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Abstract

Rank aggregation has recently been proposed as a useful abstraction that has several applications,
including meta-search, synthesizing rank functions from multiple indices, similarity search, and clas-
sification. In database applications (catalog searches, fielded searches, parametric searches, etc.), the
rankings are produced by sorting an underlying database according to various fields. Typically, there
are a number of fields that each have very few distinct values, and hence the corresponding rankings
have many ties in them. Known methods for rank aggregation are poorly suited to this context, and the
difficulties can be traced back to the fact that we do not have sound mathematical principles to compare
two partial rankings that is, rankings that allow ties.

In this work, we provide a comprehensive picture of how to compare partial rankings. We propose
several metrics to compare partial rankings, present algorithms that efficiently compute them, and prove
that they are within constant multiples of each other. Based on these concepts, we formulate aggregation
problems for partial rankings, and develop a highly efficient algorithm to compute the top few elements
of a near-optimal aggregation of multiple partial rankings. In a model of access that is suitable for
databases, our algorithm reads essentially as few elements of each partial ranking as are necessary to
determine the winner(s).
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1 Introduction

Rank aggregation. Rank aggregation is the problem of combining several ranked lists of objects in a
robust way to produce a single ranking of the objects. This problem has a long and interesting history that
goes back at least two centuries. While the philosophical aspects of rank aggregation have been debated
extensively during this period, the mathematics of rank aggregation has gained more attention in the last
eighty years, and the computational aspects are still within the purview of active research.

In computer science, rank aggregation has proved to be a useful and powerful paradigm in several
applications including meta-search [8, 21, 19, 18, 1, 17], combining experts [4], synthesizing rank functions
from multiple indices [9], biological databases [20], similarity search [11], and classification [17, 11]. An
important contribution of the work of [8] is to adopt and highlight the merits of a proposal of Kemeny’s
for performing rank aggregation: namely given multiple rankings, find a ranking whoseKertdall tau
distancé to the given rankings is minimized. While this formulation is mathematically crisp, applications
usually demand additional flexibility from the aggregation algorithm. For example, in aggregating search
results, we are faced with the problem that we have access only to the top few elements of the rankings.
In [8], this issue was addressed by suitably modifying the heuristics for full rank aggregation, but without
providing any mathematical justification. This situation was later remedied in [10], where notions of “near
metrics” were introduced, and a robust, unified class of near metrics was identified to comparésitsp
This allowed the formulation of appropriate rank aggregation problems fok titgis, and the design of
efficient (approximation) algorithms for these problems.

Challenges for rank aggregation in databases. While the extensive work in economics and computer
science provide a mathematical basis for aggregation of fulktamkings, the context of database-centric
applications poses two formidable challenges for rank aggregation. We outline these next.

(2) In many applications of rank aggregation, there is an underlying database of records that are first
ranked in several ways; typically, each ranked list is produced when the user specifies some criterion to rank
(and/or filter) the records according to one of the attributes in the schema. Once the records are sorted in
different ways, an aggregation algorithm combines the ranked lists to produce the final output. Common
examples are catalog searches, fielded/parametric searches, and “advanced search” options.

For example, in online commerce, users often state their preferences for products according to various
criteria. In a database of restaurants (eagvw.dine.com ), it is common to rank the restaurants based
on the user’s preferences for cuisine, driving distance, price, star ratings, etc; in airline reservations (e.g.,
www.travelocity.com ), it is common to rank flight plans by price, airline preference, number of
connections, flight times, etc. Other examples include searching for an article in scientific bibliography
databases (e.gwyww.ams.org/mathscinet ) using preference criteria on attributes such as title, year
of publication, number of citations, etc.; searching for a protein in biological databasesvigvgrcsb.
org/pdb ) based on attributes like chain type, compound information, experimental technique, resolution,
etc; and searching for NSF awardssw.nsf.gov/verity/srchawdf.htm ) based on attributes such
as award amount, start date, etc.

While many database attributes are usually numeric, there are attributes that are inherently non-numeric.
For instance, in the restaurant selection example above, “type of cuisine” is a non-numeric attribute. The
number of distinct values in such non-numeric attributes is often very small. Therefore, when one sorts
according to values this attribute can take, the resulting rank ordering of the objects is not a permutation
any more; it is an ordering with ties, also known apaatial ranking Notice that partial rankings could
result even for numeric attributes. For example, in travel reservations, the field “number of connections” is

1The Kendall tau distance between two rankings (permutations) is defined as the number of pairwise disagreements between the
two rankings; it is easy to see that it is a metric on the space of permutations.



a numeric attribute, but usually has no more than four values. Furthermore, the user may not be interested
in using the complete range of values for a numeric attribute even if the database might permit it. For
instance, in the restaurant selection example, even though distance is numeric, the user might wish to treat
any distance up to ten miles to be the same in his/her preference.

Thus, the first main feature of rank aggregation in database applications is that, due to preference criteria
on few-valued attributes, we need to deal with partial rankings rather than full rankings. While it is possible
to treat this issue heuristically by arbitrarily ordering the tied elements to produce a full ranking, we seek
ways that are mathematically more well-founded.

(2) In database-centric applications, we are often interested in only the top few answers of the aggrega-
tion. Certainly, this is the case with all the above examples. This feature leads to the quest for algorithms that
quickly obtain the top result(s) of aggregation, perhaps in sub-linear time, without even having to read each
ranking in its entirety. This issue was addressed in [11], where an aggregation heuristic based on median
rank values was studiéd This median rank aggregation has the nice property that it admitsstance-
optimal algorithmin the sense of [12] under a model of access that is relevant for databases. This feature
is shared neither by the more sophisticated heuristics in [8] based on matchings and Markov chains, nor by
the most natural heuristic based on average ranks. Furthermore, median is clearly robust, since it mitigates
the effect of outliers.

Since the applications we focus on in this paper are database-centric, it is tempting to try to adapt
the median-based algorithm for aggregating partial rankings. However, there are two obstacles to such an
attempt. First of all, though the median rank aggregation algorithm was argued to be heuristically good as
an aggregation algorithm, nothing provable was known about its efficacy. In particular, it was not known
if median rank aggregation produced an approximately optimal aggregation with respect to the Kendall
distance. Secondly, the median rank aggregation algorithm was proposed in [8, 11] assuming that the inputs
are permutations. Consequently, it is not clear if the algorithm would perform well, even in a heuristic sense,
when the inputs are partial rankings.

To summarize, the aggregation of partial rankings is an important problem in the context of many
database applications and it is useful to develop algorithms that quickly obtain the top few results of the
aggregation. The single main obstacle is that we do not have sound mathematical principles to compare two
partial rankings; this is precisely what we study in this paper. Our main contribution is a comprehensive
solution to comparing and aggregating partial rankings.

Summary of our contributions. We define four metrics between partial rankings. These are obtained by
suitably generalizing the Kendall tau distance and the Spearman footrule distance on permutations (cf. [6])
in two different ways. In both approaches, to compare two partial rankings, we compare the two sets of full
rankings obtained from the partial rankings by breaking ties in all possible ways. A classical way (cf. [5]) to
compare two sets in a metric space is the well-known method of using the Hausdorff distance between the
sets. The drawback of using the Hausdorff extensions of Kendall tau and Spearman footrule is that they are
less intuitive, and the impossibility of pathological cases is not obvious. Our second method to compare the
two sets avoids this pitfall, and is based on succinctly summarizing the two sets by compact vectors—their
“profiles”—and applying thel.; distance between the profile vectors. By definition, these metrics admit
efficient computation, and furthermore, they are extremely intuitive and quite natural. These metrics are
defined and discussed in Section 3.

2In fact, rank aggregation based on median rank, along with complicated tie-breaking rules, is used in judging Olympic figure
skating [3].

3The Hausdorff distance between two point setsand B in a metric space with metriai(-,-) is defined as
max{max~, e A Mily,ep d(1,Y2), MaX~y,ep Miny, ca d(71,72) }-



While the metrics obtained through profiles can be efficiently computed, the Hausdorff metrics are max-
min over exponentially large sets and it is not at all obvious a priori if they can be computed efficiently as
well. We solve this problem by first obtaining a complete characterization of how the Hausdorff distance
is achieved between two partial rankings (for both Kendall tau and Spearman footrule versions). Namely,
we show how to efficiently construct full rankings from partial rankings so that computing the underly-
ing metric (Kendall/Spearman) on the full rankings allows us to compute the Hausdorff distances. These
characterizations enable us to compute the Hausdorff distances efficiently; furthermore, while the proofs
of the characterizations are technically quite intricate, the resulting algorithms are extremely simple. The
computational aspects of the metrics are discussed in Section 4.

Having four metrics on partial rankings is good news, but exactly which one should a practitioner use
to compare partial rankings? Furthermore, which one is best suited to formulating an aggregation problem
for partial rankings? Our summary answer to these questions is that the exact choice doesn’t matter much.
Namely, we show, following the lead of [7, 10], that these metrics are all within constant multiples of each
other. Diaconis and Graham [7] showed that the Kendall tau distance and the Spearman footrule distance are
“equivalent,” in the sense that they are within a factor of two from each other. We show a similar relation for
the Hausdorff versions of these metrics fairly easily; the relationship between the Hausdorff and the profile
versions of the Kendall tau metric also turns out to be fairly simple to establish. Proving an analog of the
Diaconis—Graham inequalities for the profile metrics turns out to be rather tricky, and requires us to uncover
considerable structure inside partial rankings. We present these equivalence results in Section 5.

Finally, we turn to algorithms to aggregate partial rankings. Here we fully reap the benefit of having de-
fined four distinct metrics on partial rankings and having established their equivalence with much technical
maneuvering. Namely, if we care primarily about aggregations that are approximately optimal with respect
to a metric, we now have four viewpoints from which to attack the problem! Thus, a constant factor approxi-
mation algorithm for aggregation with respect to one metric is automatically a constant factor approximation
algorithm for aggregation with respect to all the other metrics. It turns out that an algorithm that is based
on the median rank algorithm [8, 11] lends itself naturally to efficient aggregation with respect to the profile
version of the Spearman footrule metric. We show the algorithm derived from median ranks is a constant
factor approximation algorithm with respect to this metric. Also, as mentioned before, being a median-based
algorithm, our algorithm reads only as few elements of each partial ranking as possible in order to determine
the winner(s) of the aggregation—in this aspect, the algorithm is extremely database-friendly and practical.

