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Abstract 

Halpern, J.Y. and R. Fagin, Two views of belief: belief as generalized probability and 
belief as evidence, Artificial Intelligence 54 (3) (1992) 275-317. 

Belief functions are mathematical objects defined to satisfy three axioms that look 
somewhat similar to the Kolmogorov axioms defining probability functions. We argue 
that there are (at least) two useful and quite different ways of understanding belief 
functions. The first is as a generalized probability function (which technically corresponds 
to the inner measure induced by a probability function). The second is as a way of 
representing evidence. Evidence, in turn, can be understood as a mapping from probability 
functions to probability functions. It makes sense to think of updating a belief if we 
think of it as a generalized probability. On the other hand, it makes sense to combine 
two beliefs (using, say, Dempster's rule of  combination) only if we think of the belief 
functions as representing evidence. Many previous papers have pointed out problems 
with the belief function approach; the claim of this paper is that these problems can be 
explained as a consequence of confounding these two views of belief functions. 

1. Introduction 

A belief function is a function that assigns to every subset of  a given set 
S a number between 0 and 1. Intuitively, the belief in a set (or event) 
A is meant to describe a lower bound on the degree of  belief of  an agent 
that A is actually the case. The corresponding upper bound is provided 
by a plausibility function. The idea of  a belief function was introduced 
by Dempster [7,8] (he uses the terms lower probability for belief and 
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upper probability for plausibility), and then put forth as a framework for 
reasoning about uncertainty in Shafer's seminal work A Mathematical Theory 
o f  Evidence [36]. Since then, belief functions have become a standard tool 
in expert systems applications (see, for example, [1,13,30,31]). 

While belief functions have an attractive mathematical theory and many 
intuitively appealing properties, there has been a constant barrage of  criti- 
cism directed against them, going back to when they were first introduced by 
Dempster (see the discussion papers that appear after [8], particularly the 
comments of  Smith, Aitchison, and Thompson).  The fundamental concern 
seems to be how we should interpret belief functions. This point is made in 
a particularly sharp way by Diaconis and Zabell [9,10]. They consider the 
three prisoners problem, and show that applying the belief function approach 
to this problem, particularly Dempster's rule o f  combination (which is a rule 
for combining two belief functions to produce a new belief function) leads 
to counterintuitive results. Other authors have shown that the belief func- 
tion approach leads to counterintuitive or incorrect answers in a number of  
other situations (see, for example, [2,3,23,29,32,33,49]). 

In this paper, we argue that essentially all these problems stem from a 
confounding of two different views of belief functions: the first is as a 
generalized probability function, while the second is as a representation of  
evidence. In the remainder of this introduction, we briefly sketch these two 
views. 

Formally, a belief function can be defined as a function satisfying three 
axioms (just as a group is a mathematical object satisfying a certain set 
of axioms). These axioms can be viewed as a weakening of the Kol- 
mogorov axioms that characterize probability functions. From that point 
of view, it seems reasonable to try to understand a belief function as a 
generalized probability function. A number of  authors have in fact tried to 
find characterizations of  belief functions in terms of  probability functions 
(e.g., [7,8,11,12,27,34,38]). We focus here on the approach of [11,12]. 

A probability function is a function that assigns a number between 0 and 
1 to some (but not necessarily all) of the subsets of a set. The sets to which 
a probability is assigned are called measurable sets. Note the contrast here 
with belief functions, which do assign a number to all subsets of  a set. There 
are two standard ways of extending a probability function Pr so that it is 
defined on all subsets: namely, by considering the inner measure Pr, and 
outer measure Pr* induced by Pr. Intuitively, the inner measure of a set 
A is the best approximation we can make to its probability from below, 
while the outer measure is the best approximation from above. Thus, the 
inner and outer measure of  a set A define an interval, just as do the belief 
and plausibility of  A. This analogy is more than a superficial one. It is 
straightforward to show if we are given a probability function Pr, then Pr, 
is a belief function (in that it satisfies the three axioms characterizing belief 
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functions) and Pr* is the corresponding plausibility function. Moreover, the 
converse essentially holds; every belief function can essentially be viewed as 
being the inner measure induced by some probability function [ 11 ]. 

Thus, we have a natural way of viewing a belief function as a generalized 
probability function: it is just an inner measure induced by a probability 
function. 

This view of a belief function as a generalized probability function is 
quite different from the view taken by Shafer in [36]. Here, belief is 
viewed as a representation of  evidence. The more evidence we have to 
support a particular proposition, the greater our belief in that proposi- 
tion. 

Now the question arises as to what exactly evidence is, and how it relates 
to probability (if at all). Notice that if we start with a probability function 
and then we get some evidence, then we can update our original probability 
function to take this evidence into account. If the evidence comes in the form 
of an observation of some event B, then this updating is typically done by 
moving to the conditional probability. Starting with a probability function 
Pr, we update it to get the (conditional) probability function Pr(.LB). 
This suggests that evidence can be represented by a function that takes 
as an argument a probability function and returns an updated probability 
function. By using ideas that already appear in [36], it can be shown that a 
belief function can in fact be viewed as representing evidence in this sense. 

This point is perhaps best understood in terms of  an example. Imagine 
we toss a coin that is either a fair coin or a double-headed coin. We 
see k heads in a row. Intuitively, that should provide strong evidence in 
favor of  the coin being a double-headed coin. And, indeed, if we encode 
this evidence as a belief function following the methodology suggested in 
[36], we find that the larger k is, the stronger our belief that the coin is 
double-headed. On the other hand, we cannot compute the probability that 
the coin is double-headed if our only information is that we have seen k 
heads in a row. The actual probability depends on the prior. For example, 
if we knew that a priori, the probability of  the coin being fair is 0.9999 
and k = 8, then it is still quite probable that the coin is fair. Once we 
are given a prior probability on the coin being fair then, using conditional 
probability, we can compute the probability that the coin is fair given that 
we have observed k heads. If we use Shafer's method, then it can be shown 
that the conditional probability is exactly the result of using the rule of  
combination to combine the prior probability with the belief function that 
encodes our evidence (the fact that we have seen k heads). Thus, the belief 
function provides us a way of  updating the probability function, that is, 
with a way of  going from a prior probability to a posterior (conditional) 
probability. 

Once we decide to view belief functions as representations of  evidence, 



278 J.Y. Halpern, R. Fagin 

we must tackle the question of how to go about representing evidence using 
belief functions. A number of different representations have been suggested 
in the literature. We have already mentioned the one due to Shafer; still 
others have been suggested by Dempster and Smets [8,40]. Walley [45] 
compares a number of representations of  evidence in a general framework. 
We review his framework here, and present a slight strengthening of one 
of  his results, showing that perhaps the best representation is given by a 
certain belief function that is also a probability function, in that it is the 
only representation satisfying certain reasonable properties that acts correctly 
under the combination of evidence. 

Both of  the viewpoints discussed here give us a way of understanding 
belief in terms of well-understood ideas of probability theory. (Indeed, it 
is one of  the goals of  this paper to explain as large a part as possible of 
the theory of belief functions in terms of probability theory, in the hope 
of  getting a better understanding of belief functions.) However, as we show 
by example, these two viewpoints result in very different ways of modelling 
situations (although, if we do things right, we expect to reach the same 
conclusions no matter which viewpoint we take!). The major difference 
between the viewpoints is how they treat new evidence. If we view belief 
as a generalized probability, then it makes sense to update beliefs but not 
combine them. On the other hand, if we view beliefs as a representation 
of evidence, then it makes sense to combine them, but not update them. 
This suggests that the rule of  combination is appropriate only when we view 
beliefs as representations of evidence. A way of updating beliefs, appropriate 
when we view beliefs as generalized probabilities, is described in [12]. It 
seems that all the examples showing the counterintuitive nature of  the rule 
of  combination arise from an attempt to combine two beliefs that are really 
being viewed as generalized probabilities. 

It is interesting to note that the claim that there is more than one inter- 
pretation of  belief functions is not new. In fact, it goes back to the early 
work of  Shafer. In commenting on Dempster's work in [37, p. 432], Shafer 
says ". . . instead of  thinking of his lower probabilities as degrees of belief 
or degrees of  support, [Dempster] preferred, at least originally, to think of  
his lower and upper probabilities as bounds for some true but somehow un- 
knowable probabilities, thus retaining the identification of  degrees of  belief 
with additive probabilities." A few paragraphs later, Shafer continues "It 
is the new understanding of  the meaning of Dempster's upper probabilities 
[essentially, as representations of  evidence] that I offer as the primary con- 
tribution of  this essay." Our results give a precise sense in which Dempster's 
interpretation is correct. If we view belief and plausibility as representing 
the inner and outer measures induced by some probability function Pr, they 
are indeed bounds for all the possible extensions of  Pr (see Theorem 2.1 in 
the next section). The alternate way of viewing a belief function, namely, 
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as a representation of  evidence, can also be given a precise probabilistic 
interpretation. 1 Indeed, the distinction between the approaches essentially 
is closely related to the well-known distinction in probability theory between 
absolute beliefs and belief updates (see [22] for discussion and further refer- 
ences). Viewing a belief function as a representation of evidence essentially 
amounts to viewing it as a likelihood function; we return to this point later 
in the text. 

More recently, Smets, in a sequence of  unpublished papers such as [43], 
has been a strong proponent of the fact that there are two views of  be- 
lief. One view for him is what we call 'belief as generalized probabil- 
ity'. He identifies the second view with what he calls the transferable 
belief model (TBM). Smets specifically rejects an interpretation of the 
TBM in terms of  probability theory, and offers it as an alternative to 
probability theory. It is definitely not meant to be viewed as a represen- 
tation of evidence; rather, it measures degree of  belief. Smets attempts 
to justify Dempster's rule of  combination in this framework by viewing 
it as a way of reassigning or transferring beliefs from one proposition 
to another in light of  new evidence. It seems to us that this interpre- 
tation leads to the same counterintuitive results we have already men- 
tioned. 2 

The rest of  this paper is organized as follows. In Section 2 we review 
the viewpoint of  belief as generalized probability; in Section 3 we con- 
sider how to best update beliefs given this viewpoint. The material in these 
two sections is largely drawn from [ l l ,12] ,  so is not discussed here in 
great detail. We include it here mainly to contrast this viewpoint with 
the viewpoint of belief as evidence, which is discussed in Section 4. In 
this section we also consider what is the best way of  representing evi- 
dence as a belief function, and argue that a probability function gives 
the best representation. In Section 5 we consider what happens when we 
combine the two viewpoints, in that we try to view belief as evidence 
when our information is represented in terms of nonmeasurable sets. In 
Section 6 we illustrate our points by considering a number of  examples, 
including a lottery example from [23] and the puzzle of Mr. Jones' mur- 
derer, taken from [43]. We conclude in Section 7 with further discussion 
on the appropriateness of belief functions as a representation of  uncer- 
tainty. 

I We do not mean to suggest that Shafer would necessarily subscribe to our interpretation. In 
fact, he would almost certainly dispute the primacy given to probability theory in this paper, 
as well as some of our conclusions. Sharer is also quite explicit about rejecting the view of 
belief functions as lower envelopes (see [41, p. 16] for perhaps the clearest statement of his 
views on this issue). 

2Smets, of course, disagrees. We refer the reader to his papers for more details. 
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2. Belief as generalized probability 

This section summarizes the work of [11]; portions of the material in 
this section also appear in [12]. 

We begin by reviewing basic definitions from probability theory. The pre- 
sentation follows that of  [ 11 ]; the reader should consult a basic probability 
text such as [ 14,19 ] for more details. 

A probability space (S, X,  Pr) consists of a set S (called the sample space), 
a a-algebra ,V of subsets of  S (i.e., a set of  subsets of  S containing S and 
closed under complementation and countable union, but not necessarily 
consisting of  all subsets of  S)  whose elements are called measurable sets, 
and a probability measure Pr: 2( ~ [0, 1] satisfying the following properties 
(known as the Kolmogorov axioms for probability): 

(P1) Pr(X)  >i 0 for all X E X, 
(P2) Pr(S) = 1, 
(P3) Pr(U~=lXi) = Z ~ l  Pr(Xi) ,  if the Xi's are pairwise disjoint members 

of  X. 

Property (P3) is called countable additivity. Of course, the fact that 2( is 
closed under countable union guarantees that if each Xi E 2(, then so is 
U~  ~Xi. If  we restrict attention to finite sample spaces, then we can replace 
countable additivity by f inite additivity, namely, the property 

(PY) Pr(UT=lXi) = Y"i=l Pr(Xi) ,  if the Xi's are pairwise disjoint mem- 
bers of  2(. 

A subset 3; of  2( is said to be a basis (of 2() if the members of  y are 
nonempty and disjoint, and if 2( consists precisely of countable unions of  
members of  3;. It is easy to see that if 2( is finite then it has a basis. 
Moreover, whenever 2( has a basis, it is unique: it consists precisely of  the 
minimal elements of  2( (the nonempty sets in 2( none of  whose proper 
nonempty subsets are in 2'). Note that if 2( has a basis, once we know 
the probability of every set in the basis, we can compute the probability of 
every measurable set by using countable additivity. 

