
T H E T H E O R Y O F D A T A D E P E N D E N C I E S - A N O V E R V I E W 1

Ronald Fagin and Moshe Y. Vardi
IBM Research Laboratory
San Jose, California 95193

Abstract: Dependencies are certain sentences of first-order logic that are of special interest for
database theory and practice. There has been quite a bit of research in the last decade in
investigating dependencies. A selective overview of this research is presented. In particular,
the focus is on the implication problem for dependencies, and on issues related to the universal
relation model.

I. Introduction

In the relational database model, conceived by Codd in the late 60's [Col], one views the database as a
collection of relations, where each relation is a set of tuples over some domain of values. One notable feature
of this model is its being almost devoid of semantics. A tuple in a relation represents a relationship between
certain values, but from the mere syntactic definition of the relation one knows nothing about the nature of
this relationship, not even if it is a one-to-one or one-to-many relationship.

One approach to remedy this deficiency is to devise means to specify the missing semantics. These
semantic specifications are often called semantic or integrity constraints, since they specify which databases are
meaningful for the application and which are meaningless. Of particular interest are the constraints called
data dependencies, or dependencies for short.

The study of dependencies began in 1972 with the introduction by Codd [Co2] of the functional
dependencies. After the introduction, independently by Fagin and Zaniolo [Fal,Za] in 1976, of muhivalued
dependencies, the field became chaotic for a few years in which researchers introduced many new classes of
dependencies. The situation has stabilized since 1980 with the introduction, again independently by various
researchers, of embedded impticational dependencies (EIDs). Essentially, EIDs are sentences in first-order logic
stating that if some tuples, fulfilling certain equalities, exist in the database then either some other tuples must
also exist in the database or some values in the given tuples must be equal. The class of EIDs seems to
contain most previously studied classes of dependencies. (Recently, De Bra and Paredaens [DP] considered
afunctional dependencies, which are not EIDs.) We give basic definitions and historical perspective in
Section 2.

Most of the papers in dependency theory deal exclusively with various aspects of the implication problem,
i.e., the problem of deciding for a given set of dependencies ~ and a dependency z whether E logically implies
"r. The reason for the prominence of this problem is that an algorithm for testing implication of dependencies
enables us to test whether two given sets of dependencies are equivalent or whether a given set of dependen-
cies is redundant. A solution for the last two problems seems a significant step towards automated database
schema design, which some researchers see as the ultimate goal for research in dependency theory [BBG]. We
deal with the implication problem in Section 3.

An emerging application for the theory of dependencies is the universal relation model. This model aims
at achieving data independence, which was the original motivation for the relational model. In the universal
relation model the user views the data as if it is stored in one big relation. The data, however, is not available
in this form but rather in several smaller relations. It is the role of the database management system to
.

1An expanded version of this paper, which deals also with the role of dependencies in acyclic database schemes,
appears in the Proceedings of the AMS Short Course on the Mathematics of Information Processing,
Louisville, Kentucky (Jan. 1984) under the title "The theory of database dependencies - a survey".

provide the interface between ~he users' view and the actual data, and it is the role of the database designer to
specify this interface. There have been different approaches to the question of what this interface should be
1ike. We describe one approach, the weak universal relation approach, in Section 4.

A survey like ours of a rich theory necessarily has to be selective. The selection naturally reflects our
tastes and biases. A more comprehensive, though less up to date, coverage can be found in the books
[Ma, U1].

2. Definitions and historical perspective

We begin with some fundamental definitions about relations. We are given a fixed finite set U of distinct
symbols, called attributes, which are column names. From now on, whenever we speak of a set of attributes,
we mean a subset of U. Let R be a set of attributes. An R-tuple (or simply a tuple, if R is understood) is a
function with domain R. Thus, a tuple is a mapping that associates a value with each attribute in R. Note
that under this definition, the "order of the columns" does not matter. If S is a subset of R, and if t is an
R-tuple, then t[S] denotes the S-tuple obtained by restricting the mapping to S. An R-relation (or a relation
over R, or simply a relation, if R is understood), is a set of R-tuples. In database theory, we are most
interested in finite relations, which are finite sets of tuples (although it is sometimes convenient to consider
infinite relations). If I is an R-relation, and if S is a subset of R, then by I[S], the projection of I onto S, we
mean the set of all tuples t[S], where t is in I. A database is a finite collection of relations.

Conventions: Upper-case letters A,B,C from the start of the alphabet represent single attributes;
upper-case letters R,S,_. ,Z from the end of the alphabet represent sets of attributes; upper-case letters L J,...
from the middle of the alphabet represent relations; and lower-case letters r,s,t,.., from the end of the alphabet

represent tuples.

Assume that relations l l , . . . , l n are over attribute sets RI,...,R n respectively. The join of the relations
I1,...,In, which is written either IM {I1,...,In} or I 1 M ... IM In, is the set of all tuples t over the attribute set
RlO..,Rn, such that t[Ri] is in I i for each i. (Our notation exploits the fact that the join is associative and

commutative.)

Certain sentences about relations are of special practical and/or theoretical interest for relational
databases. For historical reasons, such sentences are usually called dependencies. The first dependency
introduced and studied was the functional dependency (or FD), due to Codd [Co2]. As an example, consider
the relation in Figure 2.1, with three columns: EMP (which represents employees), DEPT (which represents
departments), and MGR (which represents managers). The relation in Figure 2.1 obeys the FD
"DEPT--MGR", which is read "DEPT determines MGR". This means that whenever two tuples (that is,
rows) agree in the DEPT column, then they necessarily agree also in the MGR column. The relation in Figure
2.2 does not obey this FD, since, for example, the first and fourth tuples agree in the DEPT column but not in
the MGR column. We now give the formal definition. Let X and Y be subsets of the set U of attributes. The
FD X-~ Y is said to hold for a relation I if every pair of tuples of 1 that agree on each of the attributes in X

also agree in the attributes in Y.

The original motivation for introducing FDs (and some of the other dependencies we discuss) was to
describe database normalization. Before giving an example of normalization, we need to define the notion of a
relation scheme. A relation scheme is simply a set R of attributes. Usually, there is also an associated set ~ of
sentences about relations over R. A relation is an instance of the relation scheme if it is over R and obeys the
sentences in 2~. Thus, the sentences X can be thought of as "constraints", that every "valid instance" must
obey. Although we do not do so, we note that it is common to define a relation scheme to be a pair <R,X>~

where the constraints X are explicitly included.

We now consider an example of normalization. Assume that the attributes are {EMP,DEPT,MGR], and
that the only constraint is the FD DEPT-,-MGR. So, in every instance of this scheme, two employees in the
same department necessarily have the same manager. It might be better to store the data not in one relation,

EMP DEPT MGR

Hilbert

Pythagoras

Turing

Math

Math

Computer Science

Gauss

Gauss

yon Neumann

Figure 2. i

EMP DEPT MGR

Hilbert

Pythagoras

Turing

Cauchy

Math

Math

Computer Science

Math

Gauss

Gauss

yon Neumann

Euler

Figure 2.2

EMP DEPT

Hilbert

Pythagoras

Turing

Math

Math

Computer Science

DEPT MGR

Math

Computer Science

Gauss

yon Neumann

Figure 2.3

as in Figure 2.1, but rather in two relations, as in Figure 2.3:
departments, and one relation that relates departments to managers.
Section 4.

one relation that relates employees to
We shall come back to normalization in

It is easy to see that FDs can be represented as sentences in first-order logic {Nil]. Assume, for example,
that we are dealing with a 4 -a~ relation, where the first, second, third, and fourth columns are called,
respectively, A, B, C, and D. Then the FD A B ~ C is represented by the following sentence:

(¥abClC2dld2)((PabcldlAPabc2d2)~(c I = c2)). (2.1)

Here (¥abclc2dld2) is shorthand for VaVbVClVC2VdlYd 2, that is, each variable is universally quantified.
Unlike Nicolas, we have used individual variables rather than tuple variables. Incidentally, we think of P in
(2.1) as a relation symbol, which should not be confused with an instance (that is, a relation) I, for which (2.1)
can hold.

Let X and Y be sets of attributes (subsets of U), and let Z be U-XY (by XY, we mean XtJ Y). Thus, Z is
the set of attributes not in X or I1. As we saw by example above (where X, Y, and Z are, respectively, the
singleton sets [DEPT}, {EMP}, and {MGR}), the FD X - * Y is a sufficient condition for a "lossless
decomposition" of a relation with attributes U into two relations, with attributes X Y and XZ respectively.
This means that if I is a relation with attributes XYZ that obeys the FD X--, Y, then I can be obtained from its
projections I[XY] and I[XZ], by joining them together. Thus, there is no loss of information in replacing
relation I by the two relations 11 and 12. We note that this fact, which is known as Heath's Theorem [He], is
historically one of the first theorems of database theory.

It may be instructive to give an example of a decomposition that does lose information. Let I be the
relation in Figure 2.4, with attributes STORE, ITEM, and PRICE. Let 11 and 12 be two projections of I, onto
{STORE, ITEM} and {ITEM, PRICE}, respectively, as in Figure 2.5. These projections contain less
information than the original relation I. Thus, we see from relation I I that Macy's sells toasters; further, we
see from relation 12 that someone sells toasters for 20 dollars, and that someone sells toasters for 15 dollars.
However, there is no way to tell from relations 11 and 12 how much Macy's sells toasters for.