By the equivalence outlined above, it follows that the median rank algorithm is an approximation al-
gorithm for rank aggregation with respect to all our metrics. In fact, since partial rankings generalize full
rankings as well as top lists, the median rank algorithm yields a very efficient solution to the aggregation
problems for these objeétslit also vindicates the use of median in earlier work [8, 11]. These results are
presented in Section 6.

Related work. Kendall [16] defined two variations of the Kendall tau distance for partial rankings of
which one is a normalized version of the Kendall tau distance through profiles. Baggerly [2] defined two
versions of the Spearman footrule distance for partial rankings of which one is similar to our Spearman
footrule metric through profiles. However, neither work proceeds significantly beyond simply providing
the definition. For topk lists, which are special case of partial rankings, Critchlow [5] defined Hausdorff
versions of Kendall tau and Spearman footrule distances and Fagin et al. [10] studied further properties of
these metrics. Goodman and Kruskal [13] proposed an approach for comparing partial rankings, which was

“Median rank aggregation offers a good solution to the following loosely-stated problem as well: find a constant-factor approx-
imation algorithm for the Kendall tau rank aggregation problem for full rankings that is both “non-trivial” (since one of the input
rankings always achieves a factor two approximation) and computationally simple (unlike computing an optimal solution to the
Spearman footrule aggregation problem, which requires the computation of a minimum-cost perfect matching).



recently utilized [14] for evaluating strategies for similarity search on the Web. A serious disadvantage of
Goodman and Kruskal's approach is that it is not always defined (this problem did not arise in the application
of [14]).

2 Preliminaries

Bucket orders. A bucket orders, intuitively, a linear order with ties. More formally, a bucket order is a
transitive binary relationa for which there are set8y, ..., B; (the bucket} that form a partition of the
domain such that < y if and only if there are, j with 7 < j suchz € B; andy € B;. If x € B;, we
may refer toB; as thebucket ofr. We may say that buckéd; precedesucketB; if ¢ < j. Thus,z <y if
and only if the bucket of precedes the bucket gf We think of the members of a given bucket as “tied”.
A linear order is a bucket order where every bucket is of size 1. We now defirgotition of buckets3,
denotedpos(B). Let By, ..., B; be the buckets in order (so that buckgtprecedes buckes; wheni < j).
Thenpos(B;) = (3_,-; 1B5]) + (|Bi| + 1)/2. Intuitively, pos(B;) is the average location within bucksf.

Partial ranking. Just as we can associate a ranking with a linear order (i.e., permutation), we associate a
partial ranking o with each bucket order, by letting(z) = pos(B) whenB is the bucket ofc. We refer
to a partial ranking associated with a linear order &gllaanking. When it is not otherwise specified, we
assume that all partial rankings have the same domain, deiatéd/e say that: is ahead ofy in o if
o(x) < o(y). We say that: andy are tied ino if o(x) = o(y).

We define aop k list to be a partial ranking where the téuckets are singletons, representing the top
k elements, and the bottom bucket contains all other members of the domain. Note that in [10] there is no
bottom bucket in a tog list. This is because in [10] each tégdist has its own domain of sizk, unlike our
scenario where there is a fixed domain.

Given a partial rankingr with domainD, we define itgeverse denotedr?, in the expected way. That
is, foralld € D, lete®(d) = |D| +1 — o(d).

Refinements of partial rankings. Given two partial rankings andr, both with domainD, we say that is
arefinemenbf = and writeo = 7 if the following holds: for alli, j € D, we haver (i) < o(j) whenever
7(i) < 7(j). Notice that whenr (i) = 7(j), there is no order forced am. Wheno is a full ranking, we
say thaio is afull refinemenbf . Given two partial rankingsy and+ both with domainD, we frequently
make use of a particular refinementafin which ties are broken according to Definer-refinement of
o, denotedr * o, to be the refinement af with the following properties. For all j € D, if o(i) = o(j)
andt(i) < 7(j), thentx o (i) < T* o(j). If o(i) = o(j) and7(i) = 7(j), thenTx o (i) = 7% o(j).
Notice that whenr is in fact a full ranking, themx o is also a full ranking. Also note thais an associative
operation, so that ip is a partial ranking with domai®, it makes sense to talk abgpk 7x* o.

Notation. When f andg are functions with the same domaih we denote thd.; distance betweefi and
g by Li(f,9)- Thus,Li(f, 9) = > ;e p | f(8) — g(d)].

2.1 Metrics, near metrics, and equivalence classes

A binary functiond is calledsymmetridf d(z,y) = d(y, x) for all z, y in the domain, and is calledgular if
d(z,y) = 0 if and only if z = y. A distance measurs a nonnegative, symmetric, regular binary function.
A metricis a distance measuréthat satisfies thériangle inequalityd(x, z) < d(x,y) + d(y, z) for all
x,y, z in the domain.

The definitions and results in this section were derived in [10], in the context of comparikgisip.
Two seemingly different notions of a “near metric” are were defined in [10]: their first notion of near metric
is based on “relaxing” the polygonal inequality that a metric is supposed to satisfy.

4



Definition 1 (Near metric) A distance measure on partial rankings with domaims a near metridf there
is a constant, independent of the size 6f, such that the distance measure satisfies the relaxed polygonal
inequality: d(z, 2) < c(d(x, 1) +d(z1,x2)+- - +d(z,_1,2)) foralln > 1andz, z, 21,...,2,_1 € D.5

The other notion of near metric given in [10] is based on bounding the distance measure above and below
by positive constant multiples of a metric. It was shown that both the notions of near metrics coincide. This
theorem inspired to define what it means for a distance measure to be “almost” a metric, and a robust notion
of “similar” or “equivalent” distance measures. We modify the definitions in [10] slightly to fit our scenario,
where there is a fixed domain.

Definition 2 (Equivalent distance measures)Two distance measuresand d’ between partial rankings
with domainD are equivalentif there are positive constants andc, such that d' (o1, 02) < d(o1,02) <
cod' (01, 02), for every paire |, o Of partial rankings?

Itis clear that the above definition leads to an equivalence relation (i.e., reflexive, symmetric, and transitive).
It follows from [10] that a distance measure is equivalent to a metric if and only if it is a near metric.

2.2 Metrics on full rankings

The study of metrics on full rankings is classical (cf. [15, 6]). We now review two well-known notions of
metrics on full rankings, namely the Kendall tau distance and the Spearman footrule distance.
Let 01,09 be two full rankings with domairD. The Spearman footrule distands simply the L,
distancel, (o1, 02). The definition of the Kendall tau distance requires a little more work.
LetP = {{i,j} |i # jandi,j € D} be the set of unordered pairs of distinct elements. Héedall
tau distancebetween full rankings is defined as follows. For each paij} € P of distinct members oD,
if - andyj are in the same order 1, ando2, then let the penalty_(m(al, o) = 0; and ifi andj are in the
opposite order (such dseing ahead of in o1 and; being ahead of in ), then letK; (o1, 02) = 1.
The Kendall tau distance is given By(o1,02) = >, Acp K, j(o1,02). The Kendall tau distance turns
out to be equal to the number of exchanges needed in a bubble sort to convert one full ranking to the other.
Diaconis and Graham [7] proved a classical result, which states that for every two full rankings

K(o1,09) < F(o1,02) < 2K(01,02). Q)

In other words, Kendall tau and Spearman footrule are equivalent metrics for full rankings.

3 Metrics for comparing partial rankings

In this section we define the distance between partial rankings. The first set of metrics is based on profile
vectors (Section 3.1). and the second set is based on the Hausdorff distance (Section 3.2). Appendix A.3
compares these metrics (when the partial rankings aré tigs) with the distance measures for tofists

that are developed in [10].

°It makes sense to say that the constaig independent of the size dp when, as in [10], each of the distance measures
considered is actually a family, parameterizedibyWe need to make an assumption th& independent of the size @, since
otherwise we are simply considering distance measures over finite domains, where there is always such a.constant

6As before, the constants andc, are assumed to be independent of the sizB of



3.1 Metrics based on profiles

Leto, o5 be two partial rankings with domaifr. We now define a family of generalizations of the Kendall
tau distance to partial rankings. These are based on a generalization [10] of the Kendall tau distance to top
k lists.

Letp be a fixed parametdy, < p < 1. Similar to our definition oif(l-,j(al, o) for full rankingso 1, o2,

we define a penaltf(i(ﬁ) (o1, 02) for partial rankingsr i, o2 for {i, 7} € P. There are three cases.

Case 1:i andj are in different buckets in bott; andos. If i andj are in the same order im; ando,
(such awri(i) > o1(j) andoa(i) > o2(j)) then Ietf((p) (o1,02) = 0; this corresponds to “no penalty”
for {i,j}. If i andj are in the opposite order i and02 (such aszry(i) > o1(j) andoa(i) < o2()))

then let the penaltj(m. (o1,02) = 1.

Case 2:i andj are in the same bucket in both, ando». We then let the penaltﬁi(g) (o1,02) = 0.
Intuitively, both partial rankings agree thia&nd; are tied.

Case 3:i andj are in the same bucket in one of the partial rankimgsand o2, but in different buckets
in the other partial rankingln this case, we let the penalﬁjfg)(al, o2) = p.

Based on these cases, defid@), theKendall distance with penalty parametgras follows:

K( (o1,02) Z Kp) (o1,002).
{i,7}eP

It is easy to show that if the penalty value in Case 2 were strictly positive then, the resulting quantity is
not even a distance measure. AP is a metric forp € [1/2, 1], is a near metric fop € (0,1/2), and is
not even a distance measure for= 0. (See Appendix A.2 for a proof.) For the rest of the paper, we focus
on the natural case = 1/2, since it corresponds to an “average” penalty for two elemgatslj that are
tied in one partial ranking but not in the other partial ranking. We deh@té®) by K., since, as we now
show, there is an alternative but equivalent definition in terms of a “profile”.

