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Abstract 

We introduce a new approach to dealing with the well-known logical omniscience problem 
in epistemic logic. Instead of taking possible worlds where each world is a model of classical 
propositional logic, we take possible worlds which are models of a nonstandard propositional logic 
we call NPL, which is somewhat related to relevance logic. This approach gives new insights into 
the logic of implicit and explicit belief considered by Levesque and Lakemeyer. In particular, we 
show that in a precise sense agents in the structures considered by Levesque and Lakemeyer are 
perfect reasoners in NPL. 

1. Introduction 

The standard approach to modelling knowledge, which goes back to Hintikka [ 151, 
is in terms of possible worlds. In this approach, an agent is said to know a fact p if 
p is true in all the worlds he considers possible. As has been frequently pointed out, 
this approach suffers from what Hintikka termed the logical omniscience problem [ 161 : 
agents are so intelligent that they know all the logical consequences of their knowledge. 
Thus, if an agent knows all of the formulas in a set .X and if 2 logically implies the 
formula 9, then the agent also knows p. In particular, they know all valid formulas 
(including all tautologies of standard propositional logic). Furthermore, the knowledge 
of an agent is closed under implication: if the agent knows p and knows 9 + $, then 
the agent also knows $. The reader should note that closure under implication is a 
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special case of logical omniscience only if {q,p 3 $} logically implies $; although 
this logical implication holds in standard propositional logic, it does not hold in our 
nonstandard propositional logic NPL that we shall introduce later. 

While logical omniscience is not a problem under some conditions (this is true 
in particular for interpretations of knowledge that are often appropriate for analyzing 
distributed systems [ 121 and certain A1 systems [25]), it is certainly not appropriate 
to the extent that we want to model resource-bounded agents. A number of different 
semantics for knowledge have been proposed to get around this problem. The one most 
relevant to our discussion here is what has been called the impossible-worlds approach. 
In this approach, the standard possible worlds are augmented by “impossible worlds” 
(or, perhaps better, nonstandard worlds), where the customary rules of logic do not 
hold [ 5,6,20,23,29]. It is still the case that an agent knows a fact p if p is true in all 
the worlds the agent considers possible, but since the agent may in fact consider some 
nonstandard worlds possible, this will affect what he knows. 

What about logical omniscience? Although notions like “validity” and “logical con- 
sequence” (which played a prominent part in our informal description of logical omni- 
science) may seem absolute, they are not; their formal definitions depend on how truth 
is defined and on the class of worlds being considered. Although there are nonstandard 
worlds in the impossible-worlds approach, validity and logical consequence are taken 
with respect to only the standard worlds, where all the rules of standard logic hold. 
For example, a formula is valid exactly if it is true in all the standard worlds in every 
structure. The intuition here is that the nonstandard worlds serve only as epistemic al- 
ternatives; although an agent may be muddled and may consider a nonstandard world 
possible, we (the logicians who get to examine the situation from the outside) know 
that the “real world” must obey the laws of standard logic. If we consider validity and 
logical implication with respect to standard worlds, then it is easy to show that logical 
omniscience fails in “impossible-worlds” structures: an agent does not know all valid 
formulas, nor does he know all the logical consequences of his knowledge here (since, 
in deciding what the agent knows, we must take the nonstandard worlds into account). 

In this paper we consider an approach which, while somewhat related to the impossib- 
le-worlds approach, stems from a different philosophy. We consider the implications of 
basing a logic of knowledge on a nonstandard logic rather than on standard propositional 
logic. The basic motivation is the observation, implicit in [20] and commented on 
in [9,28], that if we weaken the “logical” in “logical omniscience”, then perhaps 
we can diminish the acuteness of the logical omniscience problem. Thus, instead of 
distinguishing between standard and nonstandard worlds, we take all our worlds to 
be models of a nonstandard logic. Some worlds in a structure may indeed be models 
of standard logic, but they do not have any special status for us. We consider all 
worlds when defining validity and logical consequence; we accept the commitment to 
nonstandard logic. Knowledge is still defined to be truth in all worlds the agent considers 
possible. It thus turns out that we still have the logical omniscience problem, but this 
time with respect to nonstandard logic. The hope is that the logical omniscience problem 
can be alleviated by appropriately choosing the nonstandard logic. 

There are numerous well-known nonstandard propositional logics, including intuition- 
istic propositional logic [ 141, relevance logic [ I ] ,  and the 4-valued logic in [ 2,3,7]. 
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We shall give our own approach in this paper, which is closely related to relevance 
logic and to 4-valued logic. For each of these nonstandard logics, the starting point is 
the observation that there are a number of properties of implication in standard logic 
that seem inappropriate in certain contexts. In particular, consider a formula such as 
( p  A - p )  + 4. In standard logic ‘this is valid; that is, from a contradiction one can 
deduce anything. However, consider a knowledge base into which users enter data from 
time to time. As Belnap points out [3 ] ,  i t  is almost certainly the case that in a large 
knowledge base, there will be some inconsistencies. One can imagine that at some point 
a user entered the fact that Bob’s salary is $50,000, while at another point, perhaps 
a different user entered the fact that Bob’s salary is $60,000. Thus, in standard logic 
anything can be inferred from this contradiction. One solution to this problem is to 
replace standard worlds by worlds (called situations in [ 19,201, and setups in [ 3,271 ) 
in which it is possible that a primitive proposition p is true, false, both true and false, or 
neither true and false. We achieve the same effect here by keeping our worlds seemingly 
standard and by using a device introduced in [26,27] to decouple the semantics of a 
formula and its negation: for every world s there is a related world S * .  A formula l p  
is true in  s iff (o is not true in s * .  It is thus possible for both p and 19 to be true at s, 
and for neither to be true. (The standard worlds are now the ones where s = s*; all the 
laws of standard propositional logic do indeed hold in such worlds.) 

