
A Framework for Combining Entity Resolution and
Query Answering in Knowledge Bases

Ronald Fagin1 , Phokion G. Kolaitis1,2 , Domenico Lembo3 , Lucian Popa1 , Federico Scafoglieri3
1IBM Research, Almaden, USA

2UC Santa Cruz, USA
3Sapienza University of Rome, Italy

fagin@us.ibm.com, kolaitis@ucsc.edu, lembo@diag.uniroma1.it,
lpopa@us.ibm.com, scafoglieri@diag.uniroma1.it

Abstract

We propose a new framework for combining entity resolution
and query answering in knowledge bases (KBs) with tuple-
generating dependencies (tgds) and equality-generating de-
pendencies (egds) as rules. We define the semantics of the KB
in terms of special instances that involve equivalence classes
of entities and sets of values. Intuitively, the former collect all
entities denoting the same real-world object, while the latter
collect all alternative values for an attribute. This approach
allows us to both resolve entities and bypass possible incon-
sistencies in the data. We then design a chase procedure that
is tailored to this new framework and has the feature that it
never fails; moreover, when the chase procedure terminates,
it produces a universal solution, which in turn can be used to
obtain the certain answers to conjunctive queries. We finally
discuss challenges arising when the chase does not terminate.

1 Introduction
Entity resolution is the problem of determining whether
different data records refer to the same real-world ob-
ject, such as the same individual or the same organiza-
tion, and so on (Benjelloun et al. 2009; Papadakis et al.
2021). In this paper, we study entity resolution in combi-
nation with query answering in the context of knowledge
bases (KBs) consisting of ground atoms and rules speci-
fied as tuple-generating dependencies (tgds) and equality-
generating dependencies (egds). These rules have been
widely investigated in databases and knowledge represen-
tation, e.g., in (Beeri and Vardi 1984; Fagin et al. 2005;
Baget et al. 2011; Cuenca Grau et al. 2013; Krötzsch, Marx,
and Rudolph 2019); in particular, they can express axioms
that are used in Description Logic (DL) (Baader et al. 2007),
as well as in specifying ontologies and KBs that are simi-
lar to Datalog +/- programs (Calı̀, Gottlob, and Lukasiewicz
2012). In addition, egds are employed to express typical en-
tity resolution rules that one may write in practice, i.e., rules
that enforce equality between two entities, as in (Bienvenu,
Cima, and Gutiérrez-Basulto 2022).

The KBs considered here involve n-ary predicates that de-
note n-ary relations, n ≥ 1, over entities and/or values from
predefined datatypes. As is customary for ontologies, the
TBox is the intensional component (i.e., the rules) of a KB,
while the database of the KB is its extensional component
(i.e., the ground atoms), sometimes called ABox.

As an example, Figure 1a depicts a set of ground atoms,
where Doe1 and Doe2 are entities while the rest are val-
ues (indicating names and landline home phone numbers).
Figure 2 illustrates a small TBox (containing only egds, for
simplicity). To capture entity resolution rules, we allow
egds to contain atoms involving built-in predicates, such as
JaccSim . In the example, rule s1 states that two names (i.e.,
strings) with Jaccard similarity above 0.6 must belong to the
same individual. Rules s2 and s3 stipulate that an individual
has at most one name and at most one landline home phone
number, respectively. We call entity-egds rules that impose
equality on two entities (e.g., s1), and we call value-egds
rules that impose equality on two values (e.g., s2 and s3).

It is now easy to see that, according to the standard se-
mantics, the database in Figure 1a does not satisfy the entity-
egd s1 in Figure 2 (note that the Jaccard similarity of John
Doe and J. Doe is 0.625). Thus, the main challenge one
has in practice is to come up with a consistent way to com-
plete or modify the original KB, while respecting all its
rules.

In this paper, we develop a framework for entity reso-
lution and query answering in KBs, where the valid mod-
els, called KB solutions, must satisfy all entity resolution
rules along with all other KB rules; furthermore, the solu-
tions must include all original data (i.e., no information is
ever dropped or altered). Our approach is guided by the in-
tuitive principle that for each real-world object there must
be a single node in the solution that represents all “equiv-
alent” entities denoting the object. To achieve this, we use
equivalence classes of entities, which become first-class cit-
izens in our framework. In addition, we relax the standard
way in which value-egds are satisfied by allowing solutions
to use sets of values, thus collecting together all possible
values for a given attribute (e.g., the second argument of
Name or HPhone). Continuing with the above example,
Figure 1b shows a new set of ground atoms that uses equiv-
alence classes and sets of values.

