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Abstract 

We introduce a new approach to dealing with the well-known logical omniscience problem 
in epistemic logic. Instead of taking possible worlds where each world is a model of classical 
propositional logic, we take possible worlds which are models of a nonstandard propositional logic 
we call NPL, which is somewhat related to relevance logic. This approach gives new insights into 
the logic of implicit and explicit belief considered by Levesque and Lakemeyer. In particular, we 
show that in a precise sense agents in the structures considered by Levesque and Lakemeyer are 
perfect reasoners in NPL. 

1. Introduction 

The standard approach to modelling knowledge, which goes back to Hintikka [ 151, 
is in terms of possible worlds. In this approach, an agent is said to know a fact p if 
p is true in all the worlds he considers possible. As has been frequently pointed out, 
this approach suffers from what Hintikka termed the logical omniscience problem [ 161 : 
agents are so intelligent that they know all the logical consequences of their knowledge. 
Thus, if an agent knows all of the formulas in a set .X and if 2 logically implies the 
formula 9, then the agent also knows p. In particular, they know all valid formulas 
(including all tautologies of standard propositional logic). Furthermore, the knowledge 
of an agent is closed under implication: if the agent knows p and knows 9 + $, then 
the agent also knows $. The reader should note that closure under implication is a 
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special case of logical omniscience only if {q,p 3 $} logically implies $; although 
this logical implication holds in standard propositional logic, it does not hold in our 
nonstandard propositional logic NPL that we shall introduce later. 

While logical omniscience is not a problem under some conditions (this is true 
in particular for interpretations of knowledge that are often appropriate for analyzing 
distributed systems [ 121 and certain A1 systems [25]), it is certainly not appropriate 
to the extent that we want to model resource-bounded agents. A number of different 
semantics for knowledge have been proposed to get around this problem. The one most 
relevant to our discussion here is what has been called the impossible-worlds approach. 
In this approach, the standard possible worlds are augmented by “impossible worlds” 
(or, perhaps better, nonstandard worlds), where the customary rules of logic do not 
hold [ 5,6,20,23,29]. It is still the case that an agent knows a fact p if p is true in all 
the worlds the agent considers possible, but since the agent may in fact consider some 
nonstandard worlds possible, this will affect what he knows. 

What about logical omniscience? Although notions like “validity” and “logical con- 
sequence” (which played a prominent part in our informal description of logical omni- 
science) may seem absolute, they are not; their formal definitions depend on how truth 
is defined and on the class of worlds being considered. Although there are nonstandard 
worlds in the impossible-worlds approach, validity and logical consequence are taken 
with respect to only the standard worlds, where all the rules of standard logic hold. 
For example, a formula is valid exactly if it is true in all the standard worlds in every 
structure. The intuition here is that the nonstandard worlds serve only as epistemic al- 
ternatives; although an agent may be muddled and may consider a nonstandard world 
possible, we (the logicians who get to examine the situation from the outside) know 
that the “real world” must obey the laws of standard logic. If we consider validity and 
logical implication with respect to standard worlds, then it is easy to show that logical 
omniscience fails in “impossible-worlds” structures: an agent does not know all valid 
formulas, nor does he know all the logical consequences of his knowledge here (since, 
in deciding what the agent knows, we must take the nonstandard worlds into account). 

In this paper we consider an approach which, while somewhat related to the impossib- 
le-worlds approach, stems from a different philosophy. We consider the implications of 
basing a logic of knowledge on a nonstandard logic rather than on standard propositional 
logic. The basic motivation is the observation, implicit in [20] and commented on 
in [9,28], that if we weaken the “logical” in “logical omniscience”, then perhaps 
we can diminish the acuteness of the logical omniscience problem. Thus, instead of 
distinguishing between standard and nonstandard worlds, we take all our worlds to 
be models of a nonstandard logic. Some worlds in a structure may indeed be models 
of standard logic, but they do not have any special status for us. We consider all 
worlds when defining validity and logical consequence; we accept the commitment to 
nonstandard logic. Knowledge is still defined to be truth in all worlds the agent considers 
possible. It thus turns out that we still have the logical omniscience problem, but this 
time with respect to nonstandard logic. The hope is that the logical omniscience problem 
can be alleviated by appropriately choosing the nonstandard logic. 

There are numerous well-known nonstandard propositional logics, including intuition- 
istic propositional logic [ 141, relevance logic [ I ] ,  and the 4-valued logic in [ 2,3,7]. 
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We shall give our own approach in this paper, which is closely related to relevance 
logic and to 4-valued logic. For each of these nonstandard logics, the starting point is 
the observation that there are a number of properties of implication in standard logic 
that seem inappropriate in certain contexts. In particular, consider a formula such as 
( p  A - p )  + 4. In standard logic ‘this is valid; that is, from a contradiction one can 
deduce anything. However, consider a knowledge base into which users enter data from 
time to time. As Belnap points out [3 ] ,  i t  is almost certainly the case that in a large 
knowledge base, there will be some inconsistencies. One can imagine that at some point 
a user entered the fact that Bob’s salary is $50,000, while at another point, perhaps 
a different user entered the fact that Bob’s salary is $60,000. Thus, in standard logic 
anything can be inferred from this contradiction. One solution to this problem is to 
replace standard worlds by worlds (called situations in [ 19,201, and setups in [ 3,271 ) 
in which it is possible that a primitive proposition p is true, false, both true and false, or 
neither true and false. We achieve the same effect here by keeping our worlds seemingly 
standard and by using a device introduced in [26,27] to decouple the semantics of a 
formula and its negation: for every world s there is a related world S * .  A formula l p  
is true in  s iff (o is not true in s * .  It is thus possible for both p and 19 to be true at s, 
and for neither to be true. (The standard worlds are now the ones where s = s*; all the 
laws of standard propositional logic do indeed hold in such worlds.) 

We call the propositional logic that results from the above semantics nonstandard 
propositional logic (NPL). Unlike standard logic, for which cp logically implies $ 
exactly when p 3 y5 is valid, where p + y5 is defined as l c p  V $, this is not the case 
in  NPL. This leads us to include a connective ~f (“strong implication”) in NPL so 
that, among other things, we have that p logically implies $ iff p c+ $ is valid. Of 
course, c+ agrees with =+ on the standard worlds, but in general it is different. Given 
our nonstandard semantics, p - $ comes closer than p 3 $ to capturing the idea that 
“if p is true, then $ is true”. Just as in relevance logic, formulas such as ( p  A i p )  - q 
are not valid, so that from a contradiction, one cannot conclude everything. In fact, we 
can show that if p and $ are standard propositional formulas (those formed from 7 

and A, containing no occurrences of ~ f ) ,  then p c-f $ is valid exactly if p entails $ 
i n  the relevance logic R [ 26,271. In formulas with nested occurrences of -+, however, 
the semantics of ~f is quite different from the relevance logic notion of entailment. 

We are most interested in  applying our nonstandard semantics to knowledge. It turns 
out that although agents in our logic are not perfect reasoners as far as standard logic 
goes, they are perfect reasoners in nonstandard logic. In particular, as we show, the com- 
plete axiomatization for the standard possible-worlds interpretation of knowledge can be 
converted to a complete axiomatization for the nonstandard possible-world interpretation 
of knowledge essentially by replacing the inference rules for standard propositional logic 
by inference rules for NPL. We need, however, to use i )  rather + in formulating the 
axioms of knowledge. Thus, the distribution axiom, valid in the standard possible-worlds 
interpretation, says ( K i p  A Ki( cp =+- $) ) + K;$. This says that an agent’s knowledge 
is closed under logical consequence: if the agent knows 9 and knows that 9 implies $, 
then he also knows $. The analogue for this axiom holds in our nonstandard interpre- 
tation, once we replace =+- by c-t. This is appropriate since it is ~ - - f  that captures the 
intuitive notion of implication in our framework. The other basic property of knowledge 
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(knowledge generalization) remains unchanged: if p is valid, then so is Kip. That is, 
the agents know every valid formula (although the set of valid formulas are distinct 
for the standard logic and for our nonstandard logic). Thus, the basic properties of 
knowledge (closure under logical consequence, and knowledge of valid formulas) re- 
main unchanged; in some sense, we have decoupled the properties of the underlying 
propositional logic, which change drastically, from the properties of knowledge, which 
remain essentially the same. 

Our approach has an additional nice payoff we show that in a certain important 
application we can obtain a polynomial-time algorithm for reasoning about knowledge. 
By contrast, under the standard approach, the complexity of such reasoning in that 
application is co-NP-complete. 

It is instructive to compare our approach with that of Levesque and Lakemeyer 
[ 19,201. Our semantics is essentially equivalent to theirs. But while they avoid logical 
omniscience by giving nonstandard worlds a secondary status and defining validity only 
with respect to standard worlds, we accept logical omniscience, albeit with respect to 
nonstandard logic. Thus, our results justify and elaborate a remark made in [ 9,281 that 
agents in Levesque’s model are perfect reasoners in relevance logic. 

The rest of this paper is organized as follows. In Section 2, we introduce our non- 
standard propositional logic, and investigate some of its properties. In Section 3, we 
review the standard possible-worlds approach. In Section 4, we give our nonstandard 
approach to possible worlds. In Section 5 ,  we add strong implication (the propositional 
connective -) to our syntax, and thereby obtain our full nonstandard propositional 
logic NPL. In Section 6, we give a sound and complete axiomatization for NPL, and 
give a sound and complete axiomatization for the logic of knowledge using NPL as a 
basis rather than classical propositional logic. We also show that the validity problem 
for NPL is co-NP-complete, just as for standard propositional logic, and the valid- 
ity problem for our nonstandard logic of knowledge is PSPACE-complete, just as for 
the standard logic of knowledge. In Section 7, we give the payoff we promised, of a 
polynomial-time algorithm for querying a knowledge base in certain natural cases. We 
relate our results to those in the impossible-worlds approach in Section 8. Levesque and 
Lakemeyer’s formalism is compared with ours in Section 9. We give our conclusions in 
Section 10. 

2. A nonstandard propositional logic 

Although by now it is fairly well entrenched, standard propositional logic has several 
undesirable and counterintuitive properties. When we are first introduced to propositional 
logic in school, we are perhaps somewhat uncomfortable when we learn that “p + +” 
is taken to be simply an abbreviation for l c p  V $. Why should the fact that either l p  is 
true or + is true correspond to “if cp is true then + is true”? 

Another problem with standard propositional logic is that it is fragile: a false statement 
implies everything. For example, the formula ( p  A - p )  =+ q is valid, even if p and q 
are unrelated. As we observed in the introduction, one situation where this could be a 
serious problem occurs when we have a large knowledge base of many facts, obtained 
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from multiple sources, and where a theorem prover is used to derive various conclusions 
from this knowledge base. 

To deal with these problems, many alternatives to standard propositional logic have 
been proposed. We focus on one particular alternative here, and consider its conse- 
quences. 

The idea is to allow formulas p and l p  to have “independent” truth values. Thus, 
rather than requiring that 19 be true iff p is not true, we wish instead to allow the 
possibility that l p  can be either true or false, regardless of whether p is true or 
false. Intuitively, the truth of formulas can be thought of as being determined by some 
knowledge base. We can think of p being true as meaning that the fact p has been put 
into a knowledge base of true formulas, and we can think of l p  being true as meaning 
that the fact p has been put into a knowledge base of false formulas. Since it is possible 
for cp to have been put in both knowledge bases, i t  is possible for both p and l p  to be 
true. Similarly, if p had not been put into either knowledge base, then neither p nor l p  
would be true. 

There are several ways to capture this intuition formally (see [ 81 ). We now discuss 
one approach, due to [ 26,271. For each world s, there is an adjunct world s*, which 
will be used for giving semantics to negated formulas. Instead of defining l p  to hold 
at s iff p does not hold at s, we instead define 19 to hold at s iff p does not hold at 
s*. Note that if s = s*, then this gives our usual notion of negation. Very roughly, we 
can think of a state s is as consisting of a pair (BT ,  B F )  of knowledge bases; BT is the 
knowledge base of true facts, while BF is the knowledge base of false facts. The state 
s+ should be thought as the adjunct pair ( B F ,  BT) ,  where & is the complement of BT, 
and B F  is the complement of B F .  Continuing this intuition, to see if p is true at s, we 
consult BT; to see if l c p  is true at s, i.e., if p is false at s, we consult B F .  Notice that 
p E BF iff p 6 G. Since % is the knowledge base of true facts at s*, we have an 
alternate way of checking if p is false at s: we can check if p is not true at s*. 