The next dependency to be introduced was the multivalued dependency, or MVD, which was defined,
independently by Fagin [Fal] and Zaniolo [Za]. It was introduced because of the perception that the
functional dependency provided too limited a notion of "depends on". As we shall see, multivalued
dependencies provide a necessary and sufficient condition for losstess decomposition of a relation into two of
its projections. Before we give the formal definition, we present a few examples. Consider the relation in
Figure 2.6, with attributes EMP, SALARY, and CHILD. It obeys the functional dependency
EMP-*SALARY, that is, each employee has exactly one salary. The relation does not obey the FD
EMP~CHILD, since an employee can have more than one child. However, it is clear that in some sense an
employee "determines" his set of children. Thus, the employee's set of children is "determined by" the
employee and by nothing else, just as his salary is. Indeed, as we shall see, the multivalued dependency
EMP-~-~CHILD (read "employee multidetermines child") holds for this relation. As another example,
consider the relation in Figure 2.7, with attributes EMP, CHILD, and SKILL. A tuple (e,c,s) appears in this
relation if and only if e is an employee, c is one of e's children, and s is one of e's skills. This relation obeys
no nontrivial (nontautologous) functional dependencies° However, it turns out to obey the multivalued
dependencies EMP-,-~CHILD and EMP-~*-SKILL. Intuitively, the MVD EMP-*-~CHILD means that the set
of names of the employee's children depends only on the employee, and is "orthogonal" to the information

about his skills.

We are now ready to formally define multivalued dependencies. Let I be a relation over U. As before,
let X and Y be subsets of U, and let Z be U-XY. The multivalued dependency X-~-~ Y holds for relation I if for
each pair r, s of tuples of 1 for which r[X] = s[X], there is a tuple t in I where (1) t[X] = r[X] = s[X], (2) t[Y]
= r[Y], and (3) t[Z] = s[Z]. Of course, if this multivalued dependency holds for I, then it follows by
symmetry that there is also a tuple u in t where (I) u[X] = r[X] = siX], (2) u[Y] = s[Y], and (3) u[Z] = r[Z].

Multivalued dependencies obey a number of useful properties. For example, if U is the disjoint union of
X, Y, Z, and W, and if I is a relation over U that obeys the MVDs X-*-~ Y and Y-,-*Z, then it follows that I

STORE I T E M PRICE

Macy's

Sears

Macy's

Toaster

Toaster

Pencil

$20.00

$15.00

$ 0.10

Figure 2.4

STORE ITEM

Macy's

Sears

Macy's

Toaster

Toaster

Pencil

Figure 2.5

ITEM PRICE

Toaster $20.00

Toaster $15.00

Pencil $ 0.10

EMP SALARY CHILD

Hilbert

Pythagoras

Pythagoras

Turing

$80K

$30K

$30K

$70K

Figure 2.6

Hilda

Peter

Paul

Tom

EMP CHILD SKILL

Hilbert
Hilbert
Pythagoras
Pythagoras
Pythagoras
Pythagoras
Turing

Hilda
Hilda
Peter
Paul
Peter
Paul
Tom

Math
Physics
Math
Math
Philosophy
Philosophy
Computer Science

Figure 2.7

obeys the MVD X.**Z [Fall. So, MVDs obey a law of transitivity. We shall discuss more properties of
MVDs in Section 3, where we give a complete axiomatization for MVDs.

Note that MVDs, like FDs, can be expressed in first-order logic. For example, assume that
U={A,B,C,D,E}. Then the MVD AB-,.-~CD holds for a relation over U if the following sentence holds, where
P plays the role of the relation symbol:

(¥abClC2dld2ele 2) ((Pabeldle 1APabc2d2ez)=>Pabc2d2el). (2.2)

Embedded dependencies were introduced (Fagin [Fall) as dependencies that hold in a projection of a
relation (although, as we shall see, for certain classes of dependencies they are defined a little more generally).
We shall simply give an example of an embedded MVD; the general case is obvious from the example.
Assume that we are dealing with 4-ary relations, where we call the four columns ABCD. We say that such a
4-ary relation I obeys the embedded MVD (or EMVD) A-*.-,B I C if the projection of R onto ABC obeys the
MVD A-.~.B . Thns, the EMVD A.-,-,.B I C can be written as follows:

(¥ablb2ClC2dld2)((PablCldlAPab2c2d2)=>]d3Pablc2d3). (2.3)

As a concrete example, assume that the relation of Figure 2.7, with attributes EMP, CHILD, and SKILL, had
an additional attribute BIRTHDATE, which tells the date of birth of the child. Then this 4-ary relation I
would obey the embedded MVD EMP-~--CHILDISKILL. Note that I need not obey the MVD
EMP-~-~CHILD (although it does obey the MVD EMP-~--{CHILD,BIRTHDATE}).

Several dependencies were defined within a few years after the multivalued dependency was introduced;
we shall mention these other dependencies later in this section. Of these, the most important are the join
dependency, or JD [ABU,Ri2]), and the inclusion dependency, or IND [Fa2]. Assume that X={X 1 Xk} is a
collection of subsets of U, where X l u ... u X k = U. The relation 1, over U, is said to obey the join
dependency N IX l X~], denoted also N[X] , if I is the join of its projections I[X1],...,I[Xk]. It follows
that this join dependency holds for the relation I if and only if I contains each tuple t for which there are
tuptes w 1 w n of I (not necessarily distinct) such that wi[Xi] = t[Xi] for each i (l< i<n) . As an example,

consider the relation / in Figure 2.8 below.

A B C D

0 1 0 0
0 2 3 4
5 1 3 0

Figure 2.8

This relation violates the join dependency N lAB, ACD, BC]. For, let wl, w 2, w 3 be, respectively, the tuples
(0,t,0,0), (0,2,3,4), and (5,1,3,0) of / ; let X 1, X 2, X 3 be, respectively, AB, ACD, and BC; and let t be the
tuple (0,1,3,4); t h e n wi[Xi] = t[Xi] for each i (1 <i<n), although t is not a tuple in the relation L However, it
is straightforward to verify that the same relation 1 obeys, for example, the join dependency 1~1 [ABC, BCD,

ABD].

Let us say that the join dependency N [2(1, ..., Xk] has k components. Join dependencies are generaliza-
tions of multivalued dependencies; thus, each multivalued dependency is equivalent to a join dependency with
two components, and conversely. Assume now that X 1 u ._ u X k c_ U, and denote X 1 u -. o X k by)2- A
relation jr with attributes U is said to obey the embedded join dependency N [Xt, ..., X k] if its projection I[X]
obeys the join dependency N IX I, ..., Xk]. We shall see soon that join dependencies can be written in
first-order logic. Embedded join dependencies, too, can be so written, but they require existential quantifiers,
just as embedded multivalued dependencies do. Note that our notation, the set U of attributes does not
appear, and so the same syntactical object N [X 1 Xk] is used to represent a join dependency over X and
an embedded join dependency over U. However, the two would be written in distinct ways in first-order

logic. This is actually a nice convenience, espeeially in the case of functional dependencies, where a similar
comment applies.

The intuitive semantics of multivalued dependencies were fairly well understood at the time they were
first defined. However, it was not until several years after join dependencies were defined that their semantics
was adequately explained (by Fagin et al. [FMU]). Let us consider an example (from [FMU]). Assume that
the attributes are C(ourse), T(eaeher), R(oom), / / (our) , S(tudent), and G(rade). The informal meaning of
these attributes is that teacher T teaches course C, course C meets in room R at h o u r / / , and that student S is
getting grade G in course C. If we were to define a single "universal" relation over these attributes, it would
be

{(c,t,r,h,s,g): t "teaches" c; c "meets in" r "at hour" h; and s " is getting" g " in" e}.