LetO = {(4,j) : i # jandi,j € D} be the set of ordered pairs of distinct elements in the domain
Let o be a partial ranking (as usual, with domdi). For (i, j) € O, definep;; to bel/4if o(i) < o(j),
to be 0 ifo(i) = o(j), and to be—1/4 if o(i) > o(j). Define theK-profile of o to be the vector
(pij = (1,7) € O). ltis straightforward to verify thak,,.f (o1, o72) is simply theL; distance between the
K-profiles ofo; andos.”

It is clear how to generalize the Spearman footrule distance to partial rankings—we simply take it to
be Li(o1,02), just as before. We refer to this value Bs..¢(o1,02), for reasons we now explain. Let
us define the-profile of a partial rankings to be the vector of values(i). So theF-profile is indexed
by D, whereas the<-profile is indexed byD. Just as the . value of two partial rankings (or of the
corresponding bucket orders) is tiig distance between theik-profiles, theFy,s value of two partial
rankings (or of the corresponding bucket orders) is Ehedistance between their-profiles. Sincel},.q¢
and K¢ are L, distances, they are automatically metrics.

3.2 The Hausdorff metrics

Let A and B be finite sets of objects and ldtbe a metric of distances between objects. Harisdorff
distancebetweenA and B is given by

diaus (A, B) = max {31122 %161% d(71,72), » Imax i?é% d(y, 72)} (2)

"Each pair{i, j} with i # 7 is counted twice, once s, j) and once a$j, 7). This is why the values of;; are1/4, 0, and
—1/4 rather thanl /2, 0, and—1/2.



Although this looks fairly nonintuitive, it is actually quite natural, as we now explain. The
quantity min.,cp d(y1,72) is the distance betweern; and the setB. Therefore, the quantity
max., e 4 min,,ep d(7v1,72) is the maximal distance of a member dffrom the setB. Similarly, the
quantitymax.,c p min., c 4 d(v1,72) is the maximal distance of a member®ffrom the setd. Therefore,
the Hausdorff distance betweehand B is the maximal distance of a member 4for B from the other
set. ThusA andB are within Hausdorff distance of each other precisely if every memberéfand B is
within distances of some member of the other set. The Hausdorff distance is well known to be a metric.

Critchlow [5] used the Hausdorff distance to define a metric betweerk tigis. We generalize his
construction to give a metric between partial rankings. Given a métifiat gives the distancé(vy1, v2)
between full rankings; and~,, define the distance between partial rankiagsando, to be

max{ max min d(y1,72), max min d(yl,'yg)}, (3)
YZO1 Y2202 Y2Z02 V1201

where~; and~, are full rankings. In particular, whed is the footrule distance, this gives us the metric
Fyaus between partial rankings, and whéis the Kendall distance, this gives us the mekig.,s between
partial rankings. BothFy..s and Kya.us are indeed metrics, since they are special cases of the Hausdorff
distance.

4 Computing the metrics

It is clear from the definition that both ... and F},..; can be computed in polynomial time. In this section
we show how to compute the Hausdorff metri€g;,,s and Fi.,us in polynomial time. We make use of
these results later to prove that all of our metrics are in the same equivalence class, and in particular that
Khaus and Ko are in the same equivalence class. (Note that once we show in Section 5 that all the metrics
are equivalent, then it follows that both the Hausdorff metrics can be approximated in polynomial time by
computing the profile metrics.)

First, we prove thatin, F'(o, 7), wherer ranges over all full refinements ef is attained at = ox 7,
and similarly formin, K (o, 7). This shows that the minimum occurs when we takesthrefinement ofr.

Lemma 3 Leto be a full ranking, and letr be a partial ranking. Then the quantity(o, 7), taken over
all full refinementsr > 7, is minimized forr = o 7. Similarly, the quantityx'(o, 7), taken over all full
refinements > 7, is minimized forr = o* 7.

The next lemma states that the maximum of minimum occurs when we takg the')-refinement ofo,
for an arbitrary full ranking.

Lemma 4 Let o and T be partial rankings, and lep be any full ranking. Then the quantify(c, o * T),
taken over all full refinements > o, is maximized whem = px 7% o. Similarly, the quantitys (o, o* ),
taken over all full refinements = o, is maximized whes = px Ry 0.

Combining the previous two lemmas, we obtain a complete characterization of the Hausdorff distance.

Theorem 5 Leto and T be partial rankings, le® be the reverse af, and letr? be the reverse of. Let
p be any full ranking. Then

FHauS(U>T) = maX{F<p*TR*a?ﬂ*U*T)vF(p*T*U,p*UR*T)}

Kyaus(o,7) = max {K(p* TRy o, pxoxT), K(px T+ o, p* ok 7-)}



Let o and T be partial rankings. Theorem 5 gives us a simple algorithm for computings(o, 7) and
Kiaus(o, 7): we simply pick an arbitrary full ranking and do the computations given in Theorem 5. Let
o1 = pxTRs o, letr) = pxoxT, letoy = px T+ o, and letry, = px %% 7. Theorem 5 tells us
that Fiiaus(o, 7) = max {F(o1,71), F(02,72)} and Kyaus(o, 7) = max{K(o1,71), K(02,72)}. Itis
interesting that the same pairs, namety, 71) and (o9, 72) are the candidates for exhibiting the Hausdorff
distance for both¥” and K. Note that the only role that the arbitrary full rankipgplays is to arbitrarily
break ties (in the same way fer and ) for pairs(i, j) of distinct elements that are in the same bucket in
botho andr. A way to describe the paiw;, 1) intuitively is: break the ties i based on the reverse of
the ordering inr, break the ties in- based on the the orderingén and break any remaining ties arbitrarily
(but in the same way in both). A similar description applies to the (@airm).

The algorithm we have described for computifig,.s (o, 7) and K. (o, 7) is based on creating pairs
(o1, 71) and(o2, 72), one of which must exhibit the Hausdorff distance. The next proposition gives a direct
algorithm for computingiy..s (o, 7), that we make use of later.

Proposition 6 Let o and T be partial rankings. LefS be the set of pairgi, j} of distinct elements such
thati and j appear in the same bucket efbut in different buckets of, let T’ be the set of pairgi, j} of
distinct elements such thaandj appear in the same bucket-pfbut in different buckets af, and letU be
the set of pairdi, j} of distinct elements that are in different buckets of hettind ~ and are in a different
order ino andr. ThenKyaus(o, 7) = |U| + max {|S], |T'|}.

5 Relationships between the metrics

In this section we show that all our metrics are in the same equivalence class.
Theorem 7 The metricsF, of, Kprof, Fiaus, @Nd Kpays are all in the same equivalence class.

Proof. First, we show
KHaus(o'ly 0’2) < FHaus(a'la 02) < 2KHaus(0'17 02)- (4)

The proof of this equivalence betweéh.,.s and K., uses the robustness of the Hausdorff definition with
respect to equivalent metrics. It is fairly easy, and is given in Appendix A.5.1.
Next, we show
Kot (01,02) < Foror(01,02) < 2Kp0t(01, 02). 5)

We note that (5) is much more complicated to prove than (4). The proof involves two main concepts:
“reflecting” each partial ranking so that every element has a mirror image and using the notion of “nesting”,
which means that the interval spanned by an element and its image in one partial ranking sits inside the
interval spanned by the same element and its image in the other partial ranking. The proof is presented in
Appendix A.5.2.

We note that the equivalences given by (4) and (5) are interesting in their own right.

Finally, we show that

Kprof(alan) S KHaus(o'hUZ) S 2Kprof(o'170'2)- (6)

The above equivalence is proved using Proposition 6.
Using (4), (5), and (6), the proof is complete. O

As we discussed earlier, the above theorem shows that our metrics are quite robust. The equivalence will
come in handy when we design aggregation algorithms for partial rankings in Section 6.
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6 Aggregation of partial rankings

In this section we show how to employ aggregation algorithms based on the median to achieve constant
factor approximation algorithms for partial rankings. We achieve a factor of three with respectig jhe
metric. By Theorem 7, we therefore have constant factor approximation algorithms with respect to the
other metricsFaus, Kaus, @and Ko When the inputs themselves are full rankings, the median based
algorithm achieves a (better) factor of two with respect to the Spearman footrule distance. This answers an
open question from [8, 11].

Given alistay, as, . . ., a,, of numbers, we definmedian(ay, .. ., a,,) to be the set of values that would
typically be taken as the median of the list (note thatiis odd, it is a set containing just one number).
More precisely, suppose that thgs are relabeled so that < as < --- < a,,. Thenmedian(ay, ..., ay)

is the set{am+1 } whenm is odd, and the seiam , am 1, (am + am1)/2} whenm is even. Given a list

fi,..., fm of functions, each mapping — R, we abuse notation slightly and definedian(fi, ..., fmn)
to be the set of valid median functions. More precisely, we definéian(f,..., f,,) to be

{f:D—R | f(d) € median(fi(d), ..., fm(d)), foreveryd € D}

The following lemma, previously noted in [11], shows the importance of the median function for rank
aggregation. Basically, it says that median is the best function for minimizjagorm quantities.

Lemma 8 ([11]) Let fi, fo,..., fm be functions mappind — R. Assumef € median(fi,..., fm)-
Then for every functiop : D — R,

m

> Li(f, i) sz (9, fi)-

=1

Using Lemma 8, we show the following theorem, which says that the median aggregation algorithm can
be used to produce a tdplist that is within a factor of three of the optimum taéplist (in fact, we need
to run the median aggregation algorithm only long enough to output the:fisbjects). The proof, in a
generalized version, appears in the appendix. Noting that a full ranking is actually & tbgt, we see that
the theorem also implies that the median aggregation algorithm produces a near-optimal full ranking.