Notice that under this interpretation, not only is s* is the adjunct state of s, but s 
is the adjunct state of s*; i.e., s** = s (where s** = (s*)* ) .  To support this intuitive 
view of s as a pair of knowledge bases and S* as its adjunct, we make this a general 
requirement in our framework. 

We define the formulas of the propositional logic by starting with a set @ of primitive 
propositions that describe basic facts about the domain of discourse, and forming more 
complicated formulas by closing off under the Boolean connectives 7 and A. Thus, if p 
and y? are formulas, then so are -9 and p A 9. When we deal only with propositional 
formulas, we can identify a world with a classical truth assignment to the primitive 
propositions, and we can decide the truth of a propositional formula at a world s by 
considering only s and s*. Thus, we define an NPL structure to consist of an ordered 
pair (s, t )  of classical truth assignments to the set @ of primitive propositions. We 
take * to be a function that maps a truth assignment in an NPL structure to the other 
truth assignment in that structure. Thus, if S = (s, t ) ,  then s* = t and t* = s. Truth is 
defined relative to a pair (S, u ) ,  where S is an NPL structure and u is one of the truth 
assignments in S. We define 19 to be true at (S,  u )  if p is not true at u* ;  thus, we use 
the other truth assignment in order to define negation. More formally, given an NPL 
structure S = (s, t ) ,  and u E {s, t } ,  we define the semantics as follows: 

_ _  
- 
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0 (S ,  1 1 )  b p iff u ( p )  = true for a primitive proposition p .  
0 (S,Ilj l p A $  iff ( S , u )  bcp and (S ,u )  k$. 
0 ( S , u )  l p  iff ( S , u * )  p. 
We call the logic defined so far NPL-. Later, we shall add strong implication ('t) 

to get NPL. 
Note that if S = (s,  s) for some truth assignment s (that is, s = s*) ,  then (S, s) b 79 

iff (S,s) p. Hence, in this case, for every propositional formula p, we have that 
(S,s) b p precisely if p is true under the truth assignment s, and so we are back to 
standard propositional logic. Note also that in the general case, it is possible for neither 
p nor ~p to be true at u (if (S, u )  p p and ( S ,  i d * )  p) and for both p and ~p to be 
true at u (if ( S , u )  19 and (S ,u * )  pp). 

This approach is equivalent to Belnap's 4-valued logic [ 2 , 3 ] ,  in which he has four 
truth values: True, False, Both, and None. Belnap's approach avoids the use of the * 
to define negation. The reason we make use of * is so that we can treat negation in 
a uniform manner. For example, later on we shall extend to an epistemic logic, and 
the use of * decouples the semantics of Kip and 7 K ; p .  By contrast, in order to extend 
Levesque's propositional logic in [ 201 to an epistemic logic where the semantics of Kip 
and ? K , p  are decoupled, Lakemeyer [ 191 finds it necessary to introduce two possibility 
relations, Ic? and Kl-. As we shall discuss in Section 9, the truth of a formula K;p is 
determined by the possibility relation K T ,  while the truth of 1Kip is determined by the 
possibility relation &-. By using *, we need only one possibility relation Ki for agent 
i, not two. Furthermore, when we add a new connective to the language, as we do later 
when we add strong implication (-), i t  may not be clear how to define the negation 
(for a formula '(PI - p 2 ) )  in a natural manner that decouples its semantics from that 
of 91 c--f p 2 .  This is done automatically for us by the use of *. 

Just as in standard propositional logic, we take 91 V 9 2  to be an abbreviation for 
'( 191 A -p2) ,  and pl + 9 2  to be an abbreviation for -301 V p 2 .  Since the semantics of 
negation is now nonstandard, it is not a priori clear how the propositional connectives 
behave in our nonstandard semantics. For example, while A 9 2  holds by definition 
precisely when 91 and q32 both hold, it is not clear that V p 2  holds precisely when 
at least one of p1 or 9 2  holds. It is even less clear how negation will interact in our 
nonstandard semantics with conjunction and disjunction. 

The next proposition shows that even though we have decoupled the semantics for 40 
and 19, the propositional connectives 7, A, and V still behave and interact in a fairly 
standard way. 

Proof. We prove only ( 1 ) and ( 2 ) ,  since the proofs of the rest are similar. 
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(S,u) k 7-p iff ( S , u - )  yp, 

iff (S ,u“*)  k p, 

iff (S, u )  I= p. 

As for (2) ,  

In  contrast to the behavior of 1, A, and V, the connective + behaves rather peculiarly, 
since ( S ,  I / )  pl + p 2  holds precisely when (S, u * )  k pi implies that (S, u )  k p 2 .  We 
will come back to the issue of the definition of implication later. 

Validity and logical implication are defined in the usual way: p is valid if i t  holds 
at every ( S ,  u ) ,  and cp logically implies $ if (S, u )  1 p implies (S. u )  k $ for every 
( S , I L ) .  What are the valid formulas? The formula ( p  A l p )  + q, which wreaked havoc 
in  deriving consequences from a knowledge base, is no longer valid. What about even 
simpler tautologies of standard propositional logic, such as ~p V p ?  This formula, too, is 
not valid. How about p + p ?  It is not valid either, since p + p is just an abbreviation 
for -p V p ,  which, as we just said, is not valid. In fact, no formula is valid! 

Theorem 2.2. No formula of NPL- is valid. 

Proof. This follows from a stronger result (Theorem 4.2) that we shall prove in Sec- 
tion 4. 0 

Thus, the validity problem is very easy: the answer is always “No, the formula is not 
valid!” Thus, the notion of validity is trivially uninteresting here. In contrast, there are 
many nontrivial logical implications; for example, as we see from Proposition 2.1, 1-y 
logically implies p, and -( 91 A 9 2 )  logically implies 791 V 7 9 2 .  

The reader may be puzzled why Proposition 2.1 does not provide us some tautologies. 
For example, Proposition 2.1 tells us  that 1740 logically implies p. Doesn’t this mean 
that lip =+ p is a tautology? This does not follow. In classical propositional logic, 
p logically implies i / j  iff the formula 9 + i / j  is valid. This is not the case in NPL. 
For example, p logically implies ip, yet p + p (i.e., l p  V p) is not valid in NPL. In 
Section 5, we define a new connective that allows us to express logical implication in 
the language, just as + does for classical logic. We close this section by characterizing 
the complexity of deciding logical implication in NPL-. 

Theorem 2.3. The logical implication problem in NPL- is co-NP-complete. 
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The proof of this theorem will appear in Section 8, when we have developed some 
more machinery. This theorem says that logical implication in NPL- is as hard as 
logical implication in standard propositional logic, that is, co-NP-complete. We shall see 
in  Theorem 4.3 that a similar phenomenon takes place for knowledge formulas. 

3. Standard possible worlds 

We review in this section the standard possible-worlds approach to knowledge. The 
intuitive idea behind the possible-worlds model is that besides the true state of affairs, 
there are a number of other possible states of affairs or “worlds”. Given his current 
information, an agent may not be able to tell which of a number of possible worlds 
describes the actual state of affairs. An agent is then said to know a fact cp if cp is true 
at all the worlds he considers possible (given his current information). 

The notion of possible worlds is formalized by means of Kripke structures. Suppose 
that we have IZ agents, named 1 , .  . . , n, and a set @ of primitive propositions. A standard 
Kripke structure M for n agents over @ is a tuple ( S ,  IT, K1 , . . . , K,,), where S is a set of 
worlds, n- associates with each world in S a truth assignment to the primitive propositions 
of @ (i.e., IT( s) : @ ---f {true, false} for each world s E S ) ,  and Ici is a binary relation 
on S, called a possibility relation. We refer to standard Kripke structures as standard 
structures or simply as structures. 

Intuitively, the truth assignment ~ ( s )  tells us whether p is true or false in a world 
w. The binary relation K i  is intended to capture the possibility relation according to 
agent i: (s, t )  E K; if agent i considers world t possible, given his information in world 
s. The class of all structures for n agents over @ is denoted by M:. Usually, neither n 
nor di are relevant to our discusion, so we typically write M instead of M:. 

We define the formulas of the logic by starting with the primitive propositions in di, 
and form more complicated formulas by closing off under Boolean connectives 1 and 
A and the modalities K I  , . . . , K J l .  Thus, if p and qh are formulas, then so are 19, p A qh, 
and Kipo, for i = 1 , .  . . , n. We define the connectives V and + to be abbreviations as 
before. The class of all formulas for n agents over @ is denoted by L:. Again, when 
n and @ are not relevant to our discussion, we write C instead of L:. We refer to 
L-formulas as standard formulas. 

We are now ready to assign truth values to formulas. A formula will be true or false 
at a world in a structure. We define the notion ( M , s )  k p, which can be read as “9 
is true at ( M ,  s)” or “q holds at ( M ,  s)” or “( M ,  s) satisjes q”, by induction on the 
structure of cp. 

( M ,  s) k p (for a primitive proposition p E @) iff T( s) ( p )  = true. 

( M ,  s) k yp iff ( M ,  s) P cp. 

( M , s ) k  c p A r \ i f f ( M , s )  k p a n d  (M,s)kqh. 

( M ,  s) K i p  iff ( M ,  t )  k cp for all t such that ( s ,  t )  E Ici. 

The first three clauses in this definition correspond to the standard clauses in the 
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definition of truth for propositional logic. The last clause captures the intuition that 
agent i knows p in world s of structure M exactly if p is true at all worlds that i 
considers possible in s. 

Given a structure M = (S, n-, K1,. . . , K,,), we say that p is valid in M ,  and write 
M 1 p, if ( M , s )  k p for every world s in S,  and say that p is satisjiable in M if 
( M ,  s) k p for some world s in S. We say that p is valid with respect to M ,  and write 
M k p, if it is valid with respect to all structures of M ,  and it is satis$able with respect 
to M if it is satisfiable in some structure in M .  It is easy to check that a formula p is 
valid in M (respectively, valid with respect to M )  if and only if l p  is not satisfiable 
in M (respectively, not satisfiable with respect to M )  . 

To get a sound and complete axiomatization, one starts with propositional reasoning 
and adds to it axioms and inference rules for knowledge. By propositional reasoning we 
mean all substitution instances of sound propositional inference rules of propositional 
logic. An inference rule is a statement of the form “from 2 infer a”, where 2 U {u} is 
a set of formulas. (See [ 101 for a discussion of inference rules.) Such an inference rule 
is sound if for every substitution 7 of formulas 91,. . . , pk for the primitive propositions 
p i , .  . . , pk in  2 and (T, if all the formulas in 7 [  21 are valid, then T [  u] is also valid. 
Modus ponens (“from p and p =+ (CI infer 9”) is an example of a sound propositional 
inference rule. Of course, if u is a valid propositional formula, then “from 0 infer u” 
is a sound propositional inference rule. It is easy to show that “from 2 infer u” is a 
sound propositional inference rule iff (T is a propositional consequence of 2 [ 101, which 
explains why the notion of inference is often confused with the notion of consequence. 
As we shall see later, the two notions do not coincide in our nonstandard propositional 
logic NPL. 

Consider the following axiom system K, which in addition to propositional reasoning 
consists of one axiom and one rule of inference given below: 

A l .  ( K , p  A Ki( cp =+ (CI) ) =+ Ki(CI (Distribution Axiom). 

PR. All sound inference rules of propositional logic. 

R1. From p infer Kip (Knowledge Generalization). 

One should view the axioms and inference rules above as schemes, i.e., K actually 
consists of all C-instances of the above axioms and inference rules. 

Theorem 3.1 (Chellas [ 41 ) . K is a sound and complete axiomatization for validity of 
L-formulas in M .  

We note that PR can be replaced by any complete axiomatization of standard propo- 
sitional logic that includes modus ponens as an inference rule, which is the usual way 
that K is presented (cf. [ 41 .) We chose to present K in this unusual way in anticipation 
of our treatment of NPL in Section 5. 

Finally, instead of trying to prove validity, one may wish to check validity algorith- 
mically. 
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Theorem 3.2 (Ladner [ 181 ) . 
M is PSPACE-complete. 