This relation is of the form

((c,t,r,h,s,g): PltC A P2crh A P3sgc}, (2.4)

for certain predicates P1, / '2 , and P3- The fact that a relation with attributes c,t,r,h,s,g is of the form (2.4) for
for some predicates P1, P2, and P3 is a severe constraint. In fact [FMU], this constraint is precisely equivalent
to the join dependency I~ [TC, CRH, SGC]. The obvious generalization of this observation to arbitrary join
dependencies explains their semantics. Before we leave join dependencies, let us note, as promised, they, too,
can be written as sentences in first-order logic. For example, if we are dealing with relations with attributes
c,t,r,h,s,g, then the join dependency IXl [TC, CRH, SGC] can be written as

(V Ctt l t2rr l rzhh l h2SS lS2gg lg2) ((PCtr l h l S l g l APCt l rhs2gzAPct2r2h2sg)-----~ Pctrhsg) (2.5)

So far, each of the dependencies we have discussed has two properties: (1) each is uni-relational, that is,
deals with a single relation at a time, rather than with inter-relationships among several relations, and (2) each
is typed. By typed, we mean that no variable appears in two distinct columns. For example, the sentence
(¥xy)((PxyAPyz)=~Pxz), which says that a relation is transitive, is not typed, since the variable y appear in
both the first and second columns of P in the sentence. The next dependency that we shall discuss violates
both (1) and (2) above, that is, is neither uni-relational nor typed. This dependency is the inclusion
dependency, or IND [CFP]. As an example, an IND can say that every MANAGER entry of the P relation
appears as an EMPLOYEE entry of the Q relation. In general, an IND is of the form

P[A l'"Am] c Q[B l"'Bm]' (2.6)

where P and Q are relation names (possibly the same), and where the Ai's and Bi's are attributes. If I is the
P relation and J is the Q relation, then the IND (2.6) holds if for each tuple s of 1, there is a tuple t of J such
that s[A 1...Am] = t[B 1...Bm]. Hence, INDs are valuable for database design, since they permit us to selectively
define what data must be duplicated in what relations. INDs are commonly known in Artificial Intelligence
applications as ISA relationships (cf. Beeri and Korth [BK]). Not surprisingly, the inclusion dependency, too,
can be written in first-order logic. For example, if the P relation has attributes ABC, and the Q relation has
attributes CDE, then the IND P[AB]c-Q[CE] can be written

(¥abc)(Pabc~3dQadb). (2.7)

After multivalued dependencies were defined, there was a period where a large number of other
dependencies were defined. We have already discussed the classes of join dependencies, embedded join
dependencies, and inclusion dependencies. Others (many of which were introduced before join dependencies)
include Nicolas's mutual dependencies [Nil], which say that a relation is the join of three of its projections;
Mendelzon and Maier's generalized mutual dependencies [MM]; Paredaens' transitive dependencies [Pal, which
generalize both FDs and MVDs; Ginsburg and Zaiddan's implied dependencies [GZ], which generalize FDs;.
Sagiv and Walecka's subset dependencies [SW], which generalize embedded MVDs; Sadri and Ullman's and
Beeri and Vardi's template dependencies ([SU], [BV4]) which generalize embedded join dependencies; and
Parker and Parsaye-Ghomi's extended transitive dependencies [PP], which generalize both mutual dependencies
and transitive dependencies. We remark that the last 3 kinds of dependencies mentioned were introduced to

deat with the issue of a comptete axiomatization (see Section 3): subset dependencies were introduced to show
the difficulty of completely axiomatizing embedded muttivalued dependencies; extended transitive dependen-
cies were introduced to show the difficulty of completely axiomatizing transitive dependencies; while template
dependencies were introduced to provide a class of dependencies that include join dependencies and that can
be completely axiomatized. Inclusion dependencies, which had been used informally for databases by many
practitioners, were not seriously studied until relatively late [CFP].

Various researchers finaIly realized that all of these different types of dependencies can be united into a
single class, which we shal! call simply dependencies. Before we can define them formally, we need a few
preliminary concepts. We assume that we are given a set of individual variables (which represent entries in a
relation of a database). The atomic formulas are those that are either of the form Pzl...z d (where P is the
name of a d-ary relation, and where the zi's are individual variables), or else of the form x=y (where x and y
are individual variables). Atomic formulas PZl...z d we call relational formulas, and atomic formulas x=y we
call equalities. A dependency is a first-order sentence

(VX l...Xm)((A tA...AAn)=?~3yI.o.Yr(B1A...AB s)), (2.8)

where each A i is a relational formula and where each B i is atomic (either a relational formula or an equality).
We assume also that each of the xj's appears in at least one of the Ai's, and that n_>l, that is, that there is at
least one A i, We assume that r>_0 (if r=0 then there are no existential quantifiers), and that s > l (that is,
there must be at least one Bi.) Note that because of all these assumptions, each dependency is obeyed by an
empty database with no tuples. Furthermore, our assumptions guarantee that we can tell if a dependency
holds for a relation by simply considering the collection of tuples of the relation, and ignoring any underlying
"domains of attributes". Intuitively, in considering whether a dependency holds for a relation, the quantifiers
can be assumed to range over the elements that appear in the relation, and not over any larger domain. This
property is called domain independence. See Fagin [Fa4] for a much more complete discussion of domain

independence.

If each of the formulas B i oil the right-hand side of (2.8) is a relational formula, then we call the
dependency a tuple-generating dependency; if all of these formulas are equalities, then we call the dependency
an equality-generating'dependency. Of the dependencies we have focused on above, the (embedded) multiva-
lued dependency, the (embedded) join dependency, and the inclusion dependency are each tuple-generating
dependencies; thus, each of the first-order sentences (2.2), (2.3), (2.5), and (2.7) above represent tuple-
generating dependencies. Tuple-generating dependencies say that if a certain pattern of entries appears, then
another pattern must appear. Functional dependencies, as we see by example in the sentence (2.1) above, are
equality-generating dependencies. Equality-generating dependencies say that if a certain pattern of entries
appears, then a certain equality must hold. A full dependency is one in which r=0 and s = l in (2.8), that is,
one in which there are no existential quantffiers and in which there is only one atomic formula B i on the
right-hand side. Thus, a full dependeney is of the form

(VXl...Xm)((A t A...AAn)-'~ B), (2.9)

where each A i is a relational formula, where B is atomic. Functional, multivalued, and join dependencies are
all full dependencies. We may refer to a dependency (2.8) as an embedded dependency, to emphasize that we
are allowing (but not requiring) existential quantiflers. Note that in the case of full dependencies, we would
not gain anything by allowing the possibility of having several atomic formulas on the right-hand side, since
such a sentence is equivalent to a finite set of full dependencies as we have defined them.

The class of dependencies was defined independently by a number of authors, who usually focussed on
the uni-relational case. (Note that the ogly special case of a dependency that we have mentioned so far that
is not uni-relational is the inclusion dependency.) Beeri and Vardi [BV7] refer to this class as the class of alt
tuple-generating and equalitJ~generating dependencies. Fagin [Fa4] focused on the typed, uni-relationat case,
which he called embedded implicational dependencies (with the full dependencies being called implicational
dependencies). Yannakakis and Papadimitriou [YP] defined algebraic dependencies, which are built out of
expressions involving projection and join, and which, on the surface, look very different from our first-order
definition. It is somewhat surprising that their class (which is typed) turns out [YP] to be identical to our
typed, uni-relational dependencies. Paredaens and Janssens [PJ] defined general dependencies, whieh are full,

typed, uni-relational dependencies. Also, Grant and Jacobs [GJ] defined generalized dependency constraints,
which are full dependencies~

An often heard claim is that in the "real world" one rarely encounters dependencies in their most general
form. According to this claim FDs, INDs, maybe MVDs are the only kinds of dependencies that earn the title
"real world dependencies". We have two answers to this claim. First, we believe that there are real-world
situations that do require the more general dependencies. Even when the database itself can be specified by
FDs, user views of this database may not be specifiable by FDs [Fa4, GZ]. Furthermore, even if only simple
dependencies arise in practice, the more general dependencies are very useful theoretically. For example,
statements about equivalence of queries can be expressed by dependencies [YP]. We refer the reader to [Hu,
Va3, Va5] for more examples of the latter argument.

3. The Implication Problem

3.1. Implication and finite implication

Logical implication is a fundamental notion in logic. Let 37 be a set of sentences, and let r be a single
sentence. We say that X implies z, denoted 37 ~ 7, if every model of E is also a model of 7. In our context,

~7 if every database that satisfies all dependencies in X satisfies also ~. For example {A--,,B, B-~C}
A--C.

The relevance of implication to database theory became apparent in Bernstein's work on synthesis of
database schemes using FDs [Bet]. Let ~I and Z 2 be sets of dependencies. We say that E! is equivalent to
372, denoted Y.1='~2, if every database that satisfies all dependencies in E 1 also satisfies all dependencies in
Y~2 and vice versa. We say that 371 is redundant if E2cY, 1 and EI~.E 2. (We use --q to denote containment and
¢ to denote proper containment.) Clearly, X is redundant if there is some ~eX such that X-{~} ~ r . Since
Bernstein's synthesis algorithm requires eliminating redundant FDs , and since the problem of eliminating
redundant dependencies can be reduced to the problem of testing implication of dependencies, the notion of
implication became a central notion to dependency theory. The significance of implication was reconfirmed in
later works, e.g., [BMSU,Ri2].

In database theory we often like to restrict our attention to finite databases, since in practice databases
are finite. We say that E finitely implies 7, denoted E ~fT, if every finite database that satisfies E satisfies
also 7. Clearly, if E ~7 holds then E ~f7 also holds. But it is possible that Y~ ~f7 holds while E ~ r does not.
That is, it is possible that every finite database that satisfies Y satisfies also ~, but there is an inJYnite database
that satisfies 37 but not ~. Implication and finite implication lead to two decision problems. The implication
problem is to decide, for a given set Y~ of dependencies and a single dependency 7, whether Y~ ~e. The finite
implication problem is to decide, for a given set E of dependencies and a single dependency 7, whether Y~ ~fe.

