
Operating R.S. Gaines
Systems Editor

Cold-Start vs. Warm-
Start Miss Ratios
Malcolm C. Easton
IBM Thomas J. Watson Research Center
Ronald Fagin
IBM San Jose Research Laboratory

In a two-level computer storage hierarchy, miss
ratio measurements are often made from a "cold start",
that is, made with the first-level store initially empty.
For large capacities the effect on the measured miss
ratio of the misses incurred while filling the first-level
store can be significant, even for long reference strings.
Use of "warm-start" rather than "cold-start" miss
ratios cast doubt on the widespread belief that the
observed "S-shape" of lifetime (reciprocal of miss ratio)
versus capacity curve indicates a property of behavior
of programs that maintain a constant number of pages
in main storage. On the other hand, if cold-start miss
ratios are measured as a function of capacity and
measurement length, then they are useful in studying
systems in which operation of a program is periodically
interrupted by task switches. It is shown how to obtain,
under simple assumptions, the cache miss ratio for
multiprogramming from cold-start miss ratio values and
how to obtain approximate cold-start miss ratios from
warm-start miss ratios.

Key Words and Phrases: miss ratio, cold start,
warm start, storage hierarchy, lifetime function,
muitiprogramming, S-shape

CR Categories: 3.70, 4.32, 9.35

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's present addresses: M.C. Easton, IBM Thomas J. Watson
Research Center, Yorktown Heights NY 10598; R. Fagin, IBM Re-
search Laboratory, 5600 Cottle Rd, San Jose CA 95193. The second
author carried out most of this research while at the IBM Thomas J.
Watson Research Center.
© 1978 ACM 0001-0782/78/1000-0866 $00.75

866

I. Introduction

In evaluation of performance of a paged, two-level
storage hierarchy, the fraction of references which are to
pages not in first-level storage is a basic statistic. Such
references are called misses or page faults and the fraction
of references that are misses is called the miss ratio. In
practice, values of the miss ratio are obtained by simu-
lation of operation of the storage hierarchy in response
to a particular reference string (typically the sequence of
page addresses referenced by a selected program). The
values obtained depend on the storage management
policy, the choice of the reference string, the capacity (in
pages) of the first level of storage, the contents of the
first level at the start of the simulation, and the length of
the reference string. For simplicity, we will only consider
the storage management policy that brings a page into
the first level when it is requested (not before) and
replaces the least recently referenced page (this is also
called LRU or "least recently used" replacement).

Rather than choose one reference string, the common
practice is to analyze a number of strings obtained from
various "typical" programs. This is done for each of a
number of capacities.

The dependence of miss ratio on storage management
policy, reference string, and capacity is obvious. On the
other hand, the dependence on initial conditions and on
the length of the reference string is frequently ignored in
the literature. The usual procedure is to start with first
level storage initially empty and to process either the
entire reference string of a program's execution or a
"long" section of such a string. There is an initial period
during which the first level fills. The number of refer-
ences required to fill the first level increases rapidly as
its capacity increases. Nevertheless, even for large capa-
cities, it is often assumed that miss ratio measurements
over "long" reference strings with an initially empty
first-level store are representative of miss ratios for op-
eration when the program maintains a constant number
of pages in the first level. We will show that incorrect
application of this assumption can lead to incorrect
interpretations of data and thus to errors in modeling of
computer system performance. For example, the widely
publicized "S-shape" [1, 3, 12] of plots of the reciprocal
of miss ratio versus capacity can be explained by the fact
that for large capacities, most of the page faults are
incurred while filling the first level. For similar reasons,
an understanding of the effect of page size on miss ratio
is obscured by failure to consider the importance of
initial conditions.

