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Abstract 
The standard approach in Al to knowledge representation is to 
represent an agent's knowledge symbolically as a collection 
of formulas, which we can view as a knowledge base. An 
agent is then said to know a fact if it is provable from the for- 
mulas in his knowledge base. Halpem and Vardi advocated 
a model-theoretic approach to knowledge representation. In 
this approach, the key step is representing the agent's knowl- 
edge using an appropriate semantic model. Here, we model 
knowledge bases operationally as multi-agent systems. Our 
results show that this approach offers significant advantages. 

Introduction 
The standard approach in AI to knowledge representation, 
going back to McCarthy [1968], is to represent an agent's 
knowledge symbolically as a collection of formulas, which 
we can view as a knowledge base. An agent is then said 
to know a fact if it is provable from the formulas in his 
knowledge base. Halperil and Vardi [1991] advocated a 
model-checlcing approach. €n this approach, theorem prov- 
ing is replaced by evaluating queries against an appropri- 
ate semantic model of the agent's knowledge. This can be 
viewed as a knowledge-level approach to knowledge bases 
Newell 19821. Such a semantic model was in fact provided 
by Levesque [1984]; he associateS with a knowledge base 
a set of truth assignments. We describe here a different se- 
mantic approach. We show that an operational semantics for 
knowledge bases, based on the model of multi-agent systems 
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from pagin et al. 19941 (which in turn, is based on earlier 
models that appeared in [Chandy and Misra 1986; Halpern 
and Fagin 1989; Halpern and Moses 1990; Parikh and Ra- 
manujam 1985; Rosenschein and Kaelbling 19861). offers a 
clean and intuitive knowledge-level model. The basic idea 
of this approach is to model the system as a set of possible 
behaviors. Knowledge is then ascribed to agents according 
to the possible-worlds principle: a fact 'p is known to an 
agent a if 'p holds in all the states of the system that a con- 
siders possible. Thus, in our approach knowledge "falls out" 
of the operational model of the system. We argue that this 
approach offers significant advantages compared to previous 
approaches to modeling knowledge bases. 

Knowledge in multi-agent systems 

We briefly review the framework of [Fagin et al. 19941 for 
modeling multi-agent systems. The basic idea of this ap- 
proach is to model systems operutionally (in the spirit of the 
operational-semantics approach to programming languages 
[Gurevich 1993: Jones 19861). We assume that at each point 
in time, each agent is in  some local slate. Informally, this lo- 
cal state encodes the information the agent has observed thus 
far. In addition, there is also an environment state, that keeps 
vack of everything relevant to the system not recorded in the 
agents' states. The way we split up the system into agents 
and environment depends on the system being analyzed. 

A global state is a tuple (Se, 81, . . . , 6,) consisting of the 
environment state se and the local state sj of each agent i. 
A run of the system is a function from time (which. for ease 
of exposition, we assume ranges over the natural numbers) 
to global states. Thus, if r is a run, then r(O), r(l), . . . is a 
sequence of global states that, roughly speaking, is a com- 
plete description of what happens over time in one possible 
execution of the system. We take a system to consist of a 
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set of runs. Intuitively, these runs describe all the possible 
sequences of events that could occur. 

Given a system 'R, we refer to a pair ( r ,  m) consisting 
of a run r E 'R and a time m as a point. If r(m) = 
(se,s1)...,~n), we define r,(m) = se and ri(m) = si, 
for i = 1, . . . , n; thus, r,(m) is the environment state and 
ri(m) is process i's local state at the point ( r ,  m). We say 
that two points (r, m) and (r', m') are indistinguishable to 
agent i, and write ( r ,  m) wi (r', m'), if ri(m) = ri(m'), 
i.e., if agent i has the same local state at both points. Finally, 
we define an interpreted system to be a pair (R, T )  consist- 
ing of a system 'R and a mapping T that associates a truth 
assignment to the primitive propositions at each global state. 