The problem of determining validity of CC;forinulas in 

4. Nonstandard possible worlds 

Our main goal in this paper is to help alleviate logical omniscience by defining Kripke 
structures that are based on a nonstandard propositional logic, rather than basing them 
on classical propositional logic. We shall base our nonstandard Kripke structures on our 
nonstandard propositional logic; in particular, we make use of the * operator of Routley 
and Meyer [ 26,271. 

A nonstandard Kripke structure is a tuple (S, r ,  K1,. . . , X I , , *  ), where (S, n-, K1, . . . , 
K,!) is a (Kripke) structure, and where * is a unary function with domain and range 
the set S of worlds (where we write s* for the result of applying the function * to the 
world s) such that s** = s for each s E S. We refer to nonstandard Kripke structures as 
nonstandard structures. We call them nonstandard, since we think of a world where p 
and ~p are both true or both false as nonstandard. We denote the class of nonstandard 
structures for n agents over @ by N M f .  As before, when n and @ are not relevant to 
our discussion, we write N M  instead of N M ; .  

The definition of b for the language C for nonstandard structures is the same as for 
standard structures, except for the clause for negation: 

In  particular, the clause for Kj does not change at all: 

( M ,  s) K L p  iff ( M ,  t )  b p for all t such that ( s ,  t )  E Ic,. 

Our semantics is closely related to that of Levesque [20] and Lakemeyer [ 191. 
We discuss their approach in Section 9. Unlike our approach, in their approach it is 
necessary to introduce two ICi relations for each agent i, to deal separately with the truth 
of formulas of the form Kip and the truth of formulas of the form 7K;cp. 

Similarly to before, we say that cp is valid with respect to N M ,  and write N M  1 cp, 
if ( M ,  s)  1 p for every nonstandard structure M and every state s of M .  

As we noted earlier, it is possible for neither p nor l p  to be true at world s, and for 
both p and TP to be true at world s. Let us refer to a world where neither p nor 19 is 
true as incomplete (with respect to 9); otherwise, s is complete. The intuition behind an 
incomplete world is that there is not enough information to determine whether p is true 
or whether 7p is true. What about a world where both p and 79 are true? We call such 
a world incoherent (with respect to p); otherwise, s is coherent. The intuition behind 
an incoherent world is that it is overdetermined: it might correspond to a situation where 
several people have provided mutually inconsistent information. A world s is standard 
if s = s*. Note that for a standard world, the definition of the semantics of negation is 
equivalent to the standard definition. In particular, a standard world s is both complete 
and coherent: for each formula p exactly one of cp or ~p is true at s. 
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Remark 4.1. If we consider a fixed structure, it is possible for a world to be both 
complete and coherent without being standard. Nevertheless, there is an important sense 
in  which this can be viewed as “accidental”, and that the only worlds that can be 
complete and coherent are those that are standard. To understand this, we must work 
at the level of frames [ 11, 131 rather than structures. Essentially, a frame is a structure 
without the truth assignment T. Thus, in our present context, we define a (nonstandard) 
frame F to be a tuple ( S ,  K1,. . . ,KIT ,*  ), where S is a set’of worlds, K1,. . . , K l l  are 
binary relations on S ,  and * is a unary function with domain and range the set S of 
worlds, such that s** = s. We say that the nonstandard structure ( S ,  T, K I  , . . . , XI, ,*  ) is 
based on the frame ( S ,  K l ,  . . . , K,,* ) . We say that a world s is complete (respectively 
coherent) with respect to the frame F if s is complete (respectively coherent) with 
respect to every structure based on F ;  the world s is standard with respect to F exactly 
if s* = s. It is now easy to see that if s is complete and coherent with respect to a frame 
F if and only if s is standard in F .  

What are the properties of knowledge in nonstandard structures? One way to charac- 
terize the formal properties of a semantic model is to consider all the validities under 
that semantics. In our case, we should consider the formulas valid in N M .  Theorem 2.2 
tells us that no formula of NPL- is valid. It turns out that even though we have enlarged 
the language to include knowledge modalities, i t  is still the case that no formula (of C) 
is valid. Even more, there is a single counterexample that simultaneously shows that no 
formula is valid! 

Theorem 4.2. There is no formula of C that is valid with respect to N M .  I n  fact, 
there is a nonstandard structure M and a world s of M such that every formula of C is 
,false at s, and a world t of M such that every formula of C is true at t. 

Proof. Let M = (S ,  n-, K1, . . . , Kll ,*  ) be a special nonstandard structure, defined as 
follows. Let S contain only two worlds s and t ,  where t = s* (and so s = t * ) .  Define 
n- by letting T (  s) be the truth assignment where v( s) ( p )  = false for every primitive 
proposition p ,  and letting ~ ( t )  be the truth assignment where n - ( t ) ( p )  = true for 
every primitive proposition p .  Define each Ki to be { (s,  s), ( t ,  t ) } .  By a straightforward 
induction on formulas, it  follows that for every formula 9 of C, we have ( M ,  s) p 
and ( M ,  t )  p. In particular, every formula of C is false at s, and every formula of C 
is true at t .  Since every formula of C is false at s, no formula of C is valid with respect 
t o h / M .  I3 

It follows from Theorem 4.2 that we cannot use validities to characterize the properties 
of knowledge in nonstandard structures, since there are no validities! We will come back 
to this point later. 

As we noted in the introduction, our basic motivation is the observation that if 
we weaken the “logical” in “logical omniscience”, then perhaps we can diminish the 
acuteness of the logical omniscience problem. Logical implication is indeed weaker 
in nonstandard structures than in standard structures, as we now show. If p logically 
implies fi in nonstandard structures, then p logically implies CC, in standard structures, 
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since standard structures can be viewed as a special case of nonstandard structures. 
However, the converse is false, since, for example, {q,q + 9 )  logically implies I) in 
standard structures but not in nonstandard structures. 

Nevertheless, logical omniscience did not go away! If an agent knows all of the 
formulas in a set 2, and if 2 logically implies the formula p, then the agent also knows 
p. Because, as we just showed, we have weakened the notion of logical implication, the 
problem of logical omniscience is not as acute as it was in the standard approach. For 
example, knowledge of valid formulas, which is one form of omniscience, is completely 
innocuous here, since there are no valid formulas. Also, an agent’s knowledge need 
not be closed under implication; an agent may know p and p + 9 without knowing *, since, as we noted above, p and p + 9 do not logically imply 4 with respect to 
nonstandard structures. 

We saw that the problem of determining validity is easy (since the answer is always 
“No”). Validity is a special case of logical implication: a formula is valid iff it is a 
logical consequence of the empty set. Unfortunately, logical implication is not that easy 
to determine. 

Theorem 4.3. 
tiires is PSPACE-complete. 

The logical implication problem for  L-forinulas in nonstandard struc- 

As with Theorem 2.3, the proof of this theorem will appear in Section 8, when we 
have developed some more machinery. 

Theorem 4.3 asserts that nonstandard logical implication for knowledge formulas (i.e., 
C-formulas) is as hard as standard logical implication for knowledge formulas, that is, 
PSPACE-complete. This is analogous to Theorem 2.3, where the same phenomenon 
takes place for propositional formulas. 

We saw in  Theorem 4.2 that there are no valid formulas. In particular, we cannot 
capture properties of knowledge by considering all of the formulas that are valid, since 
there are none. By contrast, Theorem 4.3 tells us that the structure of logical implication 
is quite rich (since the logical implication problem is PSPACE-complete). In classical 
logic, we can capture logical implication in the language by using =+: thus, p logically 
implies qb precisely if the formula p + $ is valid. In the next section, we enrich our 
language by adding a new propositional connective -+, with which it is possible to 
express logical implication in the language. 

5. Strong implication 

In Section 2 we introduced a nonstandard propositional logic, motivated by our dis- 
comfort with certain classic tautologies, such as ( p  A -p )  + q, and-lo and behold!- 
under this semantics these formulas are no longer valid. Unfortunately, the bad news 
is that other formulas, such as rp =+ p, that blatantly seem as if they should be valid, 
are not valid either under this approach. In fact, no formula is valid in the nonstandard 
approach! It seems that we have thrown out the baby with the bath water. In particular, 
we could not characterize the properties of knowledge in the nonstandard approach by 
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considering validities, because there are no validities. 
To get better insight into this problem, let us look more closely at why the formula 

p =+ cp is not valid. Our intuition about implication tells us that 91 + 9 2  should 
say “if P I  is true, then 9 2  is true”. However, 91 + 9 2  is defined to be l p l  V 9 2 .  
In standard propositional logic, this is the same as “if 91 is true, then 9 2  is true”. 
However, in nonstandard structures, these are not equivalent. Thus, the problem is not 
with our semantics, but rather with the definition of +. This motivates the definition of 
a new propositional connective -, which we call strong implication, where 91 -+ p2 
is defined to be true if whenever PI  is true, then p 2  is true. Formally, in the pure 
propositional case where S = (s, t )  is an NPL structure and u E {s, t } ,  we define 

( S , u )  kpi  -+ p2 iff ( S , u )  1 9 2  whenever ( S , u )  191.  
That is, ( S ,  u )  
nonstandard structure and s is a world of M ,  then 

pi c-f p 2  iff either ( S ,  u )  P I  or ( S ,  u )  1 p 2 .  Similarly, if M is a 

( M ,  $1 1 P I  -+ ~2 iff (if ( M ,  s) 1 P I ,  then ( M ,  s> 1 ~ 2 1 .  

Equivalently, ( M ,  s) 1 91 -+ p2 iff either ( M ,  s) 
In the pure propositional case, we refer to this logic as nonstandard propositional 

logic. or NPL. In the case of knowledge formulas, we denote by Lf,-, or L- for short, 
the set of formulas obtained by modifying the definition of L: by adding c-f as a new 
propositional connective. 

Strong implication is indeed a new connective, that is, it cannot be defined using - 
and A. For, there are no valid formulas using only - and A, whereas by using -+, there 
are validities: p -+ p is an example, as is pl -+ (91 V 92).  

The next proposition shows a sense in which strong implication is indeed stronger 
than implication. 

91 or ( M ,  s) 192. 

Proposition 5.1. Let 99 and 9 2  be formulas in C. I f91 c-t 9 2  is valid with respect to 
nonstandard Kripke structures, then 91 + p 2  is valid with respect to standard Kripke 
structures. However; the converse is false. 

Proof. Assume that 91 - 9 2  is valid with respect to nonstandard Kripke structures. 
As we remarked after the proof of Theorem 4.2, a standard Kripke structure can be 
viewed as a special case of a nonstandard Kripke structure. Hence, 91 i--f 9 2  is valid 
with respect to standard Kripke structures. In a standard Kripke structure, 91 - p2 is 
equivalent to p1 + 9 2 .  So 91 + 9 2  is valid with respect to standard Kripke structures. 

The converse is false, since the formula (PA-p)  + q is valid in standard propositional 
logic, whereas the formula ( p  A ~ p )  - q is not valid in NPL. El 

As we promised earlier, we can now express logical implication in L-, using -+,just 
as we can express logical implication in standard structures, using +. The following 
proposition is almost immediate. 

Proposition 5.2. Let P I  and 9 2  be formulas in L-. Then 401 logically implies 9 2  in 
nonstandard structures iff 91 -+ 9 2  is valid with respect to nonstandard structures. 
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The connective ~f is somewhat related to the connective 4 of relevance logic, which 
is meant to capture the notion of relevant entailment. A formula of the form 91 4 p 2 ,  

where 401 and 92 are standard propositional formulas, is called a first-degree entailment. 
(See [ 81 for an axiomatization of first-degree entailments.) It is not hard to show that if 
91 and 9 2  are standard propositional formulas (and so have no occurrence of -), then 
91 t p 2  is a theorem of the relevance logic R [ 26,271 exactly if pl ~f p 2  is valid in 
NPL (or equivalently, p~ logically implies 472 in NPL- ). So p~ p 2  can be viewed as 
saying that pl - p 2  is valid. In formulas with nested occurrences of -, however, the 
semantics of - is quite different from that of relevant entailment. In  particular, while 
p - ( q  - p )  is valid in NPL, the analogous formula p t ( q  --f p )  is not a theorem 
of relevance logic [ 11. 

