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Abstract

Rank aggregation has recently been proposed as a useful abstraction that has several applications,
including meta-search, synthesizing rank functions from multiple indices, similarity search, and clas-
sification. In database applications (catalog searches, fielded searches, parametric searches, etc.), the
rankings are produced by sorting an underlying database according to various fields. Typically, there
are a number of fields that each have very few distinct values, and hence the corresponding rankings
have many ties in them. Known methods for rank aggregation are poorly suited to this context, and the
difficulties can be traced back to the fact that we do not have sound mathematical principles to compare
two partial rankings, that is, rankings that allow ties.

In this work, we provide a comprehensive picture of how to compare partial rankings. We propose
several metrics to compare partial rankings, present algorithms that efficiently compute them, and prove
that they are within constant multiples of each other. Based on these concepts, we formulate aggregation
problems for partial rankings, and develop a highly efficient algorithm to compute the top few elements
of a near-optimal aggregation of multiple partial rankings. In a model of access that is suitable for
databases, our algorithm reads essentially as few elements of each partial ranking as are necessary to
determine the winner(s).
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1 Introduction

Rank aggregation. Rank aggregation is the problem of combining several ranked lists of objects in a
robust way to produce a single ranking of the objects. This problem has a long and interesting history that
goes back at least two centuries. While the philosophical aspects of rank aggregation have been debated
extensively during this period, the mathematics of rank aggregation has gained more attention in the last
eighty years, and the computational aspects are still within the purview of active research.

In computer science, rank aggregation has proved to be a useful and powerful paradigm in several
applications including meta-search [8, 21, 19, 18, 1, 17], combining experts [4], synthesizing rank functions
from multiple indices [9], biological databases [20], similarity search [11], and classification [17, 11]. An
important contribution of the work of [8] is to adopt and highlight the merits of a proposal of Kemeny’s
for performing rank aggregation: namely given multiple rankings, find a ranking whose totalKendall tau
distance1 to the given rankings is minimized. While this formulation is mathematically crisp, applications
usually demand additional flexibility from the aggregation algorithm. For example, in aggregating search
results, we are faced with the problem that we have access only to the top few elements of the rankings.
In [8], this issue was addressed by suitably modifying the heuristics for full rank aggregation, but without
providing any mathematical justification. This situation was later remedied in [10], where notions of “near
metrics” were introduced, and a robust, unified class of near metrics was identified to compare “topk lists”.
This allowed the formulation of appropriate rank aggregation problems for topk lists, and the design of
efficient (approximation) algorithms for these problems.

Challenges for rank aggregation in databases. While the extensive work in economics and computer
science provide a mathematical basis for aggregation of full/topk rankings, the context of database-centric
applications poses two formidable challenges for rank aggregation. We outline these next.

(1) In many applications of rank aggregation, there is an underlying database of records that are first
ranked in several ways; typically, each ranked list is produced when the user specifies some criterion to rank
(and/or filter) the records according to one of the attributes in the schema. Once the records are sorted in
different ways, an aggregation algorithm combines the ranked lists to produce the final output. Common
examples are catalog searches, fielded/parametric searches, and “advanced search” options.

For example, in online commerce, users often state their preferences for products according to various
criteria. In a database of restaurants (e.g.,www.dine.com ), it is common to rank the restaurants based
on the user’s preferences for cuisine, driving distance, price, star ratings, etc; in airline reservations (e.g.,
www.travelocity.com ), it is common to rank flight plans by price, airline preference, number of
connections, flight times, etc. Other examples include searching for an article in scientific bibliography
databases (e.g.,www.ams.org/mathscinet ) using preference criteria on attributes such as title, year
of publication, number of citations, etc.; searching for a protein in biological databases (e.g.,www.rcsb.
org/pdb ) based on attributes like chain type, compound information, experimental technique, resolution,
etc; and searching for NSF awards (www.nsf.gov/verity/srchawdf.htm ) based on attributes such
as award amount, start date, etc.

While many database attributes are usually numeric, there are attributes that are inherently non-numeric.
For instance, in the restaurant selection example above, “type of cuisine” is a non-numeric attribute. The
number of distinct values in such non-numeric attributes is often very small. Therefore, when one sorts
according to values this attribute can take, the resulting rank ordering of the objects is not a permutation
any more; it is an ordering with ties, also known as apartial ranking. Notice that partial rankings could
result even for numeric attributes. For example, in travel reservations, the field “number of connections” is

1The Kendall tau distance between two rankings (permutations) is defined as the number of pairwise disagreements between the
two rankings; it is easy to see that it is a metric on the space of permutations.
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a numeric attribute, but usually has no more than four values. Furthermore, the user may not be interested
in using the complete range of values for a numeric attribute even if the database might permit it. For
instance, in the restaurant selection example, even though distance is numeric, the user might wish to treat
any distance up to ten miles to be the same in his/her preference.

Thus, the first main feature of rank aggregation in database applications is that, due to preference criteria
on few-valued attributes, we need to deal with partial rankings rather than full rankings. While it is possible
to treat this issue heuristically by arbitrarily ordering the tied elements to produce a full ranking, we seek
ways that are mathematically more well-founded.

(2) In database-centric applications, we are often interested in only the top few answers of the aggrega-
tion. Certainly, this is the case with all the above examples. This feature leads to the quest for algorithms that
quickly obtain the top result(s) of aggregation, perhaps in sub-linear time, without even having to read each
ranking in its entirety. This issue was addressed in [11], where an aggregation heuristic based on median
rank values was studied2. This median rank aggregation has the nice property that it admits aninstance-
optimal algorithmin the sense of [12] under a model of access that is relevant for databases. This feature
is shared neither by the more sophisticated heuristics in [8] based on matchings and Markov chains, nor by
the most natural heuristic based on average ranks. Furthermore, median is clearly robust, since it mitigates
the effect of outliers.

Since the applications we focus on in this paper are database-centric, it is tempting to try to adapt
the median-based algorithm for aggregating partial rankings. However, there are two obstacles to such an
attempt. First of all, though the median rank aggregation algorithm was argued to be heuristically good as
an aggregation algorithm, nothing provable was known about its efficacy. In particular, it was not known
if median rank aggregation produced an approximately optimal aggregation with respect to the Kendall
distance. Secondly, the median rank aggregation algorithm was proposed in [8, 11] assuming that the inputs
are permutations. Consequently, it is not clear if the algorithm would perform well, even in a heuristic sense,
when the inputs are partial rankings.

To summarize, the aggregation of partial rankings is an important problem in the context of many
database applications and it is useful to develop algorithms that quickly obtain the top few results of the
aggregation. The single main obstacle is that we do not have sound mathematical principles to compare two
partial rankings; this is precisely what we study in this paper. Our main contribution is a comprehensive
solution to comparing and aggregating partial rankings.

Summary of our contributions. We define four metrics between partial rankings. These are obtained by
suitably generalizing the Kendall tau distance and the Spearman footrule distance on permutations (cf. [6])
in two different ways. In both approaches, to compare two partial rankings, we compare the two sets of full
rankings obtained from the partial rankings by breaking ties in all possible ways. A classical way (cf. [5]) to
compare two sets in a metric space is the well-known method of using the Hausdorff distance between the
sets3. The drawback of using the Hausdorff extensions of Kendall tau and Spearman footrule is that they are
less intuitive, and the impossibility of pathological cases is not obvious. Our second method to compare the
two sets avoids this pitfall, and is based on succinctly summarizing the two sets by compact vectors—their
“profiles”—and applying theL1 distance between the profile vectors. By definition, these metrics admit
efficient computation, and furthermore, they are extremely intuitive and quite natural. These metrics are
defined and discussed in Section 3.

2In fact, rank aggregation based on median rank, along with complicated tie-breaking rules, is used in judging Olympic figure
skating [3].

3The Hausdorff distance between two point setsA and B in a metric space with metricd(·, ·) is defined as
max{maxγ1∈A minγ2∈B d(γ1, γ2), maxγ2∈B minγ1∈A d(γ1, γ2)}.
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While the metrics obtained through profiles can be efficiently computed, the Hausdorff metrics are max-
min over exponentially large sets and it is not at all obvious a priori if they can be computed efficiently as
well. We solve this problem by first obtaining a complete characterization of how the Hausdorff distance
is achieved between two partial rankings (for both Kendall tau and Spearman footrule versions). Namely,
we show how to efficiently construct full rankings from partial rankings so that computing the underly-
ing metric (Kendall/Spearman) on the full rankings allows us to compute the Hausdorff distances. These
characterizations enable us to compute the Hausdorff distances efficiently; furthermore, while the proofs
of the characterizations are technically quite intricate, the resulting algorithms are extremely simple. The
computational aspects of the metrics are discussed in Section 4.

Having four metrics on partial rankings is good news, but exactly which one should a practitioner use
to compare partial rankings? Furthermore, which one is best suited to formulating an aggregation problem
for partial rankings? Our summary answer to these questions is that the exact choice doesn’t matter much.
Namely, we show, following the lead of [7, 10], that these metrics are all within constant multiples of each
other. Diaconis and Graham [7] showed that the Kendall tau distance and the Spearman footrule distance are
“equivalent,” in the sense that they are within a factor of two from each other. We show a similar relation for
the Hausdorff versions of these metrics fairly easily; the relationship between the Hausdorff and the profile
versions of the Kendall tau metric also turns out to be fairly simple to establish. Proving an analog of the
Diaconis–Graham inequalities for the profile metrics turns out to be rather tricky, and requires us to uncover
considerable structure inside partial rankings. We present these equivalence results in Section 5.

Finally, we turn to algorithms to aggregate partial rankings. Here we fully reap the benefit of having de-
fined four distinct metrics on partial rankings and having established their equivalence with much technical
maneuvering. Namely, if we care primarily about aggregations that are approximately optimal with respect
to a metric, we now have four viewpoints from which to attack the problem! Thus, a constant factor approxi-
mation algorithm for aggregation with respect to one metric is automatically a constant factor approximation
algorithm for aggregation with respect to all the other metrics. It turns out that an algorithm that is based
on the median rank algorithm [8, 11] lends itself naturally to efficient aggregation with respect to the profile
version of the Spearman footrule metric. We show the algorithm derived from median ranks is a constant
factor approximation algorithm with respect to this metric. Also, as mentioned before, being a median-based
algorithm, our algorithm reads only as few elements of each partial ranking as possible in order to determine
the winner(s) of the aggregation—in this aspect, the algorithm is extremely database-friendly and practical.

By the equivalence outlined above, it follows that the median rank algorithm is an approximation al-
gorithm for rank aggregation with respect to all our metrics. In fact, since partial rankings generalize full
rankings as well as topk lists, the median rank algorithm yields a very efficient solution to the aggregation
problems for these objects4. It also vindicates the use of median in earlier work [8, 11]. These results are
presented in Section 6.

Related work. Kendall [16] defined two variations of the Kendall tau distance for partial rankings of
which one is a normalized version of the Kendall tau distance through profiles. Baggerly [2] defined two
versions of the Spearman footrule distance for partial rankings of which one is similar to our Spearman
footrule metric through profiles. However, neither work proceeds significantly beyond simply providing
the definition. For topk lists, which are special case of partial rankings, Critchlow [5] defined Hausdorff
versions of Kendall tau and Spearman footrule distances and Fagin et al. [10] studied further properties of
these metrics. Goodman and Kruskal [13] proposed an approach for comparing partial rankings, which was

4Median rank aggregation offers a good solution to the following loosely-stated problem as well: find a constant-factor approx-
imation algorithm for the Kendall tau rank aggregation problem for full rankings that is both “non-trivial” (since one of the input
rankings always achieves a factor two approximation) and computationally simple (unlike computing an optimal solution to the
Spearman footrule aggregation problem, which requires the computation of a minimum-cost perfect matching).
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recently utilized [14] for evaluating strategies for similarity search on the Web. A serious disadvantage of
Goodman and Kruskal’s approach is that it is not always defined (this problem did not arise in the application
of [14]).