An interpreted system can be viewed as a Kripke structure: 
the points am the possible worlds, and -i plays the role of 
the accessibility relation. We give semantics to knowledge 
formulas in interpreted systems just as in Kripke structures: 
Givenapint(r,m)inaninterpretedsystemZ = (a, r),we 
have (Z, r, m) Kip (that is, the formula Kip is satisfied 
at the pint  (r, m) of Z) if (Z, r', m') + p for all points 
(r', m') such that (r', m') -i ( r ,  m). Notice that under this 
interpretaton, an agent knows p precisely if p is true at 
all the situations the system could be in, given the agent's 
current information (as encoded by its local state). Since 
wi is an equivalence relation, knowledge in this framework 
satisfies the S5 axioms. 

The major application of this framework has been in pro- 
viding a knowledge-level analysis of distributed protocols 
[Halpenr 19871. It is often relatively straightforward to con- 
struct the system corresponding to a given protocol. The 
local state of each process can typically be characterized by 
a number of local variables (which, for example, describe the 
messages received and the values of certain local registers). 
The runs describe the behavior of the system as a result of 
running the protocol. (See [Fagin et al. 19943 for detailed 
examples of the modeling process.) Here we examine how 
this framework can be used to model knowledge bases. 

Knowledge bases as multi-agent systems 
Following Levesque [ 19841, we view a KB as a system that 
is told facts about an external world, and is asked queries 
about that world.' The standard approach in Al to modeling 
knowledgebases is just to identify aKB with a formula, or set 
of formulas, that can informally be thought of as describing 
what the KB knows. When the KB is asked a query 4, it 
computes (using some computational procedure) whether 4 
holds. Levesquetakesamoresemanticapproach, associating 
with the KB the set of truth assignments that the KB considers 
possible at any time, as a function of what it has been told. 

We now show how knowledge bases can be modeled as 
multi-agent systems. As we shall see, doing so gives us 
a number of advantages. Basically, since we are modeling 
knowledge bases operationally, we can easily capture aspects 
that are hard to capture in a symbolic model or even in 
Levesque's knowledge-level model. For one thing, we can 

'Levesque models this in terms of TELL and ASK operations. 

captureassumptions about how the KB obtains its knowledge 
and show how these assumptions affect the KB's knowledge. 
Furthermore, the model allows us to study how the KB's 
knowledge evolves with time. Generally, the model is very 
flexible and can easily be adapted to many applications. 

The first step in modeling the KB in our framework is 
to decide who the agents are and what the role of the envi- 
ronment is. The KB is clearly an agent in the system. In 
addition, we choose to have another agent called the Teller, 
this is the agent that tells the KB facts about the external 
world. We use the environment to model the external world. 
It is possible to use the environment to also model the Teller, 
but, as we shall see later on, our approach offers certain 
advantages. We want to view the environment's state as pro- 
viding a complete description of (the relevant features of) 
the external world, the local state of the KB as describing the 
information that the KB has about the external world, and 
the local state of the Teller as describing the information that 
the Teller has about the external world and about the KB. 
7h is  allows us to distinguish what is true (as modeled by the 
environment's state) from what is known to the Teller (as 
modeled by the Teller's state) and from what the KB is told 
(as modeled by the KB's state). 
That still gives us quite a bit of freedom in deciding how 

to model the global states. If we can describe all the relevant 
features of the external world by using a set CD of primitive 
propositions, then we can take the environment to be just 
a truth assignment to the primitive propositions in CD. If, 
instead, we need to use first-order information to describe the 
world, then we can take the environment to be a relational 
structure. 

What about the KB's local state? We want it to represent 
all the relevant information that the KB has learned. We can 
do this by taking the local state to consist of the sequence of 
facts that the KB has been told and queries that it has been 
asked. If we assume that the sequence of queries does not 
carry any information about the external world, then we can 
simplify this representation by including in the local state 
only the sequence of facts that the KB has been told, and 
ignoring the queries. This is in fact what we do. 

Finally, the Teller's state has to describe the Teller's in- 
formation about the external world and about the KB. We 
assume that the Teller has complete information about the 
KB , since the Teller is the sole source for the KB 's informa- 
tion. Thus, the Teller's local state contains a description of 
its information about external world as well as the sequence 
of facts that the KB has been told. 