Let E = {o 1 on]. Then E ~7 (Y~ ~f'r) if and only if OlA,,.AonA~T is (finitely) unsatisfiable. (A
sentence is (finitely) satisfiable if it has a (finite) model. It is (finitely) unsatisfiable if it has no (finite)
model.) Since unsatisfiability is known to be recursively enumerable (GOdel's Completeness Theorem), and
finite satisfiability is clearly recursively enumerable, it follows that the relationships ~ and 1# f are recursively
enumerable. Suppose now that for some class of dependencies ~ and ~ f are the same. Then ~ and I~f
complement each other and they are both recursively enumerable. It follows that they are both recursive
[Ro]. Indeed, the standard technique for proving solvability of the implication problem is to show that
implication and finite implication coincide.

Dependencies are V*3* sentences, i.e., they are equivalent to sentences whose quantifier prefix consists of
a string of universal quantifiers followed by a string of existential quantifiers. Thus, alA...AanA~7 is a
3*V*]* sentence. When Y~, however, consists of full dependencies, then oiA.,.AonA~r is an :l,V* sentence.
Thus, the (finite) implication problem for full dependencies is reducible to the (finite) satisfiability problem
for]*V* sentences. This class of sentences is known as the initially extended Bernays-Sch6nfinkel class. For
this class, satisfiability and finite satisfiability coincide, and therefore both are recursive [DG]. Thus, for full

~0

dependencies, implication and finite implication coincide, and are recursive. Unfortunately, the satisfiabliity
problem for the Beruays-Sch6nfinkel class require nondeterministic exponential time [Le], and hence is highly
intractable. Since the class of full dependencies is a proper subset of the class of universal sentences, one may
hope that the implication problem for full dependencies is not that hard. We study this problem in Section
3.2.

For simplicity we restrict ourselves in the sequel to uni-retational dependencies, i.e., dependencies that
refer to a single relation.

3.2. The implication problem for full dependencies

Since for full dependencies implication and finite implication coincide, everything we say in this section
about implication holds, of course, for finite implication as well.

Even though the significance of implication was not yet clear in 1974, it was studied by Armstrong
[Arm], apparently just out of mathematical interest. Armstrong characterized implication of FDs using an
axiom system. An axiom system consists of axiom schemes and inference rules. A derivation of a dependency
from a set E of dependencies is a sequence "rl,'r2,...,~'n, where ~n is z and each r i is either an instance of an
axiom scheme or follows from preceding dependencies in the sequence by one of the inference rules. Y~ I-
denotes that there is a derivation of • from E. An axiom system is sound if Y~ 1-¢ entails ~ ~ , and it is
complete if Y~ ~ ¢ entails E [-¢. Armstrong's system, denoted ~r~, consists of one axiom and three inference

rules:

FD0 (reflexivity axiom): [--X~X.
FDI (transitivity): X-.,. Y, Y-, ,Z ~ X..~.Z.
FD2 (augmentation and projection): X..,. Y l- W - , . Z , if X - c W and Y=-Z.
FD3 (union): X-~ Y, Z-~ W ~- XZ-~ YW.

Theorem 3.2.1. [Arm] The system ~r~ is sound and complete for implication of FDs. V1
(In fact, Armstrong proved a somewhat stronger result, which we shall not discuss here. See [Fa3].)

Armstrong did not consider the algorithmic aspects of his axiom system. This was done by Beeri and
Berustein [BB], who were motivated by the fact that one of the steps in Berustein's synthesis algorithm [Ber]
is a test for implication. They were the first to phrase the implication problem. (Beeri and Bernstein called it
the membership problem. In some papers it is also called the inference problem.)

Let E be a set of dependencies, and let X be a set of attributes. The closure of X with respect to Y~ is the
set of all attributes functionally determined by X, that is, {A: E ~X-~A}. Clearly, once we know the closure
of X with respect to E, we can find out easily whether ~ ~X-~A. Beeri and Bernstein showed that the system
~r~ can be used to construct closures very fast.

Theorem 3.2.2. [BB] The implication problem for FDs can be solved in time O(n), where n is the length of

the'input. []

A large part of dependency theory since 1976 was devoted to studying these two aspects of implication,
i.e., axiomatization and complexity of the implication problem. For example, shortly after the introduction of
MVDs in t976, they were axiomatized by Beeri et al. [BFH], and Beeri proved that implication problem is
solvable [Bee]. Both works tried to get results analogous to the resul tsfor FDs.

The axiom system , - 1 ¢ ~ consists of one axiom and three inference rules:

MVD0
MVD1
MVD2
MVD3

(reflexivity axiom): ~-X--,-~ Y, if YC-X.
(transitivity): X-,,-.,. Y, Y-,,..~-Z 1" X-,.-,-Z-Y.
(augmentation): X.-,..., Y t- XW..,,.-~ YZ if Z - c W.
(eomplementation): X-.,-,,Y I'" X.-,-,.Z, if XYZ = U and YaZC-X.

Theorem 3.2.3. [BFH] The system ,A¢~/~ is sound and complete for implication of MVDs. []

11

We note that Beeri et al. [BFH] also present a sound and complete axiomatization for FDs and MVDs

taken together. This axiomatizafion contains all of the axiom schemes and inference rules for FDs and MVDs

separately that we have already seen, along with two "mixed" rules, that account for the interaction of FDs
and MVDs.

The analogue of closure of an attribute set X is now not an attribute set but rather a collection of
attribute sets: rhsx(X) = {Y: X I=X-~-,Y}. Now rhsx(X) can contain exponentially many sets, and hence is not
very useful algorithmically. However, using the system ,.,1¢V~ it is not hard to verify that rhsx(X) is a
Boolean algebra. Furthermore, since it is a field of finite sets, it is an atomic Boolean algebra, and every every
element is the union of the atoms it contains. The set of atoms of this Boolean algebra is called the
dependency basis of X with respect to Z, denoted depx(X). Thus

depx(X) = {Y: Y#O, Z ~X-c-~Y, and if X ~X-~Z, Zc-Y, and Z#O, then Z = YL

Lemma 3.2.4. [BFH] depx(X) is a partition of U. Furthermore, X ~X-~-#Y if and only if there are sets

W 1 W m in depx(X) such that Y = WltJ...o Win.

Beeri [Bee] has shown how depx(X) can be constructed efficiently using the system ,.¢1X/~.

Theorem 3.2.5. [Bee] The implication problem for MVDs can be solved in time O(n4), where n is the length
of the input. []

Beeri's algorithm was improved by Hagihara et al. [HITK], Sagiv [Sagl], and finally by Galil [Ga]. Galil's

algorithm runs in time O(n log n). These papers and [Bee,BFH] discuss also the interaction of FDs and
MVDs.

It is easy to see that Lemma 3.2.4 does not depend on X being a set of MVDs. Thus, testing whether an
MVD X-.~-~Y is implied by a set X of dependencies can be done efficiently as long as depz(X) can be
constructed efficiently. This was shown in [MSY,Va4] to be the case when X is a set of JDs and FDs, and in
[Val] for the case when X is a set of typed full dependencies.

Theorem 3.2.6. [Val] Testing whether an MVD or an FD is implied by a set of typed full dependencies can be
done in time O(n2), where n is the length of the input. []

Let us refer now to implication of JDs. Aho et al. [ABU] described an algorithm, called later the chase,
to test implication of JDs by FDs.

Theorem 3.2.7. [ABU] Testing whether a JD is implied by a set of FDs can be done in time O(n4), where n is
the length of the input. []

More efficient implementations of the chase were described by Liu and Demers [LD] and by Downey et al.
[DST]. The latter algorithm runs in time O(n 2 log 2n).

The ideas in [ABU] were generalized by Maier et al. [MMS] to deal with arbitrary implication of FDs and
JDs.

Theorem 3.2.8. [MMS] The implication problem for FDs and JDs is solvable in time o(nn), where n is the
length of the input. []

The question then arose whether the exponential upper bound of the above theorem can be improved.
Unfortunately, Theorems 3.2.6 and 3.2.7 probably describe the most general case for which an efficient
decision procedure exists. Recall that a problem is NP-hard if it is as hard as any problem that can be solved
in nondeterministic polynomial time. A problem is NP-complete if it is NP-hard and it can be solved in
nondeterministic polynomial time. It is believed that NP-hard problems can not be solved efficiently, i.e., in
polynomial time. ([GJ] is a good textbook on the theory of NP-completeness.) Thus, proving that a problem
is NP-hard is a strong indication that the problem is compntationally intractable.

42

Theorem 3.2.9.
1) [FT] Testing whether a set of MVDs implies a JD is NP-hard.
2) [BV3] Testing whether a JD and an FD imply a JD is NP-complete. []

Thus, we know how to test implication of FDs and JDs in exponential time, and we know that the
problem is NP-hard. We do not know, however, how to pinpoint the complexity of this problem. We do not
know for example whether testing implication of a JD by a set of MVDs can be done in nondeterministic
polynomial time. One approach to the problem was to try to find a axiom system for FDs and JDs. Surpris-
ingly, even for JDs alone finding a axiom system is extremely difficult (see [BV1,BV5,Se3]).

NP-completeness strongly suggests, rather than proves, that a problem is intractable (i.e., it proves
intractability under the assumption that there are problems that can be solved in nondeterministic polynomial
time but not in deterministic polynomial time). In contrast, EXPTIME-completeness is a proof that a problem
is intractable. A problem is EXPTIME-eomplete if it can be solved in exponential time and it is also as hard
as any problem that can be solved in exponential time. Since it is known that there are problems that can be
solved in exponential time and in fact do require exponential time, it follows that EXPTIME-complete

problems require exponential time.