With -, we greatly increase the expressive power of our language. For example, in 
C (the language without -), we cannot say that a formula p is false. That is, there is 
no formula $ such that ( M ,  t )  $ iff ( M ,  t )  p p. For suppose that there were such 
a formula $. Let M and t be as in Theorem 4.2. Then ( M ,  t )  p $ and ( M ,  t )  p p, a 
contradiction. What about the formula l p ?  This formula says that -9 is true, but does 
not say that p is false. However, once we move to C’, it is possible to say that a 
formula is false, as we shall see in the next proposition. In order to state this and other 
results, it turns out to be convenient to have an abbreviation for the proposition false 
(which is false at every world). The way we abbreviate false depends on the context. 
When dealing with the standard semantics in the language C, we take true to be an 
abbreviation for some fixed standard tautology such as p + p .  When dealing with the 
nonstandard semantics in the language C’, we take true to be an abbreviation for some 
fixed nonstandard tautology such as p - p .  In both cases, we abbreviate -true by false. 
In  fact, it will be convenient to think of true and false as constants in the language 
(rather than as abbreviations) with the obvious semantics. The next proposition, which 
shows how to say that a formula is false, is straightforward. 

Proposition 5.3. Let M be a nonstandard structure, and let s be a world of M .  Then 
(M,s) p p i f l ( M , s )  k p - f a l s e .  

This proposition enables us to embed standard propositional logic into NPL, by 
replacing ~p by p c-f false. We shall make use of this technique in the next section, 
when we give a sound and complete axiomatization for NPL, and analyze the complexity 
of the validity problem. 

6. Axiomatizations and complexity 

In  this section, we provide sound and complete axiomatizations for our nonstandard 
propositional logic NPL, and for our nonstandard epistemic logic, and prove their cor- 
rectness. We also show that the validity problem for NPL is co-NP-complete, just as 
for standard propositional logic, and the validity problem for our nonstandard logic of 
knowledge is PSPACE-complete, just as for the standard logic of knowledge. 
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6.1. A sound and coniplete axiomatization fo r  NPL 

In this subsection we give an axiomatization for NPL and prove that it is sound 
and complete. We also show that the validity problem is co-NP-complete, just as for 
propositional logic, and discuss an interesting new inference rule. For the purposes of 
this subsection only, i t  is convenient to enrich our standard propositional language so 
that 3 and false are first-class objects, and not just abbreviations. Thus, let C1 contain 
all formulas built up out of false and the primitive propositions in @, by closing off 
under the Boolean connectives 7, A, and +. Let CT be the negation-free formulas in 
CI (those built up out of false and the primitive propositions in @, by closing off under 
the Boolean connectives A and +). We define C2 and &; identically, but using - 
instead of =+-. 

As a tool in  developing an axiomatization for NPL, and motivated by Proposition 5.3, 
we explore the relationship between the standard and nonstandard semantics. This will 
make i t  possible to use (in part) the standard axiomatization. If p E C1, then we 
define the formula pnst E C l  by recursively replacing in p all subformulas of the 
form -9 by 9 ~f false and all occurrences of =+ by -+ (the superscript "st stands 
for nonstandard). Note that pnst is negation-free. We also define what is essentially the 
inverse transformation: if p E C;, let pqt E CT be the result of replacing in p all 
occurrences of -+ by 3. It is easy to see that the transformations and St are inverses 
when restricted to negation-free formulas. In particular: 

Lemma 6.1. If p E C:, rhen ( = p. 

If s is a truth assignment, and p E C1, then we write s k p if p is true under the 
truth assignment s. 

Proposition 6.2. Assume that S = ( s ,  t )  is an NPL structure, u E {s, t} ,  and p E CI. 
Then ( S ,  u )  pnst iff u 'F p. 

Proof. We prove this proposition by induction on the structure of p. The result is 
immediate if p is false, a primitive proposition, or of the form qp~ A 9 2 .  If p is -$, then 

( S ,  u )  pnSt iff ( S ,  u )  1 $"st -false, 

iff (S, u )  p $"st, 

iff (by induction hypothesis)u 9, 
iff u k p. 

If p is $1 + $2 .  then 

( S , u )  kqnst  iff ( S , u )  k ($I)"'~ - ($2)nst, 

iff (S ,u )  I# ($1)"" or ( S , u )  'F ($2 )"" ,  

iff 

iff u /= q. 0 
(by induction hypothesis) u p $1 or u /= $ 2 ,  
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Proposition 6.2 tells us that “st gives an embedding of standard propositional logic 
into NPL. The following corollary is immediate. If p E C1, then when we say that p is 
a standard propositional tautology, we mean that s 1 p for every truth assignment s. 

Corollary 6.3. Assunie that p E C1. Then p”” is valid in NPL iff p is a standard 
propositional tautology. 

In particular, it follows from Corollary 6.3 that the validity problem for NPL is at 
least as hard as that of propositional logic, namely, co-NP-complete. In fact, this is 
precisely the complexity. 

Theorem 6.4. The validiQ problem for  NPL formulas is co-NP-complete. 

Proof. The lower bound is immediate from Corollary 6.3. The upper bound follows 
from the fact that to determine if an NPL formula (T is not valid, we can simply guess 
an NPL structure S = (s, t )  and u E {s, t } ,  and verify that ( S ,  u )  (T. 

Another connection between standard propositional logic and NPL is due to the fact 
that negated propositions in NPL behave in some sense as “independent” propositions. 
We say that a formula p E C2 is pseudo-positive if 7 occurs in p only immediately in 
front of a primitive proposition. For example, the formula p A i p  is pseudo-positive, 
while - ( p  A q )  is not. If p is a pseudo-positive formula, then poi is obtained from p by 
replacing every occurrence l p  of a negated proposition by a new proposition p .  Note 
that cp+ is a negation-free formula. 

Proposition 6.5. Let p be a pseudo-positive formula. Then p is valid in NPL iff p+ is 
valid ir7 NPL. 

Proof. We shall prove the “only if” direction, since the proof of the converse is very 
similar. Assume that (p is d i d  in NPL. Let @J be the set of primitive propositions 
(so that in particular, every primitive proposition that appears in p is in @), and let 
@’ = @ U { p  I p E @}. Let s and t be arbitrary truth assignments over @’, and let 
S = (s, t ) .  Take u E {s, t } .  To show that p+ is valid in NPL, we must show that 
(S, u )  + ‘p+. Let s’, t’ be truth assignments over SP defined by letting s’(p)  = true iff 
u ( p )  = true, and t ’ (p )  = true iff u ( p )  = false. Let S’ = (s’, t ’ ) .  Assume that p E @. 
It is easy to see that (S’ ,  s’) 1 p iff ( $ 1 0  1 p ,  and (S’,s’) k ~p iff ( S , u )  p .  A 
straightforward induction on the structure of formulas (where we take advantage of the 
fact that p is pseudo-positive) then shows that (S’, s’) /= p iff (S,u) 9’. But p is 
valid, so (S’, s’) 1 p. Hence, ( S ,  u )  k p+, as desired. 

Corollary 6.6. Let p be a pseudo-positive formula. Then p is valid in NPL iff ( p+)st 
is a standard propositional tautology. 

Proof. By Proposition 6.5, (o is valid in NPL iff p+ is valid in NPL. By Lemma 6.1, 
p+ = ( (q~+)” )~ ‘~ .  By Corollary 6.3, ( (P+)~~)’’ ’~ is valid in NPL iff (F+)’~ is a standard 
propositional tautology. The result follows. 

0 

0 
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We can use Corollary 6.6 to obtain an axiomatization of NPL. To prove that a 
propositional formula cp in L- is valid, we first drive negations down until they apply 
only to primitive propositions, by applying the equivalences given by the next lemma. 

Lemma 6.7. 
( 1 )  ~ ~ c p  is logically equivalent to p. 
(2) 7 ( p - $) is logically equivalent to ( ( -$ c-f i p )  - false). 
( 3 )  l( cp A $) is logically equivalent to ( ~ p  -false) c-) -$. 

Proof. ( 1 ) is simply Proposition 2.1 ( 1 ) . We now show (2) 

As for ( 3 ) ,  

Consider the following axiom system N, where $1 + @2 is an abbreviation of (fil - 
$ 2 )  A ($2 - $ 1 ) :  

PL. All substitution instances of formulas pnst, where 9 E L,  is a standard propositional 
tautology. 

NPL1. ( 7 - 4 0 )  + p. 

NPL2. l ( c p - $ )  e ( ( -*-  19) -false). 

NPL3. -( p A $) ~ ( ( l p  -false) - +). 

RO. From p and p - i )  infer $ (modus ponens) 

Note that rule RO is different from the standard modus ponens, in that - is used 
instead of +. When necessary, we shall refer to “from p and p + fi infer q” as 
standard niodus ponens, and rule RO as nonstandard modus ponens. 



220 R Fagin et nl /Artificial Intelligence 79 (1995) 203-240 

An example shows the importance of considering substitution instances in PL. The 
formula 7 4  c--1 1 4  is not of the form pnst, since every formula pnst is negation-free. 
However, 7 4  ~f -4 is an instance of PL, since it is the result of substituting 7 4  for p 
in  the formula p -+ p ,  which is ( p  + p)"".  

Note that NPLI-NPL3 correspond to Lemma 6.7. As we noted, they are useful in 
driving negations down. 

Remark 6.8. PL can be replaced by the nonstandard version of any complete axiom- 
atization of standard propositional logic for the language Cl. That is, assume that 
standard modus ponens along with axioms S1, . . . , S k  give a sound and complete ax- 
iomatization of standard propositional logic for the language C1. We can replace PL by 

, and get an equivalent axiomatization. This is because on the one hand, 
, . . . , Sk"" are special cases of PL, so the new axiomatization is no stronger. On 

the other hand, let p E C1 be a standard propositional tautology, so that pnst is an an 
instance of PL. By completeness, there is a proof P I , .  . . , pnl of p using S l , .  . . , S k  
and standard modus ponens, where pn, is p, and where each p; is either an axiom (an 
instance of one of S1, . . . Sk) or the result of applying standard modus ponens to earlier 
formulas in  the proof. We now show by induction on i that each pols' (and in particular, 
pnst) is provable from SI"", . . . , SknS' along with nonstandard modus ponens. This is 
immediate if p, is an instance of one of S1, . . . ~ S k .  Assume now that p; is the result 
of applying standard modus ponens to earlier formulas p, and p,, + pi in the proof. 
By induction assumption, pyst and (p,, + (that is; @st ~f p;") are provable 
from SI""', . . . , Sk"" along with nonstandard modus ponens. By one more application 
of nonstandard modus ponens, i t  follows that pl is similarly provable. 

SknSl , . . . ,  s 1 nst 

s 1 nst 

Theorem 6.9. N is a sound and complete axioinatization for  NPL. 

Proof. See Appendix A. 0 

The only inference rule in our axiom system N that we just asserted to be sound and 
complete is modus ponens. We now introduce a new propositional inference rule that 
we shall show is also sound. Of course, we do not need it for completeness (since it 
is not a rule of N).  However, it will b e  useful in the next subsection, when w e  give a 
complete axiomatization for our nonstandard logic of knowledge. The new rule, which 
we call negation replacement, is: 

From p -+false infer i p .  

Lemma 6.10. The negation replacement rule is sound for NPL. 

Proof. Assume that 9 -+ false is valid. Assume that S = (s, t )  is an arbitrary NPL 
structure, and u E { s , t } .  Then ( S , u * )  (p ~f false),  since 9 ~f false is valid. So 
( S ,  u * )  p, that is ( S ,  u )  7p. So i p  is valid. 0 

We remark that by a similar argument, the converse rule "from 79 infer p -+false" 
is also sound. 
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For both standard propositional logic and NPL, if 2 logically implies (T, then “from 2 
infer (T” is a sound inference rule. As we noted earlier, the converse is true for standard 
propositional logic, but not for NPL in general. For example, even though the negation 
replacement rule “from p - + f a l s e  infer 79’’ is sound, p - false does not logically 
imply ~p (since ( S , u )  p, which is not the 
same as (S, u )  1 7p). Nevertheless, i t  can shown that testing soundness of nonstandard 
inference rules has the same computational complexity as testing logical implication in 
NPL; they are both co-NP-complete [ 101. 