What does the KB know after it has been told some fact (o? 
Assuming that what it has been told is true, it may seem 
reasonable to say that the KB knows p. This is clearly false, 
however, if the external world can change. It might well be 
the case that (o was true when the KB was told it, and is 
no longer true afterwards. For deEniteness, we assume that 
the external world is stable. As we shall see, even with this 
assumption, if p can include facts about the KB'sknowledge, 
then (o may be true when the KB is told it, but not afterwards. 

To get a feel for some of the issues involved, we focus 
first on modeling a fairly simple concrete situation. We later 

2 



consider what happens when we weaken these assumptions. 
We assume that: 
1. 

2. 

3. 

4. 

5. 
6. 

the external world can be described propositionally, using 
the propositions in a finite set @, 

the external world is stable, so that the truth values of the 
primitive propositions describing the world do not change 
over time, at least for the intervals of time we are analyz- 
ing, 
the Teller has complete information about the external 
world and about the KB, 
the KB is told and asked facts only about the external 
world, and not facts about its own knowledge, and these 
facts are expressed as propositional formulas, 
everything the KB is told is true, and 
there is no a priori initial knowledge about the external 
world, or about what the KB will be told. 
The fast assumption tells us that we can represent the en- 

vironment’s state as a truth assignment a to the primitive 
propositions in 9. The second assumption tells us that in 
each run r, the environment’s state r,(m) is independent 
of m; the environment’s state does not change over time. 
As observed by Katsuno and Mendelzon [1991], this is the 
assumption that distinguishes belief revision from beliefup- 
date. The third assumption tells us that the Teller’s state in- 
cludes the truth assignment a, which describes the external 
world. Given that we are representing the KB’s local state as 
a sequence of facts that it has been told, the fourth assumption 
tells us that thislocal state has the form ((01 , .. . , P k ) ,  k 2 0, 
where (01, .  . . , (PI are propositional formulas. We assume 
that the Teller’s local state has a similar form, and consists of 
the truth assignment that describes the real world, together 
with the sequence of facts it has told the KB. Thus, we take 
the Teller’s local state to be of the form (a, ((01 , . . . , V k ) ) ,  
where a is a truth assignment and 91 , . . . , (0k are proposi- 
tional formulas. Since the Teller’s state is simply the pair 
consisting of the environment’s state and the KB’s state, 
we do not represent it explicitly, but rather denote a global 
state by (a, ( ~ t ,  . . . , ~ k ) ,  -). The fifth assumption tells us 
that everything that the KB is told is true. This means that 
in a global state of the form (a, ((01 , . . . , Q k ) t  .), each of 
PI , .. . , ‘pk  must be true under truth assignment a. The 
part of the sixth assumption that says that there is no ini- 
tial knowledge of the world is captured by assuming that 
the initial state of every run has the form (a, ( ), .), and that 
for every truth assignment a‘, there is some run with initial 
global state (a‘, ( ), .). We capture the second half of the 
sixth assumption-that there is no knowledge about what 
information will be given-by not putting any further re- 
strictions on the set of possible runs. We discuss this in more 
detail later. 

To summarize, we claim our assum tions are captured 
by the interpreted system Z k b  = (7Zkflxka), where Rka 
consists of all runs r such that for some sequence (01 , M , . . . 
of propositional formulas and for some truth assignment a: 
0 KB1. r(0) = (a, ( ), .) 

0 KB2. if r(m) = (a, (PI , .. . , p ~ ) ,  .),then 
1. either r(m + 1) = r(m), or r(m + 1) = 

2. (01 A . - . A (0k is true under truth assignment a, and 
3. zka(rl m) = a, that is, xka  is defined so that the truth 

assignment at ( r ,  m) is given by the environment’s state. 
Our assumption that ‘R consists of all runs that satisfy the 
conditions above also captures the assumption that there is 
no knowledge about what information will be given. This 
is perhaps best understood by example. There may be a 
priori knowledge that, if p is true, then this is the first thing 
the KB will be told. This places a d c t i o n  on the set of 
possible runs, eliminating runs with global states of the fonn 
(a, (91, .  . . , (PA?) ,  -) such that k 2 1 and p is true under the 
truth assignment a, but ’p1 # p. It is easy to construct other 
examples of how what information is given or the order in 
which it is given might impart knowledge beyond the facts 
themselves. By allowing all runs r consistent with KB 1 and 
KB2 in ‘R, we are saying that there is no such knowledge. 