In order to clarify the situation, we introduce termi-
nology and notation that explicitly give information on
initial conditions and on the length of the reference
string used in the measurement. The cold-start miss ratio
(to the first-level store) with capacity CAP measured for
a string of length T, denoted COLD(CAP, T), is the LRU
miss ratio starting with an initially empty first-level store.
(If the measurement starts at time t with an initially

Communications October 1978
of Volume 21
the ACM Number 10

empty first-level store, then we say that the miss ratio is
measured from a coM start at time t.) The warm-start
miss ratio (to the first-level store) with capacity CAP
measured over T references, denoted WARM(CAP, T),
is the LRU miss ratio starting with a filled first-level
store. The initial contents of the first level and LRU
stack positions of the stored pages are obtained from the
portion of the reference string prior to the start of
measurement. An important difference between these
miss ratios is that while WARM(CAP, T) can be zero,
COLD(CAP, T) includes the effect of initial misses and
so is positive for all finite T. For many values of
(CAP, T), these miss ratios are nearly equal. In particu-
lar, it is easy to see that they differ by no more than
CAP/T if both measurements start from the same point
of the string. However, if CAP/T is of the same order of
magnitude as the miss ratio, then the distinction between
the two becomes important.

In the following sections we argue that warm-start
miss ratios should be measured if behavior of a program
running uninterrupted for indefinitely long periods of
time is being studied.

On the other hand, under some reasonable assump-
tions, cold-start miss ratios of a program obtained for
moderate values of T (e.g. 102-105) can be used to
compute that program's miss ratio under multiprogram-
ming (when the effect of task-switching must be consid-
ered). Thus cold-start miss ratios are useful in studying
certain aspects of multiprogramming performance.

If a long reference string is available, then a reason-
able procedure for obtaining cold-start miss ratio values
is to determine for each pair (CAP, T) an average value
of COLD(CAP, T). To obtain this value we compute the
number of misses to an initially empty first-level store of
size CAP, for each substring of length T, and then we
average the results. A practical procedure for carrying
out this computation is described in [8]. If CAP is greater
than the number of distinct pages in every substring of
length T, then this procedure is equivalent to finding
average working-set size (i.e. the average number of
distinct references in a substring of T references). Figure
1 shows average values of COLD(CAP, T) measured for
two values of CAP and several values of T. The mea-
surement was carried out on a string of references to 32-
byte pages (a typical page size for a cache) generated by
an astronomical orbit calculation program.

If a reference string is available, then one can obtain
estimates of COLD(CA P, T) for specific (CA P, T) values
by direct measurement. However, there is a considerable
body of existing miss ratio data for various values of
CAP obtained using a single "large" value of T. We will
give a method for obtaining approximate values of
COLD(CA P, T) for various values of T from such data.

2. Shape of the Lifetime Function

In modeling of computer system behavior, the usual
assumption is that the reference string is a realization of

867

Fig. I.

10°~
- ®

IO -I

oo

10-2
I0 °

, , . , , . ' , , , . , , , , ,I,,,,, , ~,,,,,, + , , , , , ,

× CAP:I28
8® o CAP:I024

®

®

®

gx
o

c

i i Hiit][i i i i i i ii i tllDII

o

o

I 0 z 1 0 3 I 0 4 IO 5 IO 6

T

a stationary stochastic process (we will formally define
stationarity in Section 4). More specifically, there is a set
of integers called the set of page names and a sequence
of random variables ...R-2, R_,, Ro, R,, R2... whose values
are page names (intuitively, the value of R, is the name
of the page referenced at time t). Therefore for a partic-
ular value of CAP, under LRU management, there is a
random variable W~.t(CAP) whose value is the number
of (warm-start) page faults generated by (R,,, R,,+,
R,,+t-,), where Ri generates a (warm-start) page fault (a
_< i _< a + t - 1) iff the value of Ri is not con-
tained among the previous CAP distinct values of
(. . . . Ri-2, Ri-1).

For a stationary sequence we define the (limiting)
miss ratio to be

M(CA P) = lim W,,.t(CA P) (2. l)
t ~ t

The strong law of large numbers [5] implies existence of
M(CAP) with probability one. A little thought shows
that this limit does not depend on cc

For a stationary sequence, we define the (limiting)
lifetime to be

t
L(CAP) = lim . (2.2)

, 4 . W,,, ,(CAP)

By existence of M(CAP) with probability one and by
(2.1), with probability one L(CAP) exists and L(CAP)
= I/M(CAP). The lifetime can be thought of as the
average time between page faults.