2 Preliminaries

Bucket orders. A bucket orderis, intuitively, a linear order with ties. More formally, a bucket order is a
transitive binary relationC for which there are setsB1, . . . ,Bt (the buckets) that form a partition of the
domain such thatx C y if and only if there arei, j with i < j suchx ∈ Bi andy ∈ Bj . If x ∈ Bi, we
may refer toBi as thebucket ofx. We may say that bucketBi precedesbucketBj if i < j. Thus,x C y if
and only if the bucket ofx precedes the bucket ofy. We think of the members of a given bucket as “tied”.
A linear order is a bucket order where every bucket is of size 1. We now define thepositionof bucketB,
denotedpos(B). LetB1, . . . ,Bt be the buckets in order (so that bucketBi precedes bucketBj wheni < j).
Thenpos(Bi) = (

∑
j<i |Bj |) + (|Bi|+ 1)/2. Intuitively, pos(Bi) is the average location within bucketBi.

Partial ranking. Just as we can associate a ranking with a linear order (i.e., permutation), we associate a
partial rankingσ with each bucket order, by lettingσ(x) = pos(B) whenB is the bucket ofx. We refer
to a partial ranking associated with a linear order as afull ranking. When it is not otherwise specified, we
assume that all partial rankings have the same domain, denotedD. We say thatx is ahead ofy in σ if
σ(x) < σ(y). We say thatx andy are tied inσ if σ(x) = σ(y).

We define atopk list to be a partial ranking where the topk buckets are singletons, representing the top
k elements, and the bottom bucket contains all other members of the domain. Note that in [10] there is no
bottom bucket in a topk list. This is because in [10] each topk list has its own domain of sizek, unlike our
scenario where there is a fixed domain.

Given a partial rankingσ with domainD, we define itsreverse, denotedσR, in the expected way. That
is, for all d ∈ D, let σR(d) = |D|+ 1− σ(d).

Refinements of partial rankings. Given two partial rankingsσ andτ , both with domainD, we say thatσ is
a refinementof τ and writeσ � τ if the following holds: for alli, j ∈ D, we haveσ(i) < σ(j) whenever
τ (i) < τ (j). Notice that whenτ (i) = τ (j), there is no order forced onσ. Whenσ is a full ranking, we
say thatσ is afull refinementof τ . Given two partial rankings,σ andτ both with domainD, we frequently
make use of a particular refinement ofσ in which ties are broken according toτ . Defineτ -refinement of
σ, denotedτ ∗ σ, to be the refinement ofσ with the following properties. For alli, j ∈ D, if σ(i) = σ(j)
andτ (i) < τ (j), thenτ ∗ σ(i) < τ ∗ σ(j). If σ(i) = σ(j) andτ (i) = τ (j), thenτ ∗ σ(i) = τ ∗ σ(j).
Notice that whenτ is in fact a full ranking, thenτ∗σ is also a full ranking. Also note that∗ is an associative
operation, so that ifρ is a partial ranking with domainD, it makes sense to talk aboutρ∗ τ ∗ σ.

Notation. Whenf andg are functions with the same domainD, we denote theL1 distance betweenf and
g by L1(f, g). Thus,L1(f, g) =

∑
i∈D |f(i)− g(i)|.

2.1 Metrics, near metrics, and equivalence classes

A binary functiond is calledsymmetricif d(x, y) = d(y, x) for all x, y in the domain, and is calledregular if
d(x, y) = 0 if and only if x = y. A distance measureis a nonnegative, symmetric, regular binary function.
A metric is a distance measured that satisfies thetriangle inequalityd(x, z) ≤ d(x, y) + d(y, z) for all
x, y, z in the domain.

The definitions and results in this section were derived in [10], in the context of comparing topk lists.
Two seemingly different notions of a “near metric” are were defined in [10]: their first notion of near metric
is based on “relaxing” the polygonal inequality that a metric is supposed to satisfy.
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Definition 1 (Near metric) A distance measure on partial rankings with domainD is anear metricif there
is a constantc, independent of the size ofD, such that the distance measure satisfies the relaxed polygonal
inequality:d(x, z) ≤ c(d(x, x1)+d(x1, x2)+ · · ·+d(xn−1, z)) for all n > 1 andx, z, x1, . . . , xn−1 ∈ D.5

The other notion of near metric given in [10] is based on bounding the distance measure above and below
by positive constant multiples of a metric. It was shown that both the notions of near metrics coincide. This
theorem inspired to define what it means for a distance measure to be “almost” a metric, and a robust notion
of “similar” or “equivalent” distance measures. We modify the definitions in [10] slightly to fit our scenario,
where there is a fixed domainD.

Definition 2 (Equivalent distance measures)Two distance measuresd and d′ between partial rankings
with domainD areequivalentif there are positive constantsc1 andc2 such thatc1d

′(σ1,σ2) ≤ d(σ1,σ2) ≤
c2d

′(σ1,σ2), for every pairσ1,σ2 of partial rankings.6

It is clear that the above definition leads to an equivalence relation (i.e., reflexive, symmetric, and transitive).
It follows from [10] that a distance measure is equivalent to a metric if and only if it is a near metric.

2.2 Metrics on full rankings

The study of metrics on full rankings is classical (cf. [15, 6]). We now review two well-known notions of
metrics on full rankings, namely the Kendall tau distance and the Spearman footrule distance.

Let σ1,σ2 be two full rankings with domainD. The Spearman footrule distanceis simply theL1

distanceL1(σ1,σ2). The definition of the Kendall tau distance requires a little more work.
Let P = {{i, j} | i 6= j andi, j ∈ D} be the set of unordered pairs of distinct elements. TheKendall

tau distancebetween full rankings is defined as follows. For each pair{i, j} ∈ P of distinct members ofD,
if i andj are in the same order inσ1 andσ2, then let the penaltȳKi,j(σ1,σ2) = 0; and if i andj are in the
opposite order (such asi being ahead ofj in σ1 andj being ahead ofi in σ2), then letK̄i,j(σ1,σ2) = 1.
The Kendall tau distance is given byK(σ1,σ2) =

∑
{i,j}∈P K̄i,j(σ1,σ2). The Kendall tau distance turns

out to be equal to the number of exchanges needed in a bubble sort to convert one full ranking to the other.
Diaconis and Graham [7] proved a classical result, which states that for every two full rankingsσ1, σ2,

K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2). (1)

In other words, Kendall tau and Spearman footrule are equivalent metrics for full rankings.

3 Metrics for comparing partial rankings

In this section we define the distance between partial rankings. The first set of metrics is based on profile
vectors (Section 3.1). and the second set is based on the Hausdorff distance (Section 3.2). Appendix A.3
compares these metrics (when the partial rankings are topk lists) with the distance measures for topk lists
that are developed in [10].

5It makes sense to say that the constantc is independent of the size ofD when, as in [10], each of the distance measures
considered is actually a family, parameterized byD. We need to make an assumption thatc is independent of the size ofD, since
otherwise we are simply considering distance measures over finite domains, where there is always such a constantc.

6As before, the constantsc1 andc2 are assumed to be independent of the size ofD.
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3.1 Metrics based on profiles

Let σ1,σ2 be two partial rankings with domainD. We now define a family of generalizations of the Kendall
tau distance to partial rankings. These are based on a generalization [10] of the Kendall tau distance to top
k lists.

Let p be a fixed parameter,0 ≤ p ≤ 1. Similar to our definition ofK̄i,j(σ1,σ2) for full rankingsσ1,σ2,

we define a penaltȳK(p)
i,j (σ1,σ2) for partial rankingsσ1,σ2 for {i, j} ∈ P. There are three cases.

Case 1:i andj are in different buckets in bothσ1 andσ2. If i andj are in the same order inσ1 andσ2

(such asσ1(i) > σ1(j) andσ2(i) > σ2(j)) then letK̄(p)
i,j (σ1,σ2) = 0; this corresponds to “no penalty”

for {i, j}. If i andj are in the opposite order inσ1 andσ2 (such asσ1(i) > σ1(j) andσ2(i) < σ2(j))
then let the penaltȳK(p)

i,j (σ1,σ2) = 1.

Case 2:i andj are in the same bucket in bothσ1 andσ2. We then let the penaltȳK(p)
i,j (σ1,σ2) = 0.

Intuitively, both partial rankings agree thati andj are tied.
Case 3:i andj are in the same bucket in one of the partial rankingsσ1 andσ2, but in different buckets

in the other partial ranking.In this case, we let the penaltȳK(p)
i,j (σ1,σ2) = p.

Based on these cases, defineK(p), theKendall distance with penalty parameterp, as follows:

K(p)(σ1,σ2) =
∑

{i,j}∈P

K̄
(p)
i,j (σ1,σ2).

It is easy to show that if the penalty value in Case 2 were strictly positive then, the resulting quantity is
not even a distance measure. Also,K(p) is a metric forp ∈ [1/2, 1], is a near metric forp ∈ (0, 1/2), and is
not even a distance measure forp = 0. (See Appendix A.2 for a proof.) For the rest of the paper, we focus
on the natural casep = 1/2, since it corresponds to an “average” penalty for two elementsi andj that are
tied in one partial ranking but not in the other partial ranking. We denoteK(1/2) by Kprof , since, as we now
show, there is an alternative but equivalent definition in terms of a “profile”.

LetO = {(i, j) : i 6= j andi, j ∈ D} be the set of ordered pairs of distinct elements in the domainD.
Let σ be a partial ranking (as usual, with domainD). For (i, j) ∈ O, definepij to be1/4 if σ(i) < σ(j),
to be 0 if σ(i) = σ(j), and to be−1/4 if σ(i) > σ(j). Define theK-profile of σ to be the vector
〈pij : (i, j) ∈ O〉. It is straightforward to verify thatKprof(σ1,σ2) is simply theL1 distance between the
K-profiles ofσ1 andσ2.7

It is clear how to generalize the Spearman footrule distance to partial rankings—we simply take it to
be L1(σ1,σ2), just as before. We refer to this value asFprof(σ1,σ2), for reasons we now explain. Let
us define theF -profile of a partial rankingσ to be the vector of valuesσ(i). So theF -profile is indexed
by D, whereas theK-profile is indexed byO. Just as theKprof value of two partial rankings (or of the
corresponding bucket orders) is theL1 distance between theirK-profiles, theFprof value of two partial
rankings (or of the corresponding bucket orders) is theL1 distance between theirF -profiles. SinceFprof

andKprof areL1 distances, they are automatically metrics.

3.2 The Hausdorff metrics

Let A andB be finite sets of objects and letd be a metric of distances between objects. TheHausdorff
distancebetweenA andB is given by

dHaus(A,B) = max
{

max
γ1∈A

min
γ2∈B

d(γ1, γ2), max
γ2∈B

min
γ1∈A

d(γ1, γ2)
}

. (2)

7Each pair{i, j} with i 6= j is counted twice, once as(i, j) and once as(j, i). This is why the values ofpij are1/4, 0, and
−1/4 rather than1/2, 0, and−1/2.
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Although this looks fairly nonintuitive, it is actually quite natural, as we now explain. The
quantity minγ2∈B d(γ1, γ2) is the distance betweenγ1 and the setB. Therefore, the quantity
maxγ1∈A minγ2∈B d(γ1, γ2) is the maximal distance of a member ofA from the setB. Similarly, the
quantitymaxγ2∈B minγ1∈A d(γ1, γ2) is the maximal distance of a member ofB from the setA. Therefore,
the Hausdorff distance betweenA andB is the maximal distance of a member ofA or B from the other
set. Thus,A andB are within Hausdorff distances of each other precisely if every member ofA andB is
within distances of some member of the other set. The Hausdorff distance is well known to be a metric.