In a probability space (S, 2(, Pr), the probability measure Pr is not nec- 
essarily defined on 2 s (the set of all subset of  S), but only on 2(. We can 
extend Pr to 2 s in two standard ways, by defining functions Pr. and Pr*, 
traditionally called the inner measure and outer measure induced by Pr [ 19]. 
For an arbitrary subset A c_ S, we define 

Pr. (A)  = s u p { P r ( X ) I X  C_ A and X E 2(}, 
Pr*(A) = in f{Pr(X)  IX  3_ A and X E 2(}. 

If there are only finitely many measurable sets (in particular, if S is finite), 
then it is easy to see that the inner measure of  A is the measure of  the 
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largest measurable set contained in A, while the outer measure of  A is the 
measure of  the smallest measurable set containing A. 

It is easy to check that, for any set A, we have Pr. (A)  <~ Pr* (A); i f A  is 
measurable, then Pr. ( A ) = Pr* ( A ) = Pr( A ). The inner and outer measures 
of  a set A can be viewed as our best estimate of  the 'true' measure of  A, 
given our lack of  knowledge. To make this precise, we say a probability space 
(S, 2(',Pr ~) is an extension of the probability space (S, 2(,Pr) if 2(' _3 2(, 
and Pr'(A) = Pr(A) for all A E 2( (so that Pr and Pr' agree on X, their 
common domain).  The following result is well known (a proof can be found 
in [34] ): 

Theorem 2.1. I f  (S, 2(', Pr') is an extension o f  (S, X, Pr) and A E 2(', then 
Pr. (A) <~ Pr' (A) <~ Pr* (A). Moreover, there exist extensions (S, 2(1, Prl ), 
(S, X2,Pr2) o f  (S,2(,Pr) such that A ~ X~, A E 2(2, PrI(A) = Pr. (A) ,  and 
Pr2(A) = Pr* (A). 

Intuitively, the first part of  Theorem 2.1 tells us that if we acquire extra 
information enabling us to compute the probability of  A, then it is bound 
to lie somewhere between the inner measure and outer measure of A. The 
second part of  the theorem tells us that the inner measure and outer measure 
are the best estimates we can get. 

Now let us consider belief functions. Like a probability function, a belief 
function is a function mapping subsets of  a set S to the interval [0, 1] 
satisfying certain axioms. Unlike a probability function, it is defined on all 
subsets of  S. Formally, a belief function Bel on S is a function Bel: 2 s 
[0, 1 ] satisfying: 

(B0) Bel(O) = O, 
(B1) Bel(A) >t O, 
(B2) B e l ( S ) =  1, 
(B3) Bel(A1 U. . .  U Ak ) >1 )--~tc_{1,...,k},i¢0 ( -  1 )lIl+lBel(Ni~l hi). 

We can also define the plausibility of  a set A, written PI(A), as 1 - B e l ( A ) ,  
where A is the complement of  A. Clearly PI is also a function that associates 
with each subset of  S a number in the range [0, 1 ]. Using (B2) and (B3), 
we can easily see that 1 = Bel ( S ) = Bel ( A U A) >I BeI ( A ) + BeI ( A ) , from 
which it immediately follows that Bel(A ) <~ 1 -Be l (A )  = PI(A). As we shall 
see, the interval defined by BeI(A) and PI(A) can be viewed as defining 
the range in which the 'true' probability of  A lies. Of  course, the bigger the 
interval, the greater our uncertainty of  the true probability of A. 

Other than (B3), the axioms for belief functions look like what we would 
expect from a probability function. Properties (B1) and (B2) are analogues 
of  (P1) and (P2). (There is also a probabilistic analogue (P0) of  (B0), but 
the fact that the probability of  the empty set is 0 already follows from (P2) 
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and (P3).)  While (B3) looks quite different from (P3), the differences are 
not as significant as they might appear at first. For one thing, probability 
functions satisfy (B3) with the inequality replaced by an equality, at least if 
we restrict attention to measurable sets A~,...  ,Ak. (This is the well-known 
inclusion-exclusion rule, and can be proved for probability functions by 
induction on k; see [14].) Moreover, if we replace (P3) by (B3) (with 
the inequality replaced by equality, and the sets A~, . . . ,Ak  restricted to 
measurable sets), then we get an axiom equivalent to finite additivity. (This 
is easy to see: if the sets Ai in B3 are disjoint, from B3 we immediately get 
Bel(A1 u . . .  u Ak ) >1 ~ =  l Bel(Ai).) Thus, we get another characterization 
of probability functions in finite spaces. 3 

It seems clear that in many ways Bel and Pl act like inner and outer 
measure. For one thing, the relationship between them is analogous: Pl(A) = 
1 - Bel(A) and Pr* (A) = 1 - Pr. (A). Moreover, inner and outer measure, 
like belief and plausibility, are defined on all subsets of  S. It is not hard to 
show that every inner measure induced by a probability function is indeed a 
belief function [ 11 ]. That is, if (S, X, Pr) is a probability space, then Pr. is a 
belief function on S and Pr* is the corresponding plausibility function. The 
converse essentially holds as well; given a belief function Bel defined on a set 
of  formulas (rather than on sets), we can find a probability space (S, X, Pr) 
and associate with each formula ~0 a subset S~, of states of S (intuitively, S~ 
is the subset of  states where ~0 is true) such that Bel(~) = Pr.(S~). These 
results are discussed and proved in [11]. Thus, in a precise sense, a belief 
function is no more and no less than an inner measure; the plausibility 
function is the corresponding outer measure. 

There is another formulation of  belief functions that is perhaps more 
intuitive, and will be useful in our later discussion. A mass function is 
simply a function m: 2 s ~ [0, 1] such that 

( M I )  m(~J) = 0, 
(M2) y~Ac_sm(A) = 1. 

Intuitively, m (A) is the weight of  evidence for A that has not already been 
assigned to some proper subset of  A. With this interpretation of  mass, we 
would expect that an agent's belief in A is the sum of the masses he has 
assigned to all the subsets of  A; i.e., Bel(A) = ~BCA m(B) .  Indeed, this 
intuition is correct. 

3When considering belief functions on infinite spaces, another continuity axiom, which says 
that limi_o~ Bel(Ai) = Bel(niAi)  if  A l _D A 2 ~ . . . .  is occasionally added [38]. This axiom is 
easily shown to be redundant in finite spaces. If we replace the inequality in B3 by an equality 
and restrict to measurable sets, then, together with the continuity axiom, we get an alternative 
characterization of probability functions in arbitrary spaces. 
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Proposition 2.2 (Shafer [36, p.39] ). 
(1) I f  m is a mass function on S, then the function Bel: 2 s ~ [0, 1 ] 

defined by Bel(A ) = ~BCA m (B) is a belief function. 
(2) I f  Bel is a belief function on 2 s and S is finite, then there is a unique 

mass function m on 2 s such that Bel(A ) = EBCA m (B) for every 
subset A o f  S. 

Using mass functions, we can easily connect probability, belief, and inner 
measure in finite spaces (or, in fact, in a probability space with a basis). If  
Pr is a probability function defined on a set X of measurable subsets of  a 
finite set S, and y is a basis of X, let m be the mass function such that 

fPr (A) ,  i f A ~ y ,  
re(A) = (0,  otherwise, 

and let Bel be the belief function corresponding to m. Then it is easy to 
show that Bel(A) = Pr, (A) for all A c_ S. Thus, Bel agrees with Pr on 
the measurable sets and, more generally, is equal to the inner measure on 
arbitrary subsets. We refer to Bel as the belief function corresponding to Pr. 
Notice that the mass function m has the property that its focal elements-- 
those sets to which it assigns positive mass--are disjoint. It is easy to check 
that if we are given a belief function Beg whose corresponding mass function 
m' has disjoint focal elements, then there is some probability function Pr' 
such that Bel' corresponds to Pr'. We say that a belief function is a discrete 
probability function if not only are its focal elements disjoint, but they are 
singletons. Thus, a belief function is a discrete probability function if it is a 
probability function with respect to which every element in the sample space 
is measurable. Notice that if we restrict attention to finite or countable sets 
(as we do in this paper), this means that every subset is measurable. 

There is another way of  looking at belief functions as generalized prob- 
abilities, closely associated with the one we have just discussed. Given a 
set 7 9 of  probability functions all defined on a sample space S, define the 
lower envelope of 79 to be the function f such that for each A c_ S, we 
have f (A) = inf{Pr(A): Pr E 79 and A is measurable with respect to Pr}. 
We have the corresponding definition of  upper envelope of 79. Theorem 2.1 
says that the inner measure induced by a probability function Pr is the 
lower envelope of  the family of  probability functions extending Pr; the 
outer measure is the corresponding upper envelope. Since a belief function 
is essentially an inner measure, this suggests that a belief function is also 
a lower envelope. This is true, and was already known to Dempster [7]. 
Let Bel be a belief function defined on S, and let (S, X,  Pr) be a prob- 
ability space with sample space S. We say that Pr is consistent with Bel 
if BeI(A) <~ Pr(A) <~ PI(A) for each A ~ 2". Intuitively, Pr is consistent 
with Bel if the probabilities assigned by Pr are consistent with the intervals 
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[Bel(A), PI(A)] given by the belief function Bel. It is easy to see that Pr 
is consistent with Bel if Bel(A) ~ Pr(A)  for each A 6 2" (that is, it fol- 
lows automatically that Pr(A) <~ PI(A) for each A E 2"). This is because 
PI(A) = 1 - B e l ( A )  >1 1 - Pr(A) = Pr(A).  Then Bel is the lower envelope 
of  79 and PI is the upper envelope of  79. 

Although every belief function is a lower envelope, the converse does not 
hold. It is well known that not every lower envelope is a belief function (see 
[27,33] for counterexamples). For further discussion on lower envelopes and 
their relationship to belief functions, the reader is referred to [12,39,46,48]. 

3. Updating probabilities and beliefs 

Quite often we start with a probability distribution or a belief function 
defined on a set of  events and then want to update it in the light of 
new evidence. Define a probability update function to be a partial function 
from probability functions to probability functions; intuitively, if r is a 
probability update function and Pr is a probability function, then r(Pr) is 
the probability function that arises as a result of  updating Pr in the light of  
the new information encoded by z. We can similarly define a belief update 
function to be a partial function from belief functions to belief functions. 

The type of  evidence we are most used to dealing with is an observation 
showing that an event B has occurred. The standard way to update a 
probability function Pr in this case is to move to the conditional probability 
function Pr(. I B),  where P r ( A I B )  is defined to be Pr(A n B ) / P r ( B ) .  The 
reason we consider partial functions can already be seen when we consider 
conditional probability functions. For the remainder of  this section, fix a 
set S and a a-algebra 2' of  subsets of  S. For B E 2", we can define condB to 
be the probability update function such that condB(Pr) = Pr(. I B) if Pr is 
a probability function on 2" with Pr(B)  > 0, and undefined otherwise. The 
partiality of  the update function allows it to be undefined if the evidence 
that it encodes is incompatible with the probability to be updated. For 
example, the fact that B has been observed, which is encoded in the update 
function condB, is incompatible with a probability function Pr such that 
e r ( B )  = O. 

We can combine a sequence of  probability updates by composition. Thus, 
the result of  updating by rl, then r2, and then z3 is given by the update 
function z3 o r2 o Zl. Although the composition operation is associative, it is 
not in general commutative; the order of  updating matters. However, if  we 
update probability functions by conditioning, then the order is irrelevant. 
Although the following result is well known, we prove it again here both for 
the sake of  completeness and because we know of no reference to it. 
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Proposition 3.1. Let B, C E X. Then 

condc o condB = condnnc = condB o condc. 

Proof. Fix a probability function Pr. First assume that Pr(B O C) > 0, and 
let Pr' = Pr(. ]B). Then for all sets A E X, we have 

condc o condB ( Pr ) ( A ) 
=condc  (Pr') (A) 
= Pr ' (AIC)  
= Pr~(A n C) /Pr ' (C)  
= Pr(A n C IB) /Pr(CI  B) 
= (Pr(A n C n B ) / P r ( B ) ) / ( P r ( C  n B ) / P r ( B ) )  
= Pr(A N C N B ) / P r ( C  n B) 
= P r ( A I B  n C) 
= condBnc (Pr) (A). 

Thus, condc o condB (Pr) = condBnc (Pr) if Pr (B N C) > 0. If Pr(B N C) = O, 
then condBnc(Pr) is undefined; we must show that condc o condB(Pr) is 
undefined. If Pr(B) = 0, then this is immediate. Otherwise, it is easy to 
cheek that P r ( C I B )  = 0, so that condc(condB(Pr)) is undefined. This 
shows that condc o condB = condBnc in general. A similar argument shows 
that condB o condc = condBnc, and hence that condB o condc = condc o 
conds. [] 

Notice that the conditional probability function Pr(. [B) is well defined 
only if B, the observation, is a measurable set. In [12], this definition is 
extended to allow nonmeasurable sets, by providing a notion of inner and 
outer conditional probability. The definition is inspired by Theorem 2.1. Let 
(S, ?(,Pr) be a probability space. Define the inner conditional probability 
Pr, (A I B) and the outer conditional probability Pr* (A I B) of A given B as 
follows: 

Pr, (AIB)  = inf{Pr' (A l B ) l (S, X',Pr')  
extends (S ,X ,  Pr) and A,B  E X'}, 

Pr* (AIB)  = sup{Pr'(A [B) I (S, X',Pr')  
extends (S ,X ,  Pr) and A,B  E X'}. 