We remark that the use of equivalence classes of enti-
ties and sets of values in KB solutions requires a drastic
revision of the classical notion of satisfaction for tgds and
egds. Intuitively, we interpret egds as matching dependen-
cies (Bertossi, Kolahi, and Lakshmanan 2013; Fan 2008).
That is, when the conditions expressed by (the body of) an
entity-egd or a value-egd hold in the data (and thus two en-

Doe1 358John Doe
HPhoneName

Doe2 635J. Doe
HPhoneName

(a) Before entity resolution.

Doe1 358John Doe

Doe2 635J. Doe

HPhoneName

(b) After entity resolution.

Figure 1: Ground Atoms of the Knowledge Base

(s1) Name(p1, n1) ∧Name(p2, n2) ∧ JaccSim(n1, n2, 0.6)
→ p1 = p2

(s2) Name(p, n1) ∧Name(p, n2) → n1 = n2

(s3) HPhone(p, f1) ∧HPhone(p, f2) → f1 = f2

Figure 2: Entity-egds and value-egds.

tities or two values must be made equal), we combine them
through a merging function. We adopt a general and com-
mon merging function that takes the union of the entities or
the union of the values. This function actually belongs to the
Union class of match and merge functions analyzed in (Ben-
jelloun et al. 2009; Bertossi, Kolahi, and Lakshmanan 2013).
In this way, we group all possible alternatives for denoting
an object into a unique set of entities. Similarly, when two
values exist where only one value is instead allowed accord-
ing to the TBox, we explicitly form their union. Note that
we consider the union of entities a “global” feature for a so-
lution, that is, an entity e may belong to exactly one equiva-
lence class; in contrast, the union of values is “local” to the
context in which a value occurs, that is, a particular value
may belong to more than one set of values.

It is worth noting that the semantics we adopt for value-
egds allows us to always have a solution (that is, a model)
for a KB, even when there are no models according to the
standard first-order semantics; for example, if a value-egd
enforces the equality of two different values, then first-order
logic concludes that the KB is inconsistent. We thus may
say that our semantics is inconsistency tolerant with respect
to violations of value-egds. Indeed, we collect together all
possible alternative values for individual attributes, whereas
in data cleaning the task is to choose one of the alternatives.

We also point out that value-egds may substantially affect
entity resolution. As an example, consider the database in
Figure 1a and on top of it the new set of rules given below

(s′1) Name(p1, n1) ∧HPhone(p1, f) ∧Name(p2, n2)∧
HPhone(p2, f) ∧ JaccSim(n1, n2, 0.6) → p1 = p2

(s′2) Name(p1, n1) ∧Name(p2, n2) ∧HPhone(p1, f1)∧
HPhone(p2, f2) ∧ JaccSim(n1, n2, 0.6) → f1 = f2.

Rule s′1 states that two entities having similar names and the
same landline home phone number denote the same real-
world individual, while rule s′2 says that two entities with
similar names must have the same phone number. It is easy
to see that a TBox having only rule s′1 would not lead to
inferring that Doe1 and Doe2 denote the same individual.

However, by virtue of rule s′2, a solution has to group to-
gether the two telephone numbers into the same set, thus
saying that Doe1 and Doe2 have both the landline home
phone numbers {635,358}. This union “fires” rule s′1, and
thus entities are resolved, i.e., are put together into the same
equivalence class of the solution.

We finally note that, in order to maximize entity resolu-
tion, our semantics allows the body of a rule to be satisfied
by assignments in which different occurrences of the same
variable are replaced by different sets of values, as long as
these sets have a non-empty intersection (instead of requir-
ing that all occurrences are replaced by the same set of val-
ues). For instance, if we add to rules in Figure 2 the tgd

HPhone(p1, f) ∧HPhone(p2, f) → SameHouse(p1, p2, f),

stating that two entities with the same home phone num-
ber live in the same house, and to the database in Fig-
ure 1a the atom HPhone(Doe3,358), we can conclude
that the individual denoted by Doe3 and the individual de-
noted by Doe1 and Doe2 live in the same house (since they
share one phone number). Consistently with this choice, we
also require tgds to “propagate” such intersections. Then,
through the above tgd, we also infer that the phone number
of the house is {358}, which we denote with a fact of the
form SameHouse([Doe1,Doe2], [Doe3], {358}). The be-
haviour we described differs from the standard one only for
variables ranging on values, since two equivalence classes
of entities are always either disjoint or the same class.