Theorem 9 Letoy, 09, ..., 0, be partial rankings. Assumg € median(o,...,0,,). Supposer is a
top k list whose firstt objects are the same as the fiksbbjects off and are ordered according t@, with
ties among the top broken arbitrarily. Then for every top list 7,

m

ZLl(Uan> S 32[11(7’,0'@').

i=1 =1

We now recall the merits of median as an aggregation operator in the context of databases, as discussed
in [11]. In [11], the median rank aggregation algorithm was implemented by using two cursors for each
attribute to implicitly rank the database objects with respect to the query without having to sort for every
guery. This ensures that the data is accessed in a localized and pre-defined order, without any random access
or extra storage, thereby permitting extremely efficient implementations. In fact, this algorithm was shown

to be instance-optimal [12]—among the class of algorithms that access the input rankings in sequential
order, this algorithm is the best possible algorithm (to within a constant factor) on every input instance. By
the above theorem, we automatically inherit all the benefits of the median rank aggregation algorithm even
for partial rankings.



To see the simplicity of the whole algorithm, here is an instantiation to obtain the top element: access
each of the partial rankings, one element at a time, until some database object is seem in meré&than
(i.e., more than half the number of the inputs) times; output this object as the top result of the aggregation.
Theorem 9 guarantees that the topist output by the algorithm is nearly as good as any other/top
list. We note that the output satisfies an even stronger notion of optimality; this is discussed further in
Appendix A.6.3.

In the above discussion, we assumed that the final goal of aggregation is to produce a full ranking (or top
k ranking) that is good when compared against other full rankings. In some applications, it may be desirable
(and sufficient) for the aggregation to obtain a partial ranking, but then the partial ranking should compare
well against all partial rankings (and not just full rankings or tofists). We consider this and show that
it is possible to get a good approximation even in this case. Unfortunately, the algorithm we use cannot be
branded database-friendly, as it is based on dynamic programming.

Theorem 10 Letoy, ..., o, be partial rankings, and assunfec median(e, ..., o,,). Suppose that'
is a partial ranking such that for all partial rankings, we haveL, (fT, f) < Li(7, f). Then for every
partial rankingo, we have

m m

ZLl(fT,O'i) S 22[41(0’,0’1‘).

i=1 i=1
Furthermore, anf' that satisfiesLl(fT,f) < Ly(7, f) for all = can be computed i(i)(|D|2) time by
dynamic programming.

When the inputs themselves are full rankings and the output is required to be a full ranking, we obtain
a stronger result—we show that the median aggregation algorithm achieves an approximation factor of two
with respect to Spearman footrule distance. Note that this was an open problem emerging from the work of
[8, 11]; note also that we achieve a stronger approximation factor of two rather than three. Given a function
f: D — R, it naturally defines a partial ranking, denotgdas follows: for alli, j € D, if f(i) < f(j),
then setf (i) < f(j); if f(i) = f(j), then setf (i) = f(j). We show:

Theorem 11 Letoy, 02, . .., 0y, be full rankings with domaiD. Assumef € median(oy,...,0.,), and
let o be a refinement of where ties are broken arbitrarily. Thep;" | L (o, 04) < 2% ", L1(T,0;) for
every partial rankingr.

In particular, ifo andr are taken to be full rankings in Theorem 11, then this showsdhata near-
optimal choice for full rankings that aggregatg oo, . .., 0.

7 Conclusions

In this paper we consider metrics between partial rankings, motivated by need for such metrics in various
database applications. We define four intuitive and natural metrics between partial rankings. We obtain
efficient polynomial time algorithms to compute these metrics. We also show that these metrics are all within
constant multiples of each other. Armed with this, we obtain a constant factor approximation algorithm for
aggregation with respect to each of the metrics by obtaining a constant factor approximation algorithm with
respect to just one of them. Our algorithm is based on median rank and admits very efficient database-
friendly implementations.
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A Appendix

A.1 Preliminaries for the proofs

Types. When we speak of the buckets of a partial ranking, we are referring to the buckets of the correspond-
ing bucket order. LeB;, ..., B; be the buckets of the partial rankiagin order (thuspos(B;) < pos(B;)
wheni < j). We define theypeof o to be the sequend®, |, |Ba|, ..., |B:|, and denote it byype(o). For
example, ifo is a full ranking, thertype(o) is the sequence, 1, ..., 1 with the numberl appearingD|
times. We define op & list to be a partial ranking wheretype(o) is the sequencg, 1,...,1,|D| — k,
with the number 1 appearing befdi@| — k a total ofk times.

We also define the notion afwappingin the normal way. Ifa,b € D, thenswappinga andb in o
produces a new order’ whereo’(a) = o(b), o’ (b) = o(a), ande’(d) = o(d) foralld € D — {a, b}.

Finally, we state a fact that we use often.

Lemma 12 Suppose < bandc < d. Thenja —c|+ |b—d| < |a —d| + |b — ¢|.

Proof. To see this, first note that by symmetry, we can assume, without loss of generality thatNow
there are three cases:< b < ¢ <d,a <c<b<d,anda < ¢ < d <b. Ineach case, itis easy to check
that the above inequality holds. O

A.2 Choice of penalty values fork )

We now discuss our choice of penalty in Cases 2 and 3. In Case 2, waedg are in the same bucket in
botho; ando, what if we had defined there to be a positive penﬁ&)(al, o3) = q > 0? Then ifo
were an arbitrary partial ranking that has some bucket of size at least 2, we woulﬂ’ffé(@, o)>q>0.
So K ®) would not have been a metric, or even a distance measure, since we would have lost the property
thatK®) (o, o) = 0.

What about the choice of penalpyin Case 3? We show the following:

Proposition 13 K) is a metric forp € [1/2,1], is a near metric fopp € (0,1/2) and is not a distance
measure fop = 0.

Proof. Let us first consider the cage= 0. We now show thaf () is not even a distance measure. Let
the domainD have exactly two elementsandb. Let 71 be the full ranking where precede$, let 75 be
the partial ranking where andb are in the same bucket, and tej be the full ranking wheré precedes..
ThenK ©) (1, 75) = 0 even thoughr; # T5. So indeed k() is not a distance measure. Note also that the
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near triangle inequality is violated badly in this example, siké® (11, 73) = 0 and KO (14, 73) = 0,
bUtK(O)(Tl,Tg) = 1.

Itis easy to see that () is a distance measure for everwith 0 < p < 1. We now show thai ) does
not satisfy the triangle inequality whén< p < 1/2 and satisfies the triangle inequality whef2 < p < 1.
Let 71, 72, and T3 be as in our previous example. Théf?) (1, 75) = p, KP (19, 73) = p, and
K®)(1,73) = 1. So the triangle inequality fails far < p < 1/2, sinceK®) (71, 73) > KP) (11, 73) +
K®)(14,73). On the other hand, the triangle inequality holdslfé? < p < 1, since then it is easy to verify
thatl_(i(g)(al,a'g) < I_(l-(z)(al,ag)—i—f_(fz)(az,ag), and saK ) (o1, 03) < KV (o1,02)+KP (03, 03).

We now show thaf(?) is a near metric for the remaining valuespofvhere0 < p < 1/2. Itis easy to
verify thatif0 < p < p’ < 1, thenK®) (o1, 05) < K®) (01, 02) < (p'/p)KP) (01, 02). Hence, all of the
distance measurds () are in the same equivalence class whenéverp. As noted earlier, it follows from
[10] that a distance measure is in the same equivalence class as a metric if and only if it is a near metric.
SinceK ) is in the same equivalence class as the métiit’?) when0 < p < 1/2, we conclude that in
this case KX () is a near metric.

]

A.3 Metrics in this paper for top £ lists vs. distance measures defined in [10]

We compare our metrics, when restricted to tolists, with the the distance measures on tdfsts intro-
duced in [10]. Recall that for us, a tdplist is a partial ranking consisting @f singleton buckets, followed

by a bottom bucket of sizeD| — k. However, in [10], a togk list is a bijection of a domain ontfl, ..., k}.

Let o andT be topk lists (of our form), which may have different domains. Define aélséve domain for

o, T to be the union of the elements in the topuckets ofo and the elements in the tépbuckets ofr. In
order to make our scenario compatible with the scenario of [10], we assume during our comparison that the
domainD equals the active domain fer, 7. Our definitions ofK ), Fiy..s, andKfaus are then exactly the
same in the two scenarios. (Unlike earlier, even the pasé) gives a distance metric, since the unpleasant
situation wherek (0) (11, 2) = 0 even thoughr # 72 does not arise for top lists 7, andr.) In spite of

this, K®), Firaus, and Kpaus are only near metrics in [10] in spite of being metrics for us. This is because
in [10], the active domain varies, depending on which pair offtdigts is being compared.

Our definition of K, (o, T) is equivalent to the definition oK, (o, 7) in [10], namely the average
value of K (o, 7) over all full rankingso, 7 whereo > o andr > 7. Itis interesting to note that i&
andT were not topk lists but arbitrary partial rankings, thei,,, would not be a distance measure, since
K. (o, 0) can be strictly positive ier is an arbitrary partial ranking.

Let ¢ be a real number greater thanThefootrule distance with location parametérdenotedr (), is
defined in [10] to be obtained, intuitively, by treating each element that is not among theetements as
if it were in position?, and then taking thé,; distance. More formally, letr and+ be topk lists (of our
form). Define the functiory, with domainD by letting f(i) = o (i) if 1 < o(i) < k, and f5(i) = ¢
otherwise. Similarly, define the functiofy with domainD by letting f-(i) = 7(i) if 1 < 7(i) < k,
and f,(i) = ¢ otherwise. TherFY) (o, ) is defined to be., (f-, f»). It is straightforward to verify that
Forot(0,7) = FO (o, 1) for £ = (|D| + k + 1)/2.

A.4 Proofs for Section 4

In this section, we prove the results stated in Section 4. We begin with a lemma.

Lemma 14 Letw be a full ranking, and letr be a partial ranking. Suppose that# o. Then there exist
i,7 such thatr(j) = w(i) + 1 while o (j) < o (i). If o is in fact a full ranking, therr (j) < o (7).
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Proof. Order the elements of the domaih= {di,ds,...,d|p} so thatr(d,) < m(d2) < --- < 7(d|p)).

If o(d¢) < o(deyq) for all £, then we would have(,,¢(o, ) = 0, contradicting the fact that # o.

