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Efficiently Extendible Mappings 
for Balanced Data Distribution 

D. M. Choy,’ R. Fagin,’ and L. Stockmeyer’ 

Abstract. In data storage applications, a large collection of consecutively numbered data “buckets” are often 
mapped to a relatively small collection of consecutively numbered storage “bins.” For example, in parallel 
database applications, buckets Correspond to hash buckets of data and bins correspond to database nodes. In 
disk array applications, buckets correspond to logical tracks and bins correspond to physical disks in an array. 
Measures of the “goodness” of a mapping method include: 
( 1 )  The rime (number of operations) needed to compute the mapping. 
(2) The storage needed to store a representation of the mapping. 
(3) The balance of the mapping, i.e., the extent to which all bins receive the same number of buckets. 
(4) The cost of relocation, that is, the number of buckets that must be relocated to a new bin if a new mapping 

One contribution of this paper is to give a new mapping method, the Interval-Round-Robin (IRR) method. 
The IRR method has optimal balance and relocation cost, and its time complexity and storage requirements 
compare favorably with known methods. Specifically, if m is the number of times that the number of bins and/or 
buckets has increased, then the time complexity is O(1ogm) and the storage is O(rn2). Another contribution 
of the paper is to identify the concept of a history-independent mapping, meaning informally that the mapping 
does not “remember” the past history of expansions to the number of buckets and bins, but only the current 
number of buckets and bins. Thus, such mappings require very little information to be stored. Assuming that 
balance and relocation are optimal, we prove that history-independent mappings are possible if the number of 
buckets is fixed (so only the number of bins can increase), but not possible if the number of bins and buckets 
can both increase. 

is needed due to an expansion of the number of bins or the number of buckets. 

Key Words. Database management, Parallel database, Disk array, Extendible storage system, Data striping, 
History independence, Data mapping, Balanced distribution. 

1. Introduction; A common way to store a large number of data objects is to distribute 
the objects across multiple storage locations. This approach: 

0 Enables parallel processing when each storage location is supported by a separate 

0 Reduces the search scope when the storage location(s) of the target object(s) of a 

0 Allows horizontal expansion to accommodate capacity or performance growth by 

0 Can be easily scaled to handle a very large volume of data. 

As an example, in a database management system (DBMS), a relation can be “horizon- 

piece of hardware (e.g., storage device, CPU). 

selective retrieval can be deduced from the query. 

adding storage locations incrementally. 
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tally partitioned” into multiple subsets of tuples, with each subset stored at a separate 
DBMS node or on a separate storage device [3], [7] .  The partitioning can be done, for 
instance, by hashing on a designated “partition key” of the relation to produce a node 
number. To do so, a two-step mapping is often used: the tuples are hashed to a relatively 
large, but fixed, range of hash bucket id’s, which in turn are mapped to storage “bins” 
(i.e., DBMS nodes or storage devices). This indirect mapping simplifies the remapping 
of bins (e.g., to switch data accesses to a redundant storage device when a device fails, or 
to support a bulk migration of data from one node/device to another). It also facilitates 
the addition of (one or more) bins to accommodate database growth or to increase paral- 
lelism. Since hashing and other data partitioning methods have been well investigated, 
we hereby focus on the bucket-to-bin mapping and assume that the tuples are distributed 
fairly evenly into the buckets using a suitable partitioning method. We are particularly 
interested in how well a bucket-to-bin mapping is able to support database growth, i.e., 
to accommodate the addition of new bins. 

Another example of object distribution across multiple storage locations is the case 
of data striping for a disk array [6] .  An attractive way to use a disk array is to treat the 
entire array as a single, logical disk so that existing system and/or application software 
does not have to be changed to understand the physical configuration and operation of 
an array. With this approach, we take the “buckets” to be logical tracks in the logical 
disk, with as many logical tracks as there are physical tracks on the disks in the array. 
It is then the responsibility of the array controller to map the logical tracks one-to-one 
onto the physical tracks. This approach is followed, for example, in the IBM 35 14 High 
Availability Disk Array [4]. We think of each disk in the array as a “bin,” so once again 
we are assigning buckets to bins. When (one or more) new disks are added, the number 
of buckets and bins both increase. This is because when new disks are added, there are 
more physical tracks, and hence more logical tracks, that is, buckets. This is in contrast 
to our previous example of a partitioned database, where the number of bins, but not 
buckets, may increase. A simple way to handle the addition of new disks is to map the 
new logical tracks onto the new disks, while keeping the mapping from the old logical 
tracks to the old disks unchanged. A disadvantage of this approach is that the new logical 
tracks are initially unused, so the new disks will be underutilized until the new logical 
tracks are written with data. As an alternative to alleviate this disadvantage, a two-step 
expansion procedure could be used: first the number of disks (bins) is increased, and 
the old logical tracks are remapped evenly to all the disks; then the number of logical 
tracks (buckets) is increased, and the new logical tracks are mapped evenly to all the 
disks. # 

Note that in both applications of bucket-to-bin mappings described above, an impor- 
tant measure of the goodness of a mapping is its balance, that is, the extent to which all 
bins receive the same number of buckets. Ideally, the mapping is optimally balanced, 
that is, if there are B buckets and n bins, then each bin receives either LB/nJ or [ B / n l  
buckets. 

A typical method to map buckets to bins in an optimally balanced way is a simple 
Round-Robin (RR) assignment. The bin number assigned to a given bucket can be easily 
calculated using modular arithmetic: 

bin-number = bucket-number mod n, 
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where n is the number of bins used to store the set of objects. (We assume here and 
subsequently that buckets are numbered 0, 1,2, . . . , B - 1 and that bins are numbered 
0, 1, 2,  . . . , n - 1 . )  While this method is simple and efficient, there is unfortunately a 
large relocation cost when new bins are added. For example, if a new bin is added to 
n existing bins, approximately the fraction n / ( n  + 1) of the data must be moved from 
one bin to another before the data can be accessed using the new mapping. For a large 
database, this leads to a long period of unavailability of data, which is not acceptable to 
many applications. In contrast, an optimal relocation would move only l / ( n  + 1) of the 
data, which is to populate the new bin so that the expected workload is balanced over all 
n + 1 bins, without bucket redistribution among the old bins. 

A different approach is to maintain a stored bucket-to-bin mapping. In this case, a 
directory of B entries is maintained in which the ith entry contains the bin number 
assigned to bucket i, where B is the total number of buckets and is usually a fairly large 
integer. Thus, each bucket can be individually assigned or reassigned to any bin. When 
new bins are added, individual buckets are selected for relocation to the new bins so that 
only the minimum amount of data is moved. However, with this approach, a directory 
has to be maintained for each relation (or other partitioned set of objects), or for each 
group of relations that share the same mapping. Furthermore, these directories must be 
resident in the main memory to assure a good performance for data access. For a large 
database, they consume a significant amount of memory. 