Since the infimum and supremum above are not well-defined unless 
Pr, ( B ) > 0, we define Pr. ( A I B ) and Pr* ( A I B ) only if Pr. ( B ) > O. 

The next theorem (from [12]) gives elegant closed-form expressions for 
the inner and outer conditional probabilities. This formula appears also in 
[6,43,44]. Indeed, this formula even appears (lost in a welter of  notation) 
as Equation 4.8 in [7]! 
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Theorem 3.2. For any probability function Pr on S and subsets A, B c_ S such 
that Pr. ( B ) > O, we have 

Pr. (A N B) 
Pr,(A IB) = 

Pr,(A NB)  + Pr*(ANB) '  
Pr*(A n B) 

Pr*(A B) = 
Pr*(ANB) + P r . ( A N B )  

As we discussed earlier, every belief function is a lower envelope. Let 
Bel be a belief function defined on S, and let (S, X, Pr) be a probability 
space with sample space S. Recall that Pr is consistent with Bel if Bel(A ) 
Pr(A) <~ PI(A) for each A 6 2(. Let 7:'8e: be the set of all probability 
functions consistent with Bel, such that every subset of  S is measurable. The 
next theorem tells us that the belief function Bel is the lower envelope of  
PBet, and PI is the upper envelope. 

Theorem 3.3 (Fagin and Halpern [12] ). Let Bel be a belief function on S. 
Then for all A c_ S, we have 

BeI(A) = inferepBet Pr(A ), 

PI(A) = sUPprc.pset Pr(A ). 

Theorem 3.3 suggest how we might update a belief function to a condi- 
tional belief function, and a plausibility function to a conditional plausibility 
function, by using the following definitions as given in [12]: 

Bel(A [B) = infer~pBe, Pr(A [B), 

PI(A [B) = suPer~pBe, Pr(A [B). 

It is not hard to see that the infimum and supremum above are not well- 
defined unless Bel(B) > 0; therefore, we define Bel(A [B) and PI(A I B) 
only if Bel(B) > 0. It is straightforward to check that if Pr is a probability 
function, Bel is the belief function corresponding to Pr, and A and B are 
measurable sets with respect to Pr, then Bel(A]B) = Pr(A]B). Thus, this 
definition of  conditional belief generalizes that of  conditional probability. 

Because of  the close analogy between the definitions of conditional inner 
measures and conditional belief functions, and the fact that inner measures 
and belief functions are essentially the same, we might suspect that a closed- 
form formula for the conditional belief function can be obtained by replacing 
inner measures in Theorem 3.2 by belief functions and outer measures by 
plausibility functions. The next theorem says that this is indeed the case. 
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Theorem 3.4 (Fagin and Halpern[ 12] ). I f  Bel is a belief function on S such 
that Bel(B) > O, we have 

Bel(A n B ) 
Be l (AIB)  = 

Bel(A n B) + PI(A n B) 
PI(A n B) 

PI (AIB)  = 
PI(A n B) + Bel(A N B) 

It is well known that the conditional probability function is a probability 
function. That is, if we start with a probability function Pr defined on a 
a-algebra 2( of  subsets of  S and if B E 2(, then the function Pr(. [ B) defined 
on 2( is a probability function. We might hope that the same situation 
holds with belief functions, so that the conditional belief and plausibility 
functions are indeed belief and plausibility functions. Given the definitions 
of conditional belief and plausibility as lower and upper envelopes, it is not 
clear that this should be so, since lower and upper envelopes of arbitrary 
sets of  probability functions do not in general result in belief and plausibility 
functions. Fortunately, as the next result shows, in this case they do. Thus, 
we have a way of updating belief and plausibility functions to give us new 
belief and plausibility functions in the light of new information. 

Theorem 3.5 (Fagin and Halpern [12] ). Let Bel be a belief function defined 
on S, and PI the corresponding plausibility function. Let B c_ S be such 
that BeI(B) > O. Then Bel(. I B) is a belief function, and PI( . IB)  is the 
corresponding plausibility function. 

Using these definitions, we can extend the updating function conds so 
that it is defined on belief functions as well as probability functions, by 
taking condB(Bel) = Bel ( . IB)  if Bel(B) > 0, and undefined otherwise. 
Unfortunately, when we extend condB to belief functions, Proposition 3.1 
no longer holds. (See [12] for further discussion of this point.) 

Dempster [7] defines another notion of conditional belief. He defines 

Bel(A U B) - Bel(B) 
Bel(A 1] B) = 

1 - Bel(B) 

BeI(.IIB) is indeed a belief function, and the corresponding plausibility 
function satisfies 

Pl(A n B) 
PI(A II B )  - 

PI(B) 

For the remainder of this paper, we call this the DS notion o f  conditioning. 
As shown in [ 12 ], there is a sense in which the two notions of conditioning 

that we have been considering both correspond to conditional probability. 
Suppose that we have a probability space (S, X,  Pr) with basis Y, and let 
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Bel be the belief function corresponding to Pr. Then we can consider two 
processes. In the first process, an agent chooses a set X E 3; with probability 
Pr(X) and then chooses an element x E X. We are not given the probability 
with which a particular x E X is chosen. Thus, given A c_ S, we cannot 
compute a precise probability that x E A is chosen; Pr. (A) and Pr* (A) 
give us the best possible lower and upper bounds. Similarly, if we fix a set 
B c_ S, then we cannot compute a precise probability that x E A is chosen 
given that x is in B. In this case, the best possible lower and upper bounds 
are given by Bel(AIB) a n d P l ( A i B )  (i.e., Pr.(AIB) a n d P r * ( A i B ) ) .  In 
the second process, we slightly change the rules so that when choosing an 
element x E X, the agent chooses x in B whenever possible. There is a 
difference between the two processes only if both X rq B ¢ ~ and X n B ~ 
for some basis set X E Y. Since X is an element of a basis, this in turn 
can happen only if B is a nonmeasurable set (since every measurable set 
is the union of basis sets). In this case, the agent definitely chooses an 
element in X N B (although again, we don't know the probability that a 
particular element will be chosen). We can then ask for the probability that 
an element in A will be chosen by the second process, given that an element 
in B is chosen. It can be shown that the bounds are provided by Bel(A II B) 
and Pl(A ]] B). (See [12] for more details.) These observations show that 
the DS conditioning notion corresponds to a somewhat unusual updating 
process, where before we condition on B, we try to choose an element in B 
if possible. 

Although the focus here has been on updates that arise from a conditioning 
process, there are clearly other ways of updating beliefs and probabilities. 
In general, when we make an observation, we do not observe that B is the 
case. More likely, the best we can say is that our observation leads us to 
believe that B occurred with some probability. Methods such as Jeffrey's rule 
[25] have been proposed for updating probability functions given such an 
observation. The details are beyond the scope of this paper. The key point 
is that they again lead to an update function, which maps one probability 
function to another, and that they can be extended to provide an update 
function on beliefs in an appropriate way. (See [12] for further discussion 
of this point.) 

4. Bel ie f  as evidence 

Up to now we have viewed belief as a generalized probability. This does 
not seem to be the view of belief that Shafer espouses in [36]. He talks of 
belief as being a representation of a body of evidence. To say that Bel(A ) = p 
is to say that, as a result of the evidence encoded by Bel, the agent has a 
degree of belief p in the proposition represented by the set A. 
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From this point of  view, it makes sense to combine two belief functions 
Bell and Bel2. The resulting belief function Bel is meant to represent the 
combined evidence encoded by each of  Bell and Bel2 separately. On the 
other hand, it is not clear what it should mean to combine two probability 
functions. The theory of  probability provides no straightforward answer to 
the problem of how to combine two probability functions. For example, if 
one person examines a coin and says that it is fair (so that the probability 
of heads is 1/2), while another says that it is slightly biased and the proba- 
bility of  heads is .4, there seems to be no obvious way to combine these two 
probability distributions. Intuitively, one ought to put more weight on the 
person that is judged to be more reliable, but this a question of  subjective 
judgment, not of  mathematics. (The subject of combining probability dis- 
tributions has inspired a great deal of  research; we refer the reader to [ 16] 
for an overview.) 

Roughly speaking, it seems that updating makes sense for (generalized) 
probability, while combining makes sense for evidence. 

In order to combine two or more independent 4 pieces of  evidence, Shafer 
suggests the use of  Dempster 's rule of combination. For the remainder of  
this section, let us restrict attention to belief functions defined only on finite 
sets S. With this restriction, the rule of  combination can be easily described 
as follows. 5 

If ml and m2 are mass functions with the same domain 2 s, let ml G m2 
be the mass function m where m(A) = c~,{sl,B2 IBlnO2=A} ml (BI)m2(B2) 
for each nonempty A c S, and where c is a normalizing constant chosen 
so that the sum of all of  the m(A) ' s  is 1. It is easy to check that c = 
(~{B,,B: 18,n82~)ml (B1)mz(B2)) -1. Note that if there is no pair BI,B2 
where B1 N BE ~ 0 and ml(Bl)mz(B2) > 0, then we cannot find such a 
normalizing constant c. In this case ml • m2 is undefined. If ml • m2 is 
defined, then the corresponding belief functions Bel~ and Bel2 are said to 
be combinable. If Bell and Bel2 are combinable belief functions with mass 
functions ml and m2 respectively, then the belief function that is the result 
of  combining Bell and Bel2, denoted Bell ~ Bel2, is the belief function with 
mass function ml G m2 (Bell G Bel2 is undefined if Bell and Bel2 are not 
combinable). 

Shafer presents many examples of  the intuitively appealing nature of  the 
rule of  combination in [36]. He also shows that in some sense we can use 

4For now, like Shafer, we take independence to be an intuitive, primitive notion. The 
probabilistic definition of independence--namely, that A and B are independent i f P r ( A n B )  = 
Pr(A ) x Pr(B )-- is  a consequence of our intuitive notion, but does not seem to us to completely 
capture it. 

5These definitions can all be extended to the case where S is infinite. We restrict to finite S 
here for ease of exposition and because it is the case most often considered in the literature. 



290 J.Y. Halpern, R. Fagin 

the rule of  combination to capture the idea of  updating a belief function as 
the result of  learning new evidence. The effect of  learning B can be captured 
by the belief function Learn ~ corresponding to the mass function m which 
puts all the mass on B; i.e., rn(B)  = 1 and rn(A) = 0 i fA # B. Thus, we 
have 

1, i fA  _~ B, 
Learn B(A)  = 0, otherwise. 

It is this idea of  learning that is used to define the DS notion of  condi- 
tional belief. In fact, it is easy to check that Bel( . l[B) = B e l o L e a r n B ;  
i.e., Bel(. II B)  is the result of combining Bel with the belief function that 
corresponds to learning B. 

While this definition seems very natural, the reader should recall our 
earlier discussion, which showed that the DS notion of conditioning cor- 
responds to a somewhat unusual updating process. If we view Bel as a 
representation of  evidence, then a case can be made that Bel(. ][B) rep- 
resents that body of  evidence that results from combining the evidence 
encoded by Bel with the evidence that B is actually the case. On the 
other hand, if we view Bel as a generalized probability distribution, we 
can no longer expect that the rule of combination should correspond to a 
natural updating process. In fact, as was shown above, it does not. The 
key point here is that updating and combining are different processes; 
what makes sense in one context does not necessarily make sense in the 
other. 

The discussion above suggests that, whatever evidence is, evidence and 
probability are different. They are related though. A probability function 
gets updated as a result of  evidence. This suggests that one way we can 
represent evidence is as an update function. For the remainder of this 
paper, we consider this particular representation of  evidence, as a function 
that maps probability functions to probability functions. While we believe 
this is the first paper that has explicitly suggested the representation of  
evidence as an update function, the idea is implicit in many other papers. 
For example, the likelihood function is often viewed as a way of representing 
evidence, and as an update function (see, for example, [21,22]). The key 
point for us is that, as we shall see, belief functions can be viewed as 
representations of  evidence, i.e., as update functions. The idea is that given 
a belief function Bel and a prior probability Pr, we transform this to a 
posterior probability Pr' by using the rule of  combination. That is, we can 
consider the mapping Pr ~ Pr ~ = Pr ® Bel. A priori, it is not clear that this 
mapping does anything interesting. Clearly, for this mapping to have the 
'right' properties, we need to consider how to represent evidence as a belief 
function. 
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4. I. Representing evidence 

In most of  the examples given in [36], subjective degrees of  belief are 
assigned to various events in the light of  evidence. Although Shafer shows 
that the degrees of  belief seem to have reasonable qualitative behavior when 
the evidence is combined, there is no external notion of 'reasonable' against 
which we can evaluate how reasonable these numbers are. The one place 
where there is an external of  reasonableness comes in the area that Shafer 
terms statistical evidence. In this case, we have numbers provided by certain 
conditional probabilities. A prototypical example of  this type of  situation is 
given by the following coin-tossing situation. 