Hence, there must be soméor which o (dy+1) < o(dy). Settingi = dy, j = dy+1 gives us the lemma.
If o is a full ranking, thero(j) # o (i), showingo (j) < o (7). O

Lemma 15 (Lemma 3 restated)Let o be a full ranking, and let be a partial ranking. Then the quantity
F(o,7), taken over all full refinements = , is minimized forr = o 7. Similarly, the quantityk' (o, 7),
taken over all full refinements = 7, is minimized forr = o 7.

Proof. First, note that ifr = 7 then there is a full rankingr such thatr = 7« 7. We show that
F(o,o0%71) < F(o,mx7) and K(o,0% 7) < K (0,7« 1) for every full rankingz. The lemma will
then follow.
Let
U={full 7 | F(o,o0x7) > F(o,mxT)},

V=A{full m | K(o,0x7)> K(o,mxT)},

and letS = U U V. If S is empty, then we are done. So suppose not. Over all full rankingsS, choose
7 to be the full ranking that minimize& (o, ).

Sincer # o, Lemma 14 guarantees that we can find a pairsuch thatr(j) = 7 (i) + 1, buto(j) <
o(i). Producer’ by swappingi andj in 7. Clearly, 7’ has one fewer inversion with respectd¢dhan
does. HenceK (o, ') < K (o, 7). We show that’ € S, thus giving a contradiction.

If i andj are in different buckets for, thenn’« = 7« 7. Hence,F (o, 7'« 7) = F(o, 7+ 7) and
K(o,n'« 1) = K(o,mx 7). Soifw € U, thenn’ € U as well. Similarly, ifr € V, thenz’ € V. In either
casesr’ € S.

On the other hand, assume thiaand j are in the same bucket far. Thenn'x 7(i) = 7 7(j)
andrn’x 7(j) = 7 (). Furthermore, since(i) < =(j) and: andj are in the same bucket, we have
mx7(1) < wx 7(j), while o (j) < o(4).

Eitherm € U or w € V. First, consider the case wherec U. Substitutings = 7 7(3), b = 7« 7(j),
c=o0(j),d=o(i) in Lemma 12, we have

(4)]
()l

We also havér’«7(d)—o(d)| = |m7(d)—o(d)|foralld € D—{i, j} sincer’sT andm«T agree everywhere
but ati andj. Summing, we havé' (o, 7'« 7) < F (o, 7). Sincer € U, thenF (o, mx 1) < F(0,0% T).
Sox’ € U by transitivity.

Now consider the case wherec V. By our choicesr(j) = w(i) + 1. Hencem* 7(j) = m* 7(i) + 1
since: and; are in the same bucket ef Similarly, 7'« 7(i) = 7'« 7(j) + 1. And as we noted earlier« T
andr’x T agree everywhere exceptiand;. In other wordsy’ 7 is justn’ 7, with theadjacentelements
i andj swapped. Since(i) > o(j) we see that'x T has exactly one fewer inversion with respecttthan
7w 7 does. ThatisK (o, 7'+ 7) < K(o,7* 7). Sincer € V, we haveK (0,7 1) < K(o,0% ). Son’
must be inl” as well, by transitivity.

In either case, we have produced’ac S such thatX (¢, ') < K (o, ), contradicting the minimality
of 7. Hence,S must have been empty, as we wanted. O

77 (i) — o)+ |7's (i) —o(i)] = |mx7(i) —o(h)| + |mx7(j)

< rxT(i) —o(i)| + |7x7T(§) — 0

Lemma 16 (Lemma 4 restated)Let o and T be partial rankings, and lep be any full ranking. Then the
quantity F (o, o x T), taken over all full refinements > o, is maximized whea = px %+ . Similarly,
the quantityK (o, o * T), taken over all full refinements = o, is maximized when = px 7%x o.
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Proof. First, note that for any full refinement > o, there is some full rankings, such that = 7 o. We
show that for all full rankingsr that

F(px % o, px 8% ox 1)

>
andK (px ™8« o, px TR% ox T) >

F(rxo,mxo*T)

K(rxo,mx o T)

The lemma will then follow.

Let U = {full 7 | Fpx 8% o, px 8% ox7) < F(r* o, mx 0% T)}, let
V = {full m: K(p* TR% o, px TR5 o5 7) < K(r+ o, mx o+ 7)}, and letS = U U V. If S is empty,
then we are done. So suppose not. Over all full rankings S, chooser to be the full ranking that
minimizesK (px TR, ).

Sincer # p* T}, Lemma 14 guarantees that we can find a pairsuch thatr(j) = (i) + 1, but
p* TR(4) < px T8(3). Producer’ by swapping andj. Clearly,' has one fewer inversion with respect
to p* 7R thanz does. ThatisK (p* T}, 7') < K(p* 7%, 7). We now show that’ € S, producing a
contradiction.

If i andj are in different buckets far, thenrt’xo = mo. Hence F' (n'xo, n'xoxT) = F(mx 0, mx 0% T)
andK (r'+xo,m'xox 1) = K(rxo,mxoxT). Soifm € U, thent’ € U. Similarly, if r € V, then’ € V.
Hence,r must be inS.

Likewise, if i andj are in the same bucket for both and r, then swapping andj in = swaps their
positions in bothr* o+ 7 andwx o. So again, we se€' (1’ x o, 7'« ox 7) = F(w* o, 7% o* 7) and
K(n'so,m'xoxT) = K(rxo,mxox 7). As beforesr’ € S.

Now, consider the case wheérmandj are in the same bucket far, but in different buckets fot-. First
of all, 7'+ o is justm* o with  andj swapped sincéand; are in the same bucket fer; further, notice that
1 andj are adjacent imr* o. Seconds’x o T = m* o * T since; and; are in different buckets for.

Sincen (i) < 7(j), we haverx o (i) < 7w+ a(j). Further,r (i) < 7(j) sincepx 7R(j) < p* 78(4) and
px TR is a refinement of the reverseof Hencerx o T(i) < 7+ o+ 7(j). We have two cases to consider.
Eitherre Uorm e V.

Let us first examine the case thatc U. Substitutinga = mx o (i), b = nx o (j), ¢ = m* ox 7(1),
d=7mxo*7(j), in Lemma 12 gives us

|rx o (i) —mxoxT(1)] + |mxo(j) —mxo*x7(j)
<lrxo(i) —mxox1(j)| + |mxo(j)—mxox71(i)]
)|

=|r'xo(j) —7'xox1(j)| + |7'xo(i)—7'xo*x7(i)

We also have thatr'«o (d) — '« ox1(d)| = |mx o (d) —mxox7(d)| foralld € D— {4, j}. Summing over all
d, we obtainF (mx o, mxox 1) < F(r'xo, n'xo+T). Sincer € U, we have thaF (p« TR0, pxr TRx % 1) <
F(n*o,m+ox 7). Hences’ € U by transitivity.

We now examine the case thatc V. From above, we see thatx ox 7 = 7+ o*x 7, while 7’ x &
and 7« o differ only by swapping the adjacent elementand j. Sincern’x o (i) > #'* o(j) while
'+ ox7(i) < '* o* 7(j), we see that there is exactly one more inversion betwéewr andn’* o * T
than betweemr« o andrx o* 7. Thatis,K (r+ o, mx ox 7) < K(7'* o, 7' o 7). By our assumption,
7 €V, henceK (px TR+ o, px TRx 0% 7) < K(m* o, 7+ o+ T). It follows thatr’ € V.

So in each case, we have produced & S such thatK (p* TR, 7') < K (p* T}, ), contradicting the
minimality of =. Hence,S must have been empty, as we wanted. O

Theorem 17 (Theorem 5 restated)Leto and+ be partial rankings, let® be the reverse af, and letr?
be the reverse of. Letp be any full ranking. Then

R

Friaws(0,7) = max {F(px 7" o, px 0% ), F(px T4 0, pr 0 7))
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R

Khaus(o,7) = max{K(pxT >|<a,p*G*T),K(p*T*a,p*aR*T)}

Proof. We prove it for Fir..s. The proof forKi,.s is analogous. Recall that
Fiiaus(0, 7) = max {max min F'(o, 7), max min F'(o, 7')}
g T T ag

where throughout this proo#; and+ range through all full refinements ef and, respectively. We show
max, min, F(o,7) = F(p* 7% o, px o+ 7). The fact thainax, min, F(co,7) = F(px 7% o, px o* T)
follows similarly.

Think of o = o as fixed. Then by Lemma 3, the quantityo, 7), wherer ranges over all full refine-
ments ofr, is minimized whernr = o« 7. That is,min, F(o,7) = F(o,0% T).

By Lemma 4, the quantity’(o, ox 1), whereo ranges over all full refinements ef, is maximized when
o = px TR* 0. Hencemax, min, F(o,7) = F(px T%* o, px TR% 0% T). Sincepx TR+ o T = pro* T,
we havemax, min, F(o,7) = F(p* 7% o, px o* T), as we wanted. O

Proposition 18 (Proposition 6 restated)Let o and T be partial rankings. LefS be the set of pairgi, j}
of distinct elements such thaand j appear in the same bucket @fbut in different buckets of, let 7" be
the set of pairdi, j} of distinct elements such thaand j appear in the same bucket ofbut in different
buckets obr, and letU be the set of pairgi, j} of distinct elements that are in different buckets of both
andT and are in a different order i and . ThenKpaus(o, 7) = |U| + max {|S], |T'|}.

Proof. As before, lets; = px Ryo, letr = pxox T, letoy = px T o, and letry, = px oBx T
It is straightforward to see that the set of pdlifsj} of distinct elements that are in a different ordewin
andr; is exactly the union of the disjoint setsand.S. Therefore K (o1, 71) = |U| + |S|. Identically, the
set of pairs{i, j} of distinct elements that are in a different ordewinandr, is exactly the union of the
disjoint setd/ andT’, and hencés (o2, 72) = |U| + |T'|. But by Theorem 5, we know thad{.,s(o, 7) =
max {K (o1, 71), K(02,m7)} = max |U| + |S|, |U| + |T'|. The result follows immediately. O

A.5 Proofs for Section 5

In this section we prove the equivalence of all our metrics.