In this paper, we formalize the aforementioned ideas
and investigate query answering, with focus on conjunctive
queries (CQs). The main contributions are as follows.

• We propose a new framework for entity resolution in
knowledge bases consisting of tgds and egds, and give
rigorous semantics.

• We define universal solutions and show that, as for stan-
dard tgd and egd semantics, universal solutions can be
used to obtain the certain answers of CQs.

• We propose a variant of the classical chase proce-
dure (Beeri and Vardi 1984; Fagin et al. 2005) tailored
to our approach. An important feature of our chase pro-
cedure is that it never fails, even in the presence of egds.
At the same time, as in other frameworks, our chase pro-
cedure might not terminate.

• We show that, when the chase procedure terminates, it re-
turns a universal solution (and thus we have an algorithm
for computing the certain answers to conjunctive queries).

• When the chase procedure does not terminate, defining
the result of the chase is more intricate. We show that
the strategy proposed in (Beeri and Vardi 1984) does not
work in our framework. Thus a different notion of the
result of the chase is needed, which we leave for future
study.

Detailed proofs are given in the arXiv version of this article:
https://arxiv.org/abs/2303.07469.

2 Basic Notions
We take for granted the notions of equivalence relation and
equivalence class. If Z is a set, θ is an equivalence relation
on Z , and x ∈ Z , then the equivalence class of x w.r.t. θ is
denoted by [x]θ (or simply [x], if θ is clear from the context).
Sometimes, we write, e.g., [a, b, c]θ (or [a, b, c]) to denote
the equivalence class consisting of the elements a, b, and c.
The quotient set Z/θ of θ on Z is the set of all equivalence
classes over Z w.r.t. θ.

We consider four pairwise disjoint alphabets SP , SE , SV ,
and SV . The set SP is a finite alphabet for predicates; it is
partitioned into the sets SO and SB , which are the alpha-
bets for KB predicates and built-in predicates, respectively.
The sets SE , SV , and SV are countable infinite alphabets for
entities, values, and variables, respectively. For ease of ex-
position, we do not distinguish between different data types,
thus SV is a single set containing all possible values.

The number of arguments of a predicate P ∈ SP is the
arity of P , denoted with arity(P). With each n-ary pred-
icate P we associate a tuple type(P) = ⟨ρ1, . . . ρn⟩, such
that, for each 1 ≤ i ≤ n, either ρi = e or ρi = v. This tuple
specifies the types of the arguments of P , i.e., whether each
argument of P ranges over entities (e) or values (v). We also
write type(P, i) for the type ρi of the i-th argument of P .

Note that the built-in predicates from SB are special, pre-
interpreted predicates, whose arguments range only over
values, i.e., if B is an n-ary built-in predicate, then type(B)
is the n-ary tuple ⟨v, . . . , v⟩. The examples in Sec. 1 use the
Jaccard similarity JaccSim as a built-in predicate.

An atom is an expression P (t1, . . . , tn), where P ∈ SP ,
and each ti is a term, i.e., is either a variable from SV or
a constant, which in turn is either an entity from SE , if
type(P, i) = e, or a value from SV , if type(P, i) = v. When
ti ∈ SV , we call it an entity-variable if type(P, i) = e, or a
value-variable, if type(P, i) = v. A ground atom is an atom
with no variables.

A conjunction ϕ(x) of atoms is an expression P1(t1) ∧
. . .∧Pm(tm), where each Pj(tj) is an atom such that each
variable in the tuple tj of terms is among those in the tu-
ple x of variables. We also require that every variable x in
x is either an entity-variable or a value-variable and that,
if x occurs in an atom whose predicate is built-in (note that
thus x is a value-variable), then there exists some other atom
Pj(tj) in ϕ(x) such that Pj ∈ SO and x is in tj . If a
conjunction contains no built-in predicates, we say that it
is built-in free; if it contains no entities or values, we say
that it is constant-free.