(p - f a l s e )  precisely if ( S , u )  

6.2. A sound and complete axioinatization for  the logic of knowledge 

In this subsection, we give a sound and complete axiomatization for our nonstan- 
dard logic of knowledge. We also show that a natural modification (where the only 
propositional inference rule is modus ponens) does not provide a sound and com- 
plete axiomatization. Finally, we show that the complexity of the validity problem is 
PSPACE-complete, just as for the standard case K. 

The axiomatization that we shall show is sound and complete is obtained by mod- 
ifying the axiom system K by (a )  replacing propositional reasoning by nonstandard 
propositional reasoning, and (b )  replacing standard implication (=+) in the other ax- 
ioms and rules by strong implication (-). Thus, we obtain the axiom system, which 
we denote by K’, which consists of all instances (for the language C’) of the axiom 
scheme and rules of inference given below: 

Al‘. (Kip A Ki ( p -+ I&) ) - K;I& (Distribution Axiom). 

NPR. A11 sound inference rules of NPL. 

Rl .  From p infer Kip (Knowledge Generalization). 

Thus, one can say that in our approach agents are “nonstandardly” logically omni- 
scient. 

We shall actually show that the result of replacing NPR in K‘ by modus ponens 
and negation replacement, along with all sound axioms of NPL, is complete. It follows 
easily that NPR can be replaced by any complete axiomatization of NPL that includes 
modus ponens and negation replacement as inference rules. 

In the rest of this section, when we say simply that a formula is provable, we mean 
provable in K’. We say that a formula p is consistent if (p - false) is not provable. 
A finite set {p, , . . . , p k }  of formulas is said to be consistent exactly if pl A . . . A pk is 
consistent, and an infinite set of formulas is said to be consistent exactly if all of its finite 
subsets are consistent. (We do  not worry about which parenthesization of pl A . . . A pk 
to use, since they are all provably equivalent by NPR.) 

Before we prove completeness of K’, we need to prove some lemmas. 

Lemma 6.11. 
consistent set iff f o r  each fortnula p of f?, either p or (p - false) is in V. 

Let V be a consistent set of formulas of C’. Then V is a maximal 
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Proof. We first prove the “if” direction. Let p be a formula of C’ that is not in V .  By 
assumption, (p ~f false) E V .  But 

( p  A ( p ~f false) ) c-1 false 

is an instance of NPR. Hence, V U {p} is inconsistent. So V is maximal. 
We now prove the “only if” direction. Assume that V is a maximal consistent set. 

Assume that neither p nor (p -+ false) is in V .  Since p @ V ,  it follows by maximaiity 
of V that there is a finite conjunction $ of certain members of V such that $ A p 
is inconsistent, that is, ( ($  A p) - false) is provable. Similarly, there is a finite 
conjunction 4’ of certain members of V such that (9’ A (p c--) false) - false) is 
provable. Now the formula 

is an instance of NPR, since i t  is a substitution instance of 

( - ( p  A 9 )  (-b’ A -4) =+ - ( p  A P’)  1 Inst.  
By ( 1 ) and two applications of modus ponens, we see that $ A $’ is inconsistent. This 
contradicts consistency of V .  

Lemma 6.12. Let V be a nzaxinial consistent set. 
(1  ) If p is provable, then p E V.  
(2)  Ifp E V and (p -+ $) E V ,  then $ E V.  
(3) If p A $  E V ,  then p E  V and $ E V .  

Proof. Assume that p is provable. If p 6 V ,  then by Lemma 6.1 1, (p -false) E V .  
Now 

p c-f ( (p -false) -+false) (2) 

is an instance of NPR. Since p is provable, by (2) and modus ponens, so is ( (  p - 
false) - false).  Since (p -false) E V ,  it follows that V is inconsistent. So p E V .  

Assume now that p E V and (p - $) E V .  If $ $2 V ,  then by Lemma 6.1 1, 
($ -false) E V .  But 

( P A  (p-  $1 A ($ - fa l se>)  -false) 

is an instance of NPR. So V is inconsistent, a contradiction. 

that p @ V .  By Lemma 6.1 1 ,  (p -false) 6 V .  Now 
Assume now that p A $  E V ,  but that p # V or $ # V .  Say for the sake of definiteness 

( ( p - f f a l s e )  A ( c p A $ ) )  -false>> 

is an instance of NPR. That is, the set {p A @, (p * false)}  is inconsistent, so V is 
inconsistent. a contradiction. 0 
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We are now ready to state completeness of K’ 

Theorem 6.13. K‘ is a sound and complete axiomatization with respect to N M  for  
formulas in the language C’. 

Proof. See Appendix A. 0 

Remark 6.14. We can, of course, replace NPR by those propositional axioms and rules 
that are actually used in the proof of Theorem 6.13 (including those used in the proofs 
of lemmas). The propositional rules that were used are modus ponens and negation 
rep1 acemen t. 

When we presented the axiom system K we remarked that PR can be replaced by any 
complete axiomatization of standard propositional logic that includes modus ponens as 
an inference rule. Surprisingly, this is not the case here, as the next theorem shows. 

Theorem 6.15. The result of replacing NPR by all substitution instances of valid 
formulas of NPL, with nzodus yonens as the sole propositional inference rule, is not a 
complete axioinatization with respect to N M  for forinulas in the language C‘. 

Proof. Let A be the axiom system described in the statement of the theorem. Let y be 
the formula ( ~ K l t r u e )  ~f false. We leave to the reader the straightforward verification 
that y is valid. However, we now show that y is not provable in A .  For the purposes of 
this proof only, we shall treat not only the primitive propositions, but also all formulas 
of the form K;@, where @ E C’, as if they were primitive propositions. 

Let us call this enlarged set of primitive propositions @’. Similarly to the proof of 
Theorem 4.2, let s be the truth assignment where s ( p )  = true for every p E @’, and let t 
be the truth assignment where t ( p )  = false for every p E @’. Let S be the NPL structure 
(s, t ) ,  and let T be the set of all formulas p such that ( S ,  s) k p. We now show 

( I )  Every formula provable in A is in T.  
(2) y is not in T .  

We first show that every formula provable in A is in T .  Let 91,. . . , pan, be a proof in 

( 1 ) If p; is an instance (Kip A Ki( p ~t *) ) cf K$ of the distribution axiom, then 
(S, s) 

(2) If p, is a. substitution instance of a valid formula of NPL, then ( S ,  s) k p,;, 
because (S,  s) is an NPL structure. 

(3) If p,, is proven from an earlier pk by knowledge generalization, then pj is of the 
form Ki+, and so ( S ,  s) 

(4) If p, follows from earlier formulas pk and pl (where pol is pk cf p.,) by 
modus ponens, then by induction assumption ( S ,  s) k ( o k  and ( S ,  s) k pk cf pj. 
Therefore, once again, ( S ,  s) k p,. 

Kltrue, because 
(YKltrue) cf false, that is, 

Of course, this is sufficient to show that y is not provable in A, as desired. 

A .  We shall show, by induction on j ,  that each p, is in T ,  that is, (S, s) p,. 

p,, since (S, s) b K;* (because K& E @’). 

pj by construction (because p, E @’). 

We close by showing that y is not in T .  By construction, (S, t )  
K~ t rue  E @’. Therefore, ( S ,  s) 1 TKItrue, so (S,s) 
( S ,  s) y. So y q! T ,  as desired. 0 
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It follows immediately from Theorem 6.15 that if NPR is replaced by a complete 
axiomatization of NPL with modus ponens as the sole propositional inference rule 
(such as the system N of the previous subsection), then the result is not a complete 
axiomatization for our nonstandard logic of knowledge. However, the proof of Theo- 
rem 6.13 shows that NPR can be replaced by any complete axiomatization of NPL that 
includes modus ponens and negation replacement as inference rules, and still maintain 
completeness. 

Just as we can embed standard propositional logic into NPL by using "st (see Propo- 
sition 6.2), we can similarly embed standard epistemic logic into our nonstandard 
epistemic logic. It then follows, as with the propositional case (Theorem 6.4), that the 
complexity of the validity problem for standard epistemic logic is a lower bound on the 
complexity of the validity problem in our nonstandard epistemic logic. The correspond- 
ing upper bound can be proved by well-known techniques [ 181. Thus, the complexity 
of the validity problem is PSPACE-complete, just as for the standard case K. 

Theorem 6.16. The validityproblem for ,!?-formulas with respect to N M  is PSPACE- 
complete. 

7. A payoff: querying knowledge bases 

As we have observed, logical omniscience still holds in the nonstandard approach, 
though in a weakened form. We also observed that the complexity of reasoning about 
knowledge has not improved. Thus, the gain from our nonstandard approach seems quite 
modest. We now show an additional nice payoff for our approach: we show that in a 
certain important application we can obtain a polynomial-time algorithm for reasoning 
about knowledge. 

The application is one we have alluded to earlier, where there is a (finite) knowledge 
base of facts. Thus, the knowledge base can be viewed as a formula K .  A query to the 
knowledge base is another formula p. There are two ways to interpret such a query. First, 
we can ask whether p is a consequence of K. Second, we can ask whether knowledge 
of p follows from knowledge of K .  Fortunately, these are equivalent questions, as we 
now see. 

Proposition 7.1. Let p~ and p 2  be L--formulas. Then pl logically implies p 2  with 
respect to N M  if f  Kip1 logically implies Kip2 with respect to N M .  

Proof. It is easy to see that if 401 logically implies p 2  with respect to N M ,  then Kip] 
logically implies Kip2 with respect to N M .  We now show the converse. 

Assume that qq does not logically imply p 2  with respect to N M .  Let M = (S, T, ICI , 
. . . , K,,* ) be a nonstandard structure and u a world of M such that (M,  u )  k p1 and 
( M ,  u )  p pz. Define a new nonstandard structure M' = (S', T', ICi , . . . , KA,t ) with one 
additional world t $! S by letting (a) S' = S U { t } ,  ( b )  d ( s )  = ~ ( s )  for s E S, and 
T'( t )  be arbitrary, (c )  IC.! = IC, for j # i, and lc; = Ki U { ( t ,  u ) } ,  and (d )  st = s* for 
s E S, and t t  = t. It is straightforward to see that since ( M , u )  1 pl and ( M , u )  p p 2 .  
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also ( M I ,  u )  
hence Kjpl does not logically imply Kip2 with respect to N M .  

p] and ( M ’ ,  u )  /# p 2 .  But then ( M I ,  t )  Kip1 and ( M ’ ,  t )  Kjp2, and 
0 

We focus here on the simple case where both the knowledge base and the query are 
standardly propositional (i.e., no -). We know that in the standard approach deter- 
mining whether K logically implies p is co-NP-complete. Is the problem of determining 
the consequences of a knowledge base in the nonstandard approach (i.e., determining 
whether K logically implies p, or equivalently, by Proposition 7.1, whether K[K logically 
implies K,p)  any easier? Unfortunately, the answer to this question is negative (since if 
p is false, then the problem is the same as deciding whether - K  is a tautology of NPL, 
which is co-NP-hard by Theorem 6.4.) There is, however, an interesting special case 
where using the nonstandard semantics does make the problem easier. 

Define a literal to be a primitive proposition p or its negation l p ,  and define a clause 
to be a disjunction of literals. For example, a typical clause is p V l q V r .  We can consider 
a traditional database as being a collection of atomic facts, which can be thought of as 
primitive propositions. It is often an implicit assumption that if an atomic fact does not 
appear in a database, then its negation can be considered to be in the database (this 
assumption is called the closed world assumption [ 241 ) . We can imagine a database 
that explicitly contains not only atomic facts but also negations of atomic facts. This 
would correspond to a database of literals. More generally yet, we could consider a 
database (or knowledge base) of clauses, that is, disjunctions of literals. In fact, there 
are many applications in which the knowledge base consists of a finite collection of 
clauses. Thus, K (which represents the knowledge base) is a conjunction of clauses. A 
formula (such as K )  that is a conjunction of clauses is said to be in conjunctive normal 
form (or CNF).  

Hence, we can think of the knowledge base K as being a formula in CNF. What about 
the query p? Every standard propositional formula is equivalent to a formula in CNF 
(this is true even in our nonstandard semantics, because of Proposition 2.1). Thus, we 
will assume that the query 9 has been transformed to CNF. (Note that we assumed that 
the knowledge base is given in CNF, while the query has to be transformed to CNF. 
The reason for this distinction is the fact that the transformation to CNF may involve 
an exponential blowup. Consequently, while we might be reasonable to apply it to the 
query, it is not reasonable t o  apply it to the knowledge base, which i s  typically orders 
of magnitude larger than the query.) 