We call the propositional logic that results from the above semantics nonstandard 
propositional logic (NPL). Unlike standard logic, for which cp logically implies $ 
exactly when p 3 y5 is valid, where p + y5 is defined as l c p  V $, this is not the case 
in  NPL. This leads us to include a connective ~f (“strong implication”) in NPL so 
that, among other things, we have that p logically implies $ iff p c+ $ is valid. Of 
course, c+ agrees with =+ on the standard worlds, but in general it is different. Given 
our nonstandard semantics, p - $ comes closer than p 3 $ to capturing the idea that 
“if p is true, then $ is true”. Just as in relevance logic, formulas such as ( p  A i p )  - q 
are not valid, so that from a contradiction, one cannot conclude everything. In fact, we 
can show that if p and $ are standard propositional formulas (those formed from 7 

and A, containing no occurrences of ~ f ) ,  then p c-f $ is valid exactly if p entails $ 
i n  the relevance logic R [ 26,271. In formulas with nested occurrences of -+, however, 
the semantics of ~f is quite different from the relevance logic notion of entailment. 

We are most interested in  applying our nonstandard semantics to knowledge. It turns 
out that although agents in our logic are not perfect reasoners as far as standard logic 
goes, they are perfect reasoners in nonstandard logic. In particular, as we show, the com- 
plete axiomatization for the standard possible-worlds interpretation of knowledge can be 
converted to a complete axiomatization for the nonstandard possible-world interpretation 
of knowledge essentially by replacing the inference rules for standard propositional logic 
by inference rules for NPL. We need, however, to use i )  rather + in formulating the 
axioms of knowledge. Thus, the distribution axiom, valid in the standard possible-worlds 
interpretation, says ( K i p  A Ki( cp =+- $) ) + K;$. This says that an agent’s knowledge 
is closed under logical consequence: if the agent knows 9 and knows that 9 implies $, 
then he also knows $. The analogue for this axiom holds in our nonstandard interpre- 
tation, once we replace =+- by c-t. This is appropriate since it is ~ - - f  that captures the 
intuitive notion of implication in our framework. The other basic property of knowledge 
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(knowledge generalization) remains unchanged: if p is valid, then so is Kip. That is, 
the agents know every valid formula (although the set of valid formulas are distinct 
for the standard logic and for our nonstandard logic). Thus, the basic properties of 
knowledge (closure under logical consequence, and knowledge of valid formulas) re- 
main unchanged; in some sense, we have decoupled the properties of the underlying 
propositional logic, which change drastically, from the properties of knowledge, which 
remain essentially the same. 

Our approach has an additional nice payoff we show that in a certain important 
application we can obtain a polynomial-time algorithm for reasoning about knowledge. 
By contrast, under the standard approach, the complexity of such reasoning in that 
application is co-NP-complete. 

It is instructive to compare our approach with that of Levesque and Lakemeyer 
[ 19,201. Our semantics is essentially equivalent to theirs. But while they avoid logical 
omniscience by giving nonstandard worlds a secondary status and defining validity only 
with respect to standard worlds, we accept logical omniscience, albeit with respect to 
nonstandard logic. Thus, our results justify and elaborate a remark made in [ 9,281 that 
agents in Levesque’s model are perfect reasoners in relevance logic. 

The rest of this paper is organized as follows. In Section 2, we introduce our non- 
standard propositional logic, and investigate some of its properties. In Section 3, we 
review the standard possible-worlds approach. In Section 4, we give our nonstandard 
approach to possible worlds. In Section 5 ,  we add strong implication (the propositional 
connective -) to our syntax, and thereby obtain our full nonstandard propositional 
logic NPL. In Section 6, we give a sound and complete axiomatization for NPL, and 
give a sound and complete axiomatization for the logic of knowledge using NPL as a 
basis rather than classical propositional logic. We also show that the validity problem 
for NPL is co-NP-complete, just as for standard propositional logic, and the valid- 
ity problem for our nonstandard logic of knowledge is PSPACE-complete, just as for 
the standard logic of knowledge. In Section 7, we give the payoff we promised, of a 
polynomial-time algorithm for querying a knowledge base in certain natural cases. We 
relate our results to those in the impossible-worlds approach in Section 8. Levesque and 
Lakemeyer’s formalism is compared with ours in Section 9. We give our conclusions in 
Section 10. 

2. A nonstandard propositional logic 

Although by now it is fairly well entrenched, standard propositional logic has several 
undesirable and counterintuitive properties. When we are first introduced to propositional 
logic in school, we are perhaps somewhat uncomfortable when we learn that “p + +” 
is taken to be simply an abbreviation for l c p  V $. Why should the fact that either l p  is 
true or + is true correspond to “if cp is true then + is true”? 