An alternative solution, called Cascaded-Round-Robin (CRR) mapping [2], has re- 
cently been proposed. Similar to the simple RR scheme, a CRR mapping can easily be 
computed in O ( m )  operations, using a stored sequence of about rn integers, where rn is 
the number of times bins are added and is usually a small integer. In particular, rn will 
be smaller than the number of added bins if several bins are added at each expansion. (In 
contrast, RR needs only a single stored integer, namely, n.) While a CRR mapping can 
be readily defined that is optimal with respect to relocation, it might not be optimally 
balanced. 

In this paper we propose an Interval-Round-Robin (IRR) mapping to map buckets to 
bins. It is also easily computable and it guarantees optimality in both relocation (minimum 
data movement) and balanced bucket distribution. While IRR needs to maintain more 
data than CRR ( U(rn2) integers rather than in where, as before, rn is the number of times 
that bins have been added), it is still far less than the full directory mapping ( B  integers). 
Moreover, the IRR mapping can be computed in O(1ogrn) operations. 

For the various mapping methods mentioned above, there is a wide variance in the 
amount of storage needed to hold a representation of a particular mapping, where the 
“representation” is the information used to distinguish one mapping from another in 
the same class of mappings. Call this storage the “mapping storage.” In the case of the 
simple RR method, for example, the number n of buckets is sufficient to represent a 
particular RR mapping, so the mapping storage is that needed to hold a single number. 
For the Stored-Directory (SD) method, on the other hand, the representation is a list of 
B integers, so the mapping storage is large if B is large. The mapping storage of the 
CRR and IRR methods lies between these two extremes if the number of expansions is 
not too large. How small can mapping storage be for mappings that are optimal in both 
balance and relocation? (Recall that the RR method is not optimal in relocation.) The 
representation must keep track at least of the number of bins, for the following simple 
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reason. Suppose that the same mapping f were used for two different numbers, n and 
n’, of bins. Say that n < n’. Then either f maps a bucket to a nonexistent bin when 
used for n bins, or f leaves some bin empty when used for n’ bins and therefore cannot 
have optimal balance. So an optimal mapping (optimal in both balance and relocation) 
must “know” the number of bins. Is just the number of bins sufficient? This is less 
clear: on the face of it, this seems possible. However, we prove (Theorem 4.2) that an 
optimal mapping cannot depend just on the number of bins; some additional information 
is necessary. How much additional information is needed? In particular, is the number 
of buckets enough? We say that a mapping is history-independent if it depends only on 
the number of buckets and bins; so, in particular, it does not depend on the history of 
expansions which led to the current number of buckets and bins. We show (Theorem 4.1) 
that if the number of buckets is fixed (so only the number of bins can increase), then 
there is a history-independent mapping that is optimal. Therefore, in the case where the 
number of buckets is fixed, mapping storage need be no more than the storage to record 
the number of buckets and bins. What about the case where the number of buckets is not 
fixed? We show (Theorem 4.3) that in this case, where the number of bins and buckets 
can both increase, there is no history-independent mapping that is optimal. It is an open 
question in this case what the minimal mapping storage is. 

The rest of the paper is organized as follows. Section 2 contains definitions, including 
descriptions of the measures of “goodness” of a mapping method that are of interest to 
us. In Section 3 we describe our new IRR method. Section 4 contains our results on the 
existence and impossibility of history-independent mappings. Section 5 contains some 
concluding remarks and open questions. 

2. Definitions. Given a positive integer B,  the number of buckets, and a positive integer 
n ,  the number of bins, the problem is to construct a mapping f from the set of bucket id’s 
(0, 1,2,  . . . , B - 1) to the set of bin id’s (0, 1 ,2 ,  . . . , n - 1). Typically, B is much larger 
than n .  The term “bucket x” is sometimes used as shorthand for “the bucket with id x,” 
and similarly for “bin y.” Another part of the problem is to handle an expansion when the 
number of bins increases from n to some n’ > n ,  and possibly also the number of buckets 
increases from B to some B’ > B .  Thus, we also have to explain how to construct a 
new mapping f’ from B buckets to n’ bins, or, more generally, from B’ buckets to n’ 
bins, when an expansion occurs. In effect, there is not just a single mapping, but rather a 
family of mappings, i.e., a general “mapping method.” We can view a mapping method 
as a function M ( x ,  p )  which takes a bucket id x and a representation p of a particular 
mapping, and returns a bin id. That is, f ( x )  = M ( x ,  p )  where p is the representation of 
f. For example, for the RR method mentioned in the Introduction, the representation p 
is simply n ,  and M ( x ,  p )  = x mod n .  For the SD method, p is a list (yo, y1,  . . . , YB-1) 
of integers, and M ( x ,  p )  = yx .  

Measures of the goodness of a solution include the following: 

1. Balance. The size of bin y under the mapping f is the number of buckets that f maps 
to bin y. A mapping f from B buckets onto n bins is said to be balanced if the size 
of every bin is either rB/nl  or LB/nJ. Equivalently, a mapping is balanced if no two 
bins differ in size by more than 1 .  If the mapping is balanced and r = B mod n ,  then 
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r bins have size [ B / n l  and n - r bins have size LB/nl .  Define a standard balanced 
mapping to be one where the first r bins have size r B / n l  and the last n - r bins have 
size LB/nJ. 

2 .  Mapping Complexity. This is the number of operations needed to compute f ( x ) ,  
given a bucket id x .  

3 .  Mapping Storage. This is the amount of storage needed to store a representation of 
the mapping. In placing upper bounds on the mapping storage of a particular mapping 
method M ( x ,  p ) ,  we bound only the storage needed for the representation p (which 
can, in general, depend on n ,  B ,  and the number of expansions), and we ignore the 
(constant) storage needed to hold an algorithm for computing M .  The algorithms 
used in our particular mapping methods are not complicated, and are described in the 
text. 

4. Bucket Relocation. When a mapping f is replaced with another mapping f ’  as the 
result of an expansion, the bucket relocation of the expansion is the number of buckets 
that are assigned to different bins by f and f’, i.e., the number of bucket id’s x such 
that f ( x )  # f’(x) and 0 5 x -= B .  

5 .  Expansion Complexity. This is the amount of computation required to construct the 
representation of the new mapping when an expansion occurs. 