Theorem 3.2.10. [CLM2] The implication problem for typed full dependencies is EXPTIME-complete. []

Interestingly, Beeri and Vardi presented an elegant axiom system for typed futl dependencies [BV4]. This
demonstrates that there is no clear relationship between having an axiom system for a class of dependencies

and the complexity of the implication problem for that class.

In conclusion of this section, the reader should keep in mind that the above lower bounds describe a
worst-case behavior of the problems. It is not clear at all that this worst-case behavior indeed arise in

practice.

3.3. The implication problem for embedded dependencies

While for full dependencies the implication problem is clearly solvable and the questions to answer
involve upper and lower bounds, this is not so with embedded dependencies, since satisfiability and finite
satisfiability do not coincide for the class of 3*¥*7* sentences, and the corresponding problems are both
unsolvable [DG]. Thus, we have to deal here with both implication and finite implication and their corre-
sponding decision problem. Since the class of dependencies is a proper subset of the class of ¥*]* sentences,
one may hope that the (finite) implication problem for embedded dependencies is solvable.

The first disappointing observation is that implication and finite implication do not coincide for embedded

dependencies.

Theorem 3.3.1. [CFP,JK] There is a set ~ of FDs and INDs and a single IND • such that ~ ~fT, but • [#*.

Proof: (a) Let X be {A-~B, At-B}, and let z be Bc-A. We first show that ~ ~fr. Let I be a finite relation
satisfying ~. We now show that I satisfies ~, that is, I[B]C-I[A]. Since I satisfies A.-,.B it follows that
[I[B]I<tI[A][. Since I[A]c-I[B], it follows that 11[.4][<11[B]1. Thus,]I[A][--- [I[B]]. But since
I[A]C-I[B] and since both I[A] and I[B] are finite, we than have I[B] = I[A], so I[B]C-I[A]. This was to be

shown.

To show that E ~ ' , we need only exhibit a relation (necessarily infinite) that satisfies Y. but not e. Let I

be the relation with tuples {(i+I,i): i>_0}. It is obvious that I satisfies ~ but not 7. []

One may think that this behavior is the result of the interaction between tuple-generating dependencies and
equality-generating dependencies, but an example in [BVT] shows that even for tuple-generating dependencies

the two notions of implication and finite implication differ.

The simplest instance of embedded dependencies are the EMVDs. The (finite) implication problem for
EMVDs has resisted efforts of many researchers, and is one of the most outstanding open problems in

13

dependency theory. A significant part of the research in this area has been motivated by this problem. For
example, underlying the search for bigger and bigger classes of dependencies was the hope that for the larger
class a decision procedure would be apparent, while the specialization of the algorithm to EMVDs was too
murky to be visible. Also, underlying the work on axiomatization was the hope that an axiom system may
lead to a decision procedure just as the axiom systems for FDs and MVDs led to decision procedures for these
classes of dependencies.

Maier et. al [MMS] suggested an extension of the chase to deal with EJDs, and this was further
generalized by Beeri and Vardi [BV2] to arbitrary dependencies. Unfortunately, the chase may not terminate
for embedded dependencies. It was shown, however, that the chase is a proof procedure for implication. That
is, given X and , , the chase will give a positive answer if X ~ ~, but will not terminate if X I#*. Furthermore,
Beeri and Vardi [BV4] also presented a sound and complete axiom system for typed dependencies. Neverthe-
less, all these did not seem to lead to a decision procedure for implication. In 1980 researchers started
suspecting that the (finite) implication problem for embedded dependencies was nnsolvable, and the first
result in this direction were announced in June 1980 by two independent teams.

Theorem 3.3.1. [BV6,CLM1] The implication and the finite implication problem for tuple-generating
dependencies are unsolvable. []

This result is disappointing especially with regard to finite implication, which is the more interesting notion.
As we recall, [~f is recursively enumerable. Thus, if ~ f is not recursive, then it is not even recursively
enumerable. That means that there is no sound and complete axiom system for finite implication.

Both proofs of Theorem 3.3.1 seem to use untypedness in a very strong way, and do not carry over to the
typed case. Shortly later, however, both teams succeeded in ingeniously encoding untyped dependencies by
typed dependencies.

Theorem 3.3.2. [BV7,CLM2] The implication and the finite implication problem for typed tuple-generating
dependencies are unsolvable. []

As dependencies, EMVDs have four important properties (see for example (2.3)):
(1) they are tuple-generating,
(2) they are typed~

(3) they have a single atomic formula on the right-hand side of the implication, and
(4) they have two atomic formulas on the left-hand side of the implication.

Dependencies that satisfy properties (1), (2), and (3) above are called template dependencies, or TDs [SU].
Thus, EMVDs and EJDs are in particular TDs. Since Theorem 3.3.2 covers properties (1) and (2), the next
step was to extend unsolvability to TDs.

Theorem 3.3.3. [GL,Va2] The implication and finite implication problems for TDs are unsolvable. []

In fact, both papers prove unsolvability for the class of projected join dependencies. A projected join
dependency (PJD) is of the form I~1 [X1,...,Xk]x, where Xc-XlU...uXkc-U. It is obeyed by a relation I if
I[X] = N {I[X1],...,I[Xk]}[X]. For an application of PJDs see [MUV]. PJDs extend slightly JDs, since if
X = X 1 u ... uXk, then the PJD N [X1,...,Xk] x is equivalent to the JD N [X1,...,Xk]. Thus the class of PJDs
lies strictly between the classes of EJDs and TDs. The implication and finite implication problems for EJDs
are, however, still wide open.

Even though the existence of an axiom system for a certain class of dependencies does not guarantee
solvability of the implication problem, finding such a system seems to be a valuable goal. In particular
attention was given to k-ary systems. In a k-ary axiom systems, all inference rules are of the form *l,...,'rn ~-
*, where n<k. It is easy to verify, for example, that the systems ~rN and ¢ g f ~ in Section 3.3 are 2-ary.

Theorem 3.3.4. [PP,SW] For all k>0 , there is no sound and complete k-ary axiom system for implication and
finite implication of EMVDs. []

14

We refer the reader to [BV4,Va2] for a discussion regarding the existence of a non-k-ary axiom system for
EMVDs.

Let us refer now to what some people believe are the only "practical" dependencies, FDs and INDs.

Recall that FDs are full dependencies, so implication and finite implication coincide and both are solvable
(and by Theorem 3.2.1, quite efficiently). INDs, on the other hand, are embedded dependencies, so a
straightforward application of the chase does not yield a decision procedure. A more careful analysis,
however, shows that the chase can be forced to terminate.

Theorem 3.3.5. [CFP] The implication and finite implication problem for INDs are equivalent and are

PSPACE-eomplete. []

(PSPACE-complete problems are problems that can be solved using only polynomial space and are hard as
any problem that can be solved using polynomial space. It is believed that this problems can not be solved in

polynomial time [GJ].)

Let us consider now implication of arbitrary dependencies by tNDs. Since containment of tableaux
[ASU] can be expressed by dependencies [YP], a test for implication of dependencies by INDs is also a test
for containment of conjunctive queries under INDs. We do not know whether implication and finite

implication coincide in this case. We have, however, a positive result for implication.

Theorem 3.3.6. [JK] Testing implication of dependencies by INDs is PSPACE-complete. []

The finite implication problem for this ease is still open.

Casanova et al. [CFP] investigated the interaction of VDs and INDs, and they discovered that things get
more complicated when both kinds of dependencies are put together. First, they showed that implication and
finite implication are different (Theorem 3.3.1). In addition they showed that there is no sound and complete
k-ary axiom system for implication and finite implication of FDs and INDs. (Mitchell [Mil], however, has
shown that in a more general sense there is a k-ary axiom system for implication of FDs and INDs.) In view
of their results, it did not come as a surprise when Chandra and Vardi and, independently, Mitchell proved

unsolvability.

Theorem 3.3.6. [CV,Mi2] The implication and the finite implication problems for FDs and INDs are

unsolvable. E]

Some people claim is that in practice we encounter only INDs that have a single attribute on each side of
the eontairtment, e.g., MANAGERc-EMPLOYEE. Such INDs are called unary INDs (UINDs). Reviewing the
proof of Theorem 3.3.1, we realize that even for FDs and UINDs implication and finite implication differ.
Considering our experience with dependencies, this looks like a sure sign that the problems are unsolvable.

The next result by Kannelakis et al. comes therefore as a refreshing surprise.

Theorem 3,3,7. [KCV] The implication and the finite implication problem for FDs and UINDs are both

solvable in polynomial time. E3

For other positive results for INDs see [KCV,JK,LMG].

In conclusion to this topic, we would like to mention an argument against the relevance of all the above
unsoivability results. The assumption underlying these results is that the input is an arbitrary set X of
dependencies and a dependency ~. The argument is that the given set X is supposed to describe some "real
life" application, and in practice it is not going to be arbitrary. Thus, even if we concede that TDs arise in
practice, still not every set of TDs arises in practice. The emphasis of this argument is on "real world sets of
dependencies", rather than on "real world dependencies". For further study of this argument see [Sel,Se2].
While we agree with the essence of this argument, we believe that the results described above are useful in
delineating the boundaries between the computationally feasible and infeasible. This is especially important,

since we do not yet have robust definitions of real world sets of dependencies.