Another problem with standard propositional logic is that it is fragile: a false statement 
implies everything. For example, the formula ( p  A - p )  =+ q is valid, even if p and q 
are unrelated. As we observed in the introduction, one situation where this could be a 
serious problem occurs when we have a large knowledge base of many facts, obtained 
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from multiple sources, and where a theorem prover is used to derive various conclusions 
from this knowledge base. 

To deal with these problems, many alternatives to standard propositional logic have 
been proposed. We focus on one particular alternative here, and consider its conse- 
quences. 

The idea is to allow formulas p and l p  to have “independent” truth values. Thus, 
rather than requiring that 19 be true iff p is not true, we wish instead to allow the 
possibility that l p  can be either true or false, regardless of whether p is true or 
false. Intuitively, the truth of formulas can be thought of as being determined by some 
knowledge base. We can think of p being true as meaning that the fact p has been put 
into a knowledge base of true formulas, and we can think of l p  being true as meaning 
that the fact p has been put into a knowledge base of false formulas. Since it is possible 
for cp to have been put in both knowledge bases, i t  is possible for both p and l p  to be 
true. Similarly, if p had not been put into either knowledge base, then neither p nor l p  
would be true. 

There are several ways to capture this intuition formally (see [ 81 ). We now discuss 
one approach, due to [ 26,271. For each world s, there is an adjunct world s*, which 
will be used for giving semantics to negated formulas. Instead of defining l p  to hold 
at s iff p does not hold at s, we instead define 19 to hold at s iff p does not hold at 
s*. Note that if s = s*, then this gives our usual notion of negation. Very roughly, we 
can think of a state s is as consisting of a pair (BT ,  B F )  of knowledge bases; BT is the 
knowledge base of true facts, while BF is the knowledge base of false facts. The state 
s+ should be thought as the adjunct pair ( B F ,  BT) ,  where & is the complement of BT, 
and B F  is the complement of B F .  Continuing this intuition, to see if p is true at s, we 
consult BT; to see if l c p  is true at s, i.e., if p is false at s, we consult B F .  Notice that 
p E BF iff p 6 G. Since % is the knowledge base of true facts at s*, we have an 
alternate way of checking if p is false at s: we can check if p is not true at s*. 

Notice that under this interpretation, not only is s* is the adjunct state of s, but s 
is the adjunct state of s*; i.e., s** = s (where s** = (s*)* ) .  To support this intuitive 
view of s as a pair of knowledge bases and S* as its adjunct, we make this a general 
requirement in our framework. 

We define the formulas of the propositional logic by starting with a set @ of primitive 
propositions that describe basic facts about the domain of discourse, and forming more 
complicated formulas by closing off under the Boolean connectives 7 and A. Thus, if p 
and y? are formulas, then so are -9 and p A 9. When we deal only with propositional 
formulas, we can identify a world with a classical truth assignment to the primitive 
propositions, and we can decide the truth of a propositional formula at a world s by 
considering only s and s*. Thus, we define an NPL structure to consist of an ordered 
pair (s, t )  of classical truth assignments to the set @ of primitive propositions. We 
take * to be a function that maps a truth assignment in an NPL structure to the other 
truth assignment in that structure. Thus, if S = (s, t ) ,  then s* = t and t* = s. Truth is 
defined relative to a pair (S, u ) ,  where S is an NPL structure and u is one of the truth 
assignments in S. We define 19 to be true at (S,  u )  if p is not true at u* ;  thus, we use 
the other truth assignment in order to define negation. More formally, given an NPL 
structure S = (s, t ) ,  and u E {s, t } ,  we define the semantics as follows: 

_ _  
- 
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0 (S ,  1 1 )  b p iff u ( p )  = true for a primitive proposition p .  
0 (S,Ilj l p A $  iff ( S , u )  bcp and (S ,u )  k$. 
0 ( S , u )  l p  iff ( S , u * )  p. 
We call the logic defined so far NPL-. Later, we shall add strong implication ('t) 

to get NPL. 
Note that if S = (s,  s) for some truth assignment s (that is, s = s*) ,  then (S, s) b 79 

iff (S,s) p. Hence, in this case, for every propositional formula p, we have that 
(S,s) b p precisely if p is true under the truth assignment s, and so we are back to 
standard propositional logic. Note also that in the general case, it is possible for neither 
p nor ~p to be true at u (if (S, u )  p p and ( S ,  i d * )  p) and for both p and ~p to be 
true at u (if ( S , u )  19 and (S ,u * )  pp). 

This approach is equivalent to Belnap's 4-valued logic [ 2 , 3 ] ,  in which he has four 
truth values: True, False, Both, and None. Belnap's approach avoids the use of the * 
to define negation. The reason we make use of * is so that we can treat negation in 
a uniform manner. For example, later on we shall extend to an epistemic logic, and 
the use of * decouples the semantics of Kip and 7 K ; p .  By contrast, in order to extend 
Levesque's propositional logic in [ 201 to an epistemic logic where the semantics of Kip 
and ? K , p  are decoupled, Lakemeyer [ 191 finds it necessary to introduce two possibility 
relations, Ic? and Kl-. As we shall discuss in Section 9, the truth of a formula K;p is 
determined by the possibility relation K T ,  while the truth of 1Kip is determined by the 
possibility relation &-. By using *, we need only one possibility relation Ki for agent 
i, not two. Furthermore, when we add a new connective to the language, as we do later 
when we add strong implication (-), i t  may not be clear how to define the negation 
(for a formula '(PI - p 2 ) )  in a natural manner that decouples its semantics from that 
of 91 c--f p 2 .  This is done automatically for us by the use of *. 