Critchlow [5] used the Hausdorff distance to define a metric between topk lists. We generalize his
construction to give a metric between partial rankings. Given a metricd that gives the distanced(γ1, γ2)
between full rankingsγ1 andγ2, define the distance between partial rankingsσ1 andσ2 to be

max
{

max
γ1�σ1

min
γ2�σ2

d(γ1, γ2), max
γ2�σ2

min
γ1�σ1

d(γ1, γ2)
}

, (3)

whereγ1 andγ2 are full rankings. In particular, whend is the footrule distance, this gives us the metric
FHaus between partial rankings, and whend is the Kendall distance, this gives us the metricKHaus between
partial rankings. BothFHaus andKHaus are indeed metrics, since they are special cases of the Hausdorff
distance.

4 Computing the metrics

It is clear from the definition that bothKprof andFprof can be computed in polynomial time. In this section
we show how to compute the Hausdorff metricsKHaus andFHaus in polynomial time. We make use of
these results later to prove that all of our metrics are in the same equivalence class, and in particular that
KHaus andKprof are in the same equivalence class. (Note that once we show in Section 5 that all the metrics
are equivalent, then it follows that both the Hausdorff metrics can be approximated in polynomial time by
computing the profile metrics.)

First, we prove thatminτ F (σ, τ), whereτ ranges over all full refinements ofτ , is attained atτ = σ∗τ ,
and similarly forminτ K(σ, τ). This shows that the minimum occurs when we take theσ-refinement ofτ .

Lemma 3 Let σ be a full ranking, and letτ be a partial ranking. Then the quantityF (σ, τ), taken over
all full refinementsτ � τ , is minimized forτ = σ∗ τ . Similarly, the quantityK(σ, τ), taken over all full
refinementsτ � τ , is minimized forτ = σ∗ τ .

The next lemma states that the maximum of minimum occurs when we take the(ρ∗ τR)-refinement ofσ,
for an arbitrary full rankingρ.

Lemma 4 Let σ andτ be partial rankings, and letρ be any full ranking. Then the quantityF (σ, σ∗ τ ),
taken over all full refinementsσ � σ, is maximized whenσ = ρ∗τR∗σ. Similarly, the quantityK(σ, σ∗τ ),
taken over all full refinementsσ � σ, is maximized whenσ = ρ∗ τR∗ σ.

Combining the previous two lemmas, we obtain a complete characterization of the Hausdorff distance.

Theorem 5 Letσ andτ be partial rankings, letσR be the reverse ofσ, and letτR be the reverse ofτ . Let
ρ be any full ranking. Then

FHaus(σ, τ ) = max
{
F (ρ∗ τR∗ σ, ρ∗ σ∗ τ ), F (ρ∗ τ ∗ σ, ρ∗ σR∗ τ )

}
KHaus(σ, τ ) = max

{
K(ρ∗ τR∗ σ, ρ∗ σ∗ τ ),K(ρ∗ τ ∗ σ, ρ∗ σR∗ τ )

}
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Let σ andτ be partial rankings. Theorem 5 gives us a simple algorithm for computingFHaus(σ, τ ) and
KHaus(σ, τ ): we simply pick an arbitrary full rankingρ and do the computations given in Theorem 5. Let
σ1 = ρ∗ τR ∗ σ, let τ1 = ρ∗ σ ∗ τ , let σ2 = ρ∗ τ ∗ σ, and letτ2 = ρ∗ σR ∗ τ . Theorem 5 tells us
that FHaus(σ, τ ) = max {F (σ1, τ1), F (σ2, τ2)} andKHaus(σ, τ ) = max {K(σ1, τ1),K(σ2, τ2)}. It is
interesting that the same pairs, namely(σ1, τ1) and(σ2, τ2) are the candidates for exhibiting the Hausdorff
distance for bothF andK. Note that the only role that the arbitrary full rankingρ plays is to arbitrarily
break ties (in the same way forσ andτ ) for pairs(i, j) of distinct elements that are in the same bucket in
bothσ andτ . A way to describe the pair(σ1, τ1) intuitively is: break the ties inσ based on the reverse of
the ordering inτ , break the ties inτ based on the the ordering inσ, and break any remaining ties arbitrarily
(but in the same way in both). A similar description applies to the pair(σ2, τ2).

The algorithm we have described for computingFHaus(σ, τ ) andKHaus(σ, τ ) is based on creating pairs
(σ1, τ1) and(σ2, τ2), one of which must exhibit the Hausdorff distance. The next proposition gives a direct
algorithm for computingKHaus(σ, τ ), that we make use of later.

Proposition 6 Let σ andτ be partial rankings. LetS be the set of pairs{i, j} of distinct elements such
that i andj appear in the same bucket ofσ but in different buckets ofτ , let T be the set of pairs{i, j} of
distinct elements such thati andj appear in the same bucket ofτ but in different buckets ofσ, and letU be
the set of pairs{i, j} of distinct elements that are in different buckets of bothσ andτ and are in a different
order inσ andτ . ThenKHaus(σ, τ ) = |U |+ max {|S|, |T |}.

5 Relationships between the metrics

In this section we show that all our metrics are in the same equivalence class.

Theorem 7 The metricsFprof , Kprof , FHaus, andKHaus are all in the same equivalence class.

Proof. First, we show

KHaus(σ1,σ2) ≤ FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2). (4)

The proof of this equivalence betweenFHaus andKHaus uses the robustness of the Hausdorff definition with
respect to equivalent metrics. It is fairly easy, and is given in Appendix A.5.1.

Next, we show
Kprof(σ1,σ2) ≤ Fprof(σ1,σ2) ≤ 2Kprof(σ1,σ2). (5)

We note that (5) is much more complicated to prove than (4). The proof involves two main concepts:
“reflecting” each partial ranking so that every element has a mirror image and using the notion of “nesting”,
which means that the interval spanned by an element and its image in one partial ranking sits inside the
interval spanned by the same element and its image in the other partial ranking. The proof is presented in
Appendix A.5.2.

We note that the equivalences given by (4) and (5) are interesting in their own right.
Finally, we show that

Kprof(σ1,σ2) ≤ KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2). (6)

The above equivalence is proved using Proposition 6.
Using (4), (5), and (6), the proof is complete.

As we discussed earlier, the above theorem shows that our metrics are quite robust. The equivalence will
come in handy when we design aggregation algorithms for partial rankings in Section 6.

8



6 Aggregation of partial rankings

In this section we show how to employ aggregation algorithms based on the median to achieve constant
factor approximation algorithms for partial rankings. We achieve a factor of three with respect to theFprof

metric. By Theorem 7, we therefore have constant factor approximation algorithms with respect to the
other metricsFHaus,KHaus, andKprof . When the inputs themselves are full rankings, the median based
algorithm achieves a (better) factor of two with respect to the Spearman footrule distance. This answers an
open question from [8, 11].

Given a lista1, a2, . . . , am of numbers, we definemedian(a1, . . . , am) to be the set of values that would
typically be taken as the median of the list (note that ifm is odd, it is a set containing just one number).
More precisely, suppose that theai’s are relabeled so thata1 ≤ a2 ≤ · · · ≤ am. Thenmedian(a1, . . . , am)
is the set

{
am+1

2

}
whenm is odd, and the set{am

2
, am

2
+1, (am

2
+ am

2
+1)/2} whenm is even. Given a list

f1, . . . , fm of functions, each mappingD → R, we abuse notation slightly and definemedian(f1, . . . , fm)
to be the set of valid median functions. More precisely, we definemedian(f1, . . . , fm) to be

{f : D → R | f(d) ∈ median(f1(d), . . . , fm(d)), for everyd ∈ D}

The following lemma, previously noted in [11], shows the importance of the median function for rank
aggregation. Basically, it says that median is the best function for minimizingL1-norm quantities.

Lemma 8 ([11]) Let f1, f2, . . . , fm be functions mappingD → R. Assumef ∈ median(f1, . . . , fm).
Then for every functiong : D → R,

m∑
i=1

L1(f, fi) ≤
m∑

i=1

L1(g, fi).

Using Lemma 8, we show the following theorem, which says that the median aggregation algorithm can
be used to produce a topk list that is within a factor of three of the optimum topk list (in fact, we need
to run the median aggregation algorithm only long enough to output the firstk objects). The proof, in a
generalized version, appears in the appendix. Noting that a full ranking is actually a top-|D| list, we see that
the theorem also implies that the median aggregation algorithm produces a near-optimal full ranking.

Theorem 9 Let σ1,σ2, . . . ,σm be partial rankings. Assumef ∈ median(σ1, . . . ,σm). Supposeσ is a
top k list whose firstk objects are the same as the firstk objects off and are ordered according tof , with
ties among the topk broken arbitrarily. Then for every topk list τ ,

m∑
i=1

L1(σ,σi) ≤ 3
m∑

i=1

L1(τ ,σi).

We now recall the merits of median as an aggregation operator in the context of databases, as discussed
in [11]. In [11], the median rank aggregation algorithm was implemented by using two cursors for each
attribute to implicitly rank the database objects with respect to the query without having to sort for every
query. This ensures that the data is accessed in a localized and pre-defined order, without any random access
or extra storage, thereby permitting extremely efficient implementations. In fact, this algorithm was shown
to be instance-optimal [12]—among the class of algorithms that access the input rankings in sequential
order, this algorithm is the best possible algorithm (to within a constant factor) on every input instance. By
the above theorem, we automatically inherit all the benefits of the median rank aggregation algorithm even
for partial rankings.
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To see the simplicity of the whole algorithm, here is an instantiation to obtain the top element: access
each of the partial rankings, one element at a time, until some database object is seem in more thanm/2
(i.e., more than half the number of the inputs) times; output this object as the top result of the aggregation.
Theorem 9 guarantees that the topk list output by the algorithm is nearly as good as any other topk
list. We note that the output satisfies an even stronger notion of optimality; this is discussed further in
Appendix A.6.3.

In the above discussion, we assumed that the final goal of aggregation is to produce a full ranking (or top
k ranking) that is good when compared against other full rankings. In some applications, it may be desirable
(and sufficient) for the aggregation to obtain a partial ranking, but then the partial ranking should compare
well against all partial rankings (and not just full rankings or topk lists). We consider this and show that
it is possible to get a good approximation even in this case. Unfortunately, the algorithm we use cannot be
branded database-friendly, as it is based on dynamic programming.

Theorem 10 Letσ1, . . . ,σm be partial rankings, and assumef ∈ median(σ1, . . . ,σm). Suppose thatf †

is a partial ranking such that for all partial rankingsτ , we haveL1(f †, f) ≤ L1(τ , f). Then for every
partial rankingσ, we have

m∑
i=1

L1(f †,σi) ≤ 2
m∑

i=1

L1(σ,σi).

Furthermore, anf † that satisfiesL1(f †, f) ≤ L1(τ , f) for all τ can be computed inO(|D|2) time by
dynamic programming.