15

4. The Universal Relation Model

4ol. Motivation

A primary justification given by Codd for the introduction of the relational model was his view that
earlier models were not adequate to the task of boosting the productivity of programmers [Col,Co3]. One of
his stated motivations was to free the application programmer and the end user from the need to specify
access paths (the so-ealled "navigation problem"). A second motivation was to eliminate the need for
program modification to accommodate changes in the database structure, i.e., to eliminate access path
dependence in programs.

After a few years of experience with relational database management systems, it was realized [CK] that,
though being a significant step forward, the relational model by itself fails to achieve complete freedom from
user-supplied navigation and from access path dependence. The relational model was successful in removing
the need for physical navigation; no access paths need to be specified within the storage structure of a single
relation. Nevertheless, the relational model has not yet provided independence from logical navigation, since
access paths among several relations must still be satisfied.

For example, consider a database that has relations ED(Employee, Department) and DM(Department,
Manager). If we are interested in the relationship between employees and managers through departments,
then we have to tell the system to take the join of the ED and DM relations and to project it on the attributes
EM. This is of course an access path specification, and if the database were to be reorganized to have a single
relation EDM, then any programs using this access path would have to be modified accordingly.

The universal relation model aims at achieving complete access path independence by letting us ask the
system in an appropriate language "tell us about employees and their managers", expecting the system to
figure out the intended access path for itself. Of course, we cannot expect the system to always select the
intended relationship between employees and managers automatically, because the user might have something
other than the simplest relationship, the one through departments, in mind, e.g., the manager of the manager
of the employee. We shall, in a universal relation system, have to settle for eliminating the need for logical
navigation along certain paths, those selected by the designer, while allowing the user to navigate explicitly in
more convoluted ways.

Unlike the relational model, the universal relation model was not introduced as a single dearly defined
model, but rather evolved during the 1970's through the work of several researchers. As a result, there have
been a significant confusion with regard to the assumptions underlying the model, the so-called "universal
relation assumptions". We refer the reader to [MUV], where an attempt is made to clarify the situation.

In this and the next section we restrict ourselves to finite databases.

4.2. Decomposition

The simplest way to implement the universal relation model is to have the database consist a universal
relation, i.e., a single relation over the set U of all attributes. There are two problems with this approach.
First, it assumes that for each tuple in the database we always can supply values for all the attributes, e.g., it
assumes that we have full biographic information on all employees. Secondly, storing all the information in
one universal relation causes problems when this information needs to be updated. These problems, called
update anomalies, were identified by Codd [Co2]. The solution to these problems is to have a conceptual
database that consists of the universal relation, while the actual database consists of relations over smaller sets
of attributes. That is, the database scheme consists of a collection R ffi {R1,...,Rk} of attributes sets whose
union is U, and the database consists of relations 11,...,Ik, over R 1,...,Rk, respectively.

A principal activity in relational database design is the decomposition of the universal relation scheme
into a database scheme that has certain nice properties, traditionally called normal forms. (We shall not go
here into normalization theory, which is the study of these normal forms, and the interested reader is referred
to [Ma,U1].) More precisely, starting with the universal scheme U and a set of dependencies Y., we wish to

I6

replace the universal scheme by a database scheme R = {Rp_.,Rk}. The idea is to replace the universal
relation by its projection on Rp...,Rko That is, instead of storing a relation t over U, we decompose it into
I 1 = I [Rt] t k = I[Rk], and store the result of this decomposition. The map A R defined by
AR (I) = { I[R 1],...,I[R k] } is called the decomposition map.

Clearly, a decomposition cannot be useful unless no loss of information is incurred by decomposing the
universal relation. (This is called in [BBG] the representation principle.) That is, we must be able to recon-
struct [from I i , ._ , I k. More precisely, the decomposition map has to be injective. For our purposes it suffices
that the decomposition map is injective for relations that satisfy the given set ~ of dependencies. In this ease
we say that it is injective with respect to E. When the decomposition map is injective it has a left inverse,
called the reconstruction map. The basic problems of decomposition theory are to formulate necessary and
sufficient conditions for injectiveness and to find out about the reconstruction map.

The natural candidate for the reconstruction map is the join, i.e., I=11 IN. , . N I k, The naturalness of
the join led many researchers to the belief that if the reconstruction map exists then it is necessarily the join.
This belief was refuted by Vardi [Va3], who constructed an example where the decomposition map is
injective, but the reconstruction map is not the join. It is also shown in [Va3] how to express injectiveness as
a statement about implication of dependencies~ Unfortunately, even when ~ consists of full dependencies,
that statement involves also inclusion dependencies. It is not known whether there is an effective test for

injectiveness.

If we insist that the join be the reconstruction map, then we can get a stronger result.

Theorem 4.2.1. [BR,MMSU] Le; ~ be a set of dependencies, and let R be a database scheme. Aft is injeetive
with respect to E with the join as the reconstruction map if and only if Z ~ N [R]. []

Thus, if E consists of full dependencies then we can effectively test whether the decomposition map is

injeetive with respect to Z.

Another desirable property of decompositions is independence [Ril]. Intuitively, independence means that
the relations of the database can be updated independently from each other. For further investigation of the

relationship between iujectiveness and independence see [BH,BR,MMSU,Va3].

A point that should be brought up is that decomposition may have some disadvantages. Essentially,
decomposition may make it easier to update the database, but it clearly makes it harder to query it. Since the
join operation can be quite expensive computationally, reconstructing the universal relation may not be easy
even when the reconstruction map is the join. In fact, even testing whether the relations of the database can
be joined without losing tuples is NP-complete, and hence, probably computationally intractable. Let the
database consists of relations Ip . . . , I k over attribute sets R1,...,Rk. We say that the database is join consistent
if there is a universal relation I such that I j = t[Rfl , for 1 <_j<k. (Rissanen [Rill calis a join consistent set of
relations joinable. A join consistent database is also called globally consistent [BFMY], join compatible [BR],
valid [Ri3], consistent [Fa5], or decomposed [Va3].) It is easy to verify that the database is join consistent if

Ij= IN {Ii,...,Ik}[Rj], for I <j<k.

Theorem 4.2.2. [HLY] Testing whether a database is join consistent is NP-complete. []

Thus there is a trade-off between the ease of updating the database and the ease of querying it. The
smaller the relation schemes, the easier it is to update the database and the harder it is to query it. Recogniz-
ing this trade-off, Sehkolnick and Sorenson investigated what they called denormalization [SS]. The idea is to
decompose the universal scheme with both the ease of updating and the ease of querying in mind. The result

of the decomposition depends in this approach on the predicted use of the database.

4.3. The Universal Relation Interface

Suppose now that decomposition has been achieved. That is, assume that, starting with the universal
scheme U and a set 1~ of dependencies, we have designed a database scheme R = {R1,...,Rk}, and we now
have a database I = {Ii,..Ik] over R. Two questions have now to be resolved: how to determine whether the

17

database is semantically meaningful, i.e., satisfies the given dependencies, and how to respond to the users'

queries that refer to the universal relation. If the database is join consistent, then we can construct the

universal relation 1 such that All(I) ---- I. But if the database is not join consistent, then there is no corre-
sponding universal relation.

We outline here one approach to the problem, called the weak universal relation approach. (This
approach was suggested by Honeyman [Ho] and further developed in [GM,GMV,MUV]. For other ap-
proaches and their relationship to the weak universal relation approach see [GM,GMV,MRW,MUV].)
According to this approach, a universal relation exists at least in principle, even though it may not beknown.
The database is seen, from this viewpoint, as a partial specification of the universal relation. More precisely,
the relations Ii, . . . ,I k are partial descriptions of the projection of the universal relation 1 on the relation
schemes R 1,...,Rk. Thus a universal relation 1 is considered to be a weak universal relation for I with respect to
X if it satisfies X and 1jc-I[Rj], for 1 _<i_<k. I is consistent with ~ i.e., semantically meaningful, if it has a weak
universal relation with respect to 2.

The above definition is existential in nature and does not lend itself to an effective test. The consistency
problem is to decide, for a given set X of dependencies and a database I over a database scheme R, whether I
is cofasistent with X.

Theorem 4.3.1.
1) [GMV] The consistency problem for embedded dependencies is unsolvable.
2) [GMV] The consistency problem for full dependencies is EXPTIME-complete.
3) [Ho] The consistency problem for FDs is solvable in polynomial time. []

Thus, for embedded dependencies there is no effective test for consistency, for full dependencies there is an
effective though intractable test, and the good news is that for FDs there is a polynomial time test for
consistency. We note that the presence of the independence property, mentioned is Section 4.2, may make it
easier to test for consistency. We refer the reader to [CM,Grl,GY,Sa] for the study of independence in the
context of the weak universal relation approach.