Just as in standard propositional logic, we take 91 V 9 2  to be an abbreviation for 
'( 191 A -p2) ,  and pl + 9 2  to be an abbreviation for -301 V p 2 .  Since the semantics of 
negation is now nonstandard, it is not a priori clear how the propositional connectives 
behave in our nonstandard semantics. For example, while A 9 2  holds by definition 
precisely when 91 and q32 both hold, it is not clear that V p 2  holds precisely when 
at least one of p1 or 9 2  holds. It is even less clear how negation will interact in our 
nonstandard semantics with conjunction and disjunction. 

The next proposition shows that even though we have decoupled the semantics for 40 
and 19, the propositional connectives 7, A, and V still behave and interact in a fairly 
standard way. 

Proof. We prove only ( 1 ) and ( 2 ) ,  since the proofs of the rest are similar. 
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(S,u) k 7-p iff ( S , u - )  yp, 

iff (S ,u“*)  k p, 

iff (S, u )  I= p. 

As for (2) ,  

In  contrast to the behavior of 1, A, and V, the connective + behaves rather peculiarly, 
since ( S ,  I / )  pl + p 2  holds precisely when (S, u * )  k pi implies that (S, u )  k p 2 .  We 
will come back to the issue of the definition of implication later. 

Validity and logical implication are defined in the usual way: p is valid if i t  holds 
at every ( S ,  u ) ,  and cp logically implies $ if (S, u )  1 p implies (S. u )  k $ for every 
( S , I L ) .  What are the valid formulas? The formula ( p  A l p )  + q, which wreaked havoc 
in  deriving consequences from a knowledge base, is no longer valid. What about even 
simpler tautologies of standard propositional logic, such as ~p V p ?  This formula, too, is 
not valid. How about p + p ?  It is not valid either, since p + p is just an abbreviation 
for -p V p ,  which, as we just said, is not valid. In fact, no formula is valid! 

Theorem 2.2. No formula of NPL- is valid. 

Proof. This follows from a stronger result (Theorem 4.2) that we shall prove in Sec- 
tion 4. 0 

Thus, the validity problem is very easy: the answer is always “No, the formula is not 
valid!” Thus, the notion of validity is trivially uninteresting here. In contrast, there are 
many nontrivial logical implications; for example, as we see from Proposition 2.1, 1-y 
logically implies p, and -( 91 A 9 2 )  logically implies 791 V 7 9 2 .  

The reader may be puzzled why Proposition 2.1 does not provide us some tautologies. 
For example, Proposition 2.1 tells us  that 1740 logically implies p. Doesn’t this mean 
that lip =+ p is a tautology? This does not follow. In classical propositional logic, 
p logically implies i / j  iff the formula 9 + i / j  is valid. This is not the case in NPL. 
For example, p logically implies ip, yet p + p (i.e., l p  V p) is not valid in NPL. In 
Section 5, we define a new connective that allows us to express logical implication in 
the language, just as + does for classical logic. We close this section by characterizing 
the complexity of deciding logical implication in NPL-. 

Theorem 2.3. The logical implication problem in NPL- is co-NP-complete. 
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The proof of this theorem will appear in Section 8, when we have developed some 
more machinery. This theorem says that logical implication in NPL- is as hard as 
logical implication in standard propositional logic, that is, co-NP-complete. We shall see 
in  Theorem 4.3 that a similar phenomenon takes place for knowledge formulas. 

3. Standard possible worlds 

We review in this section the standard possible-worlds approach to knowledge. The 
intuitive idea behind the possible-worlds model is that besides the true state of affairs, 
there are a number of other possible states of affairs or “worlds”. Given his current 
information, an agent may not be able to tell which of a number of possible worlds 
describes the actual state of affairs. An agent is then said to know a fact cp if cp is true 
at all the worlds he considers possible (given his current information). 

The notion of possible worlds is formalized by means of Kripke structures. Suppose 
that we have IZ agents, named 1 , .  . . , n, and a set @ of primitive propositions. A standard 
Kripke structure M for n agents over @ is a tuple ( S ,  IT, K1 , . . . , K,,), where S is a set of 
worlds, n- associates with each world in S a truth assignment to the primitive propositions 
of @ (i.e., IT( s) : @ ---f {true, false} for each world s E S ) ,  and Ici is a binary relation 
on S, called a possibility relation. We refer to standard Kripke structures as standard 
structures or simply as structures. 

Intuitively, the truth assignment ~ ( s )  tells us whether p is true or false in a world 
w. The binary relation K i  is intended to capture the possibility relation according to 
agent i: (s, t )  E K; if agent i considers world t possible, given his information in world 
s. The class of all structures for n agents over @ is denoted by M:. Usually, neither n 
nor di are relevant to our discusion, so we typically write M instead of M:. 