A reasonable method for estimating the value of
L(CAP) is by measuring t/(W,,.t(CAP)) for finite t. Note
that this estimate is the reciprocal of a warm-start miss
ratio. If the first reference recorded is the value of R1,
then the value of CAP must be such that the set of values
taken by {R1, R2 R,-,} contains at least CAP distinct
values. It is not possible to obtain the value of W,.t(CAP)
otherwise, since then it depends o n Ri for i < 1 and this
information is not available. If the first a - 1 references

Communications October 1978
of Volume 21
the ACM Number 10

of the recorded string contain fl distinct references then, Fig. 3.
using the ath reference as a starting point, we can IO000
compute warm-start miss ratios over the remainder of
the string for CAP = l, 2 fl and thus estimate
L(CAP) for these values, by finding the reciprocal of the
warm-start miss ratio. 8000

However, a number of measurements of lifetime
functions have been obtained by measuring
I/COLD(CAP, K) where K is the length of the available ~ 6 0 0 0
reference string. Using this method, Belady and Kuehner ~ m
[l] observed that plots of the lifetime as a function of to

to
capacity for several programs have approximately an S- • 4 0 0 0
shape, that is, a convex ("up") portion followed by a x
concave ("down") portion. They comment that the flat-
tening out of the lifetime function curve for large capac- 2000
ities might be due to two factors: |

(I) The effect of initial loading misses, so that the ~ o . o,
lifetime function for large capacities is bounded by the i
length of the recorded string divided by the number of 0

0
initial loading misses (misses caused by the first reference
to each page).

(2) The effect of diminishing returns due to program
locality. Possible factor number (2) is repeated frequently Fig. 4.
in the literature [3, 6]. Under the scenario of factor (2),
the program has already accumulated its "working set" tO000
somewhere near the point of inflection [7]. Indeed, the
lifetime function is modeled in [3] by a curve with this
assumption built in, and values of this function are used 8 0 0 0
as parameters of a stationary page fault process.

In order to examine the plausibility of the two expla-
nations suggested above, we examined several program _o 6 0 0 0 - - -
traces of length 1.5 X 10 6 references, with measurements
beginning after 5 x 10 '~ references. The page size was a:

to
2048 bytes. We found that the lifetime function measured to
by the warm-start method did not usually flatten out for ~ 4 0 0 0
large capacities. Figures 2-4 show the startling difference --

Fig. 2.

10000

8000

0
6 o o o

to

4000

2000

868

l

0

&••
&coo

A•&l&&& 8&-~&a •
• &A I _ O000C O000C

~°°°°°°°~ °° j

• WARM-START

&•

.&&

o COLD--START
!

ooOOOtX)

,50 IO(3 150 200 250

CAPACITY

oee.o! @*~8~

50

LA&&&A•
A

t O ,~ ~o
i r

• WARM-START

o COLD-START
P

IOO 150 200 250 300

CAPACITY

2000

••••&'

•O

6 ~

I

00oo0 ,ooooo

a
•&&

• WARM-START
i 1 4

o COLD-START

O ' - - ! 1
0 25 50 75 IO0 125 150 175

CAPACITY

between lifetime functions obtained by cold-start and
warm-start method for three different program address
traces. (Because of statistical uncertainties, the graphs
were plotted only at capacities such that at least one
hundred warm-start misses were observed.) In each case,
the cold-start and warm-start measurements were carried
out over identical portions of a reference string. The \
cold-start lifetime in each case levels off at a value equal
to the number of references (106) divided by the number
of distinct references in the measured portion of the
string. The results indicate that for large capacities, far
more page faults occur in filling the initially empty first-
level store than in the remainder of the string. Thus, the

Communicat ions October 1978
of Volume 21
the ACM Number 10

cold-start miss ratios do not represent behavior of a filled
first-level store for large capacities and factor (1) seems
to explain the flattening. We suggest use of warm-start
miss ratios as estimates for the limiting lifetime function.
Furthermore we suggest that in analyses of systems in
which a program maintains a constant number of pages
in main storage, the lifetime for the program should not
be assumed to be S-shaped.