As done in this section, in the formulas appearing
throughout the paper, we use e to denote an entity from SE ,

we use v to denote a value from SV , we use c to denote a
constant (i.e., c ∈ SE ∪ SV), we use x, y, w, and z to de-
note variables from SV , and we use t to denote terms (i.e.,
t ∈ SV ∪ SE ∪ SV). Typically, we use P to denote a predi-
cate from SP . All the above symbols may appear with sub-
scripts. Moreover, we use bold font for tuples of variables,
terms, and so on. In the examples, we use self-explanatory
symbols; we write entities in Helvetica font and values in
true type font.

3 Framework
In this section, we present the syntax and the semantics of a
framework for entity resolution in knowledge bases.
Syntax. A knowledge base (KB) K is a pair (T ,D), con-
sisting of a TBox T and a database D. The TBox is a finite
set of tuple-generating dependencies (tgds) and equality-
generating dependencies (egds). A tgd is a formula

∀x(ϕ(x) → ∃yψ(x,y)), (1)

where ϕ(x) and ψ(x,y) are conjunctions of atoms, such that
x and y have no variables in common and ψ(x,y) is built-
in free and, for simplicity, constant-free. As in (Fagin et al.
2005), we assume that all variables in x appear in ϕ(x), but
not necessarily in ψ(x,y). We call ϕ(x) the body of the tgd,
and ψ(x,y) the head of it.

An egd is a formula

∀x(ϕ(x) → y = z), (2)

where ϕ(x) is a conjunction of atoms and y and z are distinct
variables occurring in ϕ(x), such that either both y and z
are entity-variables (in which case we have an entity-egd) or
both y and z are value-variables (in which case we have a
value-egd). We call ϕ(x) the body of the egd. For value-
egds, we require that neither y nor z occur in atoms having a
built-in as predicate. This ensures that the meaning of built-
ins remains fixed. We will write body(r) to denote the body
of a tgd or an egd r; furthermore, we may write r with no
quantifiers.
Example 1. Let T be the TBox consisting of the rules
(r1) CI (p1,name1, phone1) ∧ CI (p2,name2, phone2)∧

JaccSim(name1,name2, 0.6) → p1 = p2
(r2) CI (p,name1, phone1) ∧ CI (p,name2, phone2) →

name1 = name2

(r3) CI (p,name1, phone1) ∧ CI (p,name2, phone2) →
phone1 = phone2

(r4) CI (p,name, phone) →
Emp(p, comp) ∧ CEO(comp, dir)

(r5) Emp(p, comp1) ∧ Emp(p, comp2) → comp1 = comp2

(r6) CI (p1,name1, phone) ∧ CI (p2,name2, phone) →
SameHouse(p1, p2, phone).

Here, type(CI) = ⟨e, v, v⟩, type(Emp) = ⟨e, e⟩,
type(CEO) = ⟨e, e⟩, and type(SameHouse) = ⟨e, e, v⟩.
The predicates have the meaning suggested by their names.
In particular, the predicate CI maintains contact informa-
tion of individuals, whereas Emp associates employees to
the companies they work for. Each of the six rules makes
an assertion about the predicates. In particular, rule r1 states
that if the Jaccard similarity of two names is higher then 0.6,
then these names are names of the same individual.

https://arxiv.org/abs/2303.07469

The database D of a KB K is a finite set of ground atoms
of the form P (c1, . . . , cn) over the alphabets SP , SE , and
SV , where P ∈ SP and each ci is an entity from SE , if
type(P, i) = e, or a value from SV , if type(P, i) = v.
Example 2. Let D be the database consisting of the atoms
(g1) CI (Doe1,J. Doe,358), (g4) Emp(Doe2,Yahoo)
(g2) CI (Doe2,John Doe,635), (g5) Emp(Doe3, IBM)
(g3) CI (Doe3,Mary Doe,358), (g6) CEO(Yahoo,Doe1).

In words, the database D specifies that Doe1 has name J.
Doe and phone number 358 (g1), Doe2 has name John
Doe and phone number 635 (g2), Doe3 has name Mary
Doe and phone number 358 (g3), Doe2 is employee of
Yahoo (g4), Doe3 is employee of IBM (g5), and the CEO
of Yahoo is Doe1 (g6).