These measures could depend on the entire past history of expansions, in particular, on 
the number of expansions. The expansion complexity is less of a concern than the other 
measures, since the time required to compute a representation of the new mapping is 
typically dominated by the time required actually to move the data residing in buckets that 
are relocated to a different bin. Since the remaining four measures (balance, complexity, 
storage, and relocation) are difficult to juggle at one time, we have chosen in this paper 
to focus on mappings that are optimal in both balance and relocation, and to study the 
time complexity and storage requirements of such mappings. 

To illustrate the definitions and to set the stage for a comparison of our method with 
known methods, we first review two of the known methods that were mentioned in the 
Introduction. Both methods produce standard balanced mappings. 

The RR mapping is given simply by 

f ( x )  = x mod n ,  

where n is the number of bins. Mapping complexity is small (one modular operation), 
as is mapping storage (it is sufficient to store n) .  The problem with this scheme is that 
bucket relocation is very large. For example, if the number of bins increases from n to 
n + 1, then the data in approximately the fraction n / ( n  + 1 )  of the buckets must be 
relocated. In contrast, the minimum fraction that must be relocated to obtain a balanced 
mapping is approximately l/(n + 1). 

It is not difficult conceptually to minimize bucket relocation, given that mappings 
should always be balanced. Initially (before any expansion has occurred) the RR mapping 
is used. Say that the present mapping is a standard balanced mapping f to n bins, and 
say that an expansion from n bins to n’ bins occurs. (To simplify the description, we 
assume that B does not increase, although the method generalizes easily to the case 
where B increases.) For each bin y with 0 5 y < n ,  calculate the number of buckets 
that must be moved from bin y to the new set of bins (n  through n’ - 1 )  to produce a 
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new standard balanced mapping f’ to n‘ bins. (As noted above, it is straightforward to 
compute, for a given bin y and a given B and n ,  the number of buckets in bin y under 
any standard balanced mapping from B buckets to n bins.) Then choose a specific set of 
buckets to be moved from bin y. It is easy to see that this minimizes bucket relocation, 
given that mappings should always be balanced, since it moves the minimum possible 
number of buckets required to populate the new set of bins. (To see this, it is enough 
to recall that the mapping is a standard balanced one, where the higher-numbered bins 
contain the smaller number LB/nj  of buckets.) The difficulty with this approach is that 
the definition of the mapping becomes complicated. One solution, the SD method, is to 
store the values of the mapping explicitly, i.e., for each bucket id x ,  the directory contains 
the value of f ( x ) .  Mapping complexity is small (one directory access). The problem 
with this approach is that mapping storage is the number B of buckets, which could be 
large. 

. 

3. The Interval-Round-Robin Method. Our new mapping method, the IRR method, 
is related to the SD method in that it always produces a (standard) balanced mapping 
and minimizes bucket relocation at each expansion. The advantage over the SD method 
is that the mapping storage is bounded above by cm2, where m is the number of ex- 
pansions that have occurred and c is a small constant. This amount of storage could be 
significantly smaller than B if m is not too large. To achieve this smaller storage, a price 
is paid in mapping complexity. Two implementations of our method are suggested; these 
are, in fact, two variations of the basic IRR method, with slightly different representa- 
tions p and mapping functions M .  The first, using a table representation of the mapping, 
has mapping complexity O(1ogm) (where, again, m is the number of expansions). The 
second, using a tree representation, has mapping complexity O ( m )  (this can be reduced 
to O(1og m )  by rebalancing the tree), and the constant factor c in the upper bound cm2 
on mapping storage is larger for the tree representation than for the table representa- 
tion; however, the tree representation is more convenient to update when an expansion 
occurs. 

The first four sections, 3.1-3.4, give a basic “implementation-independent” descrip- 
tion of the IRR method. Sections 3.5 and 3.6 suggest two possible implementations. To 
simplify the description, these first six sections concern the case that the number B of 
buckets is fixed. In Section 3.7 we describe how the method can be modified to handle 
an increasing B .  In Section 3.8 we compare the performance of the IRR method with 
that of the RR, SD, and CRR 121 methods. 

3.1. Representation of the Mapping. Suppose that we are in a situation where m 
expansions have occurred. Part of the representation of the mapping is the sequence 
no, n l ,  n2, . . . , n,  where no > 0 is the number of bins initially, and n, is the total num- 
ber of bins after the j t h  expansion. It is convenient to define n-1 = 0. Let dJ = n, - nJ-l 

for 0 5 j 5 rn. Thus, at the j t h  expansion, d, bins are added to the existing n,-l bins 
to create a new total of nJ bins. Note that d, > 0 for 0 5 j 5 m, since n,-l < n,. In 
what follows, we assume that the numbers d, are also stored, although an alternative is 
to recompute a particular d, whenever it is needed. Define the j t h  block (of bins), for 
0 5 j 5 m,  to be bins with id’s in the interval [n,- l ,  n , ) .  (For integers zl and z2 with 
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Algorithm 1: Mapping Computation 
Input: A bucket id x 
Find i such that x is in [ai-1, a i )  
j = bi 
Return nj-1 + [(x - ci)  mod djl 

Fig. 1. Algorithm for mapping computation. 

z1 < 22 ,  the interval [zl, 2 2 )  contains all integers z with tl I z < z2.) Thus, dj is the 
number of bins in the j th  block. 

The basic idea of the mapping is to divide the space [0, B) of bucket id’s into intervals. 
All buckets in the same interval are mapped to bins that belong to the same block. A bin 
can contain buckets from several different intervals. If bucket x is mapped to a bin in 
block j, then the bin to which bucket x belongs is given by nj-1 + [rank(x) mod d,],  
where rank(x) is the rank of x among the set of bucket id’s that are mapped to block j, 
where the smallest bucket id in this set has rank 0, the second smallest has rank 1 ,  etc. 
For example, if the j th  block consists of bins 7 ,  8, and 9 (so nJ-l = 7 and dJ = 3) and 
if buckets 10, 1 1 ,  15, 16, 17 ,20 ,25 ,26  are mapped to this block, then rank(l0) = 0, 
rank(l1) = 1 ,  rank(l5) = 2, etc. So buckets 10, 16,25 are mapped to bin 7 ,  buckets 
1 1 ,  17,26 are mapped to bin 8, and buckets 15,20 are mapped to bin 9. 

In addition to m,  the nj’s, and the dj’s, the rest of the representation of the mapping 
consists of the following: 

1 .  An integer k 2 1 ,  the number of intervals. 
2. Integers ai for 0 p i 5 k where 

The ith interval is [a,-l, a, ) ,  for 1 p i p k. We imagine that the intervals are ordered 
from left to right, and we say that the ith interval is to the left of the j th  interval (and 
that the j th  is to the right of the ith) if i < j. 