3. Effect of Page Size on Miss Ratio

In this section we note another difference between
cold-start and warm-start miss ratios. In [10] and [11] it
is shown that in certain simple models of page reference
strings, the expected miss ratio is nearly independent of
page size, if the size of first-level storage (in bytes) is held
fixed. (In these models the expected miss ratio is equal
to the limiting miss ratio M (C A P) defined in the previous
section, with probability one.) This steady-state analysis
corresponds to using warm-start miss ratios; indeed,
when simulations are carried out using these models,
observed warm-start miss ratios are approximately in-
dependent of page size, as predicted. On the other hand,
if cold-start miss ratios are measured for a very large
capacity, then doubling the page size causes the cold-
start miss ratio to be approximately halved (this effect
appears dramatically in the miss ratio curves of Chu and
Opderbeck [4]). The reason is simple: if first-level storage
is large enough to hold the entire program, then all cold-
start page faults occur while filling the initially empty
first-level store. If the first level can hold the entire
program, then there are approximately half as many of
these initial loading misses when the page size is twice as
large.

Thus in order to understand the effect of page size
on miss ratio, the effect of page size on the number of
initial loading misses should be separated from the effect
of page size on the limiting miss ratio. The relative
importance of the two factors depends on the length of
time the program runs.

4. Effect of Task Interruptions on Miss Ratio

We now discuss cases in which initial loading misses
play a major role in determining miss ratio. Miss ratios
are usually obtained from reference strings generated by
a single program. In such an analysis, it is assumed that
once CA P distinct pages have been referenced, from then
on first-level storage always contains the C A P pages that
have been referenced most recently. In multiprogram-
ming systems, however, task switches often interrupt the
execution of a particular program. Before execution of
the program resumes, some or all of its pages in first-
level storage may be replaced by pages of other tasks.

One specific case in which this occurs is in storage
hierarchies .using a cache (high-speed first-level store).

869

(For a description and bibliography see [16].) The unit
of transfer between cache and main storage is called a
line. During execution, the lines referenced by a program
enter the cache, pushing out lines of other tasks. When
one of these other tasks resumes execution, some or all
of its lines have been displaced, so its miss ratio is
generally higher than when running uninterrupted.
(Compare columns 5 and 6 of Table I, which contain
some empirical results. These results were obtained from
the string of references generated by an astronomical
calculation program, ORBIT, and from a PL/ I compiler,
PLCOMP. In both cases the reference string consisted of
5 × 10 '~ references to 32-byte lines.)

A similar phenomenon can occur under certain man-
agement policies for main storage. If a task is considered
to be currently inactive (e.g. no human response to an
interactive program has occurred for a period of time),
then the pages associated with the task are replaced by
pages requested by other tasks. Later, when the task
becomes active again, its pages are brought into main
storage on demand. As in the cache case, the loss of
pages during an inactivity period causes the miss ratio to
increase over the value when run without interruption.

We will discuss the cache case in some detail. We will
assume throughout that all cache lines belonging to a
program are pushed out of the cache between that pro-
gram's execution intervals. In many systems this is nearly
always true. Otherwise, this can be considered a "worst
case" assumption.

We will describe a rather general stochastic model
for the reference sequence and task switch process. In
this context, we consider the cold-start miss ratio to be a
random variable. We show that the long-run cache miss
ratio for a program under task switching can be ex-
pressed as a weighted average of expected cold-start miss
ratios for that program's uninterrupted reference string.
The weights are determined by the probability distribu-
tion of lengths of execution intervals. When the latter
distribution is not known, we show that the assumption
that all execution intervals are of equal length yields the
maximum cache miss ratio for a given task switch rate.

We begin by defining precisely our notion of station-
arity. A sequence of random variables ...H-2, H-l , H0,
H~, //2 each having as range the set G = {gj, g2 } is
said to be stationary if for every two sets of a integers
{il,/2 i,} and { f i , j2 j,,) and for every integer fl:

Pr (Hi, = gi, Hi,, = g~o}

= Pr (Hi,+B = g j Hi,,+B = gi,,}.