Having defined the system Zka, we can see how the KB 
answers queries. Suppose that at a point (r, m) the KB is 
asked a query 4, where 4 is a propositional formula. Since 
the KB does not have direct access to the environment’s state, 
rl, should be interpreted not as a question about the external 
world, but rather as a question about the KB’s knowledge of 
the external world, Thus, the KB should answer “Yes” ex- 
actly if (Zka, r, m) K K B $  holds (taking K K B  to denote 
“the KB knows”), “No” exactly if (Z”, r,  m) + KKB-$ 
holds, and “I don’t know” otherwise. 

Suppose the KB is in local state ( P I , . .  . , c p k ) .  We can 
view the formula n = 91 A . f .  A Q k  as a summary of its 
knowledge about the world; the KB knows only what follows 
from this. This could be interpreted in two ways: the KB 
could answer “Yes” exactly if rl, is a consequence of K, or 
if KKB+ is a consequence of K K B K .  As the following 
result shows, these two interpretations are equivalent. 

Proposition 1: Suppose that ?‘KB ( m )  = (91 , . . . , ( 0 k ) .  Let 
tc = (PI A . A (006 and let (It be a propositionalformula. The 
following are equivalent: 

(a) (Zka, r,  m) I= K K B ~ J .  
(b j tc =$ $ is a propositional tautology. 
( c )  KKBU j KKB+ is a valid formula in S5. 

( @ I  ((01 i - * - 1  ( 0 k ,  (0k+l)r  *)* 

Thus, Proposition 1 shows that under our assumptions, we 
can model the KB in the standard AI manner: as a formula. 
Moreover, in order to answer a query, the KB must compute 
what follows from the formula that represents its knowledge. 

Proposition 1 characterizes how the KB answers propo- 
sitional queries. As argued by kesque  [1984] and Re- 
iter [1992], in general the KB may have to answer non- 
propositional queries. How should the KB handle such 
queries as (p =+ K K B ~ )  (“if p is the case, then the KB knows 
that it is the case”)? Here also we want the KB to answer 
“Yes” to a query (o exactly if (I”, r,  m) + KKB(P.  “No” 
exactly if (Zba, r,  m) + K K B ~ ~  holds, and “I don’t know” 
otherwise. When does the formula K K B ( P  3 K K B ~ )  
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hold? It is not hard to show that this formula is equiva- 
lent to K K B P  V K K B - ~ .  so the answer to this query already 
follows from Proposition 1: the answer is “Yes” if either p 
follows from what the KB has been told, or -p does, and 
“I don’t know” otherwise. It is not possible here for the an- 
swer to be“No”, since K K B - ( ~  + K K B ~ )  is equivalent to 
K K B ( ~  A ~ K K B ~ ) .  which is easily seen to be inconsistent 
with s5. 

We are mainly interested in what can be said about for- 
mulas that involve only the KB’s knowledge, since we view 
the Teller as being in the background here. We define a KB- 
formula to be one in which the only modal operator is K K B ;  
a KBquery is a query which is a KB-formula. Standard ar- 
guments from modal logic can be used to show that for every 
KB-formula of the form KKBV we can effectively 6nd an 
equivalent formula that is a Boolean combination of formu- 
las of the form KKB$,  where $ is propositional. It follows 
that the way that the KB responds to KBqueries can already 
be determined from how it responds to propositional queries. 
The reason is as follows. To decide on its answer to the query 
cp, we must determine whether K K B ’ ~  holds and whether 
K K B - ~ ~  holds. As we just noted, we can effectively find a 
formula equivalent to K K B ~  that is a Boolean combination 
of formulas of the form KKB$.  where (I, is propositional, 
and similarly for K K B  -cp. We then need only evaluate for- 
mulas of the form KKB$.  where $ is propositional. Thus, 
using Proposition 1, we can compute how the KB will an- 
swer KBqueries from the conjunction of the formulas that 
the KB has been told. 