A.5.1 Equivalence ofFi,,s and Ky

In this section, we prove the simple result that the Diaconis—Graham inequalities (1) ext&ng,i@nd
Kyaus. We begin with a lemma. In this lemma, for metricwe definedy.,s as in (2), and similarly for
metricd’.

Lemma 19 Assume thatl and d’ are metrics where there is a constansuch thatd < ¢ - d’. Then
dHaus <c- d;

Haus*

Proof. Let A and B be as in (2). Assume without loss of generality that,,s(A,B) =
maxy, c4 Miny,ep d(y1,72). Find v in A that maximizesmin,,cp d(y1,72), and~y, in B that mini-
mizesd(y1,v2). Therefore,dpaus(A, B) = d(71,72). Find~j in B that minimizesd'(v1,44). (There
is such amy since by assumption on the definition of Hausdorff distantend B are finite sets.) Then
ditaus (4, B) = d(71,72) < d(71,7%), sinceys, minimizesd(y1,v2). Also d(y1,75) < ¢ - d'(71,7%), by
assumption o andd’. Finally ¢ - d'(v1,75) < ¢ djy,,.(A, B), by definition ofdy, ., and the fact thaty

Haus

minimizesd’ (1, +4). Putting these inequalities together, we obi@in.s(A, B) < ¢ - dj,.(A, B), which

Haus

completes the proof. O
We can now show that the Diaconis—Graham inequalities (1) exteAgd 4@ and K.
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Theorem 20 Let o7 and oy be partial rankings. ThenKy,us(o1,02) <  Fhaus(o1,02) <
2KHaus(0'1a0'2)-

Proof. The first inequalityKaus(o1,02) < Fiaus(o1, o2) follows from the first Diaconis—Graham in-
equality K (o1,032) < F(o1,02) and Lemma 19, where we let the rolesdfd’ andc be played byK,
F, and 1 respectively. The second inequality,,s(o1,02) < 2Kpaus(o1,02) follows from the second
Diaconis—Graham inequalitff (o1, 02) < 2K (01, 02) and Lemma 19, where we let the rolesdf’ and
c be played byF, K, and 2 respectively. O

A.5.2 Equivalence ofF},.,r and Ko

In order to generalize the Diaconis—Graham inequalitiesig; and K,..¢, we convert a pair of partial
rankings into full rankings in such a way that both tg.; and K ,,¢ distances between the partial rankings
is precisely% times theF" and K distances between the full rankings, respectively. Given a partial ranking,
o, with domainD, produce a duplicate seb? = {z‘ji S D}. Further, produce a new partial rankiref,
with domainD U D defined byo? (i) = o (i*) = 20 (i) — 1/2 for alli € D.

It is easy to see that? is a well-defined partial ranking. Further, it is not hard to check that for any
partial rankingr,

Fprof(o-ﬁa Tﬁ) = 4Fprof(o'> T)
Kprof(o'ﬁa Tﬁ) = 4Kprof(aa T)

In order for us to prove our theorem, we still need to conwérirom a partial ranking to a full ranking. For
any full rankingm with domainD, define a full rankingr? with domainD U D! as follows:

7i(d) = w(d) foralld e D
m#(d) = 2|D|+1—=(d) foralld e D

so thatr ranks elements ab in the same order as, elements ofD! in the reverse order of, and all
elements ofD before all elements ab".

We definer, = % (o!). For instance, suppog®is a bucket obr# containing the itemas, b, ¢, af, b*, ¢f,
and suppose thatorders the items (a) < 7(b) < 7(c). Thene will contain the sequenae b, c, cf, b, af.
Also notice thats (o (a)+ 0 (a%)) = (0 (b)+0(b")) = 3(ox(c)+0o(c*)) = pos(B). In fact, because
of this “reflected-duplicate” property, we see that in general, forcaayD,

5 (2(d) + 0 () = 0*(d) = o*(dF) = 20 (d) ~ 12 ™)

The following lemma shows that no matter what ordexe choose, the Kendall distance betweenand
T is exactly 4 times thé(,,¢ distance betweear andr.

Lemma 21 Let o, 7 be partial rankings, and letr be any full ranking on the same domain. Then
K(or,Tr) = 4Kpof (0, T).

Proof. By cases. O

Notice that Lemma 21 holds for any choiceraf The analogous statement is not true fgf.¢. In that
case, we need to choosespecifically for the pair of partial rankings we are given. In particular, we need to
avoid a property we call “nesting.”
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Given fixedo, T, we say that an elemetite D is nestedwith respect tar if either

[0x(d), o (d")]
or [rr(d), T(d")]

q

C
C
where the notatioifs, t] C [u,v] for integerss, ¢, u, v means thafs,t] C [u,v] ands # u, t # v. Itis

sometimes convenient to write, v] 3 [s, t] for [s, t] T [u, v].
The following lemma shows us why we want to avoid nesting.

Lemma 22 Given partial rankingso, = and full rankingw, suppose that there are no elements that are
nested with respect to. ThenF(o, Tx) = 4Fpr0t(0, T).

Proof. Letd € D. Sinced is not nested with respect g either

o:(d) < 7:(d) andaw(dﬁ) < Tﬂ(dﬁ)
or or(d) > 7,(d) andaﬁ(dﬁ) > Tﬂ(dﬁ)

In either case, we see
|7 (d) = Ta(d)] + o (dF) = T (d)] = |or(d) = T (d) + T (d*) — T (d")]
But recall that (o'+(d) + o'+ (d*)) = 20(d) — 1/2 and similarly forr . Substituting gives us
o2 (d) = 7x(d)| + |ow(dF) = Tx(d)| = d]o(d) — 7(d)]
Hence,

FlomTs) = Y (lox(d) = mx(d)] + |or(d) — 7r(d)])
deD
= Y 4lo(d) —7(d)
deD
= 4Fprof(av7-)

O

In the proof of the following lemma, we show that in fact, there is always a full rankimgth no nested
elements.

Lemma 23 Let o, 7 be partial rankings. Then there exists a full rankingn the same domain such that
F(or, Tr) = 4Fp0f(0, T).

Proof. We produce a full ranking that has no nested elements. For any full rankinge say itdirst nest
is ming 7(d), whered is allowed to range over all nested elementg;afie say its first nest iso if p has no
nests. Choose so that its first nest is as large as possible.

If = has no nested elements, then we are done. Otherwise,etthe element such thata) is
the first nest ofr. By definition, a is nested. Without loss of generality, assume faat(a), o (af)] 3
[Tx(a), Tx(a%)]. We findb € D so thatr(a) < «(b), and swapping andb in = will leave b unnested. To
this end, let

S1 = qdeD—{a} | [ox(a),0x(a")] T [Uw(d)yaw(d”)]}

{
5 = {4€D () | lon(e).on(e))] 3 frald) o(a)
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Chooseb € S; — S,. To see such & exists, note thatSi| = 3|[ox(a), ox(a")]| — 1, while |S5| <
tl[ox(a),ox(a")]| — 2, since[or(a),o-(a*)] T [Tx(a), T~(a*)] buta is not counted inS,. Note that
b € S; impliesa andb are in the same bucket fer. It further implies thatr(a) < 7 (b).

Furthermore,a andb are in different buckets fot-. To see this, suppose thatand b were in the
same bucket forr. Then sincer(a) < 7(b), we would haver,(a) < T.(b) and T, (a%) > T.(b).
That is, [T (a), 7x(a*)] 3 [7(b), T (b*)]. Buta is nested, so by our assumptide;(a), o (a*)]
[Tx(a), Tx(a?)] 3 [T(D), T (b")]. This contradicts the fact that¢ S,. Hencea andb must be in different
buckets forr.

Now, producer’ by swappingz andb in 7. Sincer(a) < 7(b), we seer’(b) = 7(a) < 7(b) = 7’(a).
We wish to prove that the first nest faf is larger than the first nest for, giving a contradiction. We
do so by showing that is unnested for’ and further, thatl is unnested for’ for all d € D such that
7'(d) < 7'(b) = w(a). In order to prove this, we need to examine the affect of swappegdb in 7.

To this end, consider a buckBtof o. Let |5 denote the order thatinduces ori3. Sincer’(d) = = (d)
for all d such thatr(d) < m(a), we see that’|z(d) = 7|s(d) for all suchd. Hence,o,/(d) = o.(d) and
o (d") = o (d") for all suchd. Therefore, for alll such thatr(d) < 7(a)

(o7 (d), 00 (d)] = [o(d),ox(d)] (8)
Let B be the bucket o0& that contains: andb. Thenr'|s is justn|z with a andb swapped. Sa’'|z(b) =
7|5(a). Henceo . (b) = o, (a) ando . (b*) = o (a*). Thatis,
(o7 (0), 0 (V)] = [on(a), ox(a?)] 9)
We now consider a buckét of +. Arguing as we did for buckets ef, we have that for all such that
m(d) < m(a),
[ (d), 7o (d)] = [r(d), Tr(d")] (10)
Now, let B be the bucket ofr that containsz. Sincen and =’ differ only by swappingz and b, and
7'(a) > w(a), we see that’|5(a) > 7|5(a). Hencer v (a) > T4 (a) andr(a?) < 7,(af). Thatis,
[T (@), T (@] € [rx(a), T (a)] (11)
Finally, let B be the bucket ofr that containsh. Sincer and =’ differ only by swappingz andb, and
7'(b) < 7 (b), we see that’|5(b) < 7|s(b). Hence ./ (b) < 7,(b) andT(b*) > 7. (b*). That s,
[T (), 7o (V)] 2 [ (b), T (V)] (12)
We are now ready to prove the lemma. From equations (8) and (10), we sda¢hahins unnested for
all d such that’(d) < w(a) = ’(b). So we only need to show thais unnested for’ to finish the proof.
If b were nested forr’, then either[o,/(b), o ()] T [T (b), 7o (b%)] OF [T (D), T, (b})] O
[0/ (b), o (b%)]. First, suppose thdtr ./ (b), o (b%)] 3 [T (D), T (b%)]. Then
[0(a),0:(a")] = [om(b),o~(b")] from equation (9)
3 [r.(b), T+ (b")] by supposition
D [ra(b), 7 (b)) from (12)
But this contradicts the fact that¢ Sy. Now, suppose thdtr ./ (b), 7,/ (b%)] 3 [0 (b), o (b%)]. Then

[70(0), T (V)] T [o5(D), o (b*)] by supposition

= [or(a),ox(a*)] from equation (9)

[T(a), 7x(a*)] sincea is nested, by assumption
[T (a), T (a)] from (11)
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But this implies that: andb are in the same bucket fat, a contradiction. Henceé, must not be nested for

7.