3. Nonnegative integers b, for 1 5 i 5 k. For the ith interval [a,-], ut )% the number b, 
is the block number associated with this interval. Thus, 0 5 b, 5 m. All buckets in 
[a,-l, a,) are mapped to bins in block b,. Define block(x) = b, for all x in [a,-l,  a,). 
In general, several intervals can be mapped to the same block; that is, we can have 
b, = b, for different i and j. 

4. Nonnegative integers c, for 1 5 i 5 k. For each i ,  the number c, is the number of 
bucketsx in intervals to the left ofthe ith interval (i.e.,x < u,-l) such thatx is mapped 
to a block other than b, (i.e., bZock(x) # b!). The c,’s are helpful in computing the 
mapping. Note that a,-l - c, is the number of buckets x in intervals to the left of 
the ith such that x is mapped to block b,. So a,-1 - c, = runk(a,-l) and, in general, 
x - c, = rank(x) for all x in [a,-l, a,). We call c, the rank adjustment of the ith 
interval. 

3.2. Computation of the Mapping. The way to compute the mapping given a bucket 
id x is first to find the interval [ai-l ,  ai)  to which x belongs, and then to compute the 
mapping using bi ,  ci , nb, - and db, . Pseudocode for the mapping computation is given 
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by Algorithm 1 in Figure 1. As described below, the Find operation can be implemented 
either by binary search if the a, ’s are stored in a table, or by binary tree search if the a, ’s 
are stored in a binary search tree. 

In certain applications of bucket-to-bin mappings, we need to know the “position” of 
each bucket in its bin. For example, in the disk array example, if logical track (bucket) x 
is mapped to physical disk (bin) y ,  then to read or write logical track x we need to know 
the physical track (position) on disk y which corresponds to logical track x .  Formally, 
a position function is any function p defined on the bucket id’s such that, for every bin 
id y, if U,  is the set of bucket id’s mapped to bin y and if z, is the size of bin y ,  then p 
maps U, one-to-one onto {O, 1,2,  . . . , zy - 1 ) .  A natural position function for the IRR 
mapping is easily computed as 

using the i and j computed by Algorithm 1 

3.3. The Initial Representation. Initially, when there are no bins and no expansions 
have occurred, the representation is given by m = 0, k = 1, a0 = 0, a1 = B ,  b~ = 
c1 = 0, and do = no. Thus, the mapping is exactly the RR mapping, y = x mod no. 

3.4. Expansion. This section contains a description of how the representation of the 
mapping should be modified when the number of bins is increased. Assume that we are 
in a situation where m expansions have occurred previously (for some m 2 0) and that 
we have a representation of the mapping, from B buckets ton, bins, as described above; 
call this mapping the old mapping. Suppose that the number of bins is increased to n,+l. 
This creates a new block m + 1 ,  consisting of bins in [n,, n,+l). The basic idea is, for 
each block j with 0 5 j 5 m,  to move the proper number of buckets from block j to 
block m + 1 so as to produce a new standafd balanced mapping from B buckets to n,+1 
bins. Among the buckets in block j ,  the ones with a higher id number are moved. This 
has the effect that if a bucket stays in the same block, then it remains mapped to the same 
bin. So for each block j with 0 5 j 5 m,  there will be a splitting point sJ such that, for 
each bucket x mapped to block j in the old mapping, if n < sJ,  then bucket x remains 
in block j in the new mapping, and if x 2 sJ,  then bucket x is moved to the new block 
m + 1 in the new mapping. If a,-l < s, < a, for some interval [a,-l, a,) with b, = j in 
the representation of the old mapping, then this interval will be split into two intervals, 
[a,-l,  s,) that remains mapped to block j ,  and [s,, a,) that is mapped to block m + 1 .  

To make the following description of mapping expansion independent of implemen- 
tation, the result is given as a set of actions to be performed. There is an action A,  
associated with each interval [a , -~ ,  a,) in the representation of the old mapping. There 
are three types of actions: 

1. If Ai = Null, then buckets in the interval [ai-l, ai) do not move. The block number 
and the rank adjustment of the interval do not change. 
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Algorithm 2: Computation of Expansion Actions 
Input: A new number nm+l of bins 
r = B mod nm+l 
ceil= [ B / n m + l l  
floor = lB/nm+lJ 
z = o  
while r > n,  

z = z + l  
end 
do j =Otom 

I* n,-l 5 r < n,  *I 

if j < z then t, = d, * ceil 
else if j = z then t, = (r  - n,- l )  * ceiZ+ (n, - r )  *floor 
else t, = d, *floor 

end 
w = o  
d o i  = 1 tok 

j = b, 
if t, ? a, - c, then 

A, =Nul l  
else if t, i a,_l - c, then 

A, = Move(a,-l - w) 
w = w +a,  - U,-l  

s = tJ + c, 
A,  = SpZit(s, s - w) 
w = w +a,  - s 

else I* a,-l - c, < t, < a, - c, *I 

end 

Fig. 2. Algorithm for computing expansion actions 

2. If A, = Move(c), then all buckets in the interval [a,-l,  a,) are moved to block m + 1. 
The block number of the interval is changed to m + 1, and c becomes the new rank 
adjustment of the interval. 

3. If A, = Split(s, c ) ,  then the interval [a,-l, a,) is split into two intervals, [a;-l, s) and 
[s, a,). Buckets in [s, a,) are moved to block m + 1, and c is the rank adjustment 
of the interval [s, a,). Buckets in [a,- ] ,  s) do not move; the block number and rank 
adjustment of [a,-l, s) are identical to those of [a,-l, a,) in the old mapping. 

Pseudocode for computing the appropriate actions is given by Algorithm 2 in Figure 2. 
This code has two parts. The first part computes, for each block j with 0 5 j 5 m, the 
quantity 

t, = the total number of buckets that should remain in block j after the expansion. 
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The second part scans through the intervals and finds the appropriate action for each one. 
The variable w holds a running total of the number of buckets that the algorithm has so 
far determined should be moved to block m + 1; this total is useful in computing new 
rank adjustments. The a;,  b;, and c; used in Algorithm 2 are those of the old mapping. 
Some explanation of the second part of the algorithm may be helpful. Suppose we are 
finding the action for the ith interval, [ai-l, a;). Let j = b; be the block to which this 
interval is mapped in the old mapping. There are three cases. 