When the inputs themselves are full rankings and the output is required to be a full ranking, we obtain
a stronger result—we show that the median aggregation algorithm achieves an approximation factor of two
with respect to Spearman footrule distance. Note that this was an open problem emerging from the work of
[8, 11]; note also that we achieve a stronger approximation factor of two rather than three. Given a function
f : D → R, it naturally defines a partial ranking, denotedf̂ , as follows: for alli, j ∈ D, if f(i) < f(j),
then setf̂(i) < f̂(j); if f(i) = f(j), then setf̂(i) = f̂(j). We show:

Theorem 11 Let σ1, σ2, . . . , σm be full rankings with domainD. Assumef ∈ median(σ1, . . . , σm), and
let σ be a refinement of̂f where ties are broken arbitrarily. Then

∑m
i=1 L1(σ, σi) ≤ 2

∑m
i=1 L1(τ , σi) for

every partial rankingτ .

In particular, ifσ andτ are taken to be full rankings in Theorem 11, then this shows thatσ is a near-
optimal choice for full rankings that aggregateσ1, σ2, . . . , σm.

7 Conclusions

In this paper we consider metrics between partial rankings, motivated by need for such metrics in various
database applications. We define four intuitive and natural metrics between partial rankings. We obtain
efficient polynomial time algorithms to compute these metrics. We also show that these metrics are all within
constant multiples of each other. Armed with this, we obtain a constant factor approximation algorithm for
aggregation with respect to each of the metrics by obtaining a constant factor approximation algorithm with
respect to just one of them. Our algorithm is based on median rank and admits very efficient database-
friendly implementations.
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A Appendix

A.1 Preliminaries for the proofs

Types. When we speak of the buckets of a partial ranking, we are referring to the buckets of the correspond-
ing bucket order. LetB1, . . . ,Bt be the buckets of the partial rankingσ in order (thus,pos(Bi) < pos(Bj)
wheni < j). We define thetypeof σ to be the sequence|B1|, |B2|, . . . , |Bt|, and denote it bytype(σ). For
example, ifσ is a full ranking, thentype(σ) is the sequence1, 1, . . . , 1 with the number1 appearing|D|
times. We define atop k list to be a partial rankingσ wheretype(σ) is the sequence1, 1, . . . , 1, |D| − k,
with the number 1 appearing before|D| − k a total ofk times.

We also define the notion ofswappingin the normal way. Ifa, b ∈ D, thenswappinga and b in σ
produces a new orderσ′ whereσ′(a) = σ(b), σ′(b) = σ(a), andσ′(d) = σ(d) for all d ∈ D − {a, b}.

Finally, we state a fact that we use often.

Lemma 12 Supposea ≤ b andc ≤ d. Then|a− c|+ |b− d| ≤ |a− d|+ |b− c|.

Proof. To see this, first note that by symmetry, we can assume, without loss of generality, thata ≤ c. Now
there are three cases:a ≤ b ≤ c ≤ d, a ≤ c ≤ b ≤ d, anda ≤ c ≤ d ≤ b. In each case, it is easy to check
that the above inequality holds.

A.2 Choice of penalty values forK(p)

We now discuss our choice of penalty in Cases 2 and 3. In Case 2, wherei andj are in the same bucket in
bothσ1 andσ2, what if we had defined there to be a positive penaltyK̄

(p)
i,j (σ1,σ2) = q > 0? Then ifσ

were an arbitrary partial ranking that has some bucket of size at least 2, we would haveK(p)(σ,σ) ≥ q > 0.
SoK(p) would not have been a metric, or even a distance measure, since we would have lost the property
thatK(p)(σ,σ) = 0.

What about the choice of penaltyp in Case 3? We show the following:

Proposition 13 K(p) is a metric forp ∈ [1/2, 1], is a near metric forp ∈ (0, 1/2) and is not a distance
measure forp = 0.

Proof. Let us first consider the casep = 0. We now show thatK(0) is not even a distance measure. Let
the domainD have exactly two elementsa andb. Let τ 1 be the full ranking wherea precedesb, let τ 2 be
the partial ranking wherea andb are in the same bucket, and letτ 3 be the full ranking whereb precedesa.
ThenK(0)(τ 1, τ 2) = 0 even thoughτ 1 6= τ 2. So indeed,K(0) is not a distance measure. Note also that the
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near triangle inequality is violated badly in this example, sinceK(0)(τ 1, τ 2) = 0 andK(0)(τ 2, τ 3) = 0,
butK(0)(τ 1, τ 3) = 1.

It is easy to see thatK(p) is a distance measure for everyp with 0 < p ≤ 1. We now show thatK(p) does
not satisfy the triangle inequality when0 < p < 1/2 and satisfies the triangle inequality when1/2 ≤ p ≤ 1.
Let τ 1, τ 2, andτ 3 be as in our previous example. ThenK(p)(τ 1, τ 2) = p, K(p)(τ 2, τ 3) = p, and
K(p)(τ 1, τ 3) = 1. So the triangle inequality fails for0 < p < 1/2, sinceK(p)(τ 1, τ 3) > K(p)(τ 1, τ 2) +
K(p)(τ 2, τ 3). On the other hand, the triangle inequality holds for1/2 ≤ p ≤ 1, since then it is easy to verify

thatK̄(p)
i,j (σ1,σ3) ≤ K̄

(p)
i,j (σ1,σ2)+K̄

(p)
i,j (σ2,σ3), and soK(p)(σ1,σ3) ≤ K(p)(σ1,σ2)+K(p)(σ2,σ3).

We now show thatK(p) is a near metric for the remaining values ofp, where0 < p < 1/2. It is easy to
verify that if 0 < p < p′ ≤ 1, thenK(p)(σ1,σ2) ≤ K(p′)(σ1,σ2) ≤ (p′/p)K(p)(σ1,σ2). Hence, all of the
distance measuresK(p) are in the same equivalence class whenever0 < p. As noted earlier, it follows from
[10] that a distance measure is in the same equivalence class as a metric if and only if it is a near metric.
SinceK(p) is in the same equivalence class as the metricK(1/2) when0 < p < 1/2, we conclude that in
this case,K(p) is a near metric.

A.3 Metrics in this paper for top k lists vs. distance measures defined in [10]

We compare our metrics, when restricted to topk lists, with the the distance measures on topk lists intro-
duced in [10]. Recall that for us, a topk list is a partial ranking consisting ofk singleton buckets, followed
by a bottom bucket of size|D| − k. However, in [10], a topk list is a bijection of a domain onto{1, ..., k}.
Let σ andτ be topk lists (of our form), which may have different domains. Define theactive domain for
σ, τ to be the union of the elements in the topk buckets ofσ and the elements in the topk buckets ofτ . In
order to make our scenario compatible with the scenario of [10], we assume during our comparison that the
domainD equals the active domain forσ, τ . Our definitions ofK(p), FHaus, andKHaus are then exactly the
same in the two scenarios. (Unlike earlier, even the casep = 0 gives a distance metric, since the unpleasant
situation whereK(0)(τ1, τ2) = 0 even thoughτ1 6= τ2 does not arise for topk lists τ1 andτ2.) In spite of
this,K(p), FHaus, andKHaus are only near metrics in [10] in spite of being metrics for us. This is because
in [10], the active domain varies, depending on which pair of topk lists is being compared.

Our definition ofKprof(σ, τ ) is equivalent to the definition ofKavg(σ, τ ) in [10], namely the average
value ofK(σ, τ) over all full rankingsσ, τ whereσ � σ andτ � τ . It is interesting to note that ifσ
andτ were not topk lists but arbitrary partial rankings, thenKavg would not be a distance measure, since
Kavg(σ,σ) can be strictly positive ifσ is an arbitrary partial ranking.

Let ` be a real number greater thank. Thefootrule distance with location parameter`, denotedF (`), is
defined in [10] to be obtained, intuitively, by treating each element that is not among the topk elements as
if it were in position`, and then taking theL1 distance. More formally, letσ andτ be topk lists (of our
form). Define the functionfσ with domainD by letting fσ(i) = σ(i) if 1 ≤ σ(i) ≤ k, andfσ(i) = `
otherwise. Similarly, define the functionfτ with domainD by letting fτ (i) = τ (i) if 1 ≤ τ (i) ≤ k,
andfτ (i) = ` otherwise. ThenF (`)(σ, τ ) is defined to beL1(fτ , fσ). It is straightforward to verify that
Fprof(σ, τ ) = F (`)(σ, τ ) for ` = (|D|+ k + 1)/2.

A.4 Proofs for Section 4

In this section, we prove the results stated in Section 4. We begin with a lemma.

Lemma 14 Let π be a full ranking, and letσ be a partial ranking. Suppose thatπ 6= σ. Then there exist
i, j such thatπ(j) = π(i) + 1 whileσ(j) ≤ σ(i). If σ is in fact a full ranking, thenσ(j) < σ(i).
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Proof. Order the elements of the domainD =
{
d1, d2, . . . , d|D|

}
so thatπ(d1) < π(d2) < · · · < π(d|D|).

If σ(d`) < σ(d`+1) for all `, then we would haveKprof(σ, π) = 0, contradicting the fact thatπ 6= σ.
Hence, there must be some` for whichσ(d`+1) ≤ σ(d`). Settingi = d`, j = d`+1 gives us the lemma.

If σ is a full ranking, thenσ(j) 6= σ(i), showingσ(j) < σ(i).

Lemma 15 (Lemma 3 restated)Let σ be a full ranking, and letτ be a partial ranking. Then the quantity
F (σ, τ), taken over all full refinementsτ � τ , is minimized forτ = σ∗ τ . Similarly, the quantityK(σ, τ),
taken over all full refinementsτ � τ , is minimized forτ = σ∗ τ .

Proof. First, note that ifτ � τ then there is a full rankingπ such thatτ = π ∗ τ . We show that
F (σ, σ ∗ τ ) ≤ F (σ, π ∗ τ ) andK(σ, σ ∗ τ ) ≤ K(σ, π ∗ τ ) for every full rankingπ. The lemma will
then follow.

Let
U = {full π | F (σ, σ∗ τ ) > F (σ, π∗ τ )} ,

V = {full π | K(σ, σ∗ τ ) > K(σ, π∗ τ )} ,

and letS = U ∪ V . If S is empty, then we are done. So suppose not. Over all full rankingsπ ∈ S, choose
π to be the full ranking that minimizesK(σ, π).

Sinceπ 6= σ, Lemma 14 guarantees that we can find a pairi, j such thatπ(j) = π(i) + 1, butσ(j) <
σ(i). Produceπ′ by swappingi andj in π. Clearly,π′ has one fewer inversion with respect toσ thanπ
does. Hence,K(σ, π′) < K(σ, π). We show thatπ′ ∈ S, thus giving a contradiction.

If i andj are in different buckets forτ , thenπ′∗ τ = π∗ τ . Hence,F (σ, π′∗ τ ) = F (σ, π∗ τ ) and
K(σ, π′∗ τ ) = K(σ, π∗ τ ). So if π ∈ U , thenπ′ ∈ U as well. Similarly, ifπ ∈ V , thenπ′ ∈ V . In either
case,π′ ∈ S.

On the other hand, assume thati and j are in the same bucket forτ . Thenπ′ ∗ τ (i) = π ∗ τ (j)
andπ′ ∗ τ (j) = π ∗ τ (i). Furthermore, sinceπ(i) < π(j) and i andj are in the same bucket, we have
π∗ τ (i) < π∗ τ (j), while σ(j) < σ(i).