To ensure that built-in predicates have the same semantics
in every KB, we assume that we have a fixed (infinite and
countable) set GB of ground atoms of the form B(v1, ..vn),
where B is in SB and v1, ..vn are in SV . Intuitively, GB
contains all facts about built-in predicates that hold overall.
Given a KB K = (T ,D), we assume that D = DO ∪DB ,
where DO contains only ground atoms with predicate from
SO and DB is the (finite) set of all atoms inGB whose built-
in predicates and values are mentioned in T and in DO.
Semantics. Let SEN and SV N be two infinite, countable,
disjoint sets that are also disjoint from the alphabets intro-
duced in Sec. 2. We call SEN the set of entity-nulls and
SV N the set of value-nulls; their union is referred to as the
set of nulls. We use sig(K) to denote the signature of a KB
K, i.e., the set of symbols of SP , SE and SV occurring in K.

The semantics of a KB is given using special databases,
called KB instances, whose ground atoms have components
that are either equivalence classes of entities and entity-nulls
or non-empty sets of values and value-nulls.
Definition 1. Let K be a KB, S a subset of (SE ∩ sig(K))∪
SEN , and ∼ an equivalence relation on S. An instance I
for K w.r.t. ∼ is a set of facts P (T1, . . . , Tn) such that P ∈
SP ∩ sig(K), arity(P) = n, and, for each 1 ≤ i ≤ n, we
have that Ti ̸= ∅ and either Ti ∈ S/∼, if type(P, i) = e, or
Ti ⊆ (SV ∩ sig(K)) ∪ SV N , if type(P, i) = v. The relation
∼ is called the equivalence relation associated with I.

To denote an equivalence class in S/∼, we may use the
symbol E; also, to denote a non-empty subset of (SV ∩
sig(K)) ∪ SV N , we may use the symbol V . Even though
E may contains nulls, we will often call E simply equiva-
lence class of entities. Similarly, V will be simply called set
of values. We will then use T to denote a set that is either E
or V . All such symbols may occur with a subscript.
Definition 2. Let K be a KB and let I be an instance for K
w.r.t. to an equivalence relation ∼.

The active domain of I, denoted by active(I), is the set
{T | there are P (T1, . . . , Tn) ∈ I and i ≤ n with T = Ti}.

We write activeE(I) and activeV (I) to denote the set
of all equivalence classes of entities and the set of all sets
of values contained in active(I), respectively. Obviously,
active(I) = activeE(I) ∪ activeV (I).

The underlying domain of I, denoted by under(I), is the
set underE(I) ∪ underV (I), where

underE(I) = {e | there is E ∈ activeE(I) and e ∈ E}
and
underV (I) = {v | there is V ∈ activeV (I) and v ∈ V }.
Note that an instance I of K w.r.t. ∼ is also an instance of

K w.r.t. the equivalence relation ∼′ induced on underE(I)
by ∼. Therefore, in what follows, we will consider only
instances w.r.t. equivalence relations over underE(I).

Furthermore, we may simply call I an instance for K and
leave the equivalence relation associated with I implicit.
Example 3. Let K = (T ,D) be a KB such that T and D
are as in Example 1 and in Example 2, respectively. Then,
consider the following set I of facts:

(d1) CI ([Doe1], {J. Doe}, {358})
(d2) CI ([Doe2], {John Doe}, {635})
(d3) CI ([Doe3], {Mary Doe}, {358})
(d4) Emp([Doe2], [Yahoo])
(d5) Emp([Doe3], [IBM])
(d6) CEO([Yahoo], [Doe1]).

I is an instance for K w.r.t. the identity relation over the
set S = {Doe1,Doe2,Doe3,Yahoo, IBM}. Further, let e⊥

1
and e⊥

2 be entity-nulls, and ∼′ be an equivalence relation
over S ∪ {e⊥

1 ,e⊥
2 }, such that Doe1 ∼′ Doe2, IBM ∼′ e⊥

1
and their symmetric versions are the only equivalences in ∼′

different from the identity. The following set I ′ of facts is
an instance for K w.r.t. ∼′.

CI ([Doe1,Doe2], {J. Doe,John Doe}, {358,635})
CI ([Doe3], {Mary Doe}, {358})
Emp([Doe1,Doe2], [Yahoo])
Emp([Doe3], [IBM, e⊥

1])
CEO([Yahoo], [Doe1,Doe2])
CEO([IBM, e⊥

1], [e⊥
2])

SameHouse([Doe1,Doe2], [Doe3], {358})
SameHouse([Doe3], [Doe1,Doe2], {358}).