Imagine a coin is chosen from a collection of coins, each of  which is either 
biased towards heads or biased towards tails. The coins biased towards 
heads land heads with probability 2/3 and tails with probability 1/3, while 
those biased towards tails land tails with probability 2/3 and heads with 
probability 1/3. We start tossing the coin in order to determine its bias. We 
observe that the first k tosses result in heads. Intuitively, the more heads 
we see without seeing a tail, the more evidence we have that the coin is in 
fact biased towards heads. How should we represent this evidence in terms 
of belief functions? 

Suppose that we have a space S = {BH, BT}, where BH stands for 
biased towards heads, and B T  stands for biased towards tails. Let Belheads 

be the belief function on S that captures the evidence in favor of  B H  
and B T as a result of  seeing the coin land heads. We would certainly ex- 
pect that Belheaas(BH) > Belheaas(BT), 6 since seeing the coin lands heads 
provides more evidence in favor of the coin being biased towards heads 
than it does in favor of  the coin being biased towards tails. But what 
numeric values should we assign to Belheaas(BH) and Belheaas(BT)? Ac- 
cording to a convention introduced by Shafer [36, Chapter 11] (which we 
discuss in more detail below), we should take Belheads (BH)  = 1/2 and 
Be lheads (BT)  = 0. Thus, if mhead s is the corresponding mass function, we 
take mheads(BH) = 1/2, mheads(S) = 1/2, and mheads(BT) = 0. By symme- 
try, the belief function Beltail s representing the evidence of the coin landing 
tails satisfies Beltails(BH) = 0 and Beltails(BT) = 1/2. 

If  we assume that our observations are independent, then it seems rea- 
sonable to expect that the belief function which represents the observa- 
tion of  k heads should correspond in some sense to combining the evi- 
dence of  observing one head k times. Let k mhead s = mheads G "'" • mheads 
(k times); a straightforward computation shows that mhead s k  (BT) = O, 

k mheaas(BH) = (2 k 1)/2 k, k -- mheads(S) = 1/2 k. Thus, we also have 

6For readability, we write Belhead s (BH) for Belheads({BH } ), and similarly throughout  the 
paper  when singleton sets are arguments.  
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Be[~heads(BT) = 0 and Belkheads(BH) = (2 k - 1)/2 k. This seems qualita- 
tively reasonable. If we see k heads in a row, then it is much more likely 
that the coin is biased towards heads than that it is biased towards tails. It 
is also easy to compute that 

(mheads • mtails) ( B H )  = (mheads 0 mtails) ( B T )  = 1 /3 .  

Thus, 

(Be[heads • Beltaits ) (B H ) = (Belheads G Beltai# ) (B T)  = 1 / 3. 

Again, it seems reasonable that if we see heads followed by tails, we should 
have no more evidence in favor of the coin being biased towards heads than 
it being biased towards heads (although the particular choice of 1/3 as the 
appropriate amount of evidence may seem somewhat mysterious). 

What do these numbers tell us about the probability that the coin is 
biased towards heads or biased towards tails? Without knowing something 
about how the coin is chosen, probability theory does not give us much 
guidance. For example, if the coin was chosen at random from a collection 
of l, 000, 000 coins only one of which was biased towards heads and all the 
rest biased towards tails, then even after seeing 10 heads in a row, we would 
still say that it is extremely likely that the coin is biased towards tails. 

Now suppose that we knew that the coin was chosen at random from a 
collection with proportion c~ of coins biased towards heads and 1 - ~  of 
coins biased towards tails. By definition, 

P r ( B H I k  heads) = P r ( B H  A k heads) /Pr(k  heads). 7 

Now the probability that the coin is biased towards heads and the first k 
coin tosses are heads is 2k~/3 k, while the probability that the coin is biased 
towards tails and the first k tosses are heads is (l - a ) / 3  k. The probability of 
getting k heads is thus (1 + (2 k - 1 )~)/3k; hence the conditional probability 
of the coin being biased towards heads given that k heads are observed is 
2kc~/(1 + (2 k -- 1)c~). As we would expect, this probability approaches 1 as 
k gets larger. 

Let m be the mass function that describes the initial probability; thus 
m ( B H )  = c~ and m ( B T )  = 1 -  a. If we define ml = m ® mheads and 
mk = m ® m k then a straightforward computation shows m~ ( B H )  = heads' 
2a/(1 + a)  and m l ( B T )  = (I - c~)/(1 + a),  while m k ( B H )  = 2ka/(1 + 
(2 ~ -  l ) a )  and m k ( B T )  = ( l - a ) / ( 1  + (2 k -  1)a). The upshot of this 
calculation is that Bell = Pr(. ]heads) and Belk = Pr(. I k heads). Thus, by 
combining the prior with the belief function that represents the evidence, 

7Strictly speaking, by using the A symbol, we are confounding propositions and sets. We 
continue to be a bit sloppy in our usage when discussing this and later examples, in the hope 
that the reader will not have any trouble following what is meant. 
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we get the posterior. The same phenomenon occurs if we combine the prior 
with Beltaits. 

Judging by this example, Shafer's definition of  Belheads and Beltail s has two 
very interesting properties. At the risk of  being repetitive, we summarize 
them again: 

• when we combine Belheads with a prior on S = {BH, BT}, we get the 
conditional (posterior) probability on S given that heads is observed. 

k • Bel~ead s in some sense represents the evidence encoded observing k 
heads, and Belheads•Beltails represents the evidence encoded by observing 
heads and then tails, in that if we combine these belief functions with 
the prior, we get the appropriate conditional probability. 

Obviously, we now want to know whether these properties hold not just 
for certain observations made in this coin-tossing example, but in general. 
The answer is yes, and the appropriate theorems that show this can already 
be found in [36]. We review and extend this material here. 

4.2. A general framework 

We want to consider the question of  representing statistical evidence in 
a general framework. Suppose that we have a set 7~ consisting of  basic 
hypotheses H1 . . . . .  H,n, and another set O consisting of  basic observations 
O b l  . . . .  , Obn. Intuitively, we are considering a situation (which is standard 
in statistical testing) where exactly one of  these hypotheses holds, and we 
are testing which one it is. The basic observations are the data given to 
us by our tests. In our example above, the basic hypotheses are BH and 
B T, while the basic observations are heads and tails. Although there are 
often difficulties in deciding precisely what hypotheses one should test and 
what the observations are (indeed, this is one of  the fundamental problems 
in statistics), the precise choice of  basic hypotheses and basic observations 
is clear in many applications of interest. In any case, our goal here is to 
understand what are appropriate ways to represent evidence. The hope is 
that by analyzing this relatively simple situation, we can gain insight into 
more complicated situations. 

We assume that for each basic hypothesis Hi, we have a probability Pri 
on O. More formally, we have a probability space ( 0 , 2 ° , P r i )  (the set of 
measurable sets being 2 ° tells us that every subset of  O is measurable). 
Intuitively, Pri (Ob) is the probability of observing Ob given that the hy- 
pothesis Hi holds. The reason we write Pri (Ob) rather than something like 
Pr(Ob]Hi ) is that in writing the latter expression, we implicitly assume that 
we have a probability function Pr on the space ~ x O; this is an assumption 
we do not want to make at this point (although we do make it later). We 
shall be mainly interested in Pri (Obj) for a basic observation Obj. Of course, 
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once we know Pri (Obj) for each basic set, we can easily extend Pri by ad- 
ditivity to all of 2 °.  In the example above, we have PrsI4 (heads) = 2/3, 
PrgT(heads) = 1/3, and so on. The probability of seeing heads given that 
the coin is biased towards heads is 2/3, while the probability of seeing heads 
given that the coin is biased towards tails is 1/3. 

We want to compute a belief function that represents the result of making 
a basic observation Ob ~ O, using these probabilities. The general approach 
to doing this goes back to the statistician R.A. Fisher, who called the 
expression Pri(Ob) a likelihood, and viewed it as the likelihood that the 
hypothesis Hi was true, given the observation Ob. The hypothesis that is 
taken as most likely to be true is the one whose likelihood is the greatest, 
given the observation Ob. We would expect that observing Ob would provide 
more support to Hi than Hj if Pri(Ob) > Prj(Ob). (See [18] for further 
discussion of likelihoods.) Shafer's convention provides a particular way of 
capturing this intuition. According to Shafer's convention, the evidence Ob 
should be represented by the belief function Belob such that for each subset 
A c S, we have 

Belob(A) = 1 - [maxPr j (Ob) /  max Prj(Ob)]. 
HjEA j = l , . . . ,m 

In our example, the observation is heads. Since PrBtt(heads) = 2/3 and 
PrBT(heads) = 1/3, it is easy to see that we have Belheads(BH) = 1/2 and 
Belheads(BT) = 0, just as we assumed above. 

One important consequence of the general definition is that Plob(Hi) = 
1 - Belob (Hi) = Pri (Ob)/c, where c = maxj = l,...,m Prj (Oh). Thus, the plau- 
sibility of the basic hypothesis Hi is proportional to the likelihood Pri (Ob). 
As we now show, this property of Belob is enough to guarantee that it acts 
correctly as an update function. 

Fix the functions Prl . . . . .  Prin. In order to show that Belob acts correctly 
as an update function, we need to show that, when combined with a prior 
on ~ ,  we get the conditional probability given Oh. Thus, suppose that we 
have a prior probability Pr on 7-[ × O. Since we can identify subsets of 7-( and 
O with subsets of 7-[ × (.9 in the obvious way (for example, we can identify 
Ob c_ 0 with the subset 7-[ × Ob = { ( H i ,  Obj)lHi E 7-[, Obj ~ Ob}), Pr 
actually can be viewed as giving us a probability function on both ~ and O: 
we simply identify Pr(Hi) with Pr(Hi x O) and Pr(Obj ) with Pr(~ x Obj ). 
In particular, this lets us view Pr as giving us a prior on 7-/. Moreover, we 
can make sense out of the conditional probability Pr(. [Ob); this will be 
important in our later discussion. 

We do not want to consider arbitrary probability functions on ~ x O. 
We want to consider only those probability functions which are consis- 
tent with the information already provided to us by the probability func- 
tions Prl . . . . .  Prm. Recall that Pri(Ob) intuitively represents the condi- 
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tional probability of  seeing Ob given that hypothesis Hi is true. Thus, 
we say that Pr is consistent with Prl . . . . .  Prm if Pr(Hi) > 0 implies 
Pr(ObjlHi)  = Pri(Obj), for i = 1 . . . .  ,m. This means that Pr is con- 
sistent with Prl . . . . .  Prm exactly if Pri is the probability on O obtained by 
conditioning Pr with respect to Hi. Note that for any probability function 
Pr' on 7~, there is a unique probability function Pr on 7-( × O consistent with 
Prl , . . . ,  Prm such that Pr(Hi) = Pr' (Hi). We obtain Pr by simply defining 
Pr(Hi × Obj) = PtS(Hi)Pri(Obj) and extending by additivity. For each 
probability Pr on 7~ x O, we denote the restriction of Pr to 7-( by Prl~, where 
of course Prl~ (H) = Pr(H x 0) .  

Intuitively, a belief function Bel provides an appropriate representation 
of the evidence in the observation Ob if, by combining it with Prl~ , we 
get the conditional probability function Pr(. lob).  Formally, we say that a 
belief function Bel captures the evidence of  the observation Ob if for every 
probability function Pr on 7~ × O consistent with Prl . . . . .  Prm, we have 
Pr(HilOb) = (Prl~ G Bel) (Hi), i = 1 . . . . .  m, provided that Pr(Ob) > O. 
This definition is meant to capture the intuition we started with: Bel captures 
the evidence of Ob if, whenever we combine it with a prior, we get the 
conditional probability given Ob. 

In the coin-tossing example above, we showed that the belief function 
Belheads that arises from the observation heads using Shafer's representation 
did capture the evidence of heads. We want to prove that Shafer's represen- 
tation has this property in general. The following result follows from [36, 
Theorem 9.7 ]. 

Theorem 4.1. Let Bel be a belief function on 7-(, and Pl be the corresponding 
plausibility function. Bel captures the evidence of  Ob if f  Pl(Hi ) = cPri (Oh) 
for some constant c > O. 

Theorem 4.1 essentially says that all that matters about a belief function 
when assessing whether it captures evidence appropriately is the relative 
plausibility of the basic hypotheses; these plausibilities must be in the 
same ratio as the likelihood of these hypotheses given the observation 
Ob. Any belief function which assigns the appropriate relative plausibilities 
to basic hypotheses will do. We have already observed that in Shafer's 
representation, the relative plausibility of hypotheses is in the right ratio. 
Thus, we immediately get 

Corollary 4.2. Belob captures the evidence o f  Ob. 

Now what happens when we combine observations? If we make k ob- 
servations, this results in the observation set O k, consisting of k-tuples of 
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elements of O. Suppose that we have a sequence (Ob~,. . . ,  Ob k) of obser- 
vations in O k, and that the belief function Belj captures the evidence of  
Ob J, for j = 1 , . . . , k .  8 Further suppose that these observations are inde- 
pendent. This means that for each basic hypothesis Hi, the probability of  
observing a particular sequence of  observations given Hi is the product of 
the probabilities of  making each observation in the sequence. More for- 
mally, we assume that we have a probability P ~  on O k, for i = 1 . . . . .  m. 
Then the observations Ob I . . . .  , Ob k are independent (with respect to P ~  ) 
if P~ ( (Ob 1 . . . . .  Obk) ) = Pri(Ob 1) × ... × Pri(Obk). 