There is another way of characterizing how the KB will 
answer KBqueries. Given a propositional formula cp, let 
S’f’ consist of all truth assignments a to propositions in Q 
such that cp is true under truth assignment a. Let M’f’ = 
(S’f’ , x ,  U) be the Kripke structure such that x(  a) = a and 
U is the universal relation (so that for all a, /? E S’f’, we 
have (a,/?) E U). In a sense, we can think of M’f’ as a 
marimal model of cp, since all truth assignments consistent 
with cp appear in M’. As the following result shows, if n is 
the conjunction of the formulas that the KB has been told, 
then for an arbitrary formula $, the KB knows 11, exactly if 
K K B $  holds in the maximal model for K. Intuitively, if the 
KB was told n, then all that the KB knows is n. The maximal 
model for K is the model that captures the fact that K is all 
that the KB knows. 

mposition 2: Suppose ihai rKB(m) = (cpl I . . . , Vk), and 
n = (PI A - * * A (PI .  Then for all KB-formulas 3, we have 

Levesque [1984] defines M K  as the knowledge-level model 
of the KB after it has been told 91, . . . , Vk. Thus, Roposi- 
tion 2 shows that in the propositional case, our aperational 
model is equivalent to Levesque’s knowledge-level model. 

Our discussion so far illustrates that it is possible to model 
a standard type of knowledge base within our framework. 
But what do we gain by doing so? For one thing, it makes 
explicit the assumptions underlying the standard represen- 
tation. In addition, we can talk about what the KB knows 
regarding its knowledge, as shown in Proposition 2. Beyond 

tht(Zkblrr,m) I= $ u ( ~ ~ l r e ( m ) )  I= $- 

that, as we now show, it allows us to capture in a straightfor- 
ward way some variants of these assumptions. The flexibil- 
ity of the model makes it easier to deal with issues that arise 
when we modify the assumptions. 

We begin by considering situations where there is some 
priorknowledgeabout what infamation willbegiven. As we 
observed earlier, the fact that we consider all runs in which 
KBl and KB2 are true captures the assumption that no such 
knowledge is available. But, in practice, there may well be 
default assumptions that are encoded in the conventions by 
which information is imparted. We earlier gave an example 
of a situation where there is a convention that if p is true, 
then the KB will be told p first. Such a convention is easy to 
made1 in our framework: it simply entails a restriction on the 
set of runs in the system. Namely, the restriction is that for 
every point (r, m) in the system where r(m) = (aI (cpl),  a), 

we have cp1 = p i E p  is true under a. Recall that the order in 
which the KB is given information is part of its local state. 
In a precise sense, therefore, the KB knows what this order 
is. In particular, it is straightforward to show that, given the 
above restriction, the KB either knows p or knows -p once 
it has been told at least one fact. 

In a similar fashion, it is easy to capture the situation 
where there is some a priori knowledge about the world, by 
modifying the set of runs in Z k  * appropriately. Suppose, for 
example, that it is known that the primitive proposition p 
must be true. In this case, we consider only runs r such that 
re(0) = a for some truth assignment a that makes p true. 
An analogue to Roposition 1 holds: now the KB will know 
everything that follows from p and what it has been told. 

Next, consider the situation where the Teller does not have 
complete information about the world (but still has complete 
information about the KB). We model this by including in 
the Teller’s state a nonempty set 7 of truth assignments. 
Intuitively, 7 is the set of possible external worlds that the 
Teller considers possible. The set 7 replaces the single truth 
assignment that describes the actual external world. Since 
we are focusing on knowledge here, we require that a E 7: 
this means that the true external world is one of the Teller’s 
possibilities. The Teller’s state also includes the sequence 
of facts that the KB has been told. To avoid redundancy, 
we denote the Teller’s state by (7, .). Global states now 
havetheform(a,(cp,, . . . 1 c p k ) 1 ( 7 1 . ) ) .  Westillrequirethat 
everything the KB is told be true; this means that the Teller 
tells the KB “cp” only if cp is true in all the truth assignments 
in 7. It is easy to see that this means that the Teller says cp 
only if KT ‘p holds (taking KT to denote “the Teller knows”). 
Not swprisingly, Propositions 1 and 2 continue to hold in this 
setting, with essentially no change in proof. 