1. tj >_ ai - c ; .  Recall that - ci is the number of buckets that are mapped to block 
j and that belong to intervals to the left of the ith interval. Therefore, the number of 
buckets that are mapped to block j and that belong to intervals 1 through i inclusive 
is (ai-1 - c;)  + (a; - ai-1) = a; - c;. Since this number ai - c; is at most f; (the 
number of buckets in block j after the expansion), the entire ith interval should remain 
mapped to block j .  That is, the action Ai should be Null. 

2. ti 5 ai-1 - ci. In this case the buckets that are mapped to block j and that belong 
to intervals to the left of the ith interval are sufficient to fill block j with at least 
t; buckets. Therefore, the entire ith interval should be moved to block m + 1. To 
compute the new rank adjustment (call it ci), note that aj-1- ci should be the number 
of buckets that are mapped to block m + 1 and that are in intervals to the left of the 
ith interval. Since this number is precisely w ,  we have ci = aj-1 - w. Then w is 
incremented by a, - uj-1, since this many additional buckets are mapped to block 
m + l .  

3. Otherwise, a;-1 - c; < tj  < ai - ci. In this case the ith interval must be split. To 
compute the splitting point s, note that we want the buckets mapped previously to 
block j, together with the buckets in the interval [a;- ,  , s), to fill block j with exactly 
t, buckets.Thatis, (aj-1 - c i )+ ( s -a i - l )  = t,,whichgivess = f;+ci.Theargument 
that the new rank adjustment of the interval [s, a,) should be s - w is identical to the 
argument for the previous case, except that the left endpoint of the interval is now s 
instead of ai-1. Similarly, w is incremented by ai - s. 

Since both mapping complexity and mapping storage depend on the number k of 
intervals, it is useful to have an upper bound on k as a function of m. The following gives 
such a bound. 

' 

' 

LEMMA 3.1. 
bins, then 

I fk  intervals are produced as the result of m expansions to the number of 

k 5 i m ( m  + 1) + 1. 

PRoOF. The proof is by induction on m .  Initially (when m = 0) there is one interval. 
Assuming that the bound holds for m expansions, we prove it for m + 1 expansions. 
Just before the (m + 1)st expansion, there are m + 1 blocks, 0 through m .  For each of 
these blocks, there will be at most one interval that is mapped to the block and that is 
split during the (m + 1)st expansion. So the (m + 1)st expansion causes at most m + 1 
intervals to be split, thus creating at most m + 1 new intervals. Therefore, using the 
induction hypothesis, the total number of intervals after m + 1 expansions is at most 

0 Zm(m + 1) + 1 + (m + 1) = i ( m  + I)(m + 2) + 1. 1 
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3.5. A Table Implementation. In the table implementation, the numbers u,, b, , c, , d, , 
and n, are stored in random-access tables (or arrays). The Find operation in Algorithm 1 
is done by binary search in the table of the u,’s. Obviously, mapping complexity is 
0 (log k )  and mapping storage is 0 ( k ) .  By Lemma 3.1, mapping complexity is 0 (log m )  
and mapping storage is O ( m 2 ) .  

When an expansion occurs, Algorithm 2 is first applied to produce a sequence of 
actions. To reduce the amount of data that is inaccessible at any one time during an 
expansion, it is advantageous to handle the actions one at a time. Then the maximum 
unit of data that is inaccessible at any one time is the data belonging to buckets that 
are in the same interval and that are moved to the new block m + 1. A straightforward 
way to update the tables incrementally is to maintain two sets of tables, Old-Tables and 
New-Tables, with Old-Tables initialized to the tables that represent the mapping before 
the expansion. The non-Null actions are processed one at a time. To process a particular 
action, it is applied to Old-Tables to produce New-Tables, and any data that must be 
moved to the new block m + 1 as a result of the action is moved at this time. After each 
action is processed, Old-Tables is replaced by New-Tables. 

3.6. A Tree Implementation. In the tree implementation, the numbers u,, b,, c, are 
stored in a binary search tree [5, Section 6.2.21. The numbers n, and d, are stored in 
random-access tables as above. The tree consists of a set of nodes. Each node is either 
an internal node or a leaf. Each internal node contains one of the numbers a, for some 
1 5 i 5 k - 1 ,  and also contains two pointers to the node’s left child and right child. 
Each leaf contains apair (b, , c,) for some 1 5 i 5 k .  If the leaves are numbered from left 
to right, then the ith leaf contains (b, , c,) for the ith interval. To compute the mapping 
given a bucket id x ,  starting at the root of the tree, compare x with the number u stored 
at the node. If x < a ,  then follow the pointer to the left child; if x 2 a ,  then follow the 
pointer to the right child. Continue until a leaf is reached, and use the b, and c, stored 
there to compute the bin id as in the last two lines of Algorithm 1. Initially, when m = 0 
and no expansions have occurred, the tree consists of a single leaf containing (0,O). 

An advantage of the tree representation over the table representation is that, when 
expanding the mapping, new copies of the representation are not created. The existing 
(tree) representation is simply modified by adding nodes and pointers. In particular, if 
the action A ,  is Splir(s, c ) ,  then the ith leaf (containing (b,, c , ) )  becomes an internal 
node whose children are leaves. After the action is processed, this internal node contains 
s, its left child contains (b,, c,), and its right child contains (m + 1, c).  

Mapping complexity is proportional to the depth of the tree. An upper bound on 
the depth is m,  since each expansion can increase depth by at most one. The depth 
(and, therefore, the mapping complexity) can be reduced to O(log m )  by rebalancing 
the tree, using the tree transformations of AVL trees [ 11 (see also Section 6.2.3 of [5]), 
whenever a Split action is processed. This requires keeping an additional two bits of 
balance information in each internal node. Mapping storage is again O(m2) ,  although 
the constant factor here is larger than for the table representation, due to the pointers and 
balance information. 

3.7. Handling Expansion in the Number of Buckets. The purpose of this section is to 
describe how the basic expansion procedure of Section 3.4 can be modified to handle the 
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case where the number of buckets increases from B to some B’ > B. We suppose that 
the number of bins increases as before, from n, to n,+l, although the case where the 
number of bins remains unchanged can be handled as a special case of the description 
below. We omit certain details such as the computation of new rank adjustments, since 
the computations are similar to those of Section 3.4 and can easily be filled in by the 
reader. 