Taking a = 1, for example, we see that E[HI] is the same
for all 1.

We assume that the reference string is a realization
of (Ri), a stationary sequence. Let C A P be the number
of cache lines available to the task. In this section, we
will use C O L D (CA P , T) to denote the expected cold-start
miss ratio, i.e., the expected value of the random variable
equal to I / T times the number of misses generated by
Rt R t + T -] with a cold start at time t. Let ~'i, i = 1, 2,

Communications October 1978
of Volume 2 i
the ACM Number 10

Table 1. Execution Interval Determined by Main Storage Page Faults; Cache Line Size = 32 Bytes.

Col I 2 3 4

Mean length Cache Cache miss ratio from
of execution capacity Average value of application of (4.3) or

Program interval ~r (lines) CAP COLD(CAP,?') equivalently, of (4.4)

5
Measured cache miss ratio

assuming none o f program's
lines are present in cache

at start of each
execution interwd

6

Measured cache miss
ratio when program
is run uninterrupted

ORBIT 2910

PLCOMP 5510

256 0.10 0.089 0.087 0.077
512 0.10 0.082 0.079 0.064

1024 0.10 0.057 0.057 0.014
256 0.050 0.042 0.045 0.033
512 0.050 0.040 0.04 1 0.028

1024 0.050 0.037 0.037 0.021

... be a random variable giving the length of the ith
execution interval. Thus if ~'1 -- j then the first execution
interval contains R1 Rj. The second interval begins
with Rj÷~, etc. Let ~Ii(CAP), i = l, 2 be a random
variable giving the number of misses to a cache of size
CAP in the ith execution interval, under the assumption
that the cache contains no lines of the task at the start of
the interval. We assume that random variables {'ri} and
{~li(CAP)} have finite expected values and variances and
t h a t (' r i) and (Tli(CAP)) are stationary sequences. We
also assume that each has autocorrelation asymptotically
zero (that is, the correlation between ~'i and "ri+x goes to
0 as x --~ 0% similarly for O/i).)

We define the long-run cache miss ratio to be the limit
(as k --* oo) of

k k

Z hi(CA P) /Z vi (4.1)
i= l i~ l

The assumptions imply that ('ri) and Oli(CAP)) satisfy
the weak law of large numbers, from which it follows
that (4. l) converges in probability to"

E[rli(CA P)])/E['r~] (4.2)

Letting PT denote Pr[1-i -- T], and ~r = ~ . ~ T.Pr, the
expected interval length, we can write (4.2) as:

0o

Z (E[~i(CAP)I~'i = T]PT)/~
T ~ I

Finally, we assume that T. COLD(CAP, T), the ex-
pected number of cold-start misses in T references, is
equal to E[yi(CAP)[~'i = T]. This means that the ex-
pected number of cold-start misses in an arbitrarily
chosen substring of length T, starting with an empty
first-level store, is the same as the expected number in
an execution interval of length T. This feature of the
model is easily justifiable if the task switches are caused
by time slicing or by interrupts associated with other
tasks, since then the task switches are caused by a
mechanism independent of the program in execution.
However, even if task switching is primarily caused by
main store page faults, then the cache fault process,
taking place on a "microscopic level" relative to main
store references, may not depend significantly on the

870

times of occurrence of the main store page faults. For
example, a program transferring control from page to
page occasionally has a page fault. But the code executed
on pages causing faults need not have significantly dif-
ferent statistical properties from the code executed on
other pages.

Under all these assumptions, the long-run cache mass
ratio is:

Relation (4.3) has been tested empirically for several
program traces where task switches were caused only by
main store page faults and where values of PT and
COLD(CA P, T) were estimated from the reference string
being tested. Assuming stationarity of (Ri), it is not hard
to show that the procedure of averaging the cold-start
miss ratios over all substrings of length T gives an
unbiased estimate for COLD(CAP, T). Values obtained
from (4.3) by substituting average cold-start miss ratios
for COLD(CAP, T) were compared with the observed
average cache miss ratio (total misses divided by number
of references) obtained assuming emptying of the cache
at each task switch. The compared values for the strings
tested agreed within 6 percent for values of CAP = 256,
512, and 1024 lines, with each line of size 32 bytes.
Typical results appear in columns 4 and 5 of Table I.

