP), i = l, 2 . . . .  be a random 
variable giving the number of  misses to a cache of  size 
CAP in the ith execution interval, under the assumption 
that the cache contains no lines of  the task at the start of  
the interval. We assume that random variables {'ri} and 
{~li( CAP)} have finite expected values and variances and 
t h a t  ( ' r i )  and (Tli(CAP)) are stationary sequences. We 
also assume that each has autocorrelation asymptotically 
zero (that is, the correlation between ~'i and "ri+x goes to 
0 as x --~ 0% similarly for O/i).) 

We define the long-run cache miss ratio to be the limit 
(as k --* oo) of  

k k 

Z hi( CA P) /Z  vi (4.1) 
i= l  i~ l  

The assumptions imply that ('ri) and Oli(CAP)) satisfy 
the weak law of  large numbers, from which it follows 
that (4. l) converges in probability to" 

E[rli( CA P)])/E['r~] (4.2) 

Letting PT denote Pr[1-i -- T], and ~r = ~ . ~  T.Pr, the 
expected interval length, we can write (4.2) as: 

0o 

Z (E[~i(CAP)I~'i = T]PT)/~ 
T ~ I  

Finally, we assume that T. COLD(CAP, T), the ex- 
pected number of  cold-start misses in T references, is 
equal to E[yi(CAP)[~'i = T]. This means that the ex- 
pected number of  cold-start misses in an arbitrarily 
chosen substring of  length T, starting with an empty 
first-level store, is the same as the expected number in 
an execution interval of  length T. This feature of  the 
model is easily justifiable if the task switches are caused 
by time slicing or by interrupts associated with other 
tasks, since then the task switches are caused by a 
mechanism independent of  the program in execution. 
However, even if task switching is primarily caused by 
main store page faults, then the cache fault process, 
taking place on a "microscopic level" relative to main 
store references, may not depend significantly on the 
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times of  occurrence of  the main store page faults. For  
example, a program transferring control from page to 
page occasionally has a page fault. But the code executed 
on pages causing faults need not have significantly dif- 
ferent statistical properties from the code executed on 
other pages. 

Under all these assumptions, the long-run cache mass 
ratio is: 

Relation (4.3) has been tested empirically for several 
program traces where task switches were caused only by 
main store page faults and where values of  PT and 
COLD(CA P, T) were estimated from the reference string 
being tested. Assuming stationarity of  (Ri), it is not hard 
to show that the procedure of  averaging the cold-start 
miss ratios over all substrings of  length T gives an 
unbiased estimate for COLD(CAP, T). Values obtained 
from (4.3) by substituting average cold-start miss ratios 
for COLD(CAP, T) were compared with the observed 
average cache miss ratio (total misses divided by number 
of  references) obtained assuming emptying of  the cache 
at each task switch. The compared values for the strings 
tested agreed within 6 percent for values of  CAP = 256, 
512, and 1024 lines, with each line of  size 32 bytes. 
Typical results appear in columns 4 and 5 of  Table I. 

One application of  (4.3) is to yield a lower bound for 
long-run cache miss ratio under multiprogramming as 
cache capacity is increased, if we assume that the cache 
is nevertheless too small to retain any of  the task's lines 
at the start of  the task's next execution interval. This 
bound is obtained by using COLD(w,T) for 
COLD(CAP, T) in (4.3). This value COLD(~,T) is sim- 
ply l /T t imes  the expected number of  distinct cache lines 
in a substring of  length T. 

For the remainder of  this section, we will hold CAP 
fixed. Denote T. COLD(CAP, T), the expected number 
of  cold-start misses after T references, by At(T). Then 
our formula (4.3) for the long-run cache miss ratio 
becomes 
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Note that /~(T)  has been defined only for integral values 
of  T. It will be convenient to define &(T) for nonintegral 
values of  T by linear interpolation. 