Intuitively, since the belief function Belt ~.. .®Belk is intended to represent 
the combination of  the evidence represented by making each observation 
individually, we might hope that the evidence of  the sequence (Ob 1 . . . . .  Ob k ) 
of observations is captured by Bell 0 . . .  ®Belg. This is a property that held for 
Shafer's representation in our example. The following result, which follows 
from [36, Theorem 9.8], shows that it holds in general: 

Theorem 4.3. Suppose Ob J, for j = 1 . . . . .  k, are independent observations 
and Belj captures the evidence o f  Obj. Then Bell • ... ® Belk captures the 
evidence o f  ( Ob 1 . . . . .  Ob k ). 

Again, we want to stress that Theorems 4.1 and 4.3 show that not only 
does Shafer's representation give a belief function that satisfies our criteria 
for appropriately capturing an observation Ob, but so would any other belief 
function for which the plausibilities of  the basic hypotheses are in the same 
ratio as the likelihoods of  the basic hypotheses given Ob. Another such 
representation is suggested by Dempster [8] (see [37] for a comparison 
between Shafer's and Dempster's approaches). Yet another is given by 
Smets (see [40] for a presentation and discussion of  Smets' approach). We 
consider a fourth choice (also considered in [40] ), which we shall shortly 
argue is perhaps the most natural of  all; namely, to consider the unique belief 
function that captures the evidence of  Ob that is a (discrete) probability 
function. To emphasize the fact that it is a probability function, we call 
it Prob. By Theorem 4.1, we must take Prob(Hi) = cPri(Ob), where c is 
a normalizing constant chosen so that ~iml  Prob(Hi) = 1. The following 
proposition is immediate from Theorem 4.1: 

Proposition 4.4. Prob captures the evidence o f  Ob. 

The representation Prob is quite easy to work with. For example, in the 
coin-tossing example, we have Prsl-I (heads) = 2/3 and PrST (heads) = 1/3. 

8We are using superscripts rather than subscripts so that these observations will not be 
confused with the basic observations O b  I . . . . .  O b n .  
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Since the ratio of  these probabilities is 2" 1, the belief/probability function 
Prhead s that is intended to represent the evidence of  seeing heads must 
give mass to the hypotheses B H  and B T  in the ratio 2 • 1. Thus we 
must have Prheads(BH) = 2/3, Prheads(BT) = 1/3. Similarly, we have 
Prtaits(BH) = 1/3, Prtaits(BT) = 2/3. Although Prheads and Prtails can be 
viewed as probability functions on ~ ,  they should not be thought of  as 
representing the probability of  B H  or B T  in any sense corresponding to 
the frequentist or subjectivist interpretation of  probability. Rather, these 
are encodings of  the evidence for B H  and B T  given the observations 
heads and tails respectively. It is easy to check that, for example, we have 
P~eads(BH) = 2k/(2 k + 1) and P~eads(BT) = 1/(2 k + 1), where P~ead~ = 
PrheadsG"" GPrheads (k times). Again, the more heads we see, the greater the 
evidence that the coin is biased towards heads. And if we combine this with a 
prior Pr such that Pr(BH)  = a, then an easy computation shows that (Prl~@ 
P~eads) ( B H )  = 2 ka / (  1 + (2 ~ - 1 ) a ). This is the conditional probability 
Pr(BH I k heads), which is just what we expect from Theorem 4.1. 

Before we compare Prob to Belob, we briefly consider Shafer's motivation 
in choosing Belob. It turns out that Belob is the unique consonant belief 
function among the belief functions that capture the evidence of  Ob, where 
a consonant belief function is one for which the focal elements are nested, 
i.e., we have that if mob(A) > 0 and mob(B) > 0, then either A c_ B or 
B c_ A. Shafer discusses consonance in [36, Chap. 10]. He does present 
arguments that consonance is a reasonable assumption to consider in some 
cases (see also [37] ); it would take us too far afield to discuss them here. 
Further arguments for Shafer's representation are given in [26] and [47]. 
Nevertheless, it seems to us that the case for this representation is not 
a strong one. Indeed, as we now show, there is one rather nonintuitive 
consequence of using Shafer's consonant belief function in this context. 

4. 3. Representing the combination of evidence 

Suppose we make k independent observations Ob I . . . . .  Off`. It seems 
that this should be equivalent to making the one joint observation 
(Ob I . . . . .  Off` ). Although we showed above that Belobl G "" @ Belobk ap- 
propriately captures the evidence of  (Ob 1 . . . . .  Off'), we might hope for 
something stronger, namely that Belobl @ .. .  @ Belobk = Bel~ob,,...,Ob~ ). This 
just says that the belief function that represents the joint observation is 
equal to the combination of  the belief functions representing the individ- 
ual observations. Unfortunately, as Shafer already observed [36, p. 249- 
250], this is not the case in general. Returning to our coin-tossing exam- 
ple, recall that (Belheads @ Beltaits)(BH) = 1/3. Suppose we now compute 
Bel~heads, taits) (BH) .  Since P~I-I( (heads, tails) ) = P ~ r (  (heads, tails) ) = 2/9 
(where P ~ / t  = PrBI~ @ PrBI4), it follows from Shafer's definitions that 
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Bel(heads, tails) ( B H )  = 0. Thus Belhead s • Beltails # Bel(heads,tails). 9 
The fact that Shafer's approach to representing evidence does not represent 

a joint observation in the same way that it represents the combination of 
the individual observations has disturbed a number of authors [9,35,48]. In 
fact, in [40], Shafer indicates that he is inclined to agree that this property 
is unacceptable. We now focus on this problem in more detail. 

First observe that the problem does not arise if we use the probabilistic 
representation of evidence. For example, it is easy to check that (Prhead s • 
Prtails) ( B H )  = Pr(heaas , ta i l s ) (BH)  = 1/2. Intuitively, the two observations 
of heads and tails cancel each other out, so B H  and B T  are given the same 
relative weight as a result of  these observations. The fact that this example 
works out right is not an accident. 

Proposition 4.5. I f  Ob I . . . . .  Ob k are independent observations, then Prob,  • 

• "" ® Prot¢ = Pr~ob~,...,Ob~ ). 

Proof. By definition, Prob, is the discrete probability function on 
{ H I , . . . , H m }  where the probability of Hi is proportional to Pri(ObJ). So 
Prob~ 0 . . .  GProbk is the discrete probability function on {Hi . . . . .  Hm} where 
the probability of Hi is proportional to Pri ( Obl ) . . .  Pri ( Ob k ). 

By definition of independence, the probability of observing the se- 
quence (Ob 1 . . . . .  Off'), given the hypothesis Hi, is equal to the prod- 
uct Pri (Ob I ) . . .  Pri (Ob k ). So Pr(ob....,Obk ) is the discrete probability func- 
tion on {Hi . . . .  ,Hm} where the probability of Hi is proportional to 
Pri (Oh I ) . . .  Pri (Ob k). Together with the result of the previous paragraph, 
this proves the proposition. [] 

Proposition 4.5 shows that the probabilistic representation of evidence 
acts correctly under combination. Although the example above showed that 
Shafer's representation does not act correctly under combination, there might 
perhaps be other representations besides the probabilistic representation 
that act correctly under combination in the sense of Proposition 4.5. In 
the remainder of this section, we show that this is not the case. Under 
some reasonable assumptions, the representation of evidence using a discrete 
probability function is the only representation of evidence that acts correctly 
under combination in the sense of Proposition 4.5. 

9We mentioned earlier that, while the fact that (Belhead s G Beltails)(BH) = (Belheads ~3 
Beltails) (B T)  seemed reasonable, the fact that (Belhead s ~ Beltail s ) ( B H )  should be 1/3 was a bit 
mysterious. The observations above suggest that not only is 1/3 mysterious, it is inappropriate. 
Of course, as far as getting the 'right' answer when combined with a prior, all that matters is that 
we have equality. A similar phenomenon arises with Dempster's representation of evidence; 
indeed, this is precisely the core of Aitchison's criticism of this representation [2]. 
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In order to make these ideas precise, we need to define carefully the 
phrase 'representation of  evidence'. We use here the general framework 
defined by Walley [45]. 10 Assume, as above, that we have a set 7-[ of  
hypotheses, with basic hypotheses H1 . . . . .  Hm, and a set (_9 of observations, 
with basic observations Obl . . . . .  Obn. Suppose that corresponding to each 
basic hypothesis Hi, we have a probability Pri on O. Let B E L ( ? t )  be the set 
of  all the belief functions on 7-/. We now make an observation Ob. We take 
a representation of evidence to be a general technique to associate with the 
observation Ob a belief function in B E L  ( ~ )  which captures the evidence 
of  Ob. If Pri (Ob) = ai, and if Pl is the plausibility function corresponding 
to the belief function representing Ob, then, by Theorem 4.1, we know that 
Pl(Hi)  = cai, for some constant c. The relative plausibilities of  the basic 
hypotheses must be in the right ratio. 

Since the only information we are given regarding Ob are the likelihoods 
Pri (Oh), i = 1 , . . . ,  m, we would expect the belief function which represents 
Ob to depend only on these likelihoods. This is consistent with what has 
been called the likelihood principle [l 8 ]: only likelihoods count in assessing 
the evidence contained in an observation. We remark that of  the represen- 
tation methods mentioned above, the probabilistic representation, Shafer's 
representation, and Smets' representation all satisfy this assumption; how- 
ever, Dempster 's representation does not. In Dempster's representation, the 
belief assigned to hypothesis H as a result of  making observation Ob might 
depend on the probabilities Prj (Oh') assigned to an observation Ob' other 
than Ob. 

To capture formally our assumption that all that matters are the like- 
lihoods P r i ( O b ) ,  we take a representation o f  evidence on 7-t to be a 
function f : ( [ 0 , 1 ]  m -  { ( 0 , . . . , 0 ) } )  ~ BEL(7"(). (The reason we do 
not allow (al . . . . .  am) = (0 . . . . .  0) is that if all the likelihoods are 0, 
then we do not have any information about the relative plausibilities we 
should assign to the basic hypotheses.) We refer to the belief function 
f ( a l  . . . . .  am)  as  Bel(ab...,am). Intuitively, if we fix an observation Ob and 
if Pri(Ob) = ai, i = 1 . . . . .  m, then under the representation of  evidence 
f ,  the belief function Bel(ab...,a,,) is the one that represents the evidence 
encoded in Ob. In particular, this formalizes the assumption that the be- 
lief function representing Ob depends only on the likelihoods Pri (Ob), 
i = 1 . . . . .  m. Let Pl(al,...,an) be the corresponding plausibility function. 
As we noted above, we require that el(ab. . . ,a,)(ni)  = cai, for some con- 
stant c. 

Shafer's convention gives a representation of  evidence on 7-(. Using our 

1°We actually developed our ideas independently of Walley; we thank Larry Wasserman for 
pointing out Walley's work to us. 
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current notation, Shafer's representation gives 

Bel~a,,..,am)(A) = 1 - [ m a x a i /  max ai]. 
H~EA i = 1,...,m 

Our probabilistic representation of  evidence gives us 

Bel(a,,...,a,,)(A) = Z ai / ~ - ~ a i .  
Hic A i=1 

Note that if we take ( a l  . . . . .  am) = (0 . . . .  ,0) in either Shafer's representa- 
tion or the probabilistic representation, the resulting belief function is not 
well defined. 

Walley [45] considers various assumptions that a representation of  evi- 
dence might satisfy, and shows that under quite weak assumptions, a rep- 
resentation of  evidence results in a belief function that acts essentially like 
a probability function. We focus here on one assumption (also considered 
by Walley), that is easily seen to be satisfied by both the probabilistic rep- 
resentation and Shafer's representation, and seems to us very natural. It is 
a stronger version of  the likelihood principle, namely, that all that counts 
are relative likelihoods. While this assumption is not a necessary one, it is 
consistent both with our use of  relative plausibilities above (for example we 
observed in Theorem 4.1 that for a belief function to correctly represent an 
observation Oh, all that matters is that the ratio of  the plausibilities of  the 
basic sets be the same as the ratio of  the likelihood functions Pri(Ob)). It 
is also consistent with the use of  likelihoods typically made in the literature, 
where what is considered is the likelihood ratio (the ratio of  the likelihood 
of  Ob given an hypothesis H to the likelihood of Ob given ~H) .  Here too, 
the intuition is that the absolute likelihood should not matter, but only 
the relative likelihood. Although this assumption seems quite natural, we 
remark that it is not satisfied by Smets' representation. 

We encapsulate these ideas in the following definition. An appropriate 
representation of  evidence on 7-( is a function f : ([0, 1]  m --  { ( 0  . . . . .  0 ) } )  

B E L ( ~ ) .  We refer to f (a l , . . . ,  am ) a s  Bel(a~,...,am), and require that it satisfy 
the following properties: 

(R1) Pl(a,,...,am ) (Hj) = caj for some constant c > 0 and for j = 1 . . . . .  m, 
(R2) Bel(a,,...,am) = Bel(aa,,...,aam), for all d with 0 < d < 1. ~ 

l tBy taking 0 < d < 1, we guaran tee  tha t  Beltda~,...,dam) is well defined.  If  we cons ider  some  
d > 1, then  it is possible that  dai > 1 for some  i. Note  that  i f d  > 1 and  dal ~< 1 for 
i = 1 , . . . ,  m,  then  it a lready follows that B e l ( d a l , . . . , d a m  ) = Bel(al,...,am): we can s imply  mul t ip ly  

by l / d ,  s ince 0 < 1/d < 1. 
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Now we need one last definition. Let f be a representation of evidence. 
We say that f acts correctly under combination if for all (al . . . .  ,am), 
(bl . . . . .  bin) E [0, 1] m - { ( 0 , . . . , 0 ) } ) ,  we have 

(R3) Bel(a~b,...,ambm) = Bel(a,...,am) G Beltb,...,bm). 