One application of (4.3) is to yield a lower bound for
long-run cache miss ratio under multiprogramming as
cache capacity is increased, if we assume that the cache
is nevertheless too small to retain any of the task's lines
at the start of the task's next execution interval. This
bound is obtained by using COLD(w,T) for
COLD(CAP, T) in (4.3). This value COLD(~,T) is sim-
ply l /T t imes the expected number of distinct cache lines
in a substring of length T.

For the remainder of this section, we will hold CAP
fixed. Denote T. COLD(CAP, T), the expected number
of cold-start misses after T references, by At(T). Then
our formula (4.3) for the long-run cache miss ratio
becomes

Communicat ions October 1978
of Volume 21
the A C M Number 10

Note that /~(T) has been defined only for integral values
of T. It will be convenient to define &(T) for nonintegral
values of T by linear interpolation.

Suppose that the probability distribution (Pv} of
execution interval lengths is unknown, but that the ex-
pected execution interval length, T, is known. Then in
(4.4), the assumption that all intervals have length
yields for the cache miss ratio the value of &(~ / 7 " (that
is, COLD(CAP, T), if I" is an integer). At the conclusion
of this section, we will show that this value, N(T) /T , is
an upper bound for (4.4). So for fixed 1", uniform interval
lengths gives the highest cache miss ratio. If task switches
are caused primarily by main storage page faults, then
&(T) / T may be considerably larger than (4.4). (In Table
I, compare the estimates in column 3 for COLD-
(CAP, fF), which are also estimates for &(7")/I", with the
values in column 4, which are obtained from (4.3) or
(4.4), and note that the values in column 3 are larger
than the corresponding values in column 4.) Measure-
ments by Ghanem [13, 14] suggest that (PT} has approx-
imately a hyperexponential distribution when all task
switches are caused by page faults. If all task switches
are caused by page faults, then use of such a distribution
should give more accurate cache miss ratios than those
obtained with intervals of equal length. We will now
prove that under the stochastic assumptions of this sec-
tion, & (T) / I " is greater than or equal to (4.4), that is,
that the expected value of an entry in column 3 of Table
I is greater than or equal to the expected value of the
corresponding entry in column 4.

THEOREM 1. (/q(T)) /T_> (Y.~.=j PTN(T))/T.

PROOF. It is sufficient to show that the function T
-+ N (T) is concave (down) since then, by a fundamental
property of concavity [15, p. 70], we have [q (Y~=I PTT)
>-- Y.~'=1 PT&(T). In fact, we need only show that for each
integer T_> 1,

½ (N (T - 1) + N (T + 1)) < N(T) . (4.5)

Since /q(T) is defined by linear interpolation for non-
integral T, it is clear from geometric considerations, and
not difficult to prove, that (4.5) implies concavity of the
function (in other words, if N is "concave at integer
points," then it is "concave everywhere").

Let Ui.j be a random variable whose value is 1 if
R~+j-1 takes a value that causes a cold-start miss with a
cold start at time i. Otherwise the value of U~.i is zero.
Then

N(T) = E[Ui.I + Ui,2 + ... Ui,T]

= E[U;.,] + E[U;.z] + ... + E[Ui.T]

= a ~ + a z + . . . + a T ,

where from each fi we define aj to be E[U,,i], the
expected value of U/.y. (Stationarity of (Ri) implies that
these expected values are the same for all i.) If the
(i + T - l)-th reference is a miss with a cold start at

871

time i - l, then it is a miss with a cold start at time i.
Thus Ui-1,T+~ <-- Ui, T which implies aT+~ <-- aT. Therefore
/V(T + 1) - A/(T) = aT+~ <-- aT = IV(T) -- [v (r - 1),
from which (4.5) follows, and the proof is complete. []

5. Simple Recipe for Cold-Start Miss Ratios

The previous section showed the usefulness of cold-
start miss ratios in evaluating the cache miss ratio under
multiprogramming. In this section we will give a simple
recipe for obtaining approximations to cold-start miss
ratios COLD(CAP, T) from estimates for values of
M(CAP), the limiting miss ratio. Thus, assume that one
has available values MISS(I), MISS(2), MISS(3)
MISS(CAP) where MISS(CAP) is an estimate for
the limiting LRU miss ratio with capacity CAP. For
example, MISS(CAP) could be an observed value of
COLD(CAP,7") or of WARM(CAP, Tr) for some large
value of i". Using these values, we will obtain approxi-
mations to COLD(CAP, T) for certain pairs (CAP, T);
other values can be obtained by interpolation.