Eitherπ ∈ U or π ∈ V . First, consider the case whereπ ∈ U . Substitutinga = π∗ τ (i), b = π∗ τ (j),
c = σ(j), d = σ(i) in Lemma 12, we have

|π′∗ τ (j)− σ(j)|+ |π′∗ τ (i)− σ(i)| = |π∗ τ (i)− σ(j)|+ |π∗ τ (j)− σ(i)|
≤ |π∗ τ (i)− σ(i)|+ |π∗ τ (j)− σ(j)|

We also have|π′∗τ (d)−σ(d)| = |π∗τ (d)−σ(d)| for all d ∈ D−{i, j} sinceπ′∗τ andπ∗τ agree everywhere
but ati andj. Summing, we haveF (σ, π′∗ τ ) ≤ F (σ, π∗ τ ). Sinceπ ∈ U , thenF (σ, π∗ τ ) < F (σ, σ∗ τ ).
Soπ′ ∈ U by transitivity.

Now consider the case whereπ ∈ V . By our choice,π(j) = π(i) + 1. Hence,π∗ τ (j) = π∗ τ (i) + 1
sincei andj are in the same bucket ofτ . Similarly,π′∗ τ (i) = π′∗ τ (j) + 1. And as we noted earlier,π∗ τ
andπ′∗τ agree everywhere except ati andj. In other words,π′∗τ is justπ′∗τ , with theadjacentelements
i andj swapped. Sinceσ(i) > σ(j) we see thatπ′∗τ has exactly one fewer inversion with respect toσ than
π∗ τ does. That is,K(σ, π′∗ τ ) < K(σ, π∗ τ ). Sinceπ ∈ V , we haveK(σ, π∗ τ ) < K(σ, σ∗ τ ). Soπ′

must be inV as well, by transitivity.
In either case, we have produced aπ′ ∈ S such thatK(σ, π′) < K(σ, π), contradicting the minimality

of π. Hence,S must have been empty, as we wanted.

Lemma 16 (Lemma 4 restated)Let σ andτ be partial rankings, and letρ be any full ranking. Then the
quantityF (σ, σ∗ τ ), taken over all full refinementsσ � σ, is maximized whenσ = ρ∗ τR∗ σ. Similarly,
the quantityK(σ, σ∗ τ ), taken over all full refinementsσ � σ, is maximized whenσ = ρ∗ τR∗ σ.
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Proof. First, note that for any full refinementσ � σ, there is some full ranking,π, such thatσ = π∗σ. We
show that for all full rankingsπ that

F (ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) ≥ F (π∗ σ, π∗ σ∗ τ )
andK(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) ≥ K(π∗ σ, π∗ σ∗ τ )

The lemma will then follow.
Let U =

{
full π | F (ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < F (π∗ σ, π∗ σ∗ τ )

}
, let

V =
{

full π : K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < K(π∗ σ, π∗ σ∗ τ )
}

, and letS = U ∪ V . If S is empty,
then we are done. So suppose not. Over all full rankingsπ ∈ S, chooseπ to be the full ranking that
minimizesK(ρ∗ τR, π).

Sinceπ 6= ρ∗ τR, Lemma 14 guarantees that we can find a pairi, j such thatπ(j) = π(i) + 1, but
ρ∗ τR(j) < ρ∗ τR(i). Produceπ′ by swappingi andj. Clearly,π′ has one fewer inversion with respect
to ρ∗ τR thanπ does. That is,K(ρ∗ τR, π′) < K(ρ∗ τR, π). We now show thatπ′ ∈ S, producing a
contradiction.

If i andj are in different buckets forσ, thenπ′∗σ = π∗σ. Hence,F (π′∗σ, π′∗σ∗τ ) = F (π∗σ, π∗σ∗τ )
andK(π′∗σ, π′∗σ∗ τ ) = K(π∗σ, π∗σ∗ τ ). So ifπ ∈ U , thenπ′ ∈ U . Similarly, if π ∈ V , thenπ′ ∈ V .
Hence,π must be inS.

Likewise, if i andj are in the same bucket for bothσ andτ , then swappingi andj in π swaps their
positions in bothπ∗ σ∗ τ andπ∗ σ. So again, we seeF (π′ ∗ σ, π′ ∗ σ∗ τ ) = F (π∗ σ, π∗ σ∗ τ ) and
K(π′∗ σ, π′∗ σ∗ τ ) = K(π∗ σ, π∗ σ∗ τ ). As before,π′ ∈ S.

Now, consider the case wheni andj are in the same bucket forσ, but in different buckets forτ . First
of all, π′∗σ is justπ∗σ with i andj swapped sincei andj are in the same bucket forσ; further, notice that
i andj are adjacent inπ∗ σ. Second,π′∗ σ∗ τ = π∗ σ∗ τ sincei andj are in different buckets forτ .

Sinceπ(i) < π(j), we haveπ∗ σ(i) < π∗ σ(j). Further,τ (i) < τ (j) sinceρ∗ τR(j) < ρ∗ τR(i) and
ρ∗ τR is a refinement of the reverse ofτ . Hence,π∗σ∗ τ (i) < π∗σ∗ τ (j). We have two cases to consider.
Eitherπ ∈ U or π ∈ V .

Let us first examine the case thatπ ∈ U . Substitutinga = π∗ σ(i), b = π∗ σ(j), c = π∗ σ∗ τ (i),
d = π∗ σ∗ τ (j), in Lemma 12 gives us

|π∗ σ(i)− π∗ σ∗ τ (i)| + |π∗ σ(j)− π∗ σ∗ τ (j)|
≤ |π∗ σ(i)− π∗ σ∗ τ (j)| + |π∗ σ(j)− π∗ σ∗ τ (i)|

= |π′∗ σ(j)− π′∗ σ∗ τ (j)| + |π′∗ σ(i)− π′∗ σ∗ τ (i)|

We also have that|π′∗σ(d)−π′∗σ∗τ (d)| = |π∗σ(d)−π∗σ∗τ (d)| for all d ∈ D−{i, j}. Summing over all
d, we obtainF (π∗σ, π∗σ∗τ ) ≤ F (π′∗σ, π′∗σ∗τ ). Sinceπ ∈ U , we have thatF (ρ∗τR∗σ, ρ∗τR∗σ∗τ ) <
F (π∗ σ, π∗ σ∗ τ ). Hence,π′ ∈ U by transitivity.

We now examine the case thatπ ∈ V . From above, we see thatπ′∗ σ∗ τ = π∗ σ∗ τ , while π′∗ σ
and π ∗ σ differ only by swapping the adjacent elementsi and j. Sinceπ′ ∗ σ(i) > π′ ∗ σ(j) while
π′∗ σ∗ τ (i) < π′∗ σ∗ τ (j), we see that there is exactly one more inversion betweenπ′∗ σ andπ′∗ σ∗ τ
than betweenπ∗ σ andπ∗ σ∗ τ . That is,K(π∗ σ, π∗ σ∗ τ ) < K(π′∗ σ, π′∗ σ∗ τ ). By our assumption,
π ∈ V , henceK(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < K(π∗ σ, π∗ σ∗ τ ). It follows thatπ′ ∈ V .

So in each case, we have produced aπ′ ∈ S such thatK(ρ∗ τR, π′) < K(ρ∗ τR, π), contradicting the
minimality of π. Hence,S must have been empty, as we wanted.

Theorem 17 (Theorem 5 restated)Letσ andτ be partial rankings, letσR be the reverse ofσ, and letτR

be the reverse ofτ . Letρ be any full ranking. Then

FHaus(σ, τ ) = max
{
F (ρ∗ τR∗ σ, ρ∗ σ∗ τ ), F (ρ∗ τ ∗ σ, ρ∗ σR∗ τ )

}
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KHaus(σ, τ ) = max
{
K(ρ∗ τR∗ σ, ρ∗ σ∗ τ ),K(ρ∗ τ ∗ σ, ρ∗ σR∗ τ )

}
Proof. We prove it forFHaus. The proof forKHaus is analogous. Recall that

FHaus(σ, τ ) = max
{

max
σ

min
τ

F (σ, τ),max
τ

min
σ

F (σ, τ)
}

where throughout this proof,σ andτ range through all full refinements ofσ andτ , respectively. We show
maxσ minτ F (σ, τ) = F (ρ∗ τR∗σ, ρ∗σ∗ τ ). The fact thatmaxτ minσ F (σ, τ) = F (ρ∗ τ ∗σ, ρ∗σR∗ τ )
follows similarly.

Think of σ � σ as fixed. Then by Lemma 3, the quantityF (σ, τ), whereτ ranges over all full refine-
ments ofτ , is minimized whenτ = σ∗ τ . That is,minτ F (σ, τ) = F (σ, σ∗ τ ).

By Lemma 4, the quantityF (σ, σ∗τ ), whereσ ranges over all full refinements ofσ, is maximized when
σ = ρ∗ τR∗σ. Hence,maxσ minτ F (σ, τ) = F (ρ∗ τR∗σ, ρ∗ τR∗σ∗ τ ). Sinceρ∗ τR∗σ∗ τ = ρ∗σ∗ τ ,
we havemaxσ minτ F (σ, τ) = F (ρ∗ τR∗ σ, ρ∗ σ∗ τ ), as we wanted.

Proposition 18 (Proposition 6 restated)Let σ andτ be partial rankings. LetS be the set of pairs{i, j}
of distinct elements such thati andj appear in the same bucket ofσ but in different buckets ofτ , let T be
the set of pairs{i, j} of distinct elements such thati andj appear in the same bucket ofτ but in different
buckets ofσ, and letU be the set of pairs{i, j} of distinct elements that are in different buckets of bothσ
andτ and are in a different order inσ andτ . ThenKHaus(σ, τ ) = |U |+ max {|S|, |T |}.

Proof. As before, letσ1 = ρ∗ τR ∗ σ, let τ1 = ρ∗ σ∗ τ , let σ2 = ρ∗ τ ∗ σ, and letτ2 = ρ∗ σR ∗ τ .
It is straightforward to see that the set of pairs{i, j} of distinct elements that are in a different order inσ1

andτ1 is exactly the union of the disjoint setsU andS. Therefore,K(σ1, τ1) = |U | + |S|. Identically, the
set of pairs{i, j} of distinct elements that are in a different order inσ2 andτ2 is exactly the union of the
disjoint setsU andT , and henceK(σ2, τ2) = |U |+ |T |. But by Theorem 5, we know thatKHaus(σ, τ ) =
max {K(σ1, τ1),K(σ2, τ2)} = max |U |+ |S|, |U |+ |T |. The result follows immediately.

A.5 Proofs for Section 5

In this section we prove the equivalence of all our metrics.

A.5.1 Equivalence ofFHaus and KHaus

In this section, we prove the simple result that the Diaconis–Graham inequalities (1) extend toFHaus and
KHaus. We begin with a lemma. In this lemma, for metricd, we definedHaus as in (2), and similarly for
metricd′.

Lemma 19 Assume thatd and d′ are metrics where there is a constantc such thatd ≤ c · d′. Then
dHaus ≤ c · d′Haus.

Proof. Let A and B be as in (2). Assume without loss of generality thatdHaus(A,B) =
maxγ1∈A minγ2∈B d(γ1, γ2). Find γ1 in A that maximizesminγ2∈B d(γ1, γ2), and γ2 in B that mini-
mizesd(γ1, γ2). Therefore,dHaus(A,B) = d(γ1, γ2). Find γ′2 in B that minimizesd′(γ1, γ

′
2). (There

is such anγ′2 since by assumption on the definition of Hausdorff distance,A andB are finite sets.) Then
dHaus(A,B) = d(γ1, γ2) ≤ d(γ1, γ

′
2), sinceγ2 minimizesd(γ1, γ2). Also d(γ1, γ

′
2) ≤ c · d′(γ1, γ

′
2), by

assumption ond andd′. Finally c · d′(γ1, γ
′
2) ≤ c · d′Haus(A,B), by definition ofd′Haus and the fact thatγ′2

minimizesd′(γ1, γ
′
2). Putting these inequalities together, we obtaindHaus(A,B) ≤ c · d′Haus(A,B), which

completes the proof.