We define the formulas of the logic by starting with the primitive propositions in di, 
and form more complicated formulas by closing off under Boolean connectives 1 and 
A and the modalities K I  , . . . , K J l .  Thus, if p and qh are formulas, then so are 19, p A qh, 
and Kipo, for i = 1 , .  . . , n. We define the connectives V and + to be abbreviations as 
before. The class of all formulas for n agents over @ is denoted by L:. Again, when 
n and @ are not relevant to our discussion, we write C instead of L:. We refer to 
L-formulas as standard formulas. 

We are now ready to assign truth values to formulas. A formula will be true or false 
at a world in a structure. We define the notion ( M , s )  k p, which can be read as “9 
is true at ( M ,  s)” or “q holds at ( M ,  s)” or “( M ,  s) satisjes q”, by induction on the 
structure of cp. 

( M ,  s) k p (for a primitive proposition p E @) iff T( s) ( p )  = true. 

( M ,  s) k yp iff ( M ,  s) P cp. 

( M , s ) k  c p A r \ i f f ( M , s )  k p a n d  (M,s)kqh. 

( M ,  s) K i p  iff ( M ,  t )  k cp for all t such that ( s ,  t )  E Ici. 

The first three clauses in this definition correspond to the standard clauses in the 



R. F q i n  et nl./Artificial Intelligence 79 (1995) 203-240 21 I 

definition of truth for propositional logic. The last clause captures the intuition that 
agent i knows p in world s of structure M exactly if p is true at all worlds that i 
considers possible in s. 

Given a structure M = (S, n-, K1,. . . , K,,), we say that p is valid in M ,  and write 
M 1 p, if ( M , s )  k p for every world s in S,  and say that p is satisjiable in M if 
( M ,  s) k p for some world s in S. We say that p is valid with respect to M ,  and write 
M k p, if it is valid with respect to all structures of M ,  and it is satis$able with respect 
to M if it is satisfiable in some structure in M .  It is easy to check that a formula p is 
valid in M (respectively, valid with respect to M )  if and only if l p  is not satisfiable 
in M (respectively, not satisfiable with respect to M )  . 

To get a sound and complete axiomatization, one starts with propositional reasoning 
and adds to it axioms and inference rules for knowledge. By propositional reasoning we 
mean all substitution instances of sound propositional inference rules of propositional 
logic. An inference rule is a statement of the form “from 2 infer a”, where 2 U {u} is 
a set of formulas. (See [ 101 for a discussion of inference rules.) Such an inference rule 
is sound if for every substitution 7 of formulas 91,. . . , pk for the primitive propositions 
p i , .  . . , pk in  2 and (T, if all the formulas in 7 [  21 are valid, then T [  u] is also valid. 
Modus ponens (“from p and p =+ (CI infer 9”) is an example of a sound propositional 
inference rule. Of course, if u is a valid propositional formula, then “from 0 infer u” 
is a sound propositional inference rule. It is easy to show that “from 2 infer u” is a 
sound propositional inference rule iff (T is a propositional consequence of 2 [ 101, which 
explains why the notion of inference is often confused with the notion of consequence. 
As we shall see later, the two notions do not coincide in our nonstandard propositional 
logic NPL. 

Consider the following axiom system K, which in addition to propositional reasoning 
consists of one axiom and one rule of inference given below: 

A l .  ( K , p  A Ki( cp =+ (CI) ) =+ Ki(CI (Distribution Axiom). 

PR. All sound inference rules of propositional logic. 

R1. From p infer Kip (Knowledge Generalization). 

One should view the axioms and inference rules above as schemes, i.e., K actually 
consists of all C-instances of the above axioms and inference rules. 

Theorem 3.1 (Chellas [ 41 ) . K is a sound and complete axiomatization for validity of 
L-formulas in M .  

We note that PR can be replaced by any complete axiomatization of standard propo- 
sitional logic that includes modus ponens as an inference rule, which is the usual way 
that K is presented (cf. [ 41 .) We chose to present K in this unusual way in anticipation 
of our treatment of NPL in Section 5. 

Finally, instead of trying to prove validity, one may wish to check validity algorith- 
mically. 
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Theorem 3.2 (Ladner [ 181 ) . 
M is PSPACE-complete. 

The problem of determining validity of CC;forinulas in 

4. Nonstandard possible worlds 

Our main goal in this paper is to help alleviate logical omniscience by defining Kripke 
structures that are based on a nonstandard propositional logic, rather than basing them 
on classical propositional logic. We shall base our nonstandard Kripke structures on our 
nonstandard propositional logic; in particular, we make use of the * operator of Routley 
and Meyer [ 26,271. 

A nonstandard Kripke structure is a tuple (S, r ,  K1,. . . , X I , , *  ), where (S, n-, K1, . . . , 
K,!) is a (Kripke) structure, and where * is a unary function with domain and range 
the set S of worlds (where we write s* for the result of applying the function * to the 
world s) such that s** = s for each s E S. We refer to nonstandard Kripke structures as 
nonstandard structures. We call them nonstandard, since we think of a world where p 
and ~p are both true or both false as nonstandard. We denote the class of nonstandard 
structures for n agents over @ by N M f .  As before, when n and @ are not relevant to 
our discussion, we write N M  instead of N M ; .  