To understand why this definition captures our intuition that a representa- 
tion acts correctly under combination, suppose that we make two indepen- 
dent observations, say Ob 1 and Ob 2. Further suppose that Prj (Ob 1 ) = aj 
and Prj (Ob 2) = bj, j = 1 . . . . .  m,  so that Bel(aj,...,am) represents the obser- 
vation Ob I and Beltb,,...,bm) represents the observation Ob 2. If  Ob 1 and Ob 2 
are independent, then P r j ( (Ob  l ,Ob2))  = cajbj,  for j = 1 . . . . .  m and for 
some appropriate normalizing constant c. Thus we expect Belca~b,...,ambm) to 
represent the joint observation. 

As we have observed, Shafer's representation does not act correctly under 
combination, while the probabilistic representation does. As the following 
theorem shows, the probabilistic representation is the only appropriate repre- 
sentation which acts correctly under combination. This result also essentially 
appears in [45] (see the discussion on p. 1449). We include a proof here 
both because our proof is more direct than Walley's, and because we do not 
require a few weak regularity conditions that he imposes. 

Theorem 4.6. The probabilistic representation o f  evidence is the only appro- 
priate representation o f  evidence which acts correctly under combination. 

Proof. Let f be an appropriate representation of evidence which acts cor- 
rectly under combination. As before, denote f ( a x  . . . . .  am) by Bel(aj,...,am). 
By assumption, f satisfies properties (R1), (R2), and (R3). 

By (R3), it follows that Bel(a,,...,am) = Bel(a~,...,am)G Bel~l,...,1). Thus, 
Bel(l ..... i) acts as the identity. Let us denote Bel(l,...,i) by Belld, with mass 
function mid. Since Belld is the identity, we know that mid 0 mid = mid. 
Our next goal is to prove that Belld is a discrete probability function, with 
Belld(Hi) = 1 /m,  for i = 1 . . . . .  m. In particular, this means that we must 
show that mid(Hi)  = 1 /m,  for i = 1 . . . . .  m, and mid(A)  = 0 i f A  is not a 
singleton. There are three main steps in showing this. First, we show that 
there are no nested focal elements of mid (recall that the focal elements of 
mid are those sets A where mid(A)  > 0); that is, there are no focal elements 
A, B with A c B. Second, we show that no focal elements overlap; that is, 
there are no focal elements A, B with A N B # ~J. Third, we show the focal 
elements are singleton sets. 

Suppose first that there are nested focal elements A c B of mid. Let us 
take B as large as possible so that this is true, that is, such that there is no 
focal element C with B c C. Assume that mid(A)  = a > 0 and mid(B)  = 
b > O. By maximality of B, it follows from the definition of • that (mid • 
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mid) (B)  = c ( m z a ( B ) m t a ( B )  ) = cb 2, where c is a normalization constant. 

Furthermore, ( m i d ®  m l d ) ( A )  >~ C ( m l d ( A ) m l d ( A )  + m l d ( A ) m i a ( B ) )  >1 
c(a  2 + ab) .  Since mta® mid = mid, it follows that 

a mid (A)  a 2 + ab 
b - m i d ( B )  >~ b 2 

Since b > 0, we can multiply both the left- and right-hand sides by b 2, and 
simplify to obtain 0/> a 2. But this is impossible, since a is strictly positive. 
Thus, there are no nested focal elements of mid. 

We now show that no focal elements of mid overlap. Suppose that A and 
B are focal elements such that A n B # ¢~. Let C = A n B. Since C is a 
proper subset of both A and B, it follows from the fact that there can be 
no nested focal elements of mid that m i d ( C )  = 0. However, m i d ( C )  = 
(mtd O m l d ) ( C )  >1 m l a ( A ) m t d ( B )  > 0, a contradiction. Thus, no focal 
elements of  mid overlap. 

We now show that every focal element of mid is a singleton set. Let 
X~ . . . . .  Xr be the focal elements. By the arguments above, the Xi's must 
be pairwise disjoint subsets of {HI . . . . .  Hm}.  Assume that some Xi is not 
a singleton. Without loss of generality, we can assume that H~ and H2 are 
elements of XI. Consider the two belief functions Bel' = Bel(1,Uz, uz,...,U2) 
and Bel" = BeIl~/2,~,x ..... ~), with corresponding mass functions m' and m", 
respectively. By (R3), it follows that Bel t ® Bel" = Bel~l/Z,...,t/2), which by 
(R2) equals Bel(l ..... l) = Belial. By (R1), we know that PI' (HI ) > PI' (H2). It 
follows easily that there must be some focal element A of m' that contains 
H~ but not / /2 .  Further, by (R1), we know that Pl"(H1 ) > 0, so there must 
be some focal element B of m" that contains H1. Let C = A N B. Then 
m i d ( C )  = ( m ' ®  m " ) ( C )  >i m ' ( A ) m " ( B )  > 0. But this is a contradiction, 
since C contains Hi but not 112, and the only focal element of mid that 
contains H1 is XI, which also contains H2. 

We have shown that the only focal elements of Belta are singleton sets; 
thus, Bel~d is in fact a discrete probability function. Since Belld is a discrete 
probability function, Belld = Pltd. By property (R1), it follows easily that 
Belld(Hi) = 1 /m,  for i = 1 . . . . .  m. It follows by definition of ® that if Bel 
is an arbitrary belief function, then Bel ® Belld has the property that each 
focal element is a singleton set {Hi}. This means that BelGBelld is a discrete 
probability function. In particular, this is true when Bel is Bel~a,,...,a,,). But 
Bel(a~,...,a,,) d3 Belld = Bel(a~,...,a,,); thus,  Bel(a.,...,am ) is a discrete  p robab i l i ty  
function. Again, this means that Bel(a~,...,am) = Pl(ah...,a,,). By (R1), we then 
find that Bella,,...,a,, ) (H i )  is proportional to aj, for j = 1 . . . . .  m. So f is our 
probabilistic representation of evidence, as desired. [] 

If we accept that it is important that a representation of belief act correctly 
under combination, where does this result leave us? If in addition we accept 
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the strong likelihood principle (that all that matters are relative likelihoods), 
then we are forced to use the probabilistic representation. We could give up 
the strong likelihood principle, while still accepting the likelihood principle, 
that all that matters are the likelihoods of  the observation we have made. 
In this case, there are non-probabilistic representations of  evidence that 
can be used, such as Smets'. The consequences of giving up the strong 
likelihood principle are not yet clear; there may be computational advantages 
to assuming strong likelihood. This issue requires further investigation. 
Finally, if we were willing to give up the likelihood principle altogether, we 
might consider using Dempster 's representation. We remark that in [40], 
Shafer considers a very special case of  Dempster 's representation, and shows 
that there is a sense in which it combines correctly. However, in this special 
case, Shafer uses a different technique than Dempster's rule of combination 
to compute the belief function that represents the joint observation. In fact, 
if Dempster 's representation is applied in the most straightforward way to 
the coin-tossing example discussed above, we can show that it too does not 
act correctly under combination. 

We conclude this section by briefly comparing the approach to encoding 
evidence by using a probability function as described above to the more 
standard probabilistic approach using the likelihood ratio, where the like- 
lihood ratio L(Hi, Ob) of Hi given the observation Ob is defined to be 
Pr(OblHi)/Pr(Ob I-~Hi) Clearly, L(.,Ob) has some of the same spirit as 
Prob. Indeed, the computations of  the conditional probability using the rule 
of  combination and Prob very much resemble standard computations us- 
ing Bayes' rule. However, it is not hard to see that L(Hi, Ob) cannot be 
computed directly from Prob(Hi) nor can Prob(Hi) be computed directly 
from L(Hi, Ob). It has been shown [17,21] that any 'reasonable' notion 
of  strength of  evidence must be a function of  the likelihood ratio, where 
a notion of  strength of evidence is taken to be 'reasonable' if it satisfies a 
number of  requirements. (It would take us too far afield to discuss these 
requirements here, but we remark that they are similar in spirit to Cox's 
requirements for a 'reasonable' notion of  belief, and the proof has the same 
spirit as Cox's proof that any reasonable notion of  belief must essentially be 
a probability function [5].) Since Prob is not a function of  the likelihood 
ratio, it must fail to satisfy one of  the requirements of 'reasonableness' given 
by Good and Heckerman. It turns out that the one it fails is that the result 
of  updating the prior probability on Hi by the observation Ob should depend 
only on Prob(Hi) and Pr(Hi). This is almost, but not quite, the case for 
Prob. The problem is that in order to compute the right normalization con- 
stant for (Pr(. lOb)•Prob)(Hi), we need to know Pr(Hj) and Prob(Hj) for 
j = 1 . . . . .  m. It is not enough to know the values just for j = i. However, 
it should be clear that the normalization constant does not play a crucial 
role here. We can still compute the relative conditional probabilities of  Hi 
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and Hj just knowing their priors, Pr(Hi) and Pr(Hj), and Pro;,(Hi) and 
Prob (Hi). 

5. Evidence and envelopes 

Up to now we have assumed that for each basic hypothesis Hj we have 
a probability function Prj on O such that the basic observations Ob are 
measurable with respect to Prj. This implies that there is no uncertainty 
in Prj (Oh); it is given by a single number, rather than by an interval. We 
have also assumed that each basic hypothesis Hj is measurable with respect 
to the prior Pr. This implies that there is no uncertainty in Pr(H; ). In this 
section, we consider what happens if there is some uncertainty. As before, 
we model this uncertainty by assuming that there is some family of possible 
probability functions, rather than a single probability function. 

We focus first on the case where, although we have a probability Prj on 
(9 for each basic hypothesis Hi, there is some uncertainty in Prj (Ob), for 
some j = 1, . . . ,  m. For example, if we modify our earlier example with the 
coin, suppose that instead of knowing that 

(1) if the coin is biased towards heads, then its probability of landing 
heads is 2/3, and 

(2) if the coin is biased towards tails, then its probability of landing tails 
is 2/3, 

all we know is that 

(1') if the coin is biased towards heads, then its probability of landing 
heads is somewhere in the interval [2/3, 1 ], and 

(2') if the coin is biased towards tails, then its probability of landing tails 
is somewhere in the interval [2/3, 1 ]. 

That is, we consider the set 7 ~ of all the probability functions Pr on 
{BH, BT} x {heads, tails} such that Pr(headslBH) = ill, for some #l with 
2/3 ~< fll ~< 1, and Pr(headslBT) = f12, for some f12 with 0 ~ f12 <~ 1/3. 
Thus, 7~ consists of  all probability functions consistent with the information 
that we are given. Now suppose that we observe heads. Given the way we 
have modified the example, there no longer some definite probability of 
heads, so the representation techniques discussed in the previous section do 
not immediately apply. 

Nevertheless, we might hope that we could capture this evidence by a 
belief function that, when combined with the prior probability function 
that gives the probabilities of the coin being biased towards heads or tails, 
gives some interval of possible posterior probabilities of  the coin being 
biased towards heads or tails. We would further expect that this interval of  
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possibilities would be the same as the interval of  possibilities obtained by 
taking all possible conditional probabilities. Unfortunately, this hope cannot 
be attained. 

To understand why, suppose that we represent the observation of  heads 
by some belief function Bel, and that there is a prior probability Pr on the 
coin being biased towards heads. It is easy to see that if we start with a 
probability function, and combine it with any belief function (on the same 
space), then we get a probability function. In particular, Pr]n ® Bel is a 
probability function. Thus, we do not get an interval [a, b] of values with 
a < b, no matter what our choice of Bel. 

However, there is another way that we could obtain an interval of values. 
Let 79 be as above. Then 7~ consists of all probability functions consistent 
with the information that we are given. Let 79heads consist of  all the condi- 
tional probability functions Pr(. ]heads) for Pr E 7 9. After the observation 
heads, we would like the belief and plausibility of B H  and B T  to be defined 
by the lower and upper envelopes of  79heads. A priori, it is not clear that the 
lower and upper envelope really define belief and plausibility functions, but 
as we now show, they do. 

Assume that Pr ~ 79, that the prior probability P r ( B H )  that the 
coin is biased towards heads is c~, and that P r ( h e a d s ] B H )  = fll and 
P r ( h e a d s ] B T )  = f12. An easy computation using Bayes' rule shows 
that P r ( B H I h e a d s )  = a f l l / ( a f l l  + ( 1 -  a)f12), and P r ( B T I h e a d s )  = 
(1 - a) f l2 / (a f l l  + (1 - a)fl2). Minimizing over all possible choices of fll 
and fiE, with 2/3 ~< fll ~< l and 0 ~< fiE ~< 1/3, we get the function Bel such 
that B e I ( B H )  = 2a / (1  + a)  and B e l ( B T )  = 0. It is easy to see that, as our 
notation suggests, Bel defines a belief function. 