Let us now reconsider the query evaluation problem, where both the knowledge base 
and the query are in CNF. The next proposition tells us that under the standard semantics, 
the problem is no easier than the general problem of logical implication in propositional 
logic, that is, co-NP-complete. 

Proposition 7.2. 
propositional logic, f o r  CNF formulas K and p, is co-NP-complete. 

The problem of deciding whether K logically implies p in standard 

Proof. Let K be an arbitrary CNF formula, and let p be a primitive proposition that 
does not appear in K.  Now K logically implies p in standard propositional logic iff K is 
unsatisfiable in standard propositional logic. This is because if K + p is valid, then so 
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is K + l p ,  and hence K + ( p  A ~ p ) .  This is sufficient to prove the proposition, since 
the problem of determining nonsatisfiability of a CNF formula is co-NP-complete. 0 

By contrast, the problem is feasible under the nonstandard semantics. Before we show 
this, we need a little more machinery. 

Let us say that clause a1 includes clause a2 if every literal that js a disjunct of a]  
is a disjunct of a2. For example, the clause p V -q V l r  includes the clause p V 14. 
The next theorem characterizes when K logically implies p in NPL, for CNF formulas 
K and p. 

Theorem 1.3. Let K and p be propositional formulas in CNF: Then K logically implies 
p in NPL iff every clause of p includes a clause of K. 

Proof. The “if” direction, which is fairly straightforward, is left to the reader. We now 
prove the other direction. Assume that some clause a of p includes no clause of K .  

We need only show that there is an NPL structure S = (s, t )  such that ( S ,  s) K but 
(S, s)  cp. Define s ( p )  = false iff p is a disjunct of a, and t ( p )  = true iff ~p is a 
disjunct of a, for each primitive proposition p .  We now show that ( S ,  s) a’, for each 
disjunct a’ of a. If a’ is a primitive proposition p ,  then s ( p )  = false, so (S, s) v a’; if 
a’ is l p ,  where p is a primitive proposition, then t ( p )  = true, so ( S ,  t )  p ,  so again 
(S, s)  K ,  since every conjunct 
K’ of K has a disjunct K” where ( S ,  s) 0 

a’. Hence, (S, s) v a, so ( S ,  s) p. However, (S, s) 
K” (otherwise, cr would include K ’ ) .  

An example where Theorem 7.3 would be false in standard propositional logic occurs 
when K is q V l q  and p is p V ~ p .  Then K logically implies p in standard propositional 
logic, but the single clause p V ~p of p does not include the single clause of K .  Note 
that K does not logically imply p in NPL. 

It is clear that Theorem 7.3 gives us a polynomial-time decision procedure for deciding 
whether one CNF formula implies another in the nonstandard approach. 

Theorem 1.4. There is a polynomial-time decision procedure for deciding whether K 

logically implies p in NPL ( o r  K ~ K  logically implies Kip with respect to N M ) ,  for  
CNF formulas K and p. 

Theorems 7.3 and 7.4 yield an efficient algorithm for the evaluation of a CNF query 
fi with respect to a CNF knowledge base K :  answer “Yes” if K logically implies in 
NPL. By Theorem 7.4, logical implication of CNF formulas in NPL can be checked 
in polynomial time, and Theorem 7.3 implies that any positive answer we obtain from 
testing logical implication between CNF fomulas in the nonstandard semantics will 
provide us with a correct positive answer for standard semantics as well. This means that 
even if we are ultimately interested only in conclusions that are derivable from standard 
reasoning, we can safely use the positive conclusions we obtain using nonstandard 
reasoning. Thus, the nonstandard approach yields a feasible query-answering algorithm 
for knowledge bases. Notice that the algorithm need not be correct with respect to 
negative answers. It is possible that K does not logically imply fi in NPL even though 
K logically implies with respect to standard propositional logic. 
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Theorem 7.4 was essentially proved in [ 201. The precise relationship to Levesque’s 
results will be clarified in Section 9. Levesque’s result (like Theorem 7.4) applies only to 
propositional formulas K.  Lakemeyer [ 191 extended it to modal formulas for the single- 
agent case. He defined the class of extended-conjunctive-normal-form (ECNF) formulas 
and showed that Theorem 7.4 holds also for ECNF formulas [ 191. Thus, his result 
shows that under the nonstandard semantics, there are nontrivial tractable fragments 
of the language that include modal formulas. Interestingly, a 4-valued semantics was 
also used in a different context in order to deal with computational complexity; Patel- 
Schneider defined a 4-valued terminological logic with tractable subsumption [ 221. 

8. Standard-world validity 

Logical omniscience arises from considering knowledge as truth in all possible worlds. 
In the approach of this paper, we modify logical omniscience by changing the notion 
of truth. In this section, we consider the impossible-worlds approach, where we modify 
logical omniscience by changing the notion of possible world. The idea is to augment 
the possible worlds by impossible worlds, where the customary rules of logic do  not 
hold. Even though these worlds are logically impossible, the agents nevertheless may 
consider them possible. Unlike our approach, where nonstandard worlds are considered 
just as realistic as standard worlds, under the impossible-worlds approach the impossible 
worlds are a figment of the agents’ imagination; they serve only as epistemic alternatives. 

Since agents consider the impossible worlds when computing their knowledge, logical 
omniscience need not hold. For example, suppose that an agent knows all formulas in 
2, and 2 logically implies (o. Since the agent knows all formulas in 2, all formulas in 
2 must hold in all the worlds that the agent considers possible. However, even though 2 
logically implies (o, it can happen that (o does not hold at one of the impossible worlds 
the agent considers possible, and so the agent may not know (o. The key point here 
is that logical implication is determined by us, rational logicians for whom impossible 
worlds are indeed impossible. We do not consider impossible worlds when determining 
logical implication. 

There are various impossible-worlds approaches (see, for example, [ 23 J and [ 291 ) , 
depending on how we choose the possible and impossible worlds. In what follows, we 
shall take the possible worlds to be the standard worlds, and the impossible worlds to 
be the nonstandard worlds. 

The difference between our approach and the impossible-worlds approach is that in 
our approach the distinction between standard and nonstandard worlds does not play 
any role. In  the impossible-worlds approach, however, the standard worlds (those where 
s = s*) have a special status. Intuitively, although an agent (who is not a perfect 
reasoner) might consider nonstandard worlds possible (where, for example, p A l p  or 
K , p  A -Kip holds), we as logicians do not consider such worlds possible; surely in the 
real world a formula is either true or false, but not both. 

This distinction plays an important role in the way validity and logical implication 
are defined. In the impossible-worlds approach we consider nonstandard worlds to be 
“impossible”, and thus consider a formula (o to be valid if it is true at all of the 
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“possible” worlds, that is, at all of the standard worlds. Formally, define a formula of 
C to be standard-world valid if it is true at every standard world of every nonstandard 
structure. The definition for standard-world logical implication is analogous. 

The reader may recall that, under the nonstandard semantics, =+ behaves peculiarly. In 
particular, + does not capture the notion of logical implication. In fact, that was one of 
the motivations to the introduction of strong implication. At standard worlds, however, 
=+ and c-) coincide, that is, pl + p2 holds at a standard world precisely if pl ~f p2 

holds. It follows that even though =+ does not capture logical implication, it does 
capture standard-world logical implication. The following analogue to Proposition 5.2 is 
immediate. 

Proposition 8.1. Let 91 and p2 be formulas in L. Then p~ standard-world logically 
implies p2 iff 91 + p2 is standard-world valid. 

The main feature of the impossible-worlds approach is the fact that knowledge is 
computed over all worlds, while logical implication is evaluated only over standard 
worlds. As a result we avoid logical omniscience. For example, an agent does not 
necessarily know valid formulas of standard propositional logic. Specifically, although 
the classical tautology p V l p  is standard-world valid, an agent may not know this 
formula at a standard world s, since the agent might consider an incomplete world 
possible. 

Let p be a formula that contains precisely the primitive propositions P I , .  . . , pk. Define 
Complete(p) to be the formula 

(PI v 1PI  ) A ’ ’ .  A (Px  v 1 P k )  

Thus, Complete(p) is true at a world s precisely if s is complete as far as all the 
primitive propositions in p are concerned. In particular, if p is propositional, and if 
Complete(p) is true at s, then it follows by a simple induction on formulas that s is 
complete with respect to p. 

Let p be a tautology of standard propositional logic. Clearly p is true at every world 
s that is complete and coherent (with respect to all of the primitive propositions in p).  
The next proposition implies that if we assume only that s is complete, then this is still 
enough to guarantee that cp be true at s. 

Proposition 8.2. Let p be a standard propositional formula. Then p is a tautology of 
standard propositional logic iff Complete( p) logically implies p in NPL. 

Proof. Assume first that Complete(9) logically implies 9 in NPL. To show that p is 
a tautology of standard propositional logic, we need only show that p is true at every 
world that is complete and coherent. But this is the case, since if s is complete, then by 
assumption p is true at s. 

Assume now that p is a tautology of standard propositional logic, and ( S , u )  
Complete( p) . Let P be the set of primitive propositions that appear in p. Thus, ( S ,  u )  
p V -p for each p 6 P. Hence, either (S, u )  k p or ( S ,  u )  i p ,  for each p E P. Define 
the truth assignment u by letting u ( p )  = true if (S ,u)  k p  and u ( p )  =false otherwise. 
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Note in particular that if u ( p )  = false, then (S, u )  k l p .  By a straightforward induction 
on formulas, we can show that for each propositional formula CC, all of whose primitive 
propositions are in P, we have 

( I ) If @ is true under u,  then (S, u )  k @. 
(2) If @ is false under u,  then (S, u )  k -@. 

Now p is true under u, since p is a tautology of standard propositional logic. So from 
what we just showed, it follows that (S, u )  p. Hence, Complete( p) logically implies 
p in NPL. 0 

From Theorem 8.2 we obtain immediately the proof we promised of part of Theo- 
rem 2.3, that the logical implication problem in NPL- is co-NP-complete. The proof of 
Theorem 4.3 (that the logical implication problem for C-formulas in nonstandard struc- 
tures is PSPACE-complete) follows from a generalization of Proposition 8.2. Define Ep 
(“everyone knows p”) to be K I  p A . . . A K,p, where the agents are 1 , .  . . , I I .  Define 
p p  to be p, and inductively define Er+‘p  to be EE‘p. We now define the depth of a 
formula p, denoted depth( p), as follows: 

0 depth(p) = 0 if p is a primitive proposition; 
0 depth( -9) = depth( p); 
0 depth( pl A 9 2 )  = max (depth( pol ) , depth( (02) ); and 
0 depth( K,p) = depth( p) + 1. 

Proposition 8.3. Assume p E C has depth d. Then (o is valid with respect to standard 
structiires ifComplete( p) AE(  Complete( p) ) A. . .AEd( Complete( p) ) logically implies 
p in rioristarzdard structures. 

Proof. The proof is a fairly straightforward generalization of that of Proposition 8.2. 
The details are omitted. 0 

Ladner [ 181 showed that the PSPACE lower bound for validity in standard structures 
(Theorem 3.2) holds even when there is only one agent. If we replace E in Proposi- 
tion 8.3 by K l ,  then it follows from Proposition 8.3 that there is a polynomial reduction 
of validity in standard structures with one agent to the logical implication problem for 
L-formulas in nonstandard structures with one agent. The PSPACE lower bound in The- 
orem 4.3 now follows (even when there is only one agent). The upper bound follows 
from Theorem 6.16. 

If p is a tautology of standard propositional logic, then an agent need not know p, 
even at a standard world, since p may be false at an incomplete world that the agent 
considers possible. The next theorem says that if the agent knows that the world is 
complete, then he must know the tautology (o. This theorem follows from results in [ 91. 

Theorem 8.4. Let (o be a tautology of standard propositional logic. Then 
Ki( Complete( p) ) + Kip is standard-world valid. 