Once we allow the Teller to have a collection 7 of worlds 
that it considers possible, it is but a short step to allow the 
Teller to have false beliefs, which amounts to allowing 7 
not to include the actual world. We would still require that 
the Teller tells the KB ‘p only if cp is true in all the truth 
assignments in 7. In this case, however, this means that 
the Teller only believes cp to be the case; its beliefs may 
be wrong. How should we ascribe beliefs to agents in a 
multi-agent system? In the scenario described here, the KB 
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and the Teller believe that the Teller is truthful, so they both 
consider some global states to be impossible, namely, the 
global states in which a $! 7. Thus, it makes sense here 
to change the definition of the accessibility relation in the 
Kripke structure associated with a system in order to make 
global states where a $! 7 inaccessible. The possible-worlds 
principle now ascribes beliefs rather than knowledge; see 
[Fagin et al. 19941 for details? 

Knowledge-based programs 
Up to now we have assumed that the KB is told only propo- 
sitional facts. Things get somewhat more complicated if the 
KB is given information that is not purely propositional; this 
in fact is the situation considered by Levesque [1984]. For 
example, suppose the KB is told p + KKBP. 'Ihis says that 
if p is true, then the KB knows it. Such information can be 
quite useful, assuming that the KB can actually check what 
it knows and does not know. In this case, the KB can check 
if it knows p; if it does not, it can then conclude that p is 
false. As this example shows, once we allow the KB to be 
given information that relates its knowledge to the external 
world, then it may be able to use its introspective abilities to 
draw conclusions about the external world. 

It is now not so obvious how to represent the KB's knowl- 
edge symbolically, i.e., by a formula. One complication that 
arises once we allow non-propositional information is that 
we can no longer assume that the KB knows everything it 
has been told. For example, suppose the primitive p r o p  
sition p is true of the external world, and the KB has not 
been given any initial information. In this situation, the 
formula p A ~ K K B P  is certainly true. But after the KB is 
told this. then it is certainly not the case that the KB knows 
~ A - K K B P ;  indeed,as we notedearlier, K K B ( ~ A - K K B P )  
is inconsistent with S5. Nevertheless, the KB certainly learns 
something as a result of being told this fact: it learns that p 
is true. As a result, K K B P  should hold after the KB is told 
p A ~ K K B P .  Thus, we cannot represent the KB's knowledge 
simply by the conjunction of facts that it has been told, even 
iftheyarealltrue. 

Levesque [I9841 describes a knowledge-level model for 
the KB's knowledge in this case. After the KB has been told 
the sequence (pl ,  . . . , (pk. it is modeled by a Kripke structure 
Mqlp-.+'*, which we define inductively. The initial model is 
M e  = (S' , x ,  U), where S' is the set of all truth assignment 
tothepropositionsin@, .(a) = a,andU istheuniversalre- 

been defined. Then M+'J-qk = (Sqlr.-tqk, x , U ) ,  where 

As in the earlier discussion of the maximal model, this def- 
inition attempts to capture the idea that the KB knows only 
what it has been told. The induction construction ensures that 
this principle is applied whenever the KB is told a formula 

In our approach, we need to be able to describe the system 
that results when the KB is given information that may in- 
volve its own knowledge. As before, we take the KB's local 

'See also [Friedman and Halpem 1994al for a general approach 
to adding belief to this framework. 

won. Suppose that M'PI t...,(Pk--I = ( p i  s . . . M k - l ,  x ,  U) has 

I ( M q l t . . . , ( P k - I  , w )  b Pk). S'PI t...pIpk = (u E s'Pl*...,'Pk-l 

state to consist of a sequence of formulas, except that we 
now allow the formulas to be modal formulas which can talk 
about the KB's knowledge, not just propositional formulas. 
The only difficulty comes in restricting to runs in which the 
KB is told only true formulas. Since we are now interested 
in formulas that involve knowledge, it is not clear that we 
can decide whether a given formula is true without having 
the whole system in hand. But our problem is to construct 
the system in the first place! 