Define an old block to be any block j with 0 5 j 5 m. First, for each old block j ,  
compute the quantity tpefore = the number of buckets in block j before the expansion, 
and fJafier = the number of buckets in block j after the expansion. The numbers t/afier 
are computed as in the first part of Algorithm 2 using n,+l and B’, and the ?/before are 
computed similarly using n, and B .  Let 6, = tJafter - r p .  Thus, if 6, i 0, then buckets 
must be removed from block j ;  if 6, > 0, then buckets must be added to block j ;  and if 
6, = 0, then the size of block j does not change. Since mappings are standard balanced 
mappings, it is easy to see that it is impossible for some old block to decrease in size 
while another old block increases in size. Therefore, exactly one of the following two 
cases must occur: 

I 

Case 1. 6; 3 0 for all j 

Case 2 .  6, 5 0 for all j ,  and there exists at least one j with 6, < 0. 

In Case 1 the “interval” [ B ,  B’) of new buckets is split into several new intervals. For 
each j with 6, > 0, there will be a new interval mapped to block j ,  with the size of the 
new interval equal to 6, so that block j reaches its correct size f/after. The remaining new 
interval is mapped to the new block m + 1 .  (This must cause block m + 1 to reach its correct 
size for the following reason. Each block j with 0 5 j 5 m reaches its correct size rJafter, 
which is the size of block j under any standard balanced mapping from B’ buckets to n’ 
bins. Since the sum of the sizes of all blocks 0 5 j 5 m + 1 is B’, block m + 1 must 
reach its correct size as well.) The order in which new intervals are assigned to blocks 
can be arbitrary, except for the following requirement. Let R = [ ~ k - ~ ,  U k )  = [ u k - l ,  B )  
be the rightmost interval before the expansion. If R is mapped to a block j with 6, > 0 
in the old mapping, then map a new interval of the form [ B ,  s) to block j in the new 
mapping. Then combine the two intervals [uk-l ,  B )  and [ B ,  s) into a single interval 

In Case 2 the second part of Algorithm 2 is used to find the appropriate action for each 
of the old intervals, where f, in the algorithm is gafter. The new interval [ B ,  B’) is mapped 
to block m + 1. If the interval R is either moved or split, then combine the interval of 
the form [s, B )  (mapped to the new block m + 1 after the expansion) with the interval 
[ B ,  B’) to obtain a single interval [s, B’). (In both cases the combination of two intervals 
into one is done to allow us to obtain the same bound on the number of intervals as was 
obtained in Lemma 3.1 .) 

Notice that, in many applications, the new buckets (in the interval [ B ,  B’)) are initially 
empty. When this is the case, no physical movement of data is needed for the new buckets. 

We now show that the bound of Lemma 3.1 still holds, so that all the previous 
complexity and storage bounds still hold for the case where the number of buckets can 
also increase. 

[ak- 1, s). 
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Table 1. Comparison of efficiency. 

Mapping complexity Mapping storage Bucket relocation 

Round-Robin 1 1 Large 
Stored-Directory 1 B Minimum 
Interval-Round-Robin O(1ogm) o ( m 2 )  Minimum 

LEMMA 3.2. 
bins and the number of buckets, then 

I fk  intervals are produced as the result of m expansions to the number of 

PROOF. The proof proceeds by induction as in the proof of Lemma 3.1. We just have 
to show that the (m + 1)st expansion creates at most m + 1 new intervals. As in the 
previous proof, just before the (m + 1)st expansion there are at most m + 1 blocks. 
Consider separately the two cases above. 

In Case 1 an obvious bound is that the “interval” [B, B’) is split into at most m + 2 
new intervals, one for each of the old blocks 0, 1, . . . , m, and one for the new block 
m + 1. However, it is possible to reduce this bound by 1. Consider two subcases. First, 
if the rightmost interval R is mapped to a block J with 8, = 0, then [B, B’) is split into 
at most m + 1 new intervals, since a new interval is not needed for block j .  Second, if 
R is mapped to a block j with 6, > 0, then [B, B’) could initially be split into m + 2 
new intervals, but then one of these new intervals is combined with an old interval into 
a single interval. 

In Case 2 an obvious bound is again m + 2: as in the proof of Lemma 3.1, at most 
m + 1 old intervals are split (one for each old block), and together with the new interval 
[B, B’) this gives a total of at most m + 2. We again improve this bound by 1, considering 
two subcases. First, suppose that the rightmost interval R is not moved or split. Let J be 
the block to which R is mapped under the old mapping. Since R is the rightmost interval 
under the old mapping, it follows that no interval mapped to block j is moved or split 
(i.e., Sj = 0), so at most m old intervals are split, rather than m + 1. Second, if R is 
moved or split, then m + 2 new intervals could be created initially, but then two intervals 
are combined into one. 0 

3.8. Comparison of Eficiency. Properties of the RR method, the SD method, and the 
IRR method are summarized in Table 1. All three methods produce optimally balanced 
mappings. 

Another mapping method which has been proposed is the Cascaded-Round-Robin 
(CRR) method [2 ] .  In the basic version of the method, mapping complexity is O ( m )  and 
mapping storage is m+2 after m expansions; there is no bucket movement among existing 
bins during an expansion, although the mapping can become somewhat imbalanced after 
expansions. An extension to the basic version does rebalancing when the imbalance 
exceeds a user-defined threshold, although this might cause extra bucket relocations. 
(A side benefit of the rebalancing is that mapping complexity and storage decrease to 
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small constants, independent of m.) Both the CRR and the RR methods could perform 
better than IRR if access to buckets is not uniform, but higher numbered buckets are 
“hotter,” i.e., receive more accesses than lower numbered buckets. CRR and RR spread 
hot buckets fairly evenly across the bins, whereas IRR will concentrate hot buckets in 
newly added bins. 

I 

4. History Independence. In this paper we consider various mappings f from the 
set of bucket id’s to the set of bin id’s. Thus, if x is a bucket id, then y = f(x) is the 
corresponding bin id. On the face of it, f has only one parameter, namely, the bucket id 
x. There are, however, other parameters that are implicit. That is, there are really four 
parameters: 

1 .  The bucket id x .  
2. The number B of buckets. 
3. The number n of bins. 
4. The history H that describes how the number of buckets and bins has varied over 

time. 

For definiteness, we take H to be a vector ( (Bo,  no), . . . , (B, ,  n,)) of ordered pairs. 
Thus, Bo is the initial number of buckets and no is the initial number of bins, and so 
on. We are concerned in this paper only with situations where the number of bins and 
the number of buckets never decrease. Therefore, we restrict attention to histories where 
n, 5 n,+l and B, 5 B,+I for 0 5 i < m. In order that m truly reflect the number of 
expansions, we require that ( B , ,  n,) # (B,+l ,  n i+ l )  for 0 5 i < m. We say that the 
parameters are consistent if 

1. O s x  < B .  
2. O < n s B .  
3. B = B,. 
4. n =n,. 

Intuitively, the last two conditions simply say that according to the history, the number 
of current buckets is B and the number of current bins is n. 