Proof. By Proposition 8.2, Complete( p) logically implies (o in NPL. Hence, by Propo- 
sition 7.1, Ki(Complete((o)) logically implies Kip with respect to N M .  It follows by 
Proposition 8.1 that K;(Complete( 9)) + Kip is standard-world valid. 0 
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Another form of logical omniscience that fails under the impossible-worlds approach is 
closure under implication: it is easy to see that the formula (K,pAK,(p =+ $)) + K,$ is 
not standard-world valid. This lack of closure results from considering incoherent worlds 
possible: indeed, it is not hard to see that ( K , p A  K, (p  + $)) + K , ( $  V (p A l p ) )  is 
standard-world valid. That is, if an agent knows that p holds and also knows that p =+ $ 
holds, then he knows that either $ holds or the world is incoherent. If the agent knows 
that the world is coherent, then his knowledge is closed under logical implication. We 
now formalize this observation. 

Let p be a formula that contains precisely the primitive propositions P I ,  . . . , pk. Define 
Coherent( p) to be the formula 

( (PI  A l p ] )  -false) A . . . A ( ( p k / \ ~ p k )  -false).  

Thus, Coherent(p) is true at a world s precisely if s is coherent as far as all the 
primitive propositions in p are concerned. In particular, if Coherent(p) holds at s, then 
s is coherent with respect to p. 

The next theorem says that knowledge of coherence implies that knowledge is closed 
under implication. 

Theorem 8.5. Let p and $ be standard propositional formulas. Then 

(K(Coherent(p)) A K , p A K , ( p +  $)) +K,$  

is standard-world valid. 

Proof. Denote K,( Coherent( p) ) A K,p A K, (p =+ $) by 7. By Proposition 8.1, it is 
sufficient to show that 7 standard-world logically implies K,$. We shall show the stronger 
fact that T logically implies K,$ with respect to N M .  Let M = (S, n-, K1,. . . , K,,,* ) 
be a nonstandard structure, and s a world of M .  Assume that T is true at s and that 
(s ,  t )  E Ic,, so Coherent( p) is true at t .  By a straightforward induction on formulas, we 
can show that for every propositional formula y all of whose primitive propositions are 
contained in q, it is not the case that both y and l y  are true at t .  Now p and p + $ 
are both true at t ,  since K,p and K ,  (p + $) are true at s. Since p is true at t ,  it follows 
from what we just showed that -y is not true at t .  Since p =+ $ is an abbreviation for 
-p V $, it follows that $ is true at t. Hence, K,@ is true at s. 0 

Theorems 8.4 and 8.5 explain why agents are not logically omniscient: “logically” is 
defined here with respect to standard worlds, but the agents may consider nonstandard 
worlds possible. If an agent considers only standard worlds possible, so that we have the 
antecedents K;( Complete( p)) and K,(Coherent( p)) of Theorems 8.4 and 8.5, then this 
agent is logically omniscient (more accurately, he knows every tautology of standard 
propositional logic and his knowledge is closed under implication). 

‘Note that Coherent( p) is not definable in L but only in L-. This is because if there were a formula in 
L that says that at most one of p or ~p is true, then p would have to be false at the state f of Theorem 4.2, 
since both p and l p  are true at I .  However, ‘p (along with every formula of L) is true at 1. 
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We conclude the discussion of the impossible-world approach by reconsidering the 
knowledge base situation discussed earlier, where the knowledge base is described by a 
formula K and the query is described by a formula p. We saw earlier (Proposition 7.1) 
that in the nonstandard approach, p is a consequence of K precisely when knowledge 
of p is a consequence of knowledge of K. 

The situation is different under the impossible-worlds approach. On one hand, impli- 
cation of knowledge coincides in both approaches. 

Proposition 8.6. Let 91 and p 2  be C’-fortnulas. Then Kip1 standard-world logicallj 
implies Kip2 iff Kip1 logically implies Kip2 in nonstandard structures. 

Proof. The proof, which is very similar to that of Proposition 7.1, is left to the 
reader. 0 

On the other hand, the two interpretations of query evaluation differ in the impossible- 
worlds approach. In contrast to Proposition 7.1, it is possible to find 91 and 472 in C 
such that 91 standard-world logically implies 92, but Kip1 does not standard-world 
logically imply Kip2 (let 401 be p A l p ,  and let p2 be q ) .  The reason for this 
failure is that pl standard-world logically implying 402 deals with logical implica- 
tion in standard worlds, whereas Kip1 standard-world logically implying Kip2 deals 
with logical implication in worlds agents consider possible, which includes nonstandard 
worlds. 

The difference between the two interpretations of query evaluation in the standard 
approach can have a significant computational impact. Consider the situation where both 
K and p are CNF propositional formulas. Theorem 7.4 and Proposition 8.6 tell us that 
testing whether K;K standard-world logically implies Kip can be done in polynomial 
time. However, in this case, testing whether K standard-world logically implies p is 
co-NP-complete, according to Proposition 7.2. 

9. Levesque and Lakemeyer’s formalism 

In  this section, we relate our results to those of Levesque [ 20 ]  and Lakemeyer [ 191. 
First, we relate our syntax and semantics to theirs. 

Levesque and Lakemeyer also attempt to decouple the semantics of a formula from 
that of its negation, but their approach is different from ours. We briefly discuss the 
details, and then present their formal semantics. 

Define a nonstandard truth assignment to be a function that assigns to each literal 
a truth value. (Recall that a literal is either a primitive proposition p or its negation 
- p . )  Thus, although an ordinary truth assignment assigns a truth value to each primitive 
proposition p ,  a nonstandard truth assignment assigns a truth value to both p and l p ,  for 
each primitive proposition p .  Under a given nonstandard truth assignment, it is possible 
that both p and l p  can be assigned the value true, or that both can be assigned false, 
or that one can be assigned true and the other false. This decouples the semantics of p 
and l p .  As we shall show below, it is quite straightforward to decouple the semantics of 
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a conjunction from its negation, once we have already done so for each of its conjuncts. 
Levesque and Lakemeyer do not have -+ in the language, so there is no need for them 
to decouple the semantics of p -+ @ from - (p  c+ $). Finally, in order to decouple 
the semantics of Kiqo and 7K,p0,  Lakemeyer introduces two possibility relations, K,? and 
K,:. 

A Levesque-Lakerneyer structure 

M =  (S ,n- ,K:  , . . . ,  K T , K F , .  

where S is a set of worlds, ~ ( s )  

(or LL structure for short) is a tuple 

. , K l ; > ,  

is a nonstandard truth assignment for each world 
s E S, and each KT and K,: is a binary relation on S. To define the semantics, Levesque 
introduces two “support relations” b and kF . Intuitively, ( M ,  s) p (where T stands 
for “true”) means that the truth of p is supported at ( M ,  s), while ( M ,  s) kF p (where 
F stands for “false”) means that the falsity of p is supported at ( M ,  s).  We say that 
( M ,  s) k 9 if ( M ,  s) qo. The semantics is as follows: 

We also remark that Levesque and Lakemeyer have two different flavors of knowledge 
in their papers: explicit knowledge and implicit knowledge. (Actually, they talk about 
belief rather than knowledge, but the distinction is irrelevant to our discussion here.) We 
consider here only their notion of explicit knowledge, since this is the type that avoids 
logical omniscience. 

Although, superficially, our semantics seems quite different from the Levesque- 
Lakemeyer semantics, it is straightforward to show that in fact, the two approaches 
are equivalent in the sense of the following proposition. 

Proposition 9.1. For each nonstandard structure M and world s in M ,  there is an LL 
structure M‘ and world s‘ in M’ such that for each L-formula p, 

Conversely, f o r  each LL structure M‘ and world s’ in M‘, there is a nonstandard 
structure M and world s in M such that ( 3 )  and (4) hold for  each L-fomzula p. 
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Proof. Given a nonstandard structure M = ( S ,  T ,  K1,. . . , K,,," ), define an LL structure 
M = (S ,T ' ,  Ky',  . . . ,K,?, K,, . . . , K,;) with the same set S of worlds, where for each 
state s and primitive proposition p ,  we have 

and where 

(s,  t )  E Kl- iff (s* ,  t )  E K;. 

It is easy to show by induction on the structure of p that for every world s, 

For the converse, let M' = (S, d, Ic:, . . . , K:, K,, . . . , K,;) be an LL structure. We 
define a nonstandard structure M = ( S  U S*,  T ,  K1, . . . , Kc,,,* ) by letting s* be a new 
world for each s E S ,  letting S* = {s* I s E S}, defining ~ ( s )  and T(s*) for s E S 
so that ( 5 )  and (6) hold for every primitive proposition p ,  and defining Ki to consist 
precisely of 

( 1 ) all (s, t )  such that s E S,  t E S,  and (s, t )  E KF, and 
( 2 )  all ( s * , t )  such that s* E S*, t E S,  and ( s , t )  E K,. 

By the identical argument to before, (7) and (8) hold for every formula p and every 
state s E S. 0 

Remark 9.2. We note that there is an equivalent semantics to that of Levesque and 
Lakemeyer that avoids the use of two satisfaction relations kT and k F .  That is, we 
can define a notion k' of satisfaction directly such that if M is an LL structure, s 
is a world of M ,  and p is an C formula, then ( M , s )  p iff ( M , s )  1' p. Rather 
than defining -y to be true iff p is not true (as we do with standard structures), and 
rather than giving a uniform definition of when l c p  is true (as we do with nonstandard 
structures, using *), we instead define separately what it means for p to be true and 
what i t  means for 19 to be true, for each type of formula p (that is, for primitive 
propositions, and formulas of the form 91 A p2, 19, and K p ) .  This way we can make 
the truth of p and l p  independent. The definition is as follows (where we write k for 
k', for readability) : 

( M ,  s) k p  (for a primitive proposition p )  iff T( s) ( p )  = true. 

( M , s )  km A m  iff ( M , s )  and (M,s) km. 
( M ,  s) k K1p iff ( M ,  t )  k p for all t such that (s, t )  E K:. 
( M ,  s) k l p  (for a primitive proposition p )  iff T( s) ('p) = true. 

( M , s )  kl(cp1 A m )  i f f ( M , s )   TI or ( M , s )  k ~ 2 .  
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( M ,  s> k -p iff ( M ,  s) t= P. 

( M ,  s )  /= l K l p  iff ( M ,  t )  9 for some t such that (s, t )  E K,-. 

The proof of the equivalence to Levesque and Lakemeyer’s semantics is straightforward, 
and is left to the reader. 

Remark 9.3. While Proposition 9.1 shows the equivalence of our approach to the 
Levesque-Lakemeyer approach, a difference between the two aproaches emerges when 
we try to model agents with certain attributes. It is well known that in the standard 
possible-world approach, agents’ attributes can often be captured by imposing certain 
restrictions on the possibility relations. For example, positive introspection of agent i 
(i.e., K,p + K,K,p) is captured by requiring K, to be transitive (cf. [ 171). The same 
holds in  our nonstandard approach here, i.e., positive introspection of agent i is cap- 
tured by requiring Ic, to be transitive. On the other hand, in the Levesque-Lakemeyer 
approach i t  suffices to impose transitivity on K:. Now the properties of knowledge 
differ in our approach and in  the Levesque-Lakemeyer approach. For example, in our 
approach K l ~ K f K , p  + Kl--K,p becomes valid, but this is not the case in the Levesque- 
Lakerneyer approach, Thus, the Levesque-Lakemeyer approach allows an extra degree 
of freedom in modeling agents. 

Levesque and Lakemeyer use standard-world validity as their notion of validity. Thus, 
their notion of logical implication is standard-world logical implication, so as in Propo- 
sition 8.1, + can be used to express logical implication in the language. Therefore, 
unlike us, they do not enlarge their language to include L). They obtain a completeness 
result (with some restrictions on the allowable formulas). Because they use standard- 
world validity, their axiomatization contains all standard tautologies. However (as is the 
point with impossible-worlds approaches), agents need not know all standard tautolo- 
gies. Thus, for example, p 3 p is valid for them, since they are considering standard 
world validity, but K , ( p  + p )  is not, since agent i may consider a nonstandard world 
possible where p + p does not hold. 

Levesque [ 201 proves that there is a polynomial-time decision procedure for deciding 
whether K[K logically implies Kip, for CNF formulas K and p (this is the decision 
procedure described in Theorem 7.3). The existence of this polynomial-time decision 
procedure is analogous to part of Theorem 7.4. The other part of Theorem 7.4 (that 
there is a polynomial-time decision procedure for deciding whether K logically implies 
p, for CNF formulas K and p) is false in Levesque’s context, since he is considering 
standard-world logical implication. In particular, the analogue of Proposition 7.1 does 
not hold for him. We originally obtained Theorem 7.4 by using Levesque’s result, along 
with Proposition 8.6 (and Proposition 7.1). 