The definition of b for the language C for nonstandard structures is the same as for 
standard structures, except for the clause for negation: 

In  particular, the clause for Kj does not change at all: 

( M ,  s) K L p  iff ( M ,  t )  b p for all t such that ( s ,  t )  E Ic,. 

Our semantics is closely related to that of Levesque [20] and Lakemeyer [ 191. 
We discuss their approach in Section 9. Unlike our approach, in their approach it is 
necessary to introduce two ICi relations for each agent i, to deal separately with the truth 
of formulas of the form Kip and the truth of formulas of the form 7K;cp. 

Similarly to before, we say that cp is valid with respect to N M ,  and write N M  1 cp, 
if ( M ,  s)  1 p for every nonstandard structure M and every state s of M .  

As we noted earlier, it is possible for neither p nor l p  to be true at world s, and for 
both p and TP to be true at world s. Let us refer to a world where neither p nor 19 is 
true as incomplete (with respect to 9); otherwise, s is complete. The intuition behind an 
incomplete world is that there is not enough information to determine whether p is true 
or whether 7p is true. What about a world where both p and 79 are true? We call such 
a world incoherent (with respect to p); otherwise, s is coherent. The intuition behind 
an incoherent world is that it is overdetermined: it might correspond to a situation where 
several people have provided mutually inconsistent information. A world s is standard 
if s = s*. Note that for a standard world, the definition of the semantics of negation is 
equivalent to the standard definition. In particular, a standard world s is both complete 
and coherent: for each formula p exactly one of cp or ~p is true at s. 
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Remark 4.1. If we consider a fixed structure, it is possible for a world to be both 
complete and coherent without being standard. Nevertheless, there is an important sense 
in  which this can be viewed as “accidental”, and that the only worlds that can be 
complete and coherent are those that are standard. To understand this, we must work 
at the level of frames [ 11, 131 rather than structures. Essentially, a frame is a structure 
without the truth assignment T. Thus, in our present context, we define a (nonstandard) 
frame F to be a tuple ( S ,  K1,. . . ,KIT ,*  ), where S is a set’of worlds, K1,. . . , K l l  are 
binary relations on S ,  and * is a unary function with domain and range the set S of 
worlds, such that s** = s. We say that the nonstandard structure ( S ,  T, K I  , . . . , XI, ,*  ) is 
based on the frame ( S ,  K l ,  . . . , K,,* ) . We say that a world s is complete (respectively 
coherent) with respect to the frame F if s is complete (respectively coherent) with 
respect to every structure based on F ;  the world s is standard with respect to F exactly 
if s* = s. It is now easy to see that if s is complete and coherent with respect to a frame 
F if and only if s is standard in F .  

What are the properties of knowledge in nonstandard structures? One way to charac- 
terize the formal properties of a semantic model is to consider all the validities under 
that semantics. In our case, we should consider the formulas valid in N M .  Theorem 2.2 
tells us that no formula of NPL- is valid. It turns out that even though we have enlarged 
the language to include knowledge modalities, i t  is still the case that no formula (of C) 
is valid. Even more, there is a single counterexample that simultaneously shows that no 
formula is valid! 

Theorem 4.2. There is no formula of C that is valid with respect to N M .  I n  fact, 
there is a nonstandard structure M and a world s of M such that every formula of C is 
,false at s, and a world t of M such that every formula of C is true at t. 

Proof. Let M = (S ,  n-, K1, . . . , Kll ,*  ) be a special nonstandard structure, defined as 
follows. Let S contain only two worlds s and t ,  where t = s* (and so s = t * ) .  Define 
n- by letting T (  s) be the truth assignment where v( s) ( p )  = false for every primitive 
proposition p ,  and letting ~ ( t )  be the truth assignment where n - ( t ) ( p )  = true for 
every primitive proposition p .  Define each Ki to be { (s,  s), ( t ,  t ) } .  By a straightforward 
induction on formulas, it  follows that for every formula 9 of C, we have ( M ,  s) p 
and ( M ,  t )  p. In particular, every formula of C is false at s, and every formula of C 
is true at t .  Since every formula of C is false at s, no formula of C is valid with respect 
t o h / M .  I3 

It follows from Theorem 4.2 that we cannot use validities to characterize the properties 
of knowledge in nonstandard structures, since there are no validities! We will come back 
to this point later. 

As we noted in the introduction, our basic motivation is the observation that if 
we weaken the “logical” in “logical omniscience”, then perhaps we can diminish the 
acuteness of the logical omniscience problem. Logical implication is indeed weaker 
in nonstandard structures than in standard structures, as we now show. If p logically 
implies fi in nonstandard structures, then p logically implies CC, in standard structures, 
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since standard structures can be viewed as a special case of nonstandard structures. 
However, the converse is false, since, for example, {q,q + 9 )  logically implies I) in 
standard structures but not in nonstandard structures. 

Nevertheless, logical omniscience did not go away! If an agent knows all of the 
formulas in a set 2, and if 2 logically implies the formula p, then the agent also knows 
p. Because, as we just showed, we have weakened the notion of logical implication, the 
problem of logical omniscience is not as acute as it was in the standard approach. For 
example, knowledge of valid formulas, which is one form of omniscience, is completely 
innocuous here, since there are no valid formulas. Also, an agent’s knowledge need 
not be closed under implication; an agent may know p and p + 9 without knowing *, since, as we noted above, p and p + 9 do not logically imply 4 with respect to 
nonstandard structures. 