Hence, if any element is nested forr’, it must be the case that(d) > 7'(b) = 7(a). That s, the first
nest forz’ is larger than the first nest far, contradicting our choice af. Therefore;r must have had no
nested elements. By Lemma (o, 7) = 4F 0t (o, T), as we wanted. O

Putting these two lemmas together, we conclude the following.
Theorem 24 Leto and T be partial rankings. Thet ot (07, T) < Forof (07, T) < 2K 0 (0, T).
Proof. Giveno andr, let be the full ranking guaranteed in Lemma 23. Then we have

Kpot(o,7) = 4K(or,7.) by Lemma 21
AF (o5, T,) from Diaconis—Graham
Foot(o, 7) by Lemma 23

IN

And similarly,

AF (o r,T7) by Lemma 23
8K (o, T-) from Diaconis—Graham
2Kprot(0, 7) by Lemma 21

Fprof(o'y T)

IN

A.5.3 Equivalence ofKa,s and Kpof
We show that{y,,s and K ,.r are in the same equivalence class, thereby proving (6).
Lemma 25 Leto; ando; be partial rankings. The,,of(01,02) < KHaus(01,02) < 2K01(01, 02).

Proof. As in Proposition 6 (but where we let; play the role ofo anda;, play the role ofr), let S be
the set of pairdi, j} of distinct elements such thaaind; appear in the same bucket®f but in different
buckets ofoo, letT be the set of pairéi, 5} of distinct elements such thaand; appear in the same bucket
of o5 but in different buckets o0&, and letU be the set of pairgi, j} of distinct elements that are in
different buckets of botla-; ando > and are in a different order i, ando,. By Proposition 6, we know
that Kyaus(01, 02) = |U| + max {|S|, |T'|}. It follows from the definition ofK,,o that Kpof (01, 02) =
[U| + 3|S| + &|T|. The theorem now follows from the straightforward inequalitiés+ 1|S| + 1|7| <
|U| +max {|S], |T[} < 2()U] + 318| + 3|T)). O

A.6 Proofs for Section 6
A.6.1 Basic machinery

In this section we develop the basic machinery needed to prove the theorems in Section 6.
The following lemma appears to be folklore; for completeness, we include a proof here. Note that
Lemma 12 is, in fact, a special case of this lemma.

Lemma 26 If A and B are two multisets of numbers of the same size, and the cost of matcking to
b € Bis |a — b|, then the order-preserving perfect matching (i.e., the matching that matchéshiergest
element of4 to thei-th largest element aB) is a minimum cost perfect matching betwetand B.
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Proof. Let us denote the elements dfand B by a1, ao, . .., a, andby, bo, .. ., b,, respectively. Consider
a minimum cost perfect matching betweenA and B that matches the elemeat with ;). Assume,
without loss of generality, that; < as < -+ < a,. If buu) < bu(z) < e < bu(n), then we are done.
Otherwise, there existssuch thab,,;) > b,(;11)- Using Lemma 12, where the rolesafb, ¢, d are played
by ai, bi, by(it1), by respectively, we obtaifu; — b, ¢41)] +[aiv1 —bu)l < lai — by +laiv1 —bygnl-
Therefore, the matching’ defined by

pi+1) j=1
1) =1q i J=i+1
w(g) otherwise

has a cost not greater than the cos.ofThus, . is @ minimum cost perfect matching betwedrand B.
Furthermore, the number g% such thab ;) > b,/(j11) is strictly smaller than the corresponding number

for . Therefore, by repeating the above procedure we eventually get a minimum cost perfect matching that
is order preserving. O

Given functionsf : D — R andg : D — R, we say thatf andg areconsistentvith each other if there is
no pairi, j € D such thatf(:) < f(j) andg(i) > g(j). We now show that this notion is symmetric in the
role of f andg. Assume thalf andg are consistent with each other, and there is afdirc D such that
g(i) < g(j)andf(i) > f(j). By reversing the roles afandj, we obtain a contradiction to the fact that
andg are consistent with each other. Although, as we just showed, this relationship is symmetric, it is not
transitive, since the constant function is consistent with all other functions. We d¢jite be the set of all
partial rankingsthat are consistent witli.
Recall that ifo is a partial ranking consisting of buckeffs, Bs, . .., B, with pos(B1) < pos(Bs2) <

- < pos(By), thetypeof o, denotedype(o), is the sequences, |, |Ba|, . .., |B:|. Given a typey, define

(f)« to be the subset dff) consisting of partial rankings with type

Lemma?27 Letf : D — R, leta be a type, and suppoge € (f),. ThenL,(o, f) < Li(7, f) for all
partial rankingsT such thattype(7) = a.

Proof. Consider the multisetsl = {o(z) : * € D} andB = {f(z) : * € D}. Itis clear from
the definition of partial rankings and types that every partial rankirgj type . corresponds to a perfect
matching betweem and A. Since there is a one-to-one correspondence betweand B, every suchr
also corresponds to a perfect matching betwdesnd B. Furthermore, the cost of this perfect matching
(assuming that the cost of matchiage A with b € Bis |a —bl) is preciselyL; (7, f). Thus, by Lemma 26,
the minimum value of_; (7, f) is achieved wherr is consistent withf, that is, when it belongs t6f),,.
Hence,L (o, f) < Li(T, f). OJ

Lemma28 Letf : D — R, and Ietf be the partial ranking associated with it. Letbe a refinement of.
Then for every full ranking, we havel (o, f) < Li(7, f).

Proof. Leto > f and leto be a full ranking that is a refinement ef We showL (o, f) < Ly(o, f),
henceL, (o, f) < Li(7, f) by Lemma 27 (both have the same type, namely . .., |D|).

To this end, lef3 be a bucket of. Sinceo is a refinement of , we see thaf is constant over all € B;
call this valuef. Sinceo is a refinement ofr, we see thap , s o (i) = |B| - pos(B). So we have

D lo@) = fsl = |> _(0(i) = f5)| = |B| - [pos(B) — fs| = Y _|o(i) — fsl.
i€B i€B i€B
Summing the above over all bucketsmfwe see thal (o, f) > L1 (o, f), as we wanted. O
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A.6.2 Proofs

Theorems 9,10, and 11 are special cases of the following theorem, as we shall show.

Theorem 29 Let fy,. .., f,, be functions mapping — R, and assum¢g € median(f1,..., fm). Also,
let S be a set of functions (for instance, the set of kdsts, or the set of partial rankings). Suppose tlfat
is a function such that for all functionse S, we havelL,(f’, f) < L1(g, f). Then for all functiong € S,
we have

S Li(f fi) <3 Lilg, fi).
=1 =1

If the functionsfy, ..., fi, € S, then we have for all functiors,
S OLi(f f) <2 La(h, £i).
i=1 i=1

Proof.

m

Zh(f',fi) < Z(Ll(f/,f)+L1(f,fi)) by the triangle inequality
=1

=1
m

< 3 (Li(g, f) + La(f. f;)) by assumption
=1
< f:(Ll(g,fi) + Li(fi, f) + La(f, fi)) by the triangle inequality
=1
< 33" Li(g. ) byLemmas
=1
As for the second part,

STLif f) < D (Ll f) + La(f, £:) by the triangle inequality

=1 i=1

Z 2Ly (f, f;) by assumption, since eaghe S
=1

IN

2> " Li(h, fi) by Lemma8
i=1

IN

O

Recall that Theorem 9 considered the case when the output of the aggregation is forced tokkisa top
We now show a more general form of this theorem when the output can be specified to be any fixed type
and where we aggregate not just partial rankings but arbitrary funciton.

Corollary 30 (Generalized form of Theorem 9) Let f1, fo, ..., f, be functions mappin@ — R. As-
sumef € median(f1,..., fm). Leta be atype, and assumee € (f),. Then for every partial ranking-
such thatype(t) = a,

Y Lilo,fi) <3) Li(r, fi)
=1 =1
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Furthermore, if all of thef;'s are partial rankings withtype(f1) = type(fa) = --- = type(fm) = «, then
for all functionsg,

> Li(o, f;) <2 Li(g, i)
=1 =1

Proof. Let S be the set of partial rankings with type Then combining Lemma 27 and Theorem 29 gives

us the result. O
Corollary 31 (Generalized form of Theorem 10) Let f1, ..., f,, be functions mappingg — R, and as-
sumef € median(fi, ..., fm). Suppose that! is a partial ranking such that for all partial rankings, we

haveL;(fT, f) < L1(r, f). Then for all partial rankingsr, we have

m

Y LY fi) <3)  Li(a, fi).
=1

i=1

If the functionsfy, . .., f,, are in fact partial rankings then we have for all functions
S L f) <2) Ly f)-
i=1 i=1

Furthermore, in this second case where the functins. ., f., are partial rankings, anf that satisfies
L1(fT, f) < Ly(, f) for all partial ordersT can be computed i®(|D|?) time by dynamic programming.

Proof. SettingS to be the set of all partial rankings in Theorem 29, the result is immediate once we are
given fT. TheO(|D|?) time dynamic programming algorithm to calculate an appropifate presented in

Section A.6.4. 0
Corollary 32 (Generalized form of Theorem 11) Leto, 09, ..., 0y, be full rankings with domaid. Let
f € median(o1,...,0y,), and leto be any refinement of. Then} " |, Li(o,0;) < 2>, Li(g, 0;) for
every functiory.

Proof. SettingS to be the set of all full rankings in Theorem 29, and using Lemma 28, the result foffows.

A.6.3 Stronger notions of optimality

Theorem 9 tells us that the median aggregation algorithm allows us to producé #gbghat is almost as
good as any other toplist. However, we can show that the tégist produced is nearly optimal in an even
stronger sense.