10. Conclusions 

We have investigated a new approach to dealing with the well-known logical om- 
niscience problem in epistemic logics. The idea is to base the epistemic logic on a 
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nonstandard logic, in the hope that by taking an appropriate nonstandard logic, we can 
lessen the logical omniscience problem. 

The nonstandard propositional logic we use is NPL, which we introduce in this paper. 
NPL has a number of attractive features, including a clean semantics and an elegant 
complete axiomatization. In addition, there is a tractable (polynomial-time) decision 
procedure for evaluating a natural class of knowledge base queries. Thus, there is a 
sense i n  which the logical omniscience problem is not as acute when considering an 
epistemic logic based on NPL. Our approach is closely related to that of Levesque and 
Lakemeyer. Indeed, we feel that thinking in terms of NPL sheds new light on their 
results. 

There is, of course, nothing special about the role of NPL in our approach. We could 
just as well considered epistemic logics based on other nonstandard logics. Perhaps by 
considering other logics we can obtain other desirable properties. We leave consideration 
of' this point to future research. 
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Appendix A. Completeness proofs 

Proof of Theorem 6.9. The axiom scheme PL is sound by Corollary 6.3. The soundness 
of NPLI, NPL2, and NPL3 follow by Lemma 6.7 and by Proposition 5.2 (which says 
that logical implication is expressed by -). 

We now prove completeness. Assume that p is valid in NPL. Let 91,. . . , Fop be a 
sequence of formulas obtained by driving negations down (using Lemma 6.7), working 
from the outside in, until the negations apply only to primitive propositions. Thus, 

(Dl =(D, 
0 pop is pseudo-positive, and 
0 p;+l is obtained from p, by driving down a negation that is as high in the parse 

Now each p.;+l is obtained from p; by replacing a formula by a (provably) equivalent 
formula. Since p1 = p is valid, it is easy to see that each pj is valid. Our goal is to show 
that each p, is provable in our axiom system N ,  so that in particular, qp1 (that is, p) 
is provable. Since pk is pseudo-positive, it is fairly straightforward to use Corollary 6.6 
to show that pk is provable (we give the demonstration below). We would then like to 
conclude the proof by showing that if p,;+l is provable, then so is p,, since after all, the 
only difference between p., and p.,+l is that some subformula y of pJ is replaced by a 
provably equivalent formula y' to obtain p,;+l. It then follows easily (as shown below) 
that we would be done if we showed that the formula 

tree as possible, for j = 1 , .  . . , k - 1 .  
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were provable. We shall show below that in fact, (A . l )  is an instance of PL. This is 
not obvious, since there may be negations in (A.1). 

We now give the details of the proof. We show by backwards induction on j (for 
j = k ,  k - 1 , .  . . , 1 )  that each p.j is provable. As we observed above, each p, is valid, so 
in particular, (Pk is valid. Since p k  is also pseudo-positive, it follows from Corollary 6.6 
that ( (  p k ) + ) ”  is a standard propositional tautology. so ( (  is an instance of 
axiom scheme PL. By Lemma 6.1, ( (  (pk)+)st)nst = ( p k ) + .  Thus, ( p k ) +  is an instance 
of axiom scheme PL. A substitution instance of ( p k ) + ,  and hence an instance of PL, 
is obtained by replacing every occurrence of p by -p  (where p is the new primitive 
proposition that replaces every occurrence l p  in p when we form ( p k ) +  from p k ) .  

Therefore, q k  is simply an instance of PL, and so is of course provable. This takes care 
of the base case j = k of the induction. 

Assume inductively that p,j+l is provable. Now p;+j is obtained from p; by replacing 
some (negated) subformula y of p, by another formula y’. Let pr and prf be new 
primitive propositions. Let $ (respectively @’) be the result of replacing this occurrence 
of y (respectively y’) in p., (respectively p,,+i) by p r  (respectively pro. So @ and $’ 
are identical, except that the unique occurrence of p y  in $ is replaced by p,,! in @’. If a 
negation appears in $ (and hence in $ I ) ,  then let ,u be a negated subformula of @ that 
appears as high as possible in the parse tree of $. Since y is a negated subformula of 
p, that appears as high as possible in the parse tree of p,,, it is not hard to see that pr is 
not a subformula of ,u. Hence ,u is a subformula of p,+l. Replace ,u in @ (respectively 
@’) by a new primitive proposition p p .  Continue this process until all negations are 
replaced. Call the final result p (respectively p’).  Note that p and p’ are negation-free, 
and are identical, except that the unique occurrence of pr in ,4? is replaced by pr’ in p’. 
The formula 

( P r  + Pr‘) - (P’ - P )  
is an instance of PL. By construction, p, (respectively p,+l) is a substitution instance 
of p (respectively p’). Hence, the formula ( A . l )  above is an instance of PL. Now 
( y  + y’) is an instance of one of the axiom schemes NPL1, NPL2, or NPL3, and so is 
provable. So by modus ponens, p;+l c-t p; is provable. Since by induction assumption 
cpOi+l is provable, it follows by modus ponens that so is p,, as desired. This completes 
the induction step. 0 

Proof of Theorem 6.13. Soundness is easy to verify. We give a Makinson-style [21] 
proof of completeness, which follows the same general lines as the proof of completeness 
of K for standard structures that is given by Halpern and Moses [ 171. In order to prove 
completeness, we must show that every formula in C‘ that is valid with respect to 
N M  is provable. We now show that it suffices to prove: 

(‘4.2) 

For suppose we can prove (A.2), and p is a valid formula in C’. If p is not provable, 
then neither is ( ( p c-t false) -+false),  since 

Every consistent formula in C- is satisfiable with respect to n /M.  

( ( ( p -false> -false) L-) p) 
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is an instance of NPR. So by definition, ( p  - false) is consistent. It follows from 
(A.2) that p -false is satisfiable with respect to N M ,  contradicting the validity of p 
with respect to N M .  

Following the Makinson-style approach, we construct a canonical structure M C  E 
N M ,  which has a world sv corresponding to every maximal consistent set V.  We then 
show 

i.e., the worlds in M C  contains as elements precisely the formulas that they satisfy. Since 
i t  is easy to show that every consistent formula in C' belongs to some maximally 
consistent set, this is sufficient to prove (A.2). 

Given a maximal consistent set V of formulas, define V* = {p E C' 1 l p  $! V } .  We 
now show that V* is a maximal consistent set, and that V** = V .  

V" is consistent: if not, then there are 91 , .  . . , qok in V* such that ( (91 A .  . . A pk) - 
false)  is provable. By negation replacement, l( p1 A . . . A pk) is provable. Now the 
formula 

is an instance of NPR, and hence provable. By modus ponens, 

( ( -pI -false) A . . . A (-pk -false) ) - false 
is provable, and hence by Lemma 6.12( 1 )  is in V .  So by consistency of V ,  

is not in V .  Therefore, by Lemma 6.12(3), some -pi - false is not in V .  Hence, by 
Lemma 6.1 1, l p ;  is in V .  Therefore, p; is not in V * ,  a contradiction. 

V" is maximal consistent: by Lemma 6.1 1, we need only show that either p or ( p  - 
false) is in V * ,  for each formula p of L'. Assume that p 6 V* and (p -false) @ V*.  
So by definition of V * ,  it follows that the formulas -9 and ~ ( p  -false) are each in 
V .  But 

( ( - p )  A - ( p  -false) ) -false ('4.3 1 

is easily seen to be valid. Hence, ((-9) A -(p -false)) c-) false is an instance of 
NPR. This shows that V is inconsistent, a contradiction. 

V** = V :  we have p E V** iff -9 $! V* iff 1-9 E V iff p E V ,  where the last step 
uses Lemma 6.12(2) and the fact that p - 1-40 and 1-p - p are both in V by 
Lemma 6.12( 1) .  

Given a set V of formulas, define V K i  = {p : Kip E V } .  Let M C  = (S, T, X I , .  . . , 
Ic,,,* ), where 
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S = {sv: V is a maximal K" consistent set}, 

We show by induction on the structure of p that for all V we have ( MC, sv) k p iff 
p E V .  If p is a primitive proposition p, then this is immediate from the definition of 
n-(sv) above. 

Assume that p is a conjunction 91 A 402. If (MC,sv) k p, then ( M C ,  S V )  k 91 and 
(MC,sv) b 402, so by induction assumption pl E V and p 2  E V .  Since pl ~t ( p 2  L-) 

(p1 A p 2 ) )  is an instance of NPR, it follows by Lemma 6.12(2) applied twice that 
( 4 0 1  A p 2 )  E V .  Conversely, if (pl A 9 2 )  E V ,  then so are pl and 402, because of the 
following instances of NPR and Lemma 6.12(2): 

(91 A 9 2 )  Lf 401. 

(PI AP2) - p 2 .  

By induction assumption, (MC,sv) k p ~  and (MC,sv) k p 2 ,  so (MC,sv) (PI A (02). 
Assume now that p is of the form 91 c-) 92. If ( M C ,  sv) k p, then either ( M C ,  sv) p 

91 or (MC,sv) 9 2 .  If (MC,sv) p p1, then by induction assumption p1 $2 V ,  so by 
Lemma 6.1 1, (91 -false) E V ,  so pl ~f p 2  E V because of Lemma 6.12(2) and the 
fact that 

(91 -false) c--f (PI - P2). 

is an instance of NPR. If ( M C , s " )  1 p 2 ,  then by induction assumption p z  E V ,  so 
91 - 9 2  E V ,  because of Lemma 6.12(2) and the fact that 

9 2  - ( cp l  c-) 92) 

is an instance of NPR. 

( p z  
inconsistent: 

Conversely, assume that (PI c-$ 402) E V .  Then we cannot have both p1 E V and 
false) E V ,  because the following instance of NPR would tell us that V is 

(PI A (402 -false) A (PI - ' ~ 2 ) )  -false. 

If 91 # V ,  then by induction assumption ( MC, sv) p. If ( 9 2  - 
false) @ V ,  then by induction assumption ( M C ,  S V )  p. 

Assume that p is of the form +. Then ( M C ,  SV) I+!J iff 
( MC, sv* ) @ (since ( sv) * = SV* ) iff @ @ V* (by induction hypothesis) iff -@ E V .  

Finally, assume that p is of the form Ki@. Assume first that p E V .  Then I) E V K i .  
So if ( sv, sw) E Xi, then it follows by definition of Ici that @ E W ,  and so by induction 
hypothesis, ( M C ,  sw) b 9. Therefore, ( M e ,  SW) b p, as desired. For the other direction, 
assume that ( M C , s v )  Ki@.  It follows that the set ( V K ; )  U {@ ~f false} is not 

401, SO ( M C ,  SV) 
(402 -false), so ( M C ,  SV) 

-+ iff ( MC, ( S V ) * )  



R. Fagin et al./Artificial Intelligence 79 (1995) 203-240 239 

consistent. For suppose not. Then it would have a maximal consistent extension W, 
and, by construction, we would have ( sv, SW) E Xi. By the induction hypothesis we 
would have (MC, SW) K,$, 
contradicting our original assumption. Since ( V / K ; )  U ( 9  - false} is not consistent, 
there must be some finite subset, say (91,. . . , ( ~ k ,  i+b -false}, which is not consistent. 
That is, 

fl -false, that is, (MC,sw) k 9, and so ( M C , s v )  

( (91  A. . .Acpx .A (* - fa l se ) )  -false) 

is provable. But 

( (PI  A . . . A 9 k  A (Q -+false)) -+false) - (91 - ( 9 2  - (. . . ( ~ k  -+ 1CI) . . .> 
is an instance of NPR. Hence, by modus ponens, 

91 ( . . . ( 9 ! f - * ) . . . )  

is provable.By the knowledge generalization rule, 

K(P1 c--* ( 9 2  - (. ‘ ‘ (Pk - *) ’ ’ .) 

is provable. By Lemma 6.12( I ) ,  this formula is in V .  Since 91,. . . , (Dk are all in V K , ,  
i t  follows that K,qol,. . . , K , q k  are all in V .  By repeated applications of the distribution 
axiom and by Lemma 6.12( 1) and Lemma 6.12(2), it is easy to see that K,* E V ,  as 
desired. 
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