Define LIFE(CAP) to be I/MISS(CAP). If
MISS(CAP) is exactly the limiting miss ratio then
LIFE(CAP) is the limiting lifetime, that is, the average
time between page faults, with capacity CAP (thus
LIFE(CAP) is then L(CAP) as defined in (2.2)). Of
course, if MISS(CAP) is an approximation to the limit-
ing miss ratio, then LIFE(CAP) is an approximation to
the limiting lifetime. For each integer k, define

k--1

LIFE~Ap (k)= Y. LIrE(min (i, CAP}), (5.1)
i=O

where we adopt the convention that LIFE(O) = 1. If
F * LI Ecap (ko) = To, then the estimate given by our recipe

for COLD(CAP, To) is ko/To.
We tested our recipe on several program address

traces of length I" ~ 10" references. We used measured
values of 1 / WARM(CA P, i") as values for LIFE(CA P)
in (5.1) and found that our estimate was almost always
within 10-15 percent of the directly observed average
cold-start miss ratio. In a slightly expanded version o f
this paper [9], the authors show that in a certain precise
sense this recipe is good in the well-known "LRU stack
model" [2, p. 275; 17]. (In this model there are fixed
probabilities {ri} such that the probability that the next
reference is to the page in LRU stack position i is ri,
independent of past history.) It is shown in that report
that if limiting lifetimes are used in the recipe and if the
number of cold-start misses in T references is reasonably
large, then with high probability the value of the random
variable equal to the cold-start miss ratio for T references
is close to the value obtained from the recipe.

We will now give a rough intuitive explanation as to
why our recipe is reasonable. Let To denote LIFE~Ap
(ko). We will show that To is approximately the average
time (number of references), starting from an initially
empty first-level store, until the koth page fault. (In fact,

Communications October 1978
of Volume 21
the ACM Number 10

we will show that in the LRU stack model, if we take for
LIFE(CAP) the exact value of the limiting lifetime, that
is,

LIFE(CAP) = 1/ • ri, (5.2)
i>CAP

then the value To is exactly the expected time after a cold
start nntil the koth page fault.) Since the koth cold-start
page fault occurs on the average at time To, a reasonable
estimate for the cold-start miss ratio at time To is ko/To,
which is our recipe value.

We will now demonstrate our claim that in the LRU
stack model, To = LIFE~ae(ko) is the expected time until
the koth page fault. In the LRU stack model, it is easily
verified that the time until a page is referenced which is
distinct from the ! distinct pages most recently referenced
has a geometric distribution with expected value
LIFE(l). Thus LIFE(O) = 1 is the time till the first page
fault; LIFE(I) is the expected time between the first and
second page fault; LIFE(min {2, CAP}) (which is
LIFE(2) if CAP _> 2, or LIFE(I) if CAP = 1) is the
expected time between the second and third page fault;
and so on. Hence To, which is the sum of ko such terms,
is the expected time till the koth page fault. If conversely,
the expected number of cold-start misses over time To
(assuming To is an integer) were ko, then our recipe
would exactly give the expected value COLD(CAP, To)
of the cold-start miss ratio in this model. However, we
remark without proof that this need not be the case, even
in the LRU stack model.

Conclusions

We have shown that knowledge of the initial condi-
tions and the length of the reference string measured are
important in properly interpreting miss ratio data.
Among the errors that we believe have been committed
by ignoring these factors is the assumption that an S-
shaped lifetime function represents behavior of a pro-
gram that maintains a constant number of pages in main
storage. On the other hand, for a system in which a
program's execution is periodically interrupted, we have
shown the usefulness of the two-parameter "cold-start
miss ratio" in analyzing miss ratio performance. Further,
we have provided a simple recipe for obtaining approx-
imate values of cold-start miss ratios from limiting miss
ratios.