We say a partial ranking of type « is nearly optimaln the strong sensiéthere is some partial ranking
o’ such thato = (¢’),, and furthers’ is nearly optimal. For instance, a tégist is nearly optimal in the
strong sense if it represents thenost highly-ranked objects for some nearly optimal partial ranking.

We note first that this notion implies the weaker notion. Specifically, we have the following theorem.

Theorem 33 Let f1, ..., f;, be functions mapping — R. Suppose that partial ranking of typea« is
nearly optimal in the strong sense. More preciselygiebe a partial ranking such that = (o), and for
all partial rankings’,

Z Li(o, fi) < CZ Ly(t', fi).
i1 i1
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for some constant. Then for all partial rankings- of typec, we have
Y Li(o, fi) < 2+ 1)) Li(7, fi)-
=1 =1

Proof.

(Li(o,0") + Li(a’, f;)) by the triangle inequality

I

s
Il
—

> Li(o, fi)
i=1

(Li(7,0") + Li(d’, fi)) by Lemma 27

NE

<.
Il
—

(Li(7, f;) + L1(fi,0') + Li(d’, fi)) by the triangle inequality

NE

1

<.
Il

(2¢+1) ) Li(7, f;) by assumption
i=1

IN

O

Lemma 34 Leta and 3 be types, leff be a function, and suppose thate (f),. Then there is a partial
rankinge”’ € (f) 3 such thato € (¢”),.

Proof. We first define a partial ranking that is a refinement of botéx and f, the induced partial ranking
associated witlf. For each pait, j, if o(i) < o(j) then sep(i) < p(j). If (i) = o(5) andf(i) < f(j),
then sefp(i) < p(j). If (i) = o(j) andf(i) = f(j), then sefp(i) = p(j). Notice that if f(i) < f(j),
theno (i) < o(j) sincef andeo are consistent with each other. So by definitipfy,) < p(j) as well.
Assumeo’ € (p)s. We claim thaio”’ is consistent withy and witho. To see the first part, consider any

i,jthatf(i) < f(4). Thenp(i) < p(j) as we noted above. Heneé(i) < o’(j) sinces’ is consistent with
p. Sog’ is consistent withf. Hence,o’ € (f)g. Similarly, if o(i) < o (j), thenp(i) < p(j) by definition.
Henceo'(i) < o’(j). Soo is consistent witte’. Thus,o € (o), as we wanted. O

We now prove that the median aggregation algorithm also produceskdigifhat is nearly optimal in
the strong sense. We actually prove a slightly more general theorem.

Theorem 35 Let o be a type and leffy, ..., f,, be functions. Assumg € median(fi,..., f,), and
suppose thatr € (f),. Then there is a partial ranking’ such thaio € (¢’),, and for all partial rankings,
T, we have

> Li(o’, fi) <3 Li(r, fi)
i=1 i=1

Furthermore, if the functiong,, . . ., f,, are in fact partial rankings then we have for all functions,

m

Z Lo, fi) <2 Z Li(g. fi)
i=1

=1

Proof. Let fT be a partial ranking such thag (fT, f) is minimized. Let3 be the type off . By Lemma 34,
there is a partial ranking”’ such thato’ € (f)g ando € (o’),. Sinces’ € (f)3, Lemma 27 guarantees
thatL, (o', f) = L1(fT, f). Hence, by Theorem 10, the corollary follows. O
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A.6.4 The dynamic programming algorithm

Let |D| = n. We now describe an algorithm that given a functjpre median(fi,..., f,,) for partial
ordersfi, ..., fm, finds a partial ranking' so thatZ, (f, f') is minimized. (Note that the algorithm does

not actually need to be a median function.) It is easy to produce an algorithm running in @e) if

we are allowed to us®(n?) space. If we make the additional assumption thét) is integral for alli,

then we have an algorithm that runs in linear space and @f€). Note that this assumption is not very
restrictive, since the median function for a set of partial orders will always satisfy this when the median does
not average two values (For instance, if we have a set eéluesa; < as < ... < a,,, We take the median

value to beanTHJ )

Suppose without loss of generality th&tl) < f(2) < ... < f(n). For convenience, defing0) =
—oo. Let 7 be the total ordet,2,...,n. By Lemma 27, there is some typesuch that iffT € (),
thenLy(f, f1) < L1(f, ) for all partial rankingr. We can determine such a minimal type using dynamic
programming.

To do so, we first need several definitions. For anywith 0 < ¢ < j < n, we define

J

c(i,j) = Z

l=i+1

10—

_”Hl‘

To motivate our definition of (i, j), imagine that we alter the type efso that there is a bucket starting at
1 + 1 and going untilj. Then the position of that bucketi’é%, and the distance between that bucket and
f (onthe valuedi+ 1,7+ 2,...,j}) is preciselyc(i, j).

In general, letS be a sequencg) < s; < --- < s¢. Then we define

c(8) =) c(se,8041)

Intuitively, we think of eachs, as marking a point where one bucket starts and the next begins. The im-
portant thing to notice about this is that there is a one-to-one correspondence between types on the domain
{1,2,...,n} and strictly increasing sequences that begin withnd end withn. More precisely, let3

be a type witht buckets represented by the sequebcés,...,b;. Defineseq(3) to be the sequence

80,81, - - -, St, Wheresyp = 0 andsy1 = sy + by for all £ > 0. Itis easy to check that the functieaq(-) is
one-to-one. Further, we see immediately that if () then

o~

-1

Li(f,m) = Y c(se,s001) = c(seq(B)) (13)

=0

Our dynamic programming algorithm will calculate a sequefigestarting withO and ending withn
such that(S,,) is minimized. To this end, we find + 1 different sequencesSy, S1,So, ..., S,. For all
J > 0, the sequencs; will have the property that its first elementdsand its last element is Our goal is
to havec(S;) minimal over all such sequences.

To this end, defings, = 0, and recursively defing; = S;,, j, whereig = argmin;[c(S;) + ¢(4, j)].
Then we have the following.

Lemma 36 LetSy, Sy,. .., S, be defined as above. Then for alhnd for all strictly increasing sequences
S]’. that start with0 and end with;, we hav&(S]’.) > c(S5).

Proof. We proceed by induction. The cage= 0 is trivially true. So assume that> 0 and that our claim
is true for all indices smaller than
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Given f such thatf(1) < f(2) < ... < f(n)

1 FORj:=1TOn

2 Sete(0, ) = 352, 1£(0) — 4.

3 Setk := 0.

4 FORi:=1TO j—1 N

5 WHILE (k < jandf(k) < 5t incrementk

6 Sete(i, j) i= c(i — 1,j) — | £(i) - 52| + 222,
7 Findig > 0 such thafc(S;,) + c(io, j)] minimized.

8 SetS; = Siy, j.

9 Outputs,.

Figure 1: Pseudocode to compute optimal sequeéhce

Now, IetS]’. be a strictly increasing sequence starting with 0 and endingjwiBuppose the penultimate
element ofS} is i. Then there is a strictly increasing sequesgending withi such thatS; = S/, j. By
definition,c(S?}) = ¢(S;) +c(i, j). Butby inductiong(S;) > ¢(S;). Hencee(S)) > ¢(S;i)+c(i, 7) > ¢(S;).
|

Using Lemma 36, it is easy to see that the type associatedSyith optimal. That is, supposg, is the
sequence) < s1 < ... < s, and leta. be the shape given by the sequesge- sy, s2 — 1, ..., 8 — S¢_1.
Let fT € (n),. Then for any partial ranking, we have

Li(f, f1) = e(Sn) < e(seq(type(T))) = L1(f,T)

by equation 13.

Given the recurrence relation, it is a simple matter to calcufateSincec(i, j) can be calculated in
O(n) time for all i, j, we see there is a simple algorithm to calcul§eis time O(n?). However, we can
in fact calculate:(z, j) is amortizedO(1) time. In the case where we do not have memory restrictions, we
simply utilize the following recurrence:

i+

c(i—l,j—l—l):c(i,j)+’f(i—l)— 5

'+‘f(j+1)—i+j'

Using this, we can calculatéi, j) for all 7, j in O(n?) time, butO(n?) space.
If 2f(i) is integral for alli, then we can calculat§, in linear space and timé&(n?) using a slightly
more complicated algorithm. The pseudocode is shown in Figure 1. The following lemma is the key idea.

Lemma 37 Leti, j, k be integers, and suppose that either (1} — 1) < 7 < "+ < (k) with k < j,

or (2) £(j) < % with k = j + 1. Then in both cases(i, j) = c(i — 1, 5) — ’f(i) _ #‘ iz

Proof. We first consider the cast(k — 1) < &1 < “HEL < f(k),

i) = Y |-
l=i+1
= itit1] i+j+1
= X o= T e e -
t=it1 =k



- A11<i+‘;+1—f(f)>+;j:<f(f)—m2'+1>
:le(i;j—fw)) _Z_1+Zj:<f )it

l=i+ =k
- k—1 f(ﬁ)—iij“sz:f(g) 1+ +2]€—’L—]—2
. 2 2 2
(=it1 =k
i 1+ 2k —1—75—2
— —1.4)— _
i 1.4) = |16 - 52|+ 2
As for the casef(j) < 52 with k = j + 1, we have
/ it+j+1
i) = 3 |ro -
{=i+1
J . .
i+j+1
C$ ()
{=i+1
/ i
- 3 B 0
l=i+1

— - 1,j) - ]f(z')—

O

Using Lemma 37, we can finish analyzing the algorithm. Referring to the pseudocode in Figure 1, notice
that if 2 f(¢) is integral for all;, then whenever we exit tH&HILE loop, one of the two conditions from the
previous lemma holds. So the algorithm correctly computgg ) for eachi, j. Turning to the running time,
notice that for each iteration of the outer loop, the valué ofcreases frond to at mostj + 1. Likewise,i
increases from to j. Finally, calculating botf(0, 5) in step 2 and the minimal, in step 7 can be done in
O(n) time. So in total, the algorithm runs in tind&(n?).
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