To define the notions of satisfaction of tgds and egds by
an instance, we first introduce the notion of an assignment
from a conjunction ϕ(x) of atoms to an instance I of a KB
K. To formalize this notion, we need a preliminary trans-
formation τ of ϕ(x) that substitutes each occurrence of a
value-variable in ϕ(x) with a fresh variable. We call such
fresh variables set-variables and denote the result of the
transformation τ(ϕ(x)). If x is a value-variable in x, we
write SetVar(x, τ(ϕ(x))) to denote the set of fresh vari-
ables used in τ(ϕ(x)) to replace the occurrences of x in
ϕ(x). For example, if ϕ(x) = P1(x, y, z) ∧ P2(y, z) ∧
P3(x,w), where type(P1) = ⟨e, e, v⟩, type(P2) = ⟨e, v⟩,
and type(P3) = ⟨e, v⟩, then τ(ϕ(x)) = P1(x, y, S

z
1) ∧

P2(y, S
z
2) ∧ P3(x, S

w
1), where Sz

1 , Sz
2 , Sw

1 are the fresh
set-variables introduced by τ . Also, SetVar(z, τ(ϕ(x))) =
{Sz

1 , S
z
2} and SetVar(w, τ(ϕ(x))) = {Sw

1 }. In what fol-
lows, if x is a value-variable, then each set-variable in
SetVar(x, τ(ϕ(x))) will have x as a superscript.

We are now ready to formally define assignments.
Definition 3. Let ϕ(x) be a conjunction of atoms and let
I be an instance for a KB K w.r.t. ∼. An assignment from
ϕ(x) to I is a mapping µ from the variables and values in
τ(ϕ(x)) to active(I), defined as follows:

1. µ(x) is an equivalence class in activeE(I), for every
entity-variable x;

2. µ(v) = V such that V ∈ activeV (I) and v ∈ V , for
every value v;

3. µ(S) is a set of values in activeV (I), for every set-
variable S;

4.
⋂k

i=1 µ(S
x
i) ̸= ∅, for every value-variable x such that

SetVar(x, τ(ϕ(x))) = {Sx
1 , . . . , S

x
k};

5. I contains a fact of the form P (µ(x), µ(S), [e]∼, µ(v)),
for each atom P (x, S, e, v) of τ(ϕ(x)), where x is an
entity-variable, S is a set-variable, e is an entity in SE

and v is a value in SV (the definition generalizes in the
obvious way for atoms of different form).

In words, the above definition says that an assignment
maps every entity-variable to an equivalence class of enti-
ties (Condition 1), every value to a set of values containing
it (Condition 2), and every occurrence of a value-variable to
a set of values (Condition 3), in such a way that multiple oc-
currences of the same value-variable are mapped to sets with
a non-empty intersection (Condition 4). This captures the
intuition that, since predicate arguments ranging over values
are interpreted through sets of values, a join between such
arguments holds when such sets have a non-empty intersec-
tion. Finally, Condition 5 states that τ(ϕ(x)) is “realized” in
I. Note that an assignment also maps values to sets of val-
ues (Condition 2). This allows an assignment to map atoms
in ϕ(x) to facts in I, since predicate arguments ranging over
values are instantiated in I by sets of values.

If P (t) is an atom of ϕ(x), we write µ(P (t)) for the fact
of I in Condition 5 and call it the µ-image (in I) ofP (t). We
write µ(ϕ(x)) for the set {µ(P (t)) | P (t) occurs in ϕ(x)},
and call it the µ-image (in I) of ϕ(x).

Example 4. Consider the tgd r6 of Example 1 and the in-
stance I ′ given in Example 3 and apply τ to the body of r6 to
obtain CI (p1, S

name1 , Sphone
1) ∧ CI(p2, Sname2 , Sphone

2).
Let µ be the following mapping:

µ(p1) = [Doe1,Doe2], µ(Sname1) = {J. Doe,John Doe}
µ(Sphone

1) = {358,635}, µ(p2) = [Doe3]

µ(Sname2) = {Mary Doe}, µ(Sphone
2) = {358}.