We can now show that the Diaconis–Graham inequalities (1) extend toFHaus andKHaus.
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Theorem 20 Let σ1 and σ2 be partial rankings. ThenKHaus(σ1,σ2) ≤ FHaus(σ1,σ2) ≤
2KHaus(σ1,σ2).

Proof. The first inequalityKHaus(σ1,σ2) ≤ FHaus(σ1,σ2) follows from the first Diaconis–Graham in-
equalityK(σ1,σ2) ≤ F (σ1,σ2) and Lemma 19, where we let the roles ofd, d′ andc be played byK,
F , and 1 respectively. The second inequalityFHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2) follows from the second
Diaconis–Graham inequalityF (σ1,σ2) ≤ 2K(σ1,σ2) and Lemma 19, where we let the roles ofd, d′ and
c be played byF , K, and 2 respectively.

A.5.2 Equivalence ofFprof and Kprof

In order to generalize the Diaconis–Graham inequalities toFprof andKprof , we convert a pair of partial
rankings into full rankings in such a way that both theFprof andKprof distances between the partial rankings
is precisely1

4 times theF andK distances between the full rankings, respectively. Given a partial ranking,
σ, with domainD, produce a duplicate set,D] =

{
i] : i ∈ D

}
. Further, produce a new partial ranking,σ],

with domainD ∪D] defined byσ](i) = σ](i]) = 2σ(i)− 1/2 for all i ∈ D.
It is easy to see thatσ] is a well-defined partial ranking. Further, it is not hard to check that for any

partial rankingτ ,

Fprof(σ], τ ]) = 4Fprof(σ, τ )
Kprof(σ], τ ]) = 4Kprof(σ, τ )

In order for us to prove our theorem, we still need to convertσ] from a partial ranking to a full ranking. For
any full rankingπ with domainD, define a full rankingπ\ with domainD ∪D] as follows:

π\(d) = π(d) for all d ∈ D

π\(d]) = 2|D|+ 1− π(d) for all d ∈ D

so thatπ\ ranks elements ofD in the same order asπ, elements ofD] in the reverse order ofπ, and all
elements ofD before all elements ofD].

We defineσπ = π\∗(σ]). For instance, supposeB is a bucket ofσ] containing the itemsa, b, c, a], b], c],
and suppose thatπ orders the itemsπ(a) < π(b) < π(c). Thenσπ will contain the sequencea, b, c, c], b], a].
Also notice that12(σπ(a)+σπ(a])) = 1

2(σπ(b)+σπ(b])) = 1
2(σπ(c)+σπ(c])) = pos(B). In fact, because

of this “reflected-duplicate” property, we see that in general, for anyd ∈ D,

1
2
(σπ(d) + σπ(d])) = σ](d) = σ](d]) = 2σ(d)− 1/2 (7)

The following lemma shows that no matter what orderπ we choose, the Kendall distance betweenσπ and
τ π is exactly 4 times theKprof distance betweenσ andτ .

Lemma 21 Let σ, τ be partial rankings, and letπ be any full ranking on the same domain. Then
K(σπ, τ π) = 4Kprof(σ, τ ).

Proof. By cases.

Notice that Lemma 21 holds for any choice ofπ. The analogous statement is not true forFprof . In that
case, we need to chooseπ specifically for the pair of partial rankings we are given. In particular, we need to
avoid a property we call “nesting.”
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Given fixedσ, τ , we say that an elementd ∈ D is nestedwith respect toπ if either

[σπ(d),σπ(d])] @ [τ π(d), τ π(d])]
or [τ π(d), τ π(d])] @ [σπ(d),σπ(d])]

where the notation[s, t] @ [u, v] for integerss, t, u, v means that[s, t] ⊆ [u, v] ands 6= u, t 6= v. It is
sometimes convenient to write[u, v] A [s, t] for [s, t] @ [u, v].

The following lemma shows us why we want to avoid nesting.

Lemma 22 Given partial rankingsσ, τ and full rankingπ, suppose that there are no elements that are
nested with respect toπ. ThenF (σπ, τ π) = 4Fprof(σ, τ ).

Proof. Let d ∈ D. Sinced is not nested with respect toπ, either

σπ(d) ≤ τ π(d) andσπ(d]) ≤ τ π(d])
or σπ(d) ≥ τ π(d) andσπ(d]) ≥ τ π(d])

In either case, we see

|σπ(d)− τ π(d)|+ |σπ(d])− τ π(d])| = |σπ(d)− τ π(d) + σπ(d])− τ π(d])|

But recall that12(σπ(d) + σπ(d])) = 2σ(d)− 1/2 and similarly forτ π. Substituting gives us

|σπ(d)− τ π(d)|+ |σπ(d])− τ π(d])| = 4|σ(d)− τ (d)|

Hence,

F (σπ, τ π) =
∑
d∈D

(|σπ(d)− τ π(d)|+ |σπ(d])− τ π(d])|)

=
∑
d∈D

4|σ(d)− τ (d)|

= 4Fprof(σ, τ )

In the proof of the following lemma, we show that in fact, there is always a full rankingπ with no nested
elements.

Lemma 23 Let σ, τ be partial rankings. Then there exists a full rankingπ on the same domain such that
F (σπ, τ π) = 4Fprof(σ, τ ).

Proof. We produce a full rankingπ that has no nested elements. For any full rankingρ, we say itsfirst nest
is mind π(d), whered is allowed to range over all nested elements ofρ; we say its first nest is∞ if ρ has no
nests. Chooseπ so that its first nest is as large as possible.

If π has no nested elements, then we are done. Otherwise, leta be the element such thatπ(a) is
the first nest ofπ. By definition,a is nested. Without loss of generality, assume that[σπ(a),σπ(a])] A
[τ π(a), τ π(a])]. We findb ∈ D so thatπ(a) < π(b), and swappinga andb in π will leave b unnested. To
this end, let

S1 =
{

d ∈ D − {a} | [σπ(a),σπ(a])] A [σπ(d),σπ(d])]
}

S2 =
{

d ∈ D − {a} | [σπ(a),σπ(a])] A [τ π(d), τ π(d])]
}
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Chooseb ∈ S1 − S2. To see such ab exists, note that|S1| = 1
2 |[σπ(a),σπ(a])]| − 1, while |S2| ≤

1
2 |[σπ(a),σπ(a])]| − 2, since[σπ(a),σπ(a])] A [τ π(a), τ π(a])] but a is not counted inS2. Note that
b ∈ S1 impliesa andb are in the same bucket forσ. It further implies thatπ(a) < π(b).

Furthermore,a and b are in different buckets forτ . To see this, suppose thata and b were in the
same bucket forτ . Then sinceπ(a) < π(b), we would haveτ π(a) < τ π(b) and τ π(a]) > τ π(b]).
That is, [τ π(a), τ π(a])] A [τ π(b), τ π(b])]. But a is nested, so by our assumption,[σπ(a),σπ(a])] A
[τ π(a), τ π(a])] A [τ π(b), τ π(b])]. This contradicts the fact thatb /∈ S2. Hence,a andb must be in different
buckets forτ .

Now, produceπ′ by swappinga andb in π. Sinceπ(a) < π(b), we seeπ′(b) = π(a) < π(b) = π′(a).
We wish to prove that the first nest forπ′ is larger than the first nest forπ, giving a contradiction. We
do so by showing thatb is unnested forπ′ and further, thatd is unnested forπ′ for all d ∈ D such that
π′(d) < π′(b) = π(a). In order to prove this, we need to examine the affect of swappinga andb in π.

To this end, consider a bucketB of σ. Letπ|B denote the order thatπ induces onB. Sinceπ′(d) = π(d)
for all d such thatπ(d) < π(a), we see thatπ′|B(d) = π|B(d) for all suchd. Hence,σπ′(d) = σπ(d) and
σπ′(d]) = σπ(d]) for all suchd. Therefore, for alld such thatπ(d) < π(a)

[σπ′(d),σπ′(d])] = [σπ(d),σπ(d])] (8)

Let B be the bucket ofσ that containsa andb. Thenπ′|B is justπ|B with a andb swapped. Soπ′|B(b) =
π|B(a). Hence,σπ′(b) = σπ(a) andσπ′(b]) = σπ(a]). That is,

[σπ′(b),σπ′(b])] = [σπ(a),σπ(a])] (9)

We now consider a bucketB of τ . Arguing as we did for buckets ofσ, we have that for alld such that
π(d) < π(a),

[τ π′(d), τ π′(d])] = [τ π(d), τ π(d])] (10)

Now, let B be the bucket ofτ that containsa. Sinceπ and π′ differ only by swappinga and b, and
π′(a) > π(a), we see thatπ′|B(a) ≥ π|B(a). Hence,τ π′(a) ≥ τ π(a) andτ π′(a]) ≤ τ π(a]). That is,

[τ π′(a), τ π′(a])] ⊆ [τ π(a), τ π(a])] (11)

Finally, let B be the bucket ofτ that containsb. Sinceπ andπ′ differ only by swappinga and b, and
π′(b) < π(b), we see thatπ′|B(b) ≤ π|B(b). Hence,τ π′(b) ≤ τ π(b) andτ π′(b]) ≥ τ π(b]). That is,

[τ π′(b), τ π′(b])] ⊇ [τ π(b), τ π(b])] (12)

We are now ready to prove the lemma. From equations (8) and (10), we see thatd remains unnested for
all d such thatπ′(d) < π(a) = π′(b). So we only need to show thatb is unnested forπ′ to finish the proof.

If b were nested forπ′, then either[σπ′(b),σπ′(b])] A [τ π′(b), τ π′(b])] or [τ π′(b), τ π′(b])] A
[σπ′(b),σπ′(b])]. First, suppose that[σπ′(b),σπ′(b])] A [τ π′(b), τ π′(b])]. Then

[σπ(a),σπ(a])] = [σπ′(b),σπ′(b])] from equation (9)

A [τ π′(b), τ π′(b])] by supposition

⊇ [τ π(b), τ π(b])] from (12)

But this contradicts the fact thatb /∈ S2. Now, suppose that[τ π′(b), τ π′(b])] A [σπ′(b),σπ′(b])]. Then

[τ π′(b), τ π′(b])] A [σπ′(b),σπ′(b])] by supposition

= [σπ(a),σπ(a])] from equation (9)

A [τ π(a), τ π(a])] sincea is nested, by assumption

⊇ [τ π′(a), τ π′(a])] from (11)
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But this implies thata andb are in the same bucket forτ , a contradiction. Hence,b must not be nested for
π′.

Hence, if any elementd is nested forπ′, it must be the case thatπ′(d) > π′(b) = π(a). That is, the first
nest forπ′ is larger than the first nest forπ, contradicting our choice ofπ. Therefore,π must have had no
nested elements. By Lemma 22,F (σπ, τ π) = 4Fprof(σ, τ ), as we wanted.

Putting these two lemmas together, we conclude the following.

Theorem 24 Letσ andτ be partial rankings. ThenKprof(σ, τ ) ≤ Fprof(σ, τ ) ≤ 2Kprof(σ, τ ).