What does this tell us in terms of  representation of evidence? For the 
purposes of  this discussion, we use the probabilistic representation here, but 
everything we say works perfectly well for Shafer's representation as well. For 
fixed ill,/~2, let Prheads,pl,# 2 be the probabilistic representation of the observa- 
tion of seeing heads, given that PrBI4(heads) = fll and PrBT(heads) = f12. 
An easy computation shows that we have Prheads,#j,a2 ( B H )  = f i l l ( i l l  + f12) 
and Prheads,#~,#2(BT) = flE/(fll + f12). Now suppose that we are given a 
prior Pr on {BH,  B T }  x {heads, tails} such that Pr(heads) = a. It follows 
from the results of the previous section that (Pr]~ • Prheads,#,,a2)(BH) = 
c~fll/(afll  + (1 - a ) f l 2 ) ,  since the right-hand side is precisely P r ( B H I h e a d s ) ,  
given that P r ( h e a d s ] B H )  = fll and P r ( h e a d s ] B T )  = f12. Similarly, we get 
(Pr]n • Prheads,#t,#2 ) ( B T )  = ( 1 - a) f12/(af l l  + ( 1 - a)fl2). Minimizing over 
all possible choices of  fll and fiE, with 2/3 ~< fll ~ 1 and 0 ~ f12 ~ 1/3, 
we get our belief function Bel that we showed to be the lower envelope of  
7~head s. The upper envelope is the corresponding plausibility function. 

To summarize, instead of  obtaining our belief function Bel by combining 
the prior with the infimum of the representations Prheads,B~,p2, w e  instead 
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obtain Bel by taking the infimum of the results of combining the prior with 
the representation Pt'heads,[3~,fl2. 

A similar situation arises if we assume that Ob is measurable with respect 
to Pri for i = 1 , . . . ,  m, but that H1,. . . ,  Hm are not necessarily measurable 
with respect to the prior probability. Intuitively, this means that there is 
some uncertainty about prior probabilities of the hypotheses. Going back 
to our example, suppose we know that the coin has probability either 2/3 
or 1/3 of  landing heads, as in the original formulation of the problem, 
but rather than being given a precise prior c~ on the coin being biased 
towards heads, all we are given is an interval of  possibilities. For example, 
suppose that all we know is that the prior probability ~ lies in the interval 
[0, 1/2], and we observe heads. Again, it turns out that combining this 
prior with an encoding of  evidence in the most straightforward way gives 
inappropriate results. A probability function extending the prior Pr could 
give B H  probability anywhere between 0 and 1/2. Thus, the answer we 
would hope to get when we combine the prior Pr with an observation of 
heads is a belief function Bel such that BeI(BH) = 0 and PI(BH) = 2/3, 
since this is the range defined by lower and upper envelope of  the family of 
probability functions extending Pr. 

Unfortunately, if we combine the belief function corresponding to this 
prior with the probabilistic representation of  the evidence Prhead s (recall 
that we have Prheads(BH) = 2/3 and Prheads(BT) = 1/3), then we get a 
belief function Be! such that BeI(BH) = PI(BH) = 1/2 and Bel (BT)  = 
PI (BT)  = 1/2. This certainly does not seem like the right answer! If instead 
we combine the belief function corresponding to the prior with Shafer's 
representation Belheads (recall Be[heads ( B H ) = 1/2 and Belheads ( B T ) = 0), 
then we get a belief function Bel' such that Bel ' (BH) = Bel ' (BT)  = 
1/3, while PI' (BH) = PI ' (BT)  = 2/3. Although this at least allows the 
probability of B H  to be somewhere between 1/3 and 2/3, it is still not quite 
the answer we want. 

Just as in the previous case, we can get the lower and upper envelopes 
we are looking for by minimizing and maximizing the results of using the 
combination rule. 

Notice that in the examples that we considered, the lower envelope that 
gave what we felt was the appropriate answer was in fact a belief function. 
We have a counterexample which shows that this is not the case in general. 
However, we conjecture that under reasonable assumptions--namely, if our 
uncertainty about the prior or the conditional probability can be expressed 
by a belief function (i.e., if the lower envelope of  the family of  probability 
functions that describe the prior or the conditional probability is a belief 
function )-- the lower envelope of  the resulting family of  conditional prob- 
ability functions will also be a belief function. We remark that although 
we have treated separately the case where there is some uncertainty in the 
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probability of the observation Ob, given some hypothesis Hj, and the case 
where there is there is some uncertainty about prior probabilities of  the hy- 
potheses Hi, we could, of  course, combine these two situations. The results 
would be similar to what we have already seen. 

6. Examples 

Depending on which of the two views of belief functions we take, we 
will model a situation in very different ways. For example, it is typically 
assumed that lack of  information about an event E should be modelled 
by the vacuous belief function Bel, so that Bel(E) = 0 and Pl(E) = 1. 
While this way of modelling the lack of information is consistent with the 
view of  belief as a generalized probability (intuitively, our information is 
consistent with E having any probability between 0 and 1 ), it is not in 
general consistent with the view of belief as evidence. To take a simple 
example, suppose we have two fair coins, call them coin A and coin B. 
Someone tosses one of the two coins and announces that it lands heads. 
Intuitively, we now have no evidence to favor the coin being either coin A 
or coin B. Taking the view of belief as generalized probability, we would 
have Bel(A tossed) = 0 and Pl(A tossed) = 1. However, taking the view 
of belief as evidence and using the probabilistic representation of belief, we 
get Bel(A tossed) = Pl(A tossed) = 1/2. Lack of information is not being 
represented by the vacuous belief function under this viewpoint. 

In general, starting with a (belief function representing a) prior, if we get 
new evidence, we can either update the prior, or combine it with a belief 
function representing the evidence. As we already saw in the coin-tossing 
example of Section 4, we get the same answer no matter how we do it 
(although the intermediate computations are quite different), providing we 
represent the evidence appropriately. The one thing we must be careful not 
to do is to represent the evidence as a generalized probability, and then 
combine it with the prior. 

We now consider a few other examples from the literature from this 
point of view, showing how understanding the differences between the 
two viewpoints helps clarify the issues involved. We start with a slightly 
simplified version of a puzzle appearing in [23]. 

Suppose that we have 100 agents, all holding a lottery ticket, numbered 00 
to 99. Suppose that agent al holds ticket number 17. Assume that the lottery 
is fair, so, a priori, the probability that a given agent will win is 1/100. We 
are then told that the first digit of  the winning ticket is 1. Straightforward 
probability arguments show that the probability that the winning ticket is 
17 given that the first digit of  the winning ticket is 1 is 1/10; thus, agent 
l 's probability of winning in light of  the new information is 1/10. 
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How can we represent this information using belief functions? Hunter 
essentially considers two belief functions on the space S = {al . . . . .  al00}, 
where Bel(ai) represents the belief that ai wins. It seems reasonable to 
represent the information that the lottery is fair by the belief function Bell 
corresponding to the mass function ml such that ml ({ai}) = 1/100, i = 
1 . . . . .  100. Now how should we represent the second piece of  information? 
Hunter suggests representing it by the belief function Bel2 corresponding to 
the mass function m2 such that m2(al)  = 1/10 and m2({a2 . . . . .  al00}) = 
9/10. Since our belief that al will win given this information is precisely 
1/10, we give the set {al} mass 1/10; since we have no further information 
regarding any other agent, the remaining mass is assigned to {a2,. . . ,  al00}. 
This representation is best understood as a generalized probability: our 
information is consistent with the set 7 ~ of  probability functions on S that 
assign {al} probability 1/10. It is easy to see that Bel2 is the lower envelope 
of  this family of  probability functions. (We consider a more refined view 
of Bel2 as a lower envelope below.) 

Hunter then considers the result of  combining these two belief functions 
by using the rule of combination. In light of our previous discussion, it 
should not be surprising that the result does not seem to represent the 
combined evidence at all. In fact, an easy computation shows that the 
result of  combining Bel~ and Bel2 is a probability function that places 
probability 1/892 on at winning, and probability 9/892 on ai winning, for 
i = 2 , . . . ,  100. It certainly does not seem appropriate that the evidence that 
al 's probability of winning is 1/10, when combined with the information 
that the lottery is fair, should decrease our belief that al wilt win and, in 
fact, result in a belief that any other agent is 9 times as likely to win as al! 

There are two objections to this use of the rule of  combination. The first 
is that, at least the way we have told the story, the fact that our belief 
probability that al wins is 1/10 given that the first digit of  his number 
agrees with the winning number is not independent of  our belief that the 
lottery is fair. In fact, it is a direct consequence of our belief that the lottery 
is fair. There would be no reason to assign probability 1/10 to al winning 
upon hearing that the first digit of his number is the same as the first digit 
of  the winning number in the absence of  an assumption of fairness. (For 
example, if we believed that the lottery was fixed and that 19 was bound to 
be the winning number, hearing that al 's first digit agreed with the winning 
number would not cause us to change our belief that a~ was sure to lose.) 

This objection, while correct, does not seem to get to the heart of  the 
problem. Consider the following (admittedly artificial) situation: Again, we 
assume that the lottery is fair, but now we hear from an insider that the 
winning number was drawn and that al was the winner. Moreover, suppose 
from previous experience we know that this insider is not terribly truthful. In 
fact, he tells the truth precisely 1/10 of  the time. This information certainly 
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seems independent of the fact that the lottery is fair. If  we represent it using 
Bel2, we still get the same counterintuitive answer: a piece of information 
that seems like it should increase our belief that al is the winner in fact 
decreases it significantly. 

As the discussion in the previous section suggests, the real problem here is 
that we are trying to use the rule of combination with a belief function that 
is meant to represent a generalized probability. The point is that Bel2 does 
not represent the evidence appropriately. In order to apply the techniques 
discussed in the previous section for representing the evidence, we need to 
know the likelihood, for each agent ai, that the first digit of  the winning 
number is 1, given the hypothesis that ai wins the lottery. In the case of al, it 
is easy to compute this probability: since al 's number is 17, the probability 
that the first digit of  the winning number is 1 given that a~ wins is 1. In the 
case of the other agents, we cannot compute this probability at all, since we 
do not know what their lottery numbers are. 

In order to deal with this problem, first consider a fixed assignment A 
of lottery numbers to agents, so that A (i) is the lottery number of ai. We 
assume (as is the case in the story) that A(1) = 17. With respect to this 
fixed assignment, it is easy to see that there are 10 agents ai for which 
the probability that the first digit of the winning number is 1 given that ai 
wins is 1; namely, all those agents ai such that the first digit of  A (i) is 1. 
For every other agent ai, the probability that the first digit of the winning 
number is 1 given that ai wins is 0. Using the probabilistic representation 
of evidence discussed in the previous section, 12 we would thus represent 
the evidence that the first digit of the winning lottery number is 1 by the 
belief function Bel~ such that the mass function m~({ai}) = 1/10 for each 
agent ai such that the first digit of  A(i) is 1 (note that, in particular, this 
includes a l ), and m2 a ({a i}) = 0 if the first digit of  A(i) is not 1. It is now 
easy to check that Bell • Bel~ = Bel~. Thus, independent of the assignment 
A of lottery numbers, we have (Bell 0 Bel~)({al}) = 1/10, as expected. 

Notice that Bel~ is actually a probability function, for each choice of A. 
Moreover, if we take the lower envelope of the family Bel~ over all choices 
of assignment A, we get Hunter's belief function Bel2. Thus, in this weak 
sense, we can say that Bel2 represents the evidence that the first digit of 
the winning number is 1. However, as we have observed, combining Bel2 
with Bell is not equivalent to combining each Bel~ separately with Bell. 
Moreover, there is information lost if we consider Bel2 rather than the 
family of functions Bel~, namely, that the mass is distributed evenly among 
precisely 10 of the agents (one of which is a~ ). Although this information 
is contained in the family of functions Bel~, it is not contained in Bel2. 

t2We would get essentially the same results using the other representations discussed in the 
previous section. 
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This example also points out the subtle interplay between nonprobabilistic 
choices (the choice of assignment of lottery numbers in this case), and 
probabilistic (random) choices (choosing a winner of the lottery). This 
issue turns out to be closely related to issues of reasoning about knowledge. 
It is beyond the scope of this paper to examine these issues in more detail; 
the interested reader is referred to [20] for further discussion. ~3 

We next consider the Puzzle of Mr. Jones' Murderer, taken from [43]: 14 

Big Boss has decided that Mr. Jones must be murdered, and the 
murderer will be one of Peter, Paul, and Mary. Big Boss will 
select the sex of the killer according to the results of a coin toss: 
if the coin lands heads, then the killer will be a female; if the coin 
lands tails, then the killer will be a male. Although we know how 
the killer is to be chosen, we do not know the result of the coin 
toss, nor do we know how Big Boss would have decided between 
Peter and Paul if the coin had landed tails. However, we do know 
that if Peter is not chosen, then he will go to the police station in 
order to give himself an alibi. ~5 The murder is committed. We 
also learn that Peter was indeed at the police station during the 
time the murder is known to have been committed. What is the 
probability that the killer was Paul? 