Suppose that the probability distribution (Pv} of  
execution interval lengths is unknown, but that the ex- 
pected execution interval length, T, is known. Then in 
(4.4), the assumption that all intervals have length 
yields for the cache miss ratio the value of  &( ~ / 7 "  (that 
is, COLD(CAP, T), if  I" is an integer). At the conclusion 
of  this section, we will show that this value, N(T) /T ,  is 
an upper bound for (4.4). So for fixed 1", uniform interval 
lengths gives the highest cache miss ratio. If  task switches 
are caused primarily by main storage page faults, then 
&( T ) / T  may be considerably larger than (4.4). (In Table 
I, compare the estimates in column 3 for COLD- 
(CAP, fF), which are also estimates for &( 7")/I", with the 
values in column 4, which are obtained from (4.3) or 
(4.4), and note that the values in column 3 are larger 
than the corresponding values in column 4.) Measure- 
ments by Ghanem [13, 14] suggest that (PT} has approx- 
imately a hyperexponential distribution when all task 
switches are caused by page faults. If  all task switches 
are caused by page faults, then use of such a distribution 
should give more accurate cache miss ratios than those 
obtained with intervals of  equal length. We will now 
prove that under the stochastic assumptions of  this sec- 
tion, & ( T ) / I "  is greater than or equal to (4.4), that is, 
that the expected value of an entry in column 3 of  Table 
I is greater than or equal to the expected value of  the 
corresponding entry in column 4. 

THEOREM 1. ( /q(T)) /T_> (Y.~.=j PTN(T))/T. 

PROOF. It is sufficient to show that the function T 
-+ N ( T )  is concave (down) since then, by a fundamental 
property of  concavity [15, p. 70], we have [q (Y~=I PTT) 
>-- Y.~'=1 PT&(T). In fact, we need only show that for each 
integer T_> 1, 

½ ( N ( T -  1) + N ( T +  1)) < N(T) .  (4.5) 

Since /q(T)  is defined by linear interpolation for non- 
integral T, it is clear from geometric considerations, and 
not difficult to prove, that (4.5) implies concavity of  the 
function (in other words, if N is "concave at integer 
points," then it is "concave everywhere"). 

Let Ui.j be a random variable whose value is 1 if 
R~+j-1 takes a value that causes a cold-start miss with a 
cold start at time i. Otherwise the value of  U~.i is zero. 
Then 

N( T) = E[ Ui.I + Ui,2 + ... Ui,T] 

= E[U;.,] + E[U;.z] + ... + E[Ui.T] 

= a ~ + a z + . . . + a T ,  

where from each fi we define aj to be E[U,,i], the 
expected value of  U/.y. (Stationarity of  (Ri) implies that 
these expected values are the same for all i.) If  the 
(i + T - l)-th reference is a miss with a cold start at 
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time i - l, then it is a miss with a cold start at time i. 
Thus Ui-1,T+~ <-- Ui, T which implies aT+~ <-- aT. Therefore 
/V(T + 1) - A/(T) = aT+~ <-- aT = IV(T) -- [ v ( r -  1), 
from which (4.5) follows, and the proof is complete. [] 

5. Simple Recipe for Cold-Start Miss Ratios 

The previous section showed the usefulness of  cold- 
start miss ratios in evaluating the cache miss ratio under 
multiprogramming. In this section we will give a simple 
recipe for obtaining approximations to cold-start miss 
ratios COLD(CAP, T) from estimates for values of  
M(CAP), the limiting miss ratio. Thus, assume that one 
has available values MISS(I), MISS(2), MISS(3) . . . . .  
MISS(CAP) . . . . .  where MISS(CAP) is an estimate for 
the limiting LRU miss ratio with capacity CAP. For 
example, MISS(CAP) could be an observed value of  
COLD(CAP,7") or of  WARM(CAP, Tr) for some large 
value of  i". Using these values, we will obtain approxi- 
mations to COLD(CAP, T) for certain pairs (CAP, T); 
other values can be obtained by interpolation. 