We now refer to the issue of query answering. For simplicity we restrict ourselves to queries of the form
"give me the relationship between employees and managers". More precisely, the query is a set X of
attributes, and the desired answer is the so-called basic relationship on X. If we had a unique universal relation
I, then answer would undoubtedly be fIX]. But in our case we have only weak universal relations, and we
clearly have infinitely many of those. Since we cannot know which of the possible universal relations actually
represent the "real world" at a given moment, we assume that the only facts that can be deduced about the
universal relation from the database are those that hold is all weak universal relations. This motivated
researchers ([MUV,Ya] following [Sa]) to adopt the following definition. Let weak(I,'~) be the set of all weak
universal relations of I with respect to Y.. We can see this set as the embodiment of the information
represented by the database [Me]. The answer to the query X, denoted I[X], is therefore taken to be
I"1 {I[X] : IEweak(l,Y.)}. Note that the answer is with respect to Y..

The above definition does not seem to lead to an effective procedure for computing I[X].

Theorem 4.3.2.

1) [GMV] Computing answers with respect to embedded dependencies is unsolvable.
2) [GMV] Computing answers with respect to full dependencies is EXPTIME-complete.
3) [Ho] Computing answers with respect to FDs can be done in polynomial time. []

We refer the reader to [Gr2,MRW,MUV,Sag2,Sag3,Ya] for further study of query answering.

We conclude this section by considering again the questions raised in the previous section. There we
started with a universal relation 1 and applied the decomposition map AR, to get the database

All(/) = {I[R1],...,I[Rk]}. Suppose now that we pose the query U to this database. In this case we would
expect our query answering mechanism to be the desired reconstruction map, i.e., we would expect
Z = all(I)[U].

18

Theorem 4.3.3. [MUV] The foUowing two conditions are equivalent:
1) X ~ ~ [R].
2) I -- AR(I)[U], for every universal relation I that satisfies X. []

In other words, if our query answering mechanism happens to be the reconstruction map, then for join
consistent databases it is actually the join.

BIBLIOGRAPHY

[ABU] A. V. Aho, C. Beeri, and 3. D. Ullman, The theory of joins in relational data bases. ACM Trans. on
Database Systems 4,3 (Sept. 1979), 297-3t4.

[ASU] A. V. Aho, Y. Sagiv, and J. D. Ullman, Equivalences among relational expressions. SIAM J. Comput-
ing 8,2 (May 1979), 218-246.

[Ar] W. W. Armstrong, Dependency structures of database relationships. Proc. IFIP 74, North Holland, 1974,
580-583.

[Bee] C. Beeri, On the membership problem for functional and multivalued dependencies in relational
databases. ACM Trans. on Database Systems 5,3 (Sept. 1980), 241-259.

[BB] C. Beeri and P. A. Bernstein, Computational problems related to the design of normal form relational
schemas. ACM Trans. on Database Systems 4,1 (March 1979), 30-59.

[BBG] C. Beeri, P. A. Bernstein, and N. Goodman, A sophisticate's introduction to database normalization
theory. Proc. Int. Conf. on Very Large Data Bases, 1978, Berlin, 113-124.

[BFH] C. Beeri, R. Fagin, and J.H. Howard, A complete axiomatization for functional and muttivatued
dependencies in database relations. Proc. ACM SIGMOD Conf. on Management of Data, 1977, Toronto,
47-61.

[BFMY] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database schemes.
J. ACM 30,3 (July 1983), 479-513.

[BH] C. Beeri and P. Honeyman, Preserving functional dependencies. SIAM J. Computing 10,3 (Aug. 1981),

647-656.

[BK] C. Beeri and H. F. Korth, Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
1982, Los Angeles, 51-62.

[BMSU] C. Beeri, A. O. Mendelzon, Y. Sagiv, and J. D. Ullman, Equivalence of relational database schemes,
SIAM J. Computing 10,2 (June 1981), 352-370.

[BR] C. Beeri and J. Rissanen, Faithful representation of relational database schemes. IBM Research Report,
San Jose, California, 1980.

[BVt] C. Beeri and M. Y. Vardi, On the properties of join dependencies. In Advances in Database Theory
(H. GaUaire, J. Minker, and 3. M. Nicolas, Eds.), Plenum Press, 1981, 25-72.

[BV2] C. Beeri and M. Y. Vardi, A proof procedure for data dependencies. Hebrew University of Jerusalem

Technical Report, Dec. 1980.

[BV3] C. Beeri and M. Y. Vardi, On the complexity of testing implications of data dependencies. Hebrew
University of Jerusalem Technical Report, Dec. 1980.

19

[BV4] C. Beeri and M. Y. Vardi, Formal systems for tuple and equality-generating dependencies. SIAM J.
Computing 13,1 (Feb 1984), 76-98.

[BV5] C. Beeri and M. Y. Vardi, Formal systems for join dependencies. Hebrew Univ. of Jerusalem
Technical Report, 1981. To appear in Theoretical Computer Science.

[BV6] C. Beeri and M. Y. Vardi~ The implication problem for data dependencies. Proe. XP1 Workshop on
Relational Database Theoery, Stony Brook, NY, June 1980.

[BV7] C. Beeri and M. Y. Vardi, The implication problem for data dependencies. Proe. 8th Int. Colloq. on
Languages Automata and Programming, 1981, Acre Israel. Appeared in: Lecture Notes in Computer Science
-Vol. 115, Springer-Verlag, 1981, 73-85.

[Ber] P. A. Bernstein, Synthesizing third normal form relations from functional dependencies. ACM Trans. on
Database Systems 1,4 (Dee. 1976), 277-298.

[CFP] M. A. Casanova, R. Fagin, and C. Papadimitriou, Inclusion dependencies and their interaction with
functional dependencies. Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Database Systems
(1982), Los Angeles, 171-176. To appear in J. Computer and System Sciences.

[CM] E. P. F. Chan and A. O. Mendelzon, Independent and separable database schemes. Proc. 2nd ACM
SIGACT-SIGMOD Symp. on Principles of Database Systems, 1983, Atlanta, 288-296.

[CLM1] A. K. Chandra, H. R. Lewis, and J. A. Makowsky, Embedded implicational dependencies and their
inference problem. Proc. XP1 Workshop on Relational Database Theoery, Stony Brook, NY, Jurie 1980.

[CLM2] A. K. Chandra, H. R. Lewis, and J. A. Makowsky, Embedded implicational dependencies and their
inference problem. Proc. 13th ACM Symp. on Theory of Computing, 1981, Milwaukee, 342-354.

[CV] A. K. Chandra and M. Y. Vardi, The implication problem for functional and inclusion dependencies is
undecidable. IBM Research Report RC 9980, May 1983.

[Col] E. F. Codd, A relational model of data for large shared data banks. Comm. ACM 13,6 (June 1970),
377-387.

[Co2] E. F. Codd, Further normalization of the data base relational model. Conrant Computer Science
Symposia 6: Data Base Systems, 1971, Prentice Hall, 33-64.

[Co3] E. F. Codd, Relational databases: a practical foundation for productivity. Comm. ACM 25,2 (1982),
109-117.

[DP] P. De Bra and J. Paredaens, Conditional dependencies for horizontal decompositions. Proc. 10th Int.
Colloq. on Languages Automata and Programming, 1981, Barcelona. Appeared in: Lecture Notes in
Computer Science - Vol. 154, Springer-Verlag, 1983, 67-82.

[DST] P. J. Downey, R. Sethi, and R. E. Tarjan, Variations on the common subexpression problem. J. ACM
27,4 (Oct. 1980), 758-771.

[DG] B. S. Dreben and W. D. Goldfarb, The Decision Problem: Solvable Classes of Quantificational
Formulas. Addison Wesley, 1979.

[Fal] R. Fagin, Multivalned dependencies and a new normal form for relational databases. ACM Trans. on
Database Systems 2,3 (Sept. 1977), 262-278.

[Fa2] R. Fagin, A normal form for relational databases that is based on domains and keys. ACM Trans. on
Database Systems 6,3 (Sept. 1981), 387-415.

20

[Fa3] R. Fagin, Armstrong databases.
Science, Kanagawa, Japan, May 1982.
Jose, California.

Proc. 7th IBM Symp. on Mathematical Foundations of Computer
Also appeared as IBM Research Report RJ3440 (April 1982), San

[Fa4] R. Fagin, Horn clauses and database dependencies. L ACM 29,4 (Oct. 1982), 952-985.

rFa5] Ro Fagin, Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30,3 (July
1983), 514-550.

[FMU] R. Fagin, A. O. Mendelzon, and L D. Ullman, A simplified universal relation assumption and its
properties. ACM Trans. on Database Systems 7,3 (Sept. t982), 343-360.

[TF] P. C. Fischer and D.-M. Tsou, Whether a set of multivalued dependencies implies a join dependencies is
NP-hard. To appear in Theoretical Computer Science.

[Ga] Z. Galil, An almost linear-time algorithm for computing a dependency basis in a relational database. J.
ACM 29,1 (Jan. 1982), 96-102.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

~GZ] S. Ginsburg and S. M. Zaiddan, Properties of functional dependency families. J. ACM 29,4 (July 1982),
678-698.

[Grl] M. H. Graham, Path expressions in databases. Proc. 2rid ACM SIGACT-SIGMOD Symp. on Principles
of Database Systems, 1983, Atlanta, 366-378.