Acknowledgments. We thank B. Ingebrand for sup-
plying instruction trace tapes and M.Z. Ghanem for
supplying an algorithm for producing a reference string
from an instruction trace. We are grateful to D. Slutz, E.
McNair, and T. Moeller for allowing us to use programs
they have developed, and to A.C. McKellar for reading
a draft of the manuscript.

Received November 1975; revised October 1976

872

References
I. Belady, L.A., and Kuehner, C.J. Dynamic space-sharing in
computer systems. Comm. ACM 12, 5(May 1969), 282-288.
2. Coffman, E.G. Jr., and Denning, P.J. Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, N.J., 1973.
3. Chamberlin, D.D., Fuller, S.H., and Liu, L.Y. An analysis of
page allocation strategies for multiprogramming systems with virtual
memory. IBM J. Res. Develop. 17 (Sept. 1973), 404-412.
4. Chu, W.W., and Opderbeck, H. Performance of replacement
algorithms with different page sizes. Computer 7, I I (Nov. 1974),
14-21.
5. Doob, J.L. Stochastic Processes. Wiley, New York, 1953.
6. Denning, P.J., and Graham, G.S. Multiprogrammed memory
management. IEEE Proc. Interactive Computer Systems, 63 (June
1975), pp. 924-939.
7. Denning, P.J., and Kahn, K.C. A study of program locality and
lifetime functions. Proc. Fifth Symp. on Operating Systems
Principles, Austin, Texas, 1975, pp. 207-216 (available from ACM,
New York).
8. Easton, M.C. Computation of cold-start miss ratios. IEEE Trans.
Comptrs. C-27, 5 (May 1978), 404-408.
9. Easton, M.C., and Fagin, R. Cold-start vs. warm-start miss ratios
and multiprogramming performance. IBM Res. Rep. RC 5715, IBM
T.J. Watson Res. Ctr., Yorktown Heights, N.Y., Nov. 1975.
10. Fagin, R. Asymptotic miss ratios over independent references. J.
Computer Syst. Sci. 14, 2 (April 1977), 222-250.
! I. Fagin, R., and Easton, M.C. The independence of miss ratio on
page size. J.ACM. 23, 1 (Jan. 1976), 128-146.
12. Ghanem, M.Z. Study of memory partitioning for
multiprogramming systems with virtual memory. IBM Z Res.
Develop. 19, 5 (Sept. 1975), 451-457.
13. Ghanem, M.Z. Experimental study on the behavior of programs.
IBM Res. Rep. RC 5460, IBM T.J. Watson Res. Ctr., Yorktown
Heights, N.Y., June 1975.
14. Ghanem, M.Z. Personal communication.
15. Hardy, G.H., Littlewood, J.E., and Polya, G. Inequalities.
Cambridge U. Press, London, 1964.
16. Kaplan, K.R., and Winder, R.O. Cache-based computer systems.
Computer 6, 3 (March 1973), 30-36.
17. Shedler, G.S., and Tung, C. Locality in page reference strings.
SlAM J. Comptng. 1, 3 (Sept. 1972), 218-241.

Corrigendum. Scientific Applications

Gabor T. Herman, Arnold Lent, and Peter H. Lutz,
"Relaxation Methods for Image Reconstruction,"
Comm. ACM 21, 2 (February 1978), 152-158.

Figure 1 was adapted from a paper by R. S. Ledley,
G. DiChiro, A. J. Luessenhop, and H. L. Twigg, "Com-
puterized Transaxial X-ray Tomography of the Human
Body, Science 186, 4160 (Oct. 1974), 207-212. It was
incorrectly credited to Reference [l l] when it should
have been credited to Reference [12], the above-men-
tioned paper by Ledley, DiChiro, Luessenhop, and
Twigg.

Communications October 1978
of Volume 21
the ACM Number 10