Define LIFE(CAP) to be I/MISS(CAP). If 
MISS(CAP) is exactly the limiting miss ratio then 
LIFE(CAP) is the limiting lifetime, that is, the average 
time between page faults, with capacity CAP (thus 
LIFE(CAP) is then L(CAP) as defined in (2.2)). Of  
course, if MISS(CAP) is an approximation to the limit- 
ing miss ratio, then LIFE(CAP) is an approximation to 
the limiting lifetime. For each integer k, define 

k--1 

LIFE~Ap (k)= Y. LIrE(min (i, CAP}), (5.1) 
i=O 

where we adopt the convention that LIFE(O) = 1. If 
F * LI Ecap ( ko) = To, then the estimate given by our recipe 

for COLD(CAP, To) is ko/To. 
We tested our recipe on several program address 

traces of  length I" ~ 10" references. We used measured 
values of  1 / WARM( CA P, i") as values for LIFE( CA P) 
in (5.1) and found that our estimate was almost always 
within 10-15 percent of  the directly observed average 
cold-start miss ratio. In a slightly expanded version o f  
this paper [9], the authors show that in a certain precise 
sense this recipe is good in the well-known "LRU stack 
model" [2, p. 275; 17]. (In this model there are fixed 
probabilities {ri} such that the probability that the next 
reference is to the page in LRU stack position i is ri, 
independent of  past history.) It is shown in that report 
that if limiting lifetimes are used in the recipe and if the 
number of  cold-start misses in T references is reasonably 
large, then with high probability the value of  the random 
variable equal to the cold-start miss ratio for T references 
is close to the value obtained from the recipe. 

We will now give a rough intuitive explanation as to 
why our recipe is reasonable. Let To denote LIFE~Ap 
(ko). We will show that To is approximately the average 
time (number of  references), starting from an initially 
empty first-level store, until the koth page fault. (In fact, 
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we will show that in the LRU stack model, if we take for 
LIFE(CAP) the exact value of  the limiting lifetime, that 
is, 

LIFE(CAP) = 1/ • ri, (5.2) 
i>CAP 

then the value To is exactly the expected time after a cold 
start nntil the koth page fault.) Since the koth cold-start 
page fault occurs on the average at time To, a reasonable 
estimate for the cold-start miss ratio at time To is ko/To, 
which is our recipe value. 

We will now demonstrate our claim that in the LRU 
stack model, To = LIFE~ae(ko) is the expected time until 
the koth page fault. In the LRU stack model, it is easily 
verified that the time until a page is referenced which is 
distinct from the ! distinct pages most recently referenced 
has a geometric distribution with expected value 
LIFE(l). Thus LIFE(O) = 1 is the time till the first page 
fault; LIFE(I) is the expected time between the first and 
second page fault; LIFE(min {2, CAP}) (which is 
LIFE(2) if CAP _> 2, or LIFE(I) if  CAP = 1) is the 
expected time between the second and third page fault; 
and so on. Hence To, which is the sum of  ko such terms, 
is the expected time till the koth page fault. If  conversely, 
the expected number of  cold-start misses over time To 
(assuming To is an integer) were ko, then our recipe 
would exactly give the expected value COLD(CAP, To) 
of  the cold-start miss ratio in this model. However, we 
remark without proof that this need not be the case, even 
in the LRU stack model. 

Conclusions 

We have shown that knowledge of  the initial condi- 
tions and the length of  the reference string measured are 
important in properly interpreting miss ratio data. 
Among the errors that we believe have been committed 
by ignoring these factors is the assumption that an S- 
shaped lifetime function represents behavior of  a pro- 
gram that maintains a constant number of  pages in main 
storage. On the other hand, for a system in which a 
program's execution is periodically interrupted, we have 
shown the usefulness of  the two-parameter "cold-start 
miss ratio" in analyzing miss ratio performance. Further, 
we have provided a simple recipe for obtaining approx- 
imate values of  cold-start miss ratios from limiting miss 
ratios. 
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Corrigendum. Scientific Applications 

Gabor  T. Herman, Arnold Lent, and Peter H. Lutz, 
"Relaxation Methods for Image Reconstruction," 
Comm. ACM 21, 2 (February 1978), 152-158. 

Figure 1 was adapted from a paper by R. S. Ledley, 
G. DiChiro, A. J. Luessenhop, and H. L. Twigg, "Com- 
puterized Transaxial X-ray Tomography of  the Human 
Body, Science 186, 4160 (Oct. 1974), 207-212. It was 
incorrectly credited to Reference [l l] when it should 
have been credited to Reference [12], the above-men- 
tioned paper by Ledley, DiChiro, Luessenhop, and 
Twigg. 
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