[Gr2] M. H. Graham, Functions in databases. ACM Trans. on Database Systems 8,1 (March 1983), 81-109.

[GM] M. H. Graham and A. O. Mendclzon, Notions of dependency satisfaction. Proc. tst ACM SIGACT-
SIGMOD Syrup. on Principles of Database Systems, 1983, Los Angeles, 177-188.

[GMV] M. H. Graham, A. O. Mendelzon, and M. Y. Vardi, Notions of dependency satisfaction. Stanford
University Technical Report STAN-CS-83-979, Aug. 1983.

[GY] M. H. Graham and M. Yannakakis, Independent database schemes. Proc. 1st ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, 1982, Los Angeles, 199-204. To appear in J. Computer and
Systems Sciences.

[GJ] J. Grant and B. E, Jacobs, On the family of generalized dependency constraints. J. ACM 29,4 (Oct.

1982).

~GL] Y. Gurevich and H. R. Lewis, The inference problem for template dependencies. Proc. First ACM
SIGACT-SIGMOD Principles of Database Systems (1982), Los Angeles, 221-229.

[HITK] K. Hagihara, M. 1to, K. Tanigaehi, and T. Kasami, Decision problems for multivalued dependencies in
relational databases. SIAM J. Computing 8,2 (May 1979), 247-264.

[He] I. J. Heath, Unacceptable file operations in a relational data base. Proc. 1971 ACM-SIGFIDET
Workshop on Data Description, Access, and Control, 1971, San Diego.

[Ho] P. Honeyman, Testiag satisfaction of functional dependencies. J. ACM 29,3 (July 1982), 668-677.

[HLY] P. Honeyman, R. E, Ladner, arid M. Yannakakis, Testing the universal instance assumption. Inf. Proc.

Letters, 10,1 (1980), 14-19.

IHu] R. Hull, Finitety specifiable implicational dependency families. Univ. of Southern California Technical
Report, 1981. To appear in J. ACM.

21

[JK] D. S, Johnson and A. Klug, Testing Containment of Conjunctive Queries under Functional and Inclusion
Dependencies. Proe. 1st ACM SIGACT-SIGMOD Syrup. on Principles of Database Systems, 1982, Los
Angeles, 164-169. To appear in Jo Computer and Systems Sciences.

[KCV] P. C. Kannelakis, S. S. Cosmadakis, and M. Y. Vardi, Unary inclusion dependencies have polynomial-
time inference problems. Proc. 15th ACM SIGACT Syrup. on Theory of Computing, 1983, Boston, 264-277.

[LMG] K. Laver, A. O. Mendelzon, and M. H. Graham, Functional dependencies on cyclic database schemes.
Proc. ACM SIGMOD Syrup. on Management of Data, 1983, San Jose, 79-91.

[Le] H. Lewis, Complexity results for classes of quantificational formulas. J. Computer and Systems Sciences
21,3 (Dec. 1980), 317-353.

[LD] L. Liu and A. Demers, An algorithm for testing lossless join property in relational databases. Informa-
tion Processing Letters 11,2 (1980), 73-76.

[Ma] D. Maier, The Theory of Relational Databases. Computer Science Press, Rockville, Maryland, 1983.

[MMSU] D. Maier, A. O. Mendelzon, F. Sadri, and J. D. Ullman, Adequacy of decompositions of relational
databases. J. Computer and Systems Sciences 21,3 (Dee. 1980), 368-379.

[MMS] D. Maier, A. Mendelzon, and Y. Sagiv, Testing implications of data dependencies. ACM Trans. on
Database Systems 4,4 (Dec. 1979), 455-469.

[MRW] D. Maier, D. Rozenshtein, and D. S. Warren, Windows on the world. Proc. ACM SIGMOD Syrup. on
Management of Data, 1983, San Jose, 68-78.

[MSY] D. Maier, Y. Sagiv, and M. Yannakakis, On the complexity of testing implications of functional and
join dependencies. J. ACM 28,4 (Oct. 1981), 680-695.

[MUV] D. Maier, J. D. Ullman, and M. Y. Vardi, The revenge of the JD. Proc. 2nd ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, 1983, Atlanta, 279-287.

[Me] A. Mendelzon, Database states and their tablueax. Proc. XP2 Workshop on Relational Database
Theory, June 1981.

[MM] Mendeizon, A. O. and D. Maier, Generalized mutual dependencies and the decomposition of database
relations. Proc. Int. Conf. on Very Large Data Bases, (A. L. Furtado and H. L. Morgan, eds.), 1979, 75-82.

[Mil] J. C. Mitchell, Inference rules for functional and inclusion dependencies. Proc. 2nd ACM SIGACT-
SIGMOD Syrup. on Principles of Database Systems, 1983, Atlanta, 58-69.

[Mi2] J. C. Mitchell, The implication problem for functional and inclusion dependencies. MIT Technical
Report. To appear in Information and Control.

[Nil J-M. Nicolas, First order logic formalization for functional, muttivalned, and mutual dependencies. Proe.
ACM SIGMOD Syrup. on Management of Data, 1978, 40-46.

[Pa] J. Paredaens, Transitive dependencies in a database scheme. MBLE Research Report R387, 1979.

[PJ] J. Paredaens and D. Janssens, Decompositions of relations: a comprehensive approach. In Advances in
Data Base Theory - Vol. I (H. Gallaire, J. Minker, and J-M. Nicolas, eds.), Plenum Press, 1981, 73-100.

[PP] D. S. Parker and K. Parsaye-Ghomi, Inference involving embedded multivalued dependencies and
transitive dependencies. Proc. ACM SIGMOD Symp. on Management of Data, 1980, 52-57.

[Ril] J. Rissanen, Independent components of relations, ACM Trans. on Database Systems 2,4 (1977),
317-325.

22

[Ri2] J. Rissanen, Theory of relations for databases - a tutorial survey. Proc. 7th Symp, on Math. Found. of
Comp. Science, 1978, Lecture Notes in Computer Science - Vol. 64, Springer-Verlag, 537-551.

[Ri3] J. Rissanen, On equivalence of database schemes. Proe. 1st ACM SIGACT-SIGMOD Syrup. on
Principles of Database Systems, 1982, Los Angeles, 23-26.

[Ro] H. Rogers, Theory of Recursive Functions and Effective Computability. McGraw-Hilt, 1967.

[SU] F. Sadri and J. D. Utlman, Template dependencies: A large class of dependencies in relational databases
and their complete axiomatization. J. ACM 29,2 (April 1981), 363-372.

[Sag1] Y. Sagiv, An algorithm for inferring multivalued dependencies with an application to propositional
logic. J. ACM 27,2 (April 1980), 250-262.

[Sag2] Y. Sagiv, Can we use the universal instance assumption without using nulls? Proc. ACM SIGMOD
Syrup. on Management of Data, 1981, 108-120.

[Sag3] Y. Sagiv, A characterization of globally consistent databases and their correct access paths. ACM
Trans. on Database Systems 8,2 (June 1983), 266-286.

[SW] Y. Sagiv and S. Walecka, Subset dependencies and a completeness result for a subclass of embedded
multivalued dependencies. J. ACM 29,1 (Jan. 1982), 103-117.

[SS] M. Schkolnick and P. Sorenson, The effects of denormalization on database performance. The Australian
Computer Journal 14,t (Feb. 1982), 12-18.

[Sct] E. Sciore, Real-world MVDs. Proc. ACM SIGMOD Symp. on Management of Data, 1981, 121-132.

[Sc2] E. Sciore, Inclusion dependencies and the universal instance. Proc. 2rid ACM SIGACT-SIGMOD Symp.
on Principles of Database Systems, 1983, Atlanta, 48-57.

[Sc3] E. Sciore, A complete axiomatization of full join dependencies. J. ACM 29,2 (April 1982), 373-393.

[U1] J. D. Ullman, Principles of Database Systems. Computer Science Press, Rockville, Maryland (1982)

[Val] M. Y. Vardi, The implication problem for data dependencies in relational databases. Ph.D. Dissertation
(in Hebrew), The Hebrew University in Jerusalem, Sept. t981.

[Va2] M. Y. Vardi, The implication and finite implication problems for typed template dependencies. Proe.
1st ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, 1982, Los Angeles, 230-238. To
appear in J. Computer and Systems Sciences.

[Va3] M. Y. Vardi, On decomposition of relational databases. Proc. 23rd IEEE Symp. on Foundation of
Computer Science, Chicago, 1982, 176-185.

[Va4] M. Y. Vardi, Inferring muttivalued dependencies from functional and join dependencies. Aeta
Infom~atiea, 19(1983), 305-324.

[Va5] M. Y. Vardi, A note on lossless database decompositions. To appear in Information Processing Letters.

[Ya] M. Yannakakis, Algorithms for acyclic database schemes. Proc. Int. Conf. on Very Large Data Bases,

1981, 82-94.

[YP] M. Yannakakis and C. Papadimitriou, Algebraic dependencies. J. Computer and System Sciences 25,2

(1982), 3-41.

[Za] C. Zaniolo, Analysis and design of relational schemata for database systems, Ph.D. Dissertation, Tech.
Rep. UCLA-ENG-7669, UCLA, July 1976.