Proof. Givenσ andτ , let π be the full ranking guaranteed in Lemma 23. Then we have

Kprof(σ, τ ) = 4K(σπ, τ π) by Lemma 21

≤ 4F (σπ, τ π) from Diaconis–Graham

= Fprof(σ, τ ) by Lemma 23

And similarly,

Fprof(σ, τ ) = 4F (σπ, τ π) by Lemma 23

≤ 8K(σπ, τ π) from Diaconis–Graham

= 2Kprof(σ, τ ) by Lemma 21

A.5.3 Equivalence ofKHaus and Kprof

We show thatKHaus andKprof are in the same equivalence class, thereby proving (6).

Lemma 25 Letσ1 andσ2 be partial rankings. ThenKprof(σ1,σ2) ≤ KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2).

Proof. As in Proposition 6 (but where we letσ1 play the role ofσ andσ2 play the role ofτ ), let S be
the set of pairs{i, j} of distinct elements such thati andj appear in the same bucket ofσ1 but in different
buckets ofσ2, letT be the set of pairs{i, j} of distinct elements such thati andj appear in the same bucket
of σ2 but in different buckets ofσ1, and letU be the set of pairs{i, j} of distinct elements that are in
different buckets of bothσ1 andσ2 and are in a different order inσ1 andσ2. By Proposition 6, we know
thatKHaus(σ1,σ2) = |U | + max {|S|, |T |}. It follows from the definition ofKprof thatKprof(σ1,σ2) =
|U | + 1

2 |S| +
1
2 |T |. The theorem now follows from the straightforward inequalities|U | + 1

2 |S| +
1
2 |T | ≤

|U |+ max {|S|, |T |} ≤ 2(|U |+ 1
2 |S|+

1
2 |T |).

A.6 Proofs for Section 6

A.6.1 Basic machinery

In this section we develop the basic machinery needed to prove the theorems in Section 6.
The following lemma appears to be folklore; for completeness, we include a proof here. Note that

Lemma 12 is, in fact, a special case of this lemma.

Lemma 26 If A andB are two multisets of numbers of the same size, and the cost of matchinga ∈ A to
b ∈ B is |a− b|, then the order-preserving perfect matching (i.e., the matching that matches thei-th largest
element ofA to thei-th largest element ofB) is a minimum cost perfect matching betweenA andB.
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Proof. Let us denote the elements ofA andB by a1, a2, . . . , an andb1, b2, . . . , bn, respectively. Consider
a minimum cost perfect matchingµ betweenA andB that matches the elementai with bµ(i). Assume,
without loss of generality, thata1 ≤ a2 ≤ · · · ≤ an. If bµ(1) ≤ bµ(2) ≤ · · · ≤ bµ(n), then we are done.
Otherwise, there existsi such thatbµ(i) > bµ(i+1). Using Lemma 12, where the roles ofa, b, c, d are played
by ai, bi, bµ(i+1), bµ(i) respectively, we obtain|ai− bµ(i+1)|+ |ai+1− bµ(i)| ≤ |ai− bµ(i)|+ |ai+1− bµ(i+1)|.
Therefore, the matchingµ′ defined by

µ′(j) =


µ(i + 1) j = i
µ(i) j = i + 1
µ(j) otherwise

has a cost not greater than the cost ofµ. Thus,µ′ is a minimum cost perfect matching betweenA andB.
Furthermore, the number ofj’s such thatbµ′(j) > bµ′(j+1) is strictly smaller than the corresponding number
for µ. Therefore, by repeating the above procedure we eventually get a minimum cost perfect matching that
is order preserving.

Given functionsf : D → R andg : D → R, we say thatf andg areconsistentwith each other if there is
no pairi, j ∈ D such thatf(i) < f(j) andg(i) > g(j). We now show that this notion is symmetric in the
role of f andg. Assume thatf andg are consistent with each other, and there is a pairi, j ∈ D such that
g(i) < g(j) andf(i) > f(j). By reversing the roles ofi andj, we obtain a contradiction to the fact thatf
andg are consistent with each other. Although, as we just showed, this relationship is symmetric, it is not
transitive, since the constant function is consistent with all other functions. We define〈f〉 to be the set of all
partial rankingsthat are consistent withf .

Recall that ifσ is a partial ranking consisting of bucketsB1,B2, . . . ,Bt with pos(B1) < pos(B2) <
· · · < pos(Bt), thetypeof σ, denotedtype(σ), is the sequence|B1|, |B2|, . . . , |Bt|. Given a typeα, define
〈f〉α to be the subset of〈f〉 consisting of partial rankings with typeα.

Lemma 27 Let f : D → R, let α be a type, and supposeσ ∈ 〈f〉α. ThenL1(σ, f) ≤ L1(τ , f) for all
partial rankingsτ such thattype(τ ) = α.

Proof. Consider the multisetsA = {{σ(x) : x ∈ D}} andB = {{f(x) : x ∈ D}}. It is clear from
the definition of partial rankings and types that every partial rankingτ of typeα corresponds to a perfect
matching betweenD andA. Since there is a one-to-one correspondence betweenD andB, every suchτ
also corresponds to a perfect matching betweenA andB. Furthermore, the cost of this perfect matching
(assuming that the cost of matchinga ∈ A with b ∈ B is |a− b|) is preciselyL1(τ , f). Thus, by Lemma 26,
the minimum value ofL1(τ , f) is achieved whenτ is consistent withf , that is, when it belongs to〈f〉α.
Hence,L1(σ, f) ≤ L1(τ , f).

Lemma 28 Letf : D → R, and letf̂ be the partial ranking associated with it. Letσ be a refinement of̂f .
Then for every full rankingτ , we haveL1(σ, f) ≤ L1(τ, f).

Proof. Let σ � f̂ , and letσ be a full ranking that is a refinement ofσ. We showL1(σ, f) ≤ L1(σ, f),
henceL1(σ, f) ≤ L1(τ, f) by Lemma 27 (both have the same type, namely1, 2, . . . , |D|).

To this end, letB be a bucket ofσ. Sinceσ is a refinement of̂f , we see thatf is constant over alli ∈ B;
call this valuefB. Sinceσ is a refinement ofσ, we see that

∑
i∈B σ(i) = |B| · pos(B). So we have

∑
i∈B

|σ(i)− fB| ≥

∣∣∣∣∣∑
i∈B

(σ(i)− fB)

∣∣∣∣∣ = |B| · |pos(B)− fB| =
∑
i∈B

|σ(i)− fB| .

Summing the above over all buckets ofσ, we see thatL1(σ, f) ≥ L1(σ, f), as we wanted.
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A.6.2 Proofs

Theorems 9,10, and 11 are special cases of the following theorem, as we shall show.

Theorem 29 Let f1, . . . , fm be functions mappingD → R, and assumef ∈ median(f1, . . . , fm). Also,
let S be a set of functions (for instance, the set of topk lists, or the set of partial rankings). Suppose thatf ′

is a function such that for all functionsg ∈ S, we haveL1(f ′, f) ≤ L1(g, f). Then for all functionsg ∈ S,
we have

m∑
i=1

L1(f ′, fi) ≤ 3
m∑

i=1

L1(g, fi).

If the functionsf1, . . . , fm ∈ S, then we have for all functionsh,

m∑
i=1

L1(f ′, fi) ≤ 2
m∑

i=1

L1(h, fi).

Proof.

m∑
i=1

L1(f ′, fi) ≤
m∑

i=1

(L1(f ′, f) + L1(f, fi)) by the triangle inequality

≤
m∑

i=1

(L1(g, f) + L1(f, fi)) by assumption

≤
m∑

i=1

(L1(g, fi) + L1(fi, f) + L1(f, fi)) by the triangle inequality

≤ 3
m∑

i=1

L1(g, fi) by Lemma 8

As for the second part,

m∑
i=1

L1(f ′, fi) ≤
m∑

i=1

(L1(f ′, f) + L1(f, fi)) by the triangle inequality

≤
m∑

i=1

2L1(f, fi) by assumption, since eachfi ∈ S

≤ 2
m∑

i=1

L1(h, fi) by Lemma 8

Recall that Theorem 9 considered the case when the output of the aggregation is forced to be a topk list.
We now show a more general form of this theorem when the output can be specified to be any fixed typeα
and where we aggregate not just partial rankings but arbitrary funciton.

Corollary 30 (Generalized form of Theorem 9) Let f1, f2, . . . , fm be functions mappingD → R. As-
sumef ∈ median(f1, . . . , fm). Letα be a type, and assumeσ ∈ 〈f〉α. Then for every partial rankingτ
such thattype(τ ) = α,

m∑
i=1

L1(σ, fi) ≤ 3
m∑

i=1

L1(τ , fi)
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Furthermore, if all of thefi’s are partial rankings withtype(f1) = type(f2) = · · · = type(fm) = α, then
for all functionsg,

m∑
i=1

L1(σ, fi) ≤ 2
m∑

i=1

L1(g, fi)

Proof. Let S be the set of partial rankings with typeα. Then combining Lemma 27 and Theorem 29 gives
us the result.

Corollary 31 (Generalized form of Theorem 10) Let f1, . . . , fm be functions mappingD → R, and as-
sumef ∈ median(f1, . . . , fm). Suppose thatf † is a partial ranking such that for all partial rankingsτ , we
haveL1(f †, f) ≤ L1(τ , f). Then for all partial rankingsσ, we have

m∑
i=1

L1(f †, fi) ≤ 3
m∑

i=1

L1(σ, fi).

If the functionsf1, . . . , fm are in fact partial rankings then we have for all functionsg,

m∑
i=1

L1(f †, fi) ≤ 2
m∑

i=1

L1(g, fi).

Furthermore, in this second case where the functionsf1, . . . , fm are partial rankings, anf † that satisfies
L1(f †, f) ≤ L1(τ , f) for all partial ordersτ can be computed inO(|D|2) time by dynamic programming.

Proof. SettingS to be the set of all partial rankings in Theorem 29, the result is immediate once we are
givenf †. TheO(|D|2) time dynamic programming algorithm to calculate an appropriatef † is presented in
Section A.6.4.

Corollary 32 (Generalized form of Theorem 11) Letσ1, σ2, . . . , σm be full rankings with domainD. Let
f ∈ median(σ1, . . . , σm), and letσ be any refinement of̂f . Then

∑m
i=1 L1(σ, σi) ≤ 2

∑m
i=1 L1(g, σi) for

every functiong.

Proof. SettingS to be the set of all full rankings in Theorem 29, and using Lemma 28, the result follows.

A.6.3 Stronger notions of optimality

Theorem 9 tells us that the median aggregation algorithm allows us to produce a topk list that is almost as
good as any other topk list. However, we can show that the topk list produced is nearly optimal in an even
stronger sense.

We say a partial rankingσ of typeα is nearly optimalin the strong senseif there is some partial ranking
σ′ such thatσ = 〈σ′〉α and furtherσ′ is nearly optimal. For instance, a topk list is nearly optimal in the
strong sense if it represents thek most highly-ranked objects for some nearly optimal partial ranking.

We note first that this notion implies the weaker notion. Specifically, we have the following theorem.

Theorem 33 Let f1, . . . , fm be functions mappingD → R. Suppose that partial rankingσ of typeα is
nearly optimal in the strong sense. More precisely, letσ′ be a partial ranking such thatσ = 〈σ′〉α and for
all partial rankingsτ ′,

m∑
i=1

L1(σ′, fi) ≤ c

m∑
i=1

L1(τ ′, fi).
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for some constantc. Then for all partial rankingsτ of typeα, we have

m∑
i=1

L1(σ, fi) ≤ (2c + 1)
m∑

i=1

L1(τ , fi).