Let Peter, Paul, and Mary be the hypotheses that Peter, Paul, and Mary, re- 
spectively, committed the murder. Let Pr be the prior probability of these hy- 
potheses. We are told Pr({Peter, Paul})= Pr(Mary) = 1/2. We would like 
to compute the probability er(eaull -~Peter). Equivalently, we must compute 
Pr(PaulA-~Peter)/Pr (-~Peter). Since it is implicit in the story that exactly one 
person commits the murder, it follows that Paul/x -~Peter is logically equiv- 
alent to Paul. Thus, we are reduced to computing Pr(Paul)/Pr(-~Peter). 
Unfortunately, we are not given either Pr(Paul) or Pr(-~Peter); thus, we 
cannot immediately solve the problem using the Bayesian approach. 

13We remark that in the version of the puzzle presented by Hunter, we are not given a l ' s  
lottery number. In order to deal with that situation, we extend the analysis above by considering 
pairs (A, w), where A is an assignment of lottery numbers to agents and w is the winning 
number, with the added constraint that the first digit of A (1) is the same as the first digit of 
w. None of the essential details in the discussion above change. 

14We have slightly simplified the presentation of [43], but, again, the essential details remain 
the same. 

15As pointed out in [43], this assumption is necessary in order to make "Peter is not the 
killer" and "Peter has an alibi" equivalent. Without it, we would know that "Peter has an alibi" 
implies that "Peter is not the killer", but not the converse. 
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Note that if we were given Pr(Paul), then we could compute 

Pr(.Peter) = Pr( {Paul, Mary} ) 
= Pr(Paul) + Pr(Mary) 
= Pr(Paul) + 1/2. 

Thus, we could solve our problem if we only knew Pr(Paul). At this point, 
what we might call a risky Bayesian would say that, since we know that 
Pr({Peter, Paul}) = 1/2, we should apply the maximum entropy principle 
[24] and assume Pr(Peter) = Pr(Paul) = 1/4 (this is essentially what is 
called the insufficient reason principle by Laplace). Under  this assumption, 
it is easy to see that Pr(Paull-,Peter) = 1/3. Despite the fact that this has 
been referred to as a 'noninformative prior', one that somehow makes the 
'minimum' assumptions [4], it actually makes quite serious assumptions, 
not always justified [15]. In this case, these assumptions lead to a particular 
answer (1/3) that cannot be justified as the right answer without additional 
assumptions on Big Boss' method of  choosing between Peter and Paul. 

An alternative approach, still within the Bayesian framework, is what is 
called in [43] the cautious Bayesian approach. Although we do not know 
exactly how Big Boss chooses between Peter and Paul given that the original 
coin toss lands tails (so that one of  them must commit the murder), suppose 
we assume that he chooses Paul in this case with probability a; i.e., assume 
Pr(Paull{Peter, Paul}) = a, where 0 ~ a ~< 1. It is easy to see that we then 
have Pr(Paul) = a/2,  so 

Pr(Paul I-Peter) = ( a / 2 ) / ( 1 / 2  + a/2 ) = a/  (a + 1). 

(Notice that the particular case of  a = 1/2, which was assumed in the 
risky Bayesian approach, gives us Pr(Paul] ,Peter) = 1/3, as we computed 
above.) Since 0 ~< a ~< 1, all we can say is that Pr(Paul I -Peter) is in the 
interval [0, 1/2]. This is intuitively reasonable; if, for example, we know that, 
rather than randomly choosing between Peter and Paul when the original 
coin toss lands heads, Big Boss definitely chooses Peter (so that a = 0), 
then we know Paul could not have done it, and Pr(Paul I -Peter) = O. On 
the other hand, if Big Boss definitely would choose Paul if the coin landed 
tails, then learning that Peter did not do it gives us no additional useful 
information. The probability that Paul does it remains at 1/2 once we learn 
that Peter did not do it. 

One way we can view the original statement of  the problem is that 
{Peter} and {Paul} represent nonmeasurable sets. According to the prob- 
lem specification, the only measurable sets are {Peter, Paul}, {Mary}, 
{Peter, Paul, Mary}, and { }. The first two sets each have probability 
1/2, the third has probability 1, and the empty set has probability 0. 
It is now easy to compute that Pr,(Paul) = O, Pr*(Paul) = 1/2, and 
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Pr, (Mary)  = Pr*(Mary) = 1/2. Using the definitions of inner and outer 
conditional probability from [12] described in Section 2 and the fact that 
-~Paul A ~Peter is logically equivalent to Mary, we can compute 

Pr, (Paul[ ~Peter ) 
= Pr, (Paul ) / (Pr ,  (Paul) + Pr* (Mary))  = O, 

Pr* (Paul[ -~Peter) 
= Pr*(Paul) / (Pr*(Paul)  + Pr , (Mary ) )  = 1/2. 

Notice that the interval [0,1/2] defined by Pr,(Paull-~Peter) and 
Pr* (Paul[ -~Peter) is precisely that computed by the cautious Bayesian. This 
is not an accident, but a direct consequence of the definition of the inner 
and outer conditional probabilities as lower and upper envelopes. 

Now let Bel be the belief function corresponding to Pr. From the defini- 
tions, it is immediate that 

Bel(Paul[ -~Peter) = Pr, (Paul[ -~Peter) = 0 
and 

Pl(Paul[-~Peter) = Pr* (Paul[-~Peter) = 1/2. 

By way of contrast, we get 

Bel (Paul [[ -~ Peter ) 
= (Bel({Paul, Peter} ) - Bel(Peter) ) / ( 1 - Bel(Peter) ) = 1/2, 

Pl(Paull[ ~Peter) = Pl(Paul)/Pl(-~Peter) = 1/2. 

It may seem strange that using DS conditioning there is no uncertainty 
regarding the conditional probability; both the conditional belief and con- 
ditional plausibility are 1/2. This unintuitive result is best explained in 
terms of  the probabilistic process described in Section 3 corresponding to 
Bel(Paul  1[-~Peter). Recall that according to this process, we first choose an 
element satisfying -~Peter whenever possible. This amounts to assuming that 
Big Boss chooses Paul whenever he has a choice between choosing Peter and 
Paul; i.e., Pr(Paul[{Peter,  Paul}) = 1. With this additional assumption, it 
is clear that the probability of choosing Paul given that Peter is not chosen 
is precisely 1/2. 

Now suppose that we try to capture the evidence encoded in the observa- 
tion that Peter did not commit the murder by Pr-Peter, the probabilistic repre- 
sentation of evidence described earlier. (We could also use Shafer's represen- 
tation, Bel ,  eeter; the results would be the same.) A straightforward computa- 
tion shows Pr~eeter(Paul) = 1/2 (and Pr~eeter(Peter) = O, Pr~Peter(Mary) = 
1/2). However, in order to now compute Pr(Paull-~Peter), we need to com- 
bine Pr-eeter (Paul) with Prprior (Paul). Unfortunately, the problem statement 
does not give us this prior. This uncertainty in the prior can be modelled by 
considering a family of probability functions, just as we did in the previous 
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section. Suppose we again assume that Pr(eaull {Peter, Paul}) = a. Then 
we get Prprior(eaul) = a /2 ,  Prprior(eeter) = (1 - a ) / 2 ,  Prprior(Mary) = 1/2. 
As a ranges from 0 to 1, the prior probability that Paul is chosen ranges 
from 0 to 1/2. This is consistent with the information that we were given, 
since we know that the probability that one of  Peter or Paul is chosen is 
1/2, so the probability that Paul is chosen can be at most 1/2. Now by 
Proposition 4.4, we can compute the posterior probability by combining 
Prprior and Pr~Peter. Sure enough, an easy computation shows that we get that 
(Prprior @ Pr~Peter)(Paul) = c~/(a + 1). Again, this is the same answer as 
obtained by the cautious Bayesian. 

Once more, we see from this example that different representations can 
lead to the same conclusions. However, we must be careful in our represen- 
tation. If we view belief functions as generalized probabilities, then using 
DS conditioning leads us to inappropriate answers. If we view belief as 
evidence, we still have to take into account the conditional probability that 
Big Boss chooses Paul when he has to choose between Peter and Paul in 
order to even be able to use our techniques. 

We remark that techniques similar to those used for the previous puz- 
zle can also be used to analyze the three prisoner puzzle  mentioned in the 
introduction. An analysis using the viewpoint of beliefs as generalized prob- 
abilities is carried out in [12]; the interested reader is referred there for 
further details. 

7. Discussion and conclusions 

There are a number of  ways that belief functions can be viewed, all 
of  which give rise to a collection of  mathematical objects that satisfy the 
same axioms (see Shafer's recent [41] for a summary of  most of  the 
leading viewpoints). Many of these ways are essentially equivalent but, 
as we have seen, not all of  them are. Different viewpoints may suggest 
strikingly different approaches to notions like updating and combining. The 
two viewpoints that we have discussed here, although quite distinct, both 
allow belief functions to be understood in terms of probability theory. Rather 
than being mysterious objects, belief functions now fit into a well-understood 
framework. 

Of  the two viewpoints that we have suggested, the idea of  beliefs as 
generalized probabilities, although explicitly disavowed by Shafer [41 ], is 
quite prevalent in the literature. The idea of  beliefs as representations 
of  evidence is also quite common, although perhaps not always in terms 
of  the formulation we have presented here. As we have shown in our 
examples, either viewpoint can be used, provided we represent the evidence 
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appropriately. Our key point is that confusing these viewpoints can lead to 
problems. 

As we have shown, it is important to carefully distinguish these two views 
of  belief functions. Indeed, the examples in [3,10,23,29,33] regarding the 
counterintuitive nature of  belief functions can all be explained in terms of  a 
confusion of  these two views. The confusion between the two views seems 
prevalent throughout the literature. For example, in [31], belief functions 
are used to represent the evidence of  sensors; yet, they are introduced as 
generalized probabilities. That is, it is argued that a belief function which 
assigns Bel(A) = 1/3 and Pl(A) = 2/3 is appropriate to represent the fact 
that a reading on a sensor gives us uncertain information about the true 
probability of  A, and all that can be said about the probability of  A is that 
it is between 1/3 and 2/3. Yet these belief functions which are viewed as 
generalized probabilities are combined using the rule of  combination. As our 
results suggest, this may lead to inappropriate representations of  evidence. 

While our framework does allow us to dismiss one type of criticism that 
has been directed at belief functions, there is another criticism, perhaps best 
formulated in [33], that deserves close attention: namely, how useful are 
belief functions? To what extent can they serve as a basis for evidential 
reasoning? 

In order to look at this issue more carefully, we need to consider each 
of  the two views of  belief functions separately. If we view belief functions 
as generalized probabilities, then there clearly is a useful role that they can 
serve. Kyburg [28] and others have argued forcefully in terms of looking at 
intervals rather than at point-valued probabilities. We subscribe to this point 
of  view as well. Belief and plausibility functions do determine an interval 
that can be well understood in terms of  probability theory (cf. Theorem 2.1 ). 
On the other hand, it is not clear, even if we subscribe to intervals, that belief 
and plausibility functions are always the best representations. An alternative 
is just to work directly with a family of  probability functions, and consider 
lower and upper envelopes of  this family. As some of our results suggest, this 
might be a more useful representation. If, instead, we view belief functions 
as representations of  evidence, then our results suggest that although the rule 
of  combination does have a central role to play here, we do not need belief 
functions; probability functions will do. Moreover, the rule of  combination 
breaks down in this context too if there is uncertainty in the probability of 
the evidence. It would be of  interest to know if there is a variant of  the rule 
of combination that can deal with this case. 

It may perhaps be argued that our comments on and criticisms of belief 
functions are an artifact of  our goal of  trying to understand belief functions in 
a probabilistic framework. We agree with critics of  the Bayesian approach 
who argue that it is not always appropriate to assign a probability to 
every event. Nevertheless, it does seem that there are situations when it 
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is appropriate to assign probabilities. In this case, we feel that the results 
obtained from the belief function approach should agree with those obtained 
by using probabilities. Moreover, we feel that a thorough understanding of 
what happens in the purely probabilistic case can lead us to appropriate 
extrapolations in situations when precise probabilities are not available. 

Ultimately, it seems to us that in order to use belief functions with any 
degree of confidence, we need to understand how beliefs are to be interpreted 
in practice. We have suggested two interpretations here, both firmly rooted 
in probability theory. Because probability theory is familiar, with a large 
body of results on both theory and practice, we feel that these interpretations 
are more useful than those of, say, Shafer and Tversky in terms of canonical 
examples [40,42]. Indeed, in the commentary by the discussants which 
appears in [40], there are numerous concerns expressed about the connection 
between the canonical examples and the way belief functions are applied 
in practice. A further advantage of the two particular interpretations we 
have taken is that they suggest the sources of the nonintuitive results that 
can arise from using belief functions. In particular, our results show that in 
situations where precise probabilities are not available, great care must be 
taken not to confound the two views of belief functions. 

It is possible that in our effort to put belief functions in a probabilis- 
tic framework, we may have overlooked some important aspects of  belief 
functions. There may be some features of belief functions that cannot be 
explained in terms of probability, but are nevertheless important in rep- 
resenting evidence. However, we feel that it is up to the advocates of the 
belief function approach to spell out clearly what these features are, and 
argue their importance. 
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