We saw that the problem of determining validity is easy (since the answer is always 
“No”). Validity is a special case of logical implication: a formula is valid iff it is a 
logical consequence of the empty set. Unfortunately, logical implication is not that easy 
to determine. 

Theorem 4.3. 
tiires is PSPACE-complete. 

The logical implication problem for  L-forinulas in nonstandard struc- 

As with Theorem 2.3, the proof of this theorem will appear in Section 8, when we 
have developed some more machinery. 

Theorem 4.3 asserts that nonstandard logical implication for knowledge formulas (i.e., 
C-formulas) is as hard as standard logical implication for knowledge formulas, that is, 
PSPACE-complete. This is analogous to Theorem 2.3, where the same phenomenon 
takes place for propositional formulas. 

We saw in  Theorem 4.2 that there are no valid formulas. In particular, we cannot 
capture properties of knowledge by considering all of the formulas that are valid, since 
there are none. By contrast, Theorem 4.3 tells us that the structure of logical implication 
is quite rich (since the logical implication problem is PSPACE-complete). In classical 
logic, we can capture logical implication in the language by using =+: thus, p logically 
implies qb precisely if the formula p + $ is valid. In the next section, we enrich our 
language by adding a new propositional connective -+, with which it is possible to 
express logical implication in the language. 

5. Strong implication 

In Section 2 we introduced a nonstandard propositional logic, motivated by our dis- 
comfort with certain classic tautologies, such as ( p  A -p )  + q, and-lo and behold!- 
under this semantics these formulas are no longer valid. Unfortunately, the bad news 
is that other formulas, such as rp =+ p, that blatantly seem as if they should be valid, 
are not valid either under this approach. In fact, no formula is valid in the nonstandard 
approach! It seems that we have thrown out the baby with the bath water. In particular, 
we could not characterize the properties of knowledge in the nonstandard approach by 
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considering validities, because there are no validities. 
To get better insight into this problem, let us look more closely at why the formula 

p =+ cp is not valid. Our intuition about implication tells us that 91 + 9 2  should 
say “if P I  is true, then 9 2  is true”. However, 91 + 9 2  is defined to be l p l  V 9 2 .  
In standard propositional logic, this is the same as “if 91 is true, then 9 2  is true”. 
However, in nonstandard structures, these are not equivalent. Thus, the problem is not 
with our semantics, but rather with the definition of +. This motivates the definition of 
a new propositional connective -, which we call strong implication, where 91 -+ p2 
is defined to be true if whenever PI  is true, then p 2  is true. Formally, in the pure 
propositional case where S = (s, t )  is an NPL structure and u E {s, t } ,  we define 

( S , u )  kpi  -+ p2 iff ( S , u )  1 9 2  whenever ( S , u )  191.  
That is, ( S ,  u )  
nonstandard structure and s is a world of M ,  then 

pi c-f p 2  iff either ( S ,  u )  P I  or ( S ,  u )  1 p 2 .  Similarly, if M is a 

( M ,  $1 1 P I  -+ ~2 iff (if ( M ,  s) 1 P I ,  then ( M ,  s> 1 ~ 2 1 .  

Equivalently, ( M ,  s) 1 91 -+ p2 iff either ( M ,  s) 
In the pure propositional case, we refer to this logic as nonstandard propositional 

logic. or NPL. In the case of knowledge formulas, we denote by Lf,-, or L- for short, 
the set of formulas obtained by modifying the definition of L: by adding c-f as a new 
propositional connective. 

Strong implication is indeed a new connective, that is, it cannot be defined using - 
and A. For, there are no valid formulas using only - and A, whereas by using -+, there 
are validities: p -+ p is an example, as is pl -+ (91 V 92).  

The next proposition shows a sense in which strong implication is indeed stronger 
than implication. 

91 or ( M ,  s) 192. 

Proposition 5.1. Let 99 and 9 2  be formulas in C. I f91 c-t 9 2  is valid with respect to 
nonstandard Kripke structures, then 91 + p 2  is valid with respect to standard Kripke 
structures. However; the converse is false. 

Proof. Assume that 91 - 9 2  is valid with respect to nonstandard Kripke structures. 
As we remarked after the proof of Theorem 4.2, a standard Kripke structure can be 
viewed as a special case of a nonstandard Kripke structure. Hence, 91 i--f 9 2  is valid 
with respect to standard Kripke structures. In a standard Kripke structure, 91 - p2 is 
equivalent to p1 + 9 2 .  So 91 + 9 2  is valid with respect to standard Kripke structures. 

The converse is false, since the formula (PA-p)  + q is valid in standard propositional 
logic, whereas the formula ( p  A ~ p )  - q is not valid in NPL. El 

As we promised earlier, we can now express logical implication in L-, using -+,just 
as we can express logical implication in standard structures, using +. The following 
proposition is almost immediate. 