Each algorithm gives us a function F such that if the parameters x, B, n, H are consis- 
tent, then F ( x ,  B, n, H) is the bin id corresponding to bucket id x, if there are B buckets 
and n bins, and the history is H. A goal of this paper is to consider mappings that are 
optimal in both balance and relocation. We call such functions F optimal. In this section 
we consider the question of when there are optimal mappings that are independent of 
some of the four parameters listed above. In particular, we are interested in history- 
independent mappings, that is, functions F such that F ( x ,  B, n, H )  = F ( x ,  B, n, H’) 
for every choice of H, H’ (as long as the parameters x ,  B, n, H and the parameters 
x, B, n, H’ are each consistent). Intuitively, if F is history-independent, then an algo- 
rithm for computing F does not need to “know” (or “remember”) the history. 

In this section we prove that, in general, there is no history-independent mapping that 
is optimal. If, however, the number B of buckets is held fixed, then there is a history- 
independent mapping that is optimal. This latter result says that, for each B, there is 
an optimal function FB such that F B ( x ,  B, n, H )  = F B ( x ,  B, n,  H’) for every choice 

, 
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of H ,  H’ (assuming that the first component of every entry of the history H is B ,  and 
similarly for H’) .  Intuitively, FB has only two parameters, namely the bucket id x and 
the number n of bins. Can we reduce the number of parameters even further, so that an 
optimal FB is not only history-independent, but also independent of the number B of 
buckets? We show that this is not possible. Thus, it is necessary for an optimal mapping 
to “know” the number of buckets and the number of bins. 

It is interesting how the question of the existence of history-independent mappings 
arose historically. We thought it was quite possible that there is some optimal mapping 
that is elegant and simple that we just had not thought of. By making the problem even 
more constrained (by imposing the condition of history independence), it seemed possible 
thaE this would cause a unique solution, which might well be that elegant mapping we 
could not find. As we show in this section, when we allow the number of buckets and 
bins to vary, then with this additional constraint of history independence not only is there 
at most one solution, there is no solution! 

The first result in this section deals with the important special case where the number 
of buckets is held fixed. In this case we show that there is a history-independent mapping 
that is optimal. 

THEOREM 4.1, 
mapping that is optimal. 

Ifthe number of buckets is heldfied,  then there is a history-independent 

PROOF. Assume that there are B buckets. By induction on n ,  we define a mapping f n  of 
the B buckets into n bins that is a standard balanced mapping (as defined in Section 2). 
Thus, f n  (x) is the bin id when x is the bucket id. Let f l  be the mapping that maps every 
bucket into bin 0. Assume that n > 1 and that the mapping f n - l  has been defined; we 
now define f n .  Since fn- l  is a standard balanced mapping on n - 1 bins, it is easy to 
see that in going from n - 1 bins to n bins, there is a standard balanced mapping that is 
optimal, where the only buckets that are moved are ones that move from old bins (the 
first n - 1 bins) to the new nth bin. Define f n  to be one such mapping. 

By construction, for each n > 1, we know that in passing from n - 1 bins (with 
mapping f n - l )  to n bins (with mapping fn), the only buckets that are moved are ones 
that move from old bins to the new bin. It is not hard to see that it follows that for 
arbitrary n’, d’ with n’ < n”, in passing from n’ bins (with mapping fnT) to n” bins (with 
mapping fnn), the only buckets that are moved are ones that move from old bins (the first 
n‘ bins) to new bins (the last n” - n’ bins). Since both fnl  and f n t t  are standard balanced 
mappings, it is not hard to see that a minimal number of buckets are relocated. 

We now define f (x, n )  to be f n ( x ) .  From what we have said, the mapping f is a 
0 history-independent mapping that is optimal. 

REMARK. The complexity (number of operations) required to compute fn (x) appears to 
be large compared with that of the IRR mapping. A rough upper bound on the complexity 
of computing f n  by the obvious algorithm can be given. To compute f n  ( x ) ,  the obvious 
algorithm finds complete representations of f l ,  f 2 ,  . . . , f n  in sequence. Then fn(x) is 
found from the representation of f n .  The complexity thus depends on the method used to 
represent these functions. If we use the IRR method, then the complexity of computing a 
representation of f i + l  from a representation off; is easily seen to be 0 (min(i2, B ) ) ,  since 
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there are at most this many intervals in the representation of fi, and since the complexity 
of computing the new representation grows linearly in the number of intervals if the 
actions are processed in a single pass through the intervals. From this, an upper bound on 
the complexity of computing fn is O(min(n3, n B ] ) .  In addition, storage O(min(n2, B ] )  
is sufficient to compute the mapping. 

I 

We now show that the condition in Theorem 4.1 that the number of buckets is held 
fixed is essential. Thus, there is no single history-independent mapping that is optimal 
and that is also bucket-independent (that is, whose value does not depend on the number 
of buckets). Intuitively, this tells us that the minimal amount of information that must 
be “remembered” in order to define an optimal mapping is the number of buckets and 
the number of bins. (The restriction to optimal mappings is necessary to obtain this 
result, since the RR mapping, f ( x )  = x mod n ,  is both history-independent and bucket- 
independent, although it is not optimal since its bucket relocation is not minimal.) 

THEOREM 4.2. 
optimal. 

There is no history-independent, bucket-independent mapping that is 

PROOF. Assume that there is a history-independent, bucket-independent mapping that 
is optimal. Let f ( x ,  n )  be the bin id when x is the bucket id and n is the number of bins 
(by assumption, we can take f to be a function of only the bucket id x and the number 
n of bins). 

When there are exactly four buckets, we know that there is a permutation io, i l ,  i 2 ,  i3 
of 0, 1 , 2 , 3  such that f ( i , ,  4) = J ,  for j = 0, 1 , 2 , 3  (this simply says that when there are 
exactly four buckets and four bins, then no bin is empty; this follows from the balance 
condition). By renumbering the buckets if necessary, we can assume without loss of 
generality that f(j, 4) = j ,  for j = 0, 1 ,2 ,3 .  Even though we obtained this under the 
assumption that there are exactly four buckets, we make use of the fact that it holds 
independent of the number of buckets. 

We now claim that f(j,  3) = j for j = 0, 1,2.  This is because if, say, f (1 ,  3 )  = k 
and k # 1 ,  then in going from three bins to four bins, there would be unnecessary 
additional movement of buckets, because bucket I would have to be moved from bin k 
to bin 1. This is a contradiction, because it is easy to see that when the number of bins 
is increased, each optimal mapping can only move buckets from old bins to new bins, 
and never move buckets from an old bin to a different old bin. By a similar argument, 
f ( j ,  2) = j for j = 0, 1 .  