While it is difficult to come up with an explicit description 
of the system, it is easy to describe this system implicitly. 
After all, the behavior of the agents here is fairly simple. The 
Teller here can be thought as following a howledge-based 
program Fagin et al. 1994; Kurki-Suonio 1986 Shoham 
19933. This is a program with explicit tests for knowledge. 
Roughly speaking, we can think of the Teller as running a 
nondeterministic program TELL that has an infinite collec- 
tion of clauses, one for each formula 'p, of the form: 

Intuitively, when running this program, the Teller nondeter- 
ministically chooses a formula 'p that it knows to be true, 
and tells the KB about it. The propositional case considered 
in the previous section corresponds to the Teller running the 
analogous knowledge-based program TELLPROP in which 
the formulas p are restricted to be propositional. Using tech- 
niques introduced in [Fagin et al. 19941, it can be shown that 
both TELL and TELLPROP can be associated with unique 
interpreted systems P e l '  and Zte1lprop. respectively. It turns 
out that the interpreted system Zkb (defined in the previ- 
ous section), which captured the interaction of the KB with 
the Teller in the propositional case, is precisely the system 
Ziellprop. This observations provides support for our intu- 
ition that PI' appropriately captures the situation where the 
Teller tells the KB formulas that may involve the KB's knowl- 
edge. Moreover, the system that we get is closely related to 
Levesque's knowledge-level model described earlier. 

Then for all KB-formulas +, we have that (Zktyr, m)  t,h 
i f ( M q ~ - . . . * q k ,  re(m))  +. 

One advantage of using knowledge-based programs is that 
we can consider more complicated applications. In many 
such applications, one cannot divide the world neatly into a 
KB and a Teller. Rather, one often has many agents, each 
of which plays both the role of the KB and the Teller. For 
example, suppose that we have n agents, each of whom 
makes an initial observation of the external world and then 
communicates with the others. We assume that the agents 
are truthful, but that they do not necessarily know or tell 
the "whole truth". We can view all the agents as follow- 
ing knowledge-based programs similar to TELL. At every 
round, agent i nondeterministically selects, for each agent j, 
a formula Vj that i knows to be true. and "'tells" Pj to j. 
Formally, agent i's program consists of all clauses of the 
fonn: 

if KiM A .. . A  Ki(pk do send((p1 ,ji);. . .; send(pk,jk), 
where we take send (pl , j l )  to be the action sending the mes- 
sage ( p l  to agent j l .  Here we allow the messages (p to be 

if K~cp  do tell(p). 

Proposition 3 : Suppose rhar rKB(m) = I * * * 9 pk). 
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arbitrary modal formulas: for example, Alice can tell Bob 
that she does not know whether Charlie knows a fact p. 

In this case, it is no longer clear how to model the agents 
symbolically or at the knowledge level as in [Levesque 
19841.3 In fact, while it is easy to characterize the appropri- 
ate interpreted system implicitly, via knowledge-based pro- 
grams, it is quite difficult to describe the system explicitly. 
Nevertheless, our approach enables us to characterize the 
agents’ knowledge in this case and analyze how it evolves 
with time. We view this as strong evidence to the superiority 
of the operational approactr. 

Condusions 

We have hied to demonstrate the power of the operational 
approach to modeling knowledge bases. We have shown 
that under simple and natural assumptions, the operational 
approach gives the same answers to queries as the more stan- 
dard symbolic approach and Levesque’s knowledge-level ap- 
proach. The advantage of the operational approach is its flex- 
ibility and versatility. We have given some evidence of this 
here. Furthex evidence is provided by the recent use of this 
framework (extended to deal with beliefs) to model belief 
revision and belief update Friedman and Halpern 1 9 9 4 ~  
Friedman and Halpern 1994bl. We are confident that the 
approach will find yet other applications. 
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