Proposition 5.2. Let P I  and 9 2  be formulas in L-. Then 401 logically implies 9 2  in 
nonstandard structures iff 91 -+ 9 2  is valid with respect to nonstandard structures. 
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The connective ~f is somewhat related to the connective 4 of relevance logic, which 
is meant to capture the notion of relevant entailment. A formula of the form 91 4 p 2 ,  

where 401 and 92 are standard propositional formulas, is called a first-degree entailment. 
(See [ 81 for an axiomatization of first-degree entailments.) It is not hard to show that if 
91 and 9 2  are standard propositional formulas (and so have no occurrence of -), then 
91 t p 2  is a theorem of the relevance logic R [ 26,271 exactly if pl ~f p 2  is valid in 
NPL (or equivalently, p~ logically implies 472 in NPL- ). So p~ p 2  can be viewed as 
saying that pl - p 2  is valid. In formulas with nested occurrences of -, however, the 
semantics of - is quite different from that of relevant entailment. In  particular, while 
p - ( q  - p )  is valid in NPL, the analogous formula p t ( q  --f p )  is not a theorem 
of relevance logic [ 11. 

With -, we greatly increase the expressive power of our language. For example, in 
C (the language without -), we cannot say that a formula p is false. That is, there is 
no formula $ such that ( M ,  t )  $ iff ( M ,  t )  p p. For suppose that there were such 
a formula $. Let M and t be as in Theorem 4.2. Then ( M ,  t )  p $ and ( M ,  t )  p p, a 
contradiction. What about the formula l p ?  This formula says that -9 is true, but does 
not say that p is false. However, once we move to C’, it is possible to say that a 
formula is false, as we shall see in the next proposition. In order to state this and other 
results, it turns out to be convenient to have an abbreviation for the proposition false 
(which is false at every world). The way we abbreviate false depends on the context. 
When dealing with the standard semantics in the language C, we take true to be an 
abbreviation for some fixed standard tautology such as p + p .  When dealing with the 
nonstandard semantics in the language C’, we take true to be an abbreviation for some 
fixed nonstandard tautology such as p - p .  In both cases, we abbreviate -true by false. 
In  fact, it will be convenient to think of true and false as constants in the language 
(rather than as abbreviations) with the obvious semantics. The next proposition, which 
shows how to say that a formula is false, is straightforward. 

Proposition 5.3. Let M be a nonstandard structure, and let s be a world of M .  Then 
(M,s) p p i f l ( M , s )  k p - f a l s e .  

This proposition enables us to embed standard propositional logic into NPL, by 
replacing ~p by p c-f false. We shall make use of this technique in the next section, 
when we give a sound and complete axiomatization for NPL, and analyze the complexity 
of the validity problem. 

6. Axiomatizations and complexity 

In  this section, we provide sound and complete axiomatizations for our nonstandard 
propositional logic NPL, and for our nonstandard epistemic logic, and prove their cor- 
rectness. We also show that the validity problem for NPL is co-NP-complete, just as 
for standard propositional logic, and the validity problem for our nonstandard logic of 
knowledge is PSPACE-complete, just as for the standard logic of knowledge. 
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6.1. A sound and coniplete axiomatization fo r  NPL 

In this subsection we give an axiomatization for NPL and prove that it is sound 
and complete. We also show that the validity problem is co-NP-complete, just as for 
propositional logic, and discuss an interesting new inference rule. For the purposes of 
this subsection only, i t  is convenient to enrich our standard propositional language so 
that 3 and false are first-class objects, and not just abbreviations. Thus, let C1 contain 
all formulas built up out of false and the primitive propositions in @, by closing off 
under the Boolean connectives 7, A, and +. Let CT be the negation-free formulas in 
CI (those built up out of false and the primitive propositions in @, by closing off under 
the Boolean connectives A and +). We define C2 and &; identically, but using - 
instead of =+-. 

As a tool in  developing an axiomatization for NPL, and motivated by Proposition 5.3, 
we explore the relationship between the standard and nonstandard semantics. This will 
make i t  possible to use (in part) the standard axiomatization. If p E C1, then we 
define the formula pnst E C l  by recursively replacing in p all subformulas of the 
form -9 by 9 ~f false and all occurrences of =+ by -+ (the superscript "st stands 
for nonstandard). Note that pnst is negation-free. We also define what is essentially the 
inverse transformation: if p E C;, let pqt E CT be the result of replacing in p all 
occurrences of -+ by 3. It is easy to see that the transformations and St are inverses 
when restricted to negation-free formulas. In particular: 

Lemma 6.1. If p E C:, rhen ( = p. 

If s is a truth assignment, and p E C1, then we write s k p if p is true under the 
truth assignment s. 

Proposition 6.2. Assume that S = ( s ,  t )  is an NPL structure, u E {s, t} ,  and p E CI. 
Then ( S ,  u )  pnst iff u 'F p. 

Proof. We prove this proposition by induction on the structure of p. The result is 
immediate if p is false, a primitive proposition, or of the form qp~ A 9 2 .  If p is -$, then 

( S ,  u )  pnSt iff ( S ,  u )  1 $"st -false, 

iff (S, u )  p $"st, 

iff (by induction hypothesis)u 9, 
iff u k p. 

If p is $1 + $2 .  then 

( S , u )  kqnst  iff ( S , u )  k ($I)"'~ - ($2)nst, 

iff (S ,u )  I# ($1)"" or ( S , u )  'F ($2 )"" ,  

iff 

iff u /= q. 0 
(by induction hypothesis) u p $1 or u /= $ 2 ,  
















