Since f (0 ,2 )  = 0 and f ( l , 2 )  = 1, it follows that when there are exactly three 
buckets and two bins, then bucket 0 is in bin 0, and bucket 1 is in bin 1. Bucket 2 could 
be in either bin 0 or bin 1. Let us assume that bucket 2 is in bin 0 (that is, f (2 ,2 )  = 0); 
a completely analogous argument will work if bucket 2 is in bin 1. 

Since f (0 ,2 )  = 0, f ( l , 2 )  = 1, and f (2 ,2 )  = 0, it follows that f (3 ,2)  = 1. This 
follows from the balance condition when there are exactly four buckets and two bins. 

Now f (4 ,2 )  = 0 or f (4 ,2 )  = 1. To help decide which is the case, we consider 
the situation where there are exactly five buckets. If f (4 ,2 )  = 0, then in passing from 
two bins to three bins, only one bucket needs to move to another bin, namely, bucket 2 
from bin 0 to bin 2 (this bucket must move, since we already obtained the fact that 
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f(2,  3) = 2). If, however, f (4,2) = 1 ,  then in passing from two bins to three bins, 
two buckets need to move to another bin: this is because in addition to bucket 2 moving 
from bin 0 to bin 2, also bucket 3 or bucket 4 must move, since when there are just two 
bins, bin 1 contains three buckets (namely, buckets 1 ,  3, and 4). So i f f  (4, 2) = 1, then 
optimality would be violated. Therefore, f (4,2) = 0. 

We have shown that f (0 ,2 )  = f ( 2 , 2 )  = f (4 ,2 )  = 0, and f ( l , 2 )  = f (3 ,2 )  = 1. 
By the balance condition when there are exactly six buckets and two bins, it follows that 
f (5 ,2)  = 1 .  

If there are exactly six buckets, then in going from two bins to four bins, we already 
know that bucket 2 moves from bin 0 to bin 2, and bucket 3 moves from bin 1 to bin 3. 
This is sufficient for balance, since this leaves the bins balanced (with buckets 0 and 4 in 
bin 0, buckets 1 and 5 in bin 1, bucket 2 in bin 2, and bucket 3 in bin 3). So by optimality, 
the only buckets that move in going from two bins to four bins are buckets 2 and 3, and 
so in particular bucket 5 does not move, that is, f (S,4)  = f ( 5 , 2 )  = 1. 

If there are exactly five buckets, then in going from two bins to three bins, we already 
know that bucket 2 moves from bin 0 to bin 2. This is sufficient for balance, since this 
leaves the bins balanced (with buckets 0 and 4 in bin 0, buckets 1 and 3 in bin 1, and 
bucket 2 in bin 2). So by optimality, buckets 3 and 4 do not move in going from two 
bins to three bins, and so f (3 ,3 )  = f (3 ,2 )  = 1, and f (4,3) = f (4 ,2 )  = 0. Since 
f (0,3) = f (4,3) = 0, f (1,3) = f (3,3) = 1, and f (2,3) = 2, it follows that when 
there are exactly six buckets and three bins, then bucket S must go in bin 2 for balance, 
and so f (5,3) = 2. 

If there are exactly six buckets, then in going from three bins to four bins, we already 
know that bucket 3 moves from bin 1 to bin 3. This is sufficient for balance, since this 
leaves the bins balanced (with buckets 0 and 4 in bin 0, bucket 1 in bin 1, buckets 2 and 5 
in bin 2, and bucket 3 in bin 3). So by optimality, the only bucket that moves in going 
from three bins to four bins is bucket 3, and so in particular bucket 5 does not move, that 
is, f (5,4) = f (5,3) = 2. 

We have shown that f (5,4) = 1 and f (5,4) = 2. This contradiction proves the 
theorem. 

As we now show, it follows easily from Theorem 4.2 that in general (when the 
number of buckets and number of bins can both increase), there is no history-independent 
mapping that is optimal. This is in contrast to the situation in Theorem 4.1, which says 
that if only the number of bins is allowed to increase, then there is a history-independent 
mapping that is optimal. 

THEOREM 4.3. 
then there is no history-independent mapping that is optimal. 

lfthe number of buckets and number of bins are both allowed to increase, 

PROOF. Assume that there were such a mapping. Let f (x, B ,  n )  be the bin id when x 
is the bucket id, B is the number of buckets, and n is the number of bins (by assumption, 
we can take f to be history-independent). We now show that the mapping f is bucket- 
independent, which contradicts Theorem 4.2. 

Assume that f is not bucket-independent. Then there are parameters x, B ,  B’,  n such 
that f(x, B ,  n )  # f ( x ,  B’, n ) .  Since B # B’, we can assume without loss of generality 
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that B < B’. Consider a situation where there are B buckets and n bins, and then the 
number of buckets is increased to B’ while the number of bins remains n. An optimal 
mapping would not move any of the old buckets, but simply add the new buckets into 
existing bins in a balanced manner. However, according to f, the old bucket x is moved 

0 

‘ 

from bin f ( x ,  B ,  n) to bin f ( x ,  B‘, n ) .  This is a contradiction. 

5. Conclusion and Open Questions. If we restrict attention to optimal mapping meth- 
ods, i.e., those that are optimal in both balance and relocation, the IRR method gives 
a new point on the “tradeoff’ between the time complexity (number of operations) of 
computing the mapping, and the storage needed for a representation of the mapping. 
One extreme point of this tradeoff is the SD method, where the complexity is small 
(one directory access) but the storage is large ( B  numbers). In the case that the number 
of buckets is fixed, an opposite extreme point is provided by Theorem 4.1, where the 
storage is small (two numbers, n and B )  but the complexity appears to be large (growing 
as min{n3, nB)). An obvious question from a practical viewpoint is to give new and im- 
proved points on the tradeoff. A question of theoretical interest is to give lower bounds 
on the tradeoff between complexity and storage. Informally, such a result would show 
that if the storage is sufficiently “small,” then a ‘‘large’’ number of operations are needed 
to compute the mapping. To prove such a result, an appropriate model of computation 
would first have to be defined where the allowed operations are precisely defined. The 
small storage given by Theorem 4.1 depends on the number of buckets remaining fixed. 
It is an open question as to what the minimal storage is when the number of buckets 
does not remain fixed. Although we have consideredonly optimal methods in this paper, 
it is also reasonable to ask whether small deviations from optimality in balance andor 
relocation can lead to significant improvements in the other measures. 
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