Proof.

m∑
i=1

L1(σ, fi) ≤
m∑

i=1

(L1(σ,σ′) + L1(σ′, fi)) by the triangle inequality

≤
m∑

i=1

(L1(τ ,σ′) + L1(σ′, fi)) by Lemma 27

≤
m∑

i=1

(L1(τ , fi) + L1(fi,σ
′) + L1(σ′, fi)) by the triangle inequality

≤ (2c + 1)
m∑

i=1

L1(τ , fi) by assumption

Lemma 34 Let α andβ be types, letf be a function, and suppose thatσ ∈ 〈f〉α. Then there is a partial
rankingσ′ ∈ 〈f〉β such thatσ ∈ 〈σ′〉α.

Proof. We first define a partial rankingρ that is a refinement of bothσ andf̂ , the induced partial ranking
associated withf . For each pairi, j, if σ(i) < σ(j) then setρ(i) < ρ(j). If σ(i) = σ(j) andf(i) < f(j),
then setρ(i) < ρ(j). If σ(i) = σ(j) andf(i) = f(j), then setρ(i) = ρ(j). Notice that iff(i) < f(j),
thenσ(i) ≤ σ(j) sincef andσ are consistent with each other. So by definition,ρ(i) < ρ(j) as well.

Assumeσ′ ∈ 〈ρ〉β. We claim thatσ′ is consistent withf and withσ. To see the first part, consider any
i, j thatf(i) < f(j). Thenρ(i) < ρ(j) as we noted above. Henceσ′(i) ≤ σ′(j) sinceσ′ is consistent with
ρ. Soσ′ is consistent withf . Hence,σ′ ∈ 〈f〉β. Similarly, if σ(i) < σ(j), thenρ(i) < ρ(j) by definition.
Henceσ′(i) ≤ σ′(j). Soσ is consistent withσ′. Thus,σ ∈ 〈σ′〉α, as we wanted.

We now prove that the median aggregation algorithm also produces a topk list that is nearly optimal in
the strong sense. We actually prove a slightly more general theorem.

Theorem 35 Let α be a type and letf1, . . . , fm be functions. Assumef ∈ median(f1, . . . , fm), and
suppose thatσ ∈ 〈f〉α. Then there is a partial rankingσ′ such thatσ ∈ 〈σ′〉α and for all partial rankings,
τ , we have

m∑
i=1

L1(σ′, fi) ≤ 3
m∑

i=1

L1(τ , fi)

Furthermore, if the functionsf1, . . . , fm are in fact partial rankings then we have for all functions,g,

m∑
i=1

L1(σ′, fi) ≤ 2
m∑

i=1

L1(g, fi)

Proof. Let f † be a partial ranking such thatL1(f †, f) is minimized. Letβ be the type off †. By Lemma 34,
there is a partial rankingσ′ such thatσ′ ∈ 〈f〉β andσ ∈ 〈σ′〉α. Sinceσ′ ∈ 〈f〉β, Lemma 27 guarantees
thatL1(σ′, f) = L1(f †, f). Hence, by Theorem 10, the corollary follows.
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A.6.4 The dynamic programming algorithm

Let |D| = n. We now describe an algorithm that given a functionf ∈ median(f1, . . . , fm) for partial
ordersf1, . . . , fm, finds a partial rankingf † so thatL1(f, f †) is minimized. (Note that the algorithm does
not actually needf to be a median function.) It is easy to produce an algorithm running in timeO(n2) if
we are allowed to useO(n2) space. If we make the additional assumption that2f(i) is integral for alli,
then we have an algorithm that runs in linear space and timeO(n2). Note that this assumption is not very
restrictive, since the median function for a set of partial orders will always satisfy this when the median does
not average two values (For instance, if we have a set ofm valuesa1 ≤ a2 ≤ . . . ≤ am, we take the median
value to beabm+1

2
c.)

Suppose without loss of generality thatf(1) ≤ f(2) ≤ . . . ≤ f(n). For convenience, definef(0) =
−∞. Let π be the total order1, 2, . . . , n. By Lemma 27, there is some typeα such that iff † ∈ 〈π〉α
thenL1(f, f †) ≤ L1(f, τ ) for all partial rankingτ . We can determine such a minimal type using dynamic
programming.

To do so, we first need several definitions. For anyi, j with 0 ≤ i < j ≤ n, we define

c(i, j) =
j∑

`=i+1

∣∣∣∣f(`)− i + j + 1
2

∣∣∣∣
To motivate our definition ofc(i, j), imagine that we alter the type ofπ so that there is a bucket starting at
i + 1 and going untilj. Then the position of that bucket isi+j+1

2 , and the distance between that bucket and
f (on the values{i + 1, i + 2, . . . , j}) is preciselyc(i, j).

In general, letS be a sequences0 < s1 < · · · < st. Then we define

c(S) =
t−1∑
`=0

c(s`, s`+1)

Intuitively, we think of eachs` as marking a point where one bucket starts and the next begins. The im-
portant thing to notice about this is that there is a one-to-one correspondence between types on the domain
{1, 2, . . . , n} and strictly increasing sequences that begin with0 and end withn. More precisely, letβ
be a type witht buckets represented by the sequenceb1, b2, . . . , bt. Define seq(β) to be the sequence
s0, s1, . . . , st, wheres0 = 0 ands`+1 = s` + b` for all ` ≥ 0. It is easy to check that the functionseq(·) is
one-to-one. Further, we see immediately that ifτ ∈ 〈π〉β then

L1(f, τ ) =
t−1∑
`=0

c(s`, s`+1) = c(seq(β)) (13)

Our dynamic programming algorithm will calculate a sequenceSn starting with0 and ending withn
such thatc(Sn) is minimized. To this end, we findn + 1 different sequences,S0,S1,S2, . . . ,Sn. For all
j > 0, the sequenceSj will have the property that its first element is0, and its last element isj. Our goal is
to havec(Sj) minimal over all such sequences.

To this end, defineS0 = 0, and recursively defineSj = Si0 , j, wherei0 = argmini[c(Si) + c(i, j)].
Then we have the following.

Lemma 36 LetS0,S1, . . . ,Sn be defined as above. Then for allj and for all strictly increasing sequences
S ′

j that start with0 and end withj, we havec(S ′
j) ≥ c(Sj).

Proof. We proceed by induction. The casej = 0 is trivially true. So assume thatj > 0 and that our claim
is true for all indices smaller thanj.
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Givenf such thatf(1) ≤ f(2) ≤ . . . ≤ f(n)
1 FOR j := 1 TO n

2 Setc(0, j) :=
∑j−1

`=1 |f(`)− j
2 |.

3 Setk := 0.
4 FOR i := 1 TO j − 1
5 WHILE (k ≤ j andf(k) < i+j+1

2 ) incrementk

6 Setc(i, j) := c(i− 1, j)−
∣∣∣f(i)− i+j

2

∣∣∣ + 2k−i−j−2
2 .

7 Findi0 ≥ 0 such that[c(Si0) + c(i0, j)] minimized.
8 SetSj = Si0 , j.
9 OutputSn.

Figure 1: Pseudocode to compute optimal sequenceSn.

Now, letS ′
j be a strictly increasing sequence starting with 0 and ending withj. Suppose the penultimate

element ofS ′
j is i. Then there is a strictly increasing sequenceS ′

i ending withi such thatS ′
j = S ′

i, j. By
definition,c(S ′

j) = c(S ′
i)+c(i, j). But by induction,c(S ′

i) ≥ c(Si). Hence,c(S ′
j) ≥ c(Si)+c(i, j) ≥ c(Sj).

Using Lemma 36, it is easy to see that the type associated withSn is optimal. That is, supposeSn is the
sequences0 < s1 < . . . < st, and letα be the shape given by the sequences1 − s0, s2 − s1, . . . , st − st−1.
Let f † ∈ 〈π〉α. Then for any partial rankingτ , we have

L1(f, f †) = c(Sn) ≤ c(seq(type(τ ))) = L1(f, τ )

by equation 13.
Given the recurrence relation, it is a simple matter to calculateSn. Sincec(i, j) can be calculated in

O(n) time for all i, j, we see there is a simple algorithm to calculateSn is timeO(n3). However, we can
in fact calculatec(i, j) is amortizedO(1) time. In the case where we do not have memory restrictions, we
simply utilize the following recurrence:

c(i− 1, j + 1) = c(i, j) +
∣∣∣∣f(i− 1)− i + j

2

∣∣∣∣ +
∣∣∣∣f(j + 1)− i + j

2

∣∣∣∣
Using this, we can calculatec(i, j) for all i, j in O(n2) time, butO(n2) space.

If 2f(i) is integral for alli, then we can calculateSn in linear space and timeO(n2) using a slightly
more complicated algorithm. The pseudocode is shown in Figure 1. The following lemma is the key idea.

Lemma 37 Let i, j, k be integers, and suppose that either (1)f(k− 1) ≤ i+j
2 < i+j+1

2 ≤ f(k) with k ≤ j,

or (2) f(j) ≤ i+j
2 with k = j + 1. Then in both cases,c(i, j) = c(i− 1, j)−

∣∣∣f(i)− i+j
2

∣∣∣ + 2k−i−j−2
2 .

Proof. We first consider the casef(k − 1) ≤ i+j
2 < i+j+1

2 ≤ f(k).

c(i, j) =
j∑

`=i+1

∣∣∣∣f(`)− i + j + 1
2

∣∣∣∣
=

k−1∑
`=i+1

∣∣∣∣f(`)− i + j + 1
2

∣∣∣∣ +
j∑

`=k

∣∣∣∣f(`)− i + j + 1
2

∣∣∣∣
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=
k−1∑

`=i+1

(
i + j + 1

2
− f(`)

)
+

j∑
`=k

(
f(`)− i + j + 1

2

)

=
k−1∑

`=i+1

(
i + j

2
− f(`)

)
+

k − i− 1
2

+
j∑

`=k

(
f(`)− i + j

2

)
− j − k + 1

2

=
k−1∑

`=i+1

∣∣∣∣f(`)− i + j

2

∣∣∣∣ +
j∑

`=k

∣∣∣∣f(`)− i + j

2

∣∣∣∣ +
2k − i− j − 2

2

= c(i− 1, j)−
∣∣∣∣f(i)− i + j

2

∣∣∣∣ +
2k − i− j − 2

2

As for the casef(j) ≤ i+j
2 with k = j + 1, we have

c(i, j) =
j∑

`=i+1

∣∣∣∣f(`)− i + j + 1
2

∣∣∣∣
=

j∑
`=i+1

(
i + j + 1

2
− f(`)

)

=
j∑

`=i+1

∣∣∣∣ i + j

2
− f(`)

∣∣∣∣ +
j − i

2

= c(i− 1, j)−
∣∣∣∣f(i)− i + j

2

∣∣∣∣ +
2k − i− j − 2

2

Using Lemma 37, we can finish analyzing the algorithm. Referring to the pseudocode in Figure 1, notice
that if 2f(i) is integral for alli, then whenever we exit theWHILE loop, one of the two conditions from the
previous lemma holds. So the algorithm correctly computesc(i, j) for eachi, j. Turning to the running time,
notice that for each iteration of the outer loop, the value ofk increases from0 to at mostj + 1. Likewise,i
increases from1 to j. Finally, calculating bothc(0, j) in step 2 and the minimali0 in step 7 can be done in
O(n) time. So in total, the algorithm runs in timeO(n2).
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