It is easy to see that µ is an assignment from the body of r6 to
I ′ (note the non-empty intersection between µ(Sphone

1) and
µ(Sphone

2)). Let us now apply τ to the head of r6 to obtain
SameHouse(p1, p2, R

phone). The following mapping µ′ is
an assignment from SameHouse(p1, p2, phone) to I ′:

µ′(p1) = [Doe1,Doe2], µ
′(p2) = [Doe3], µ

′(Rphone) = {358}.

We are now ready to define the semantics of tgds and egds.

Definition 4. An instance I for a KB K satisfies:

• a tgd of the form (1), if for each assignment µ from ϕ(x)
to I there is an assignment µ′ from ψ(x,y) to I such that,
for each x in x occurring in both ϕ(x) and ψ(x,y):
– µ(x) = µ′(x), if x is an entity-variable;

–
⋂k

i=1 µ(S
x
i) ⊆

⋂ℓ
i=1 µ

′(Rx
i), where {Sx

1 , . . . , S
x
k} =

SetVar(x, τ(ϕ(x))) and {Rx
1 , . . . , R

x
ℓ } =

SetVar(x, τ(ψ(x,y))), if x is a value-variable.
Each such assignment µ′ is called a head-compatible tgd-
extension of µ to I (or simply a tgd-extension of µ to I).

• an entity-egd of the form (2), if each assignment µ from
ϕ(x) to I is such that µ(y) = µ(z);

• a value-egd of the form (2), if each assignment µ from
ϕ(x) to I is such that µ(Sy) = µ(Sz) for all set-variables
Sy, Sz ∈ SetVar(y, τ(ϕ(x))) ∪ SetVar(z, τ(ϕ(x))).
In words, Definition 4 expresses the following for each

assignment µ from the body of a rule r to I:
(1) If r is a tgd, the definition stipulates two different be-

haviours for frontier variables (i.e., variables occurring in
both the body and the head of the tgd). Specifically, for the
tgd to be satisfied, it should be possible to extend µ so that (i)
every frontier entity-variable is assigned to exactly the same
equivalence class both in the body and the head of the rule
(this is in line with the standard semantics for frontier vari-
ables in tgds); and (ii) the intersection of the sets of values
assigned in the body of the tgd to the various occurrences
of a frontier value-variable x is contained in the intersection
of the sets of values assigned to the occurrences of x in the
head of the tgd. Note that, while µ maps all the occurrences
of an entity-variable in ϕ(x) to the same equivalence class,
it may map multiple occurrences of a value-variable to dif-
ferent sets of values with non empty-intersection; thus, it is
natural that this intersection is “propagated” to the head.

(2) If r is an entity-egd, the notion of satisfaction is stan-
dard, since it requires that µ assigns y and z to the same
equivalence class of entities.

(3) If r is a value-egd, we have again to take into account
that each occurrence of y in the rule body can be assigned
by µ to a different set of values, and analogously for each
occurrence of z. The definition stipulates that, for the value-
egd to be satisfied, all such sets of values are equal.
Example 5. I ′ from Example 3 satisfies tgd r6 of Ex-
ample 1, since µ′ is a head-compatible tgd extension of
the only assignment µ from the body of r6 to I ′. In-
deed, µ′(p1) = µ(p1), µ′(p2) = µ(p2), µ′(Rphone) =

µ(Sphone
1) ∩ µ(Sphone

2) (cf. Example 4). It is also easy to
see that I ′ satisfies all rules of Example 1 (note that we left
implicit the facts over built-in predicates of I ′).

Finally, we define when an instance is a solution for a KB.
Definition 5. Let K = (T ,D) be a KB and I an instance.
• I satisfies T if I satisfies every tgd and egd in T .
• I satisfies a ground atom P (c1, . . . , cn) in D if there is a

fact P (T1, . . . , Tn) in I such that ci ∈ Ti, for 1 ≤ i ≤ n.
• I satisfies D if I satisfies all ground atoms in D.
• I is a solution for K, denoted by I |= K, if I satisfies T

and D. The set of all solutions of a KB K is denoted by
Sol(K), i.e., Sol(K) = {I | I |= K}.

Example 6. Consider the instances I and I ′ given in Ex-
ample 3 for the K of Example 1 and Example 2. It is easy
to see that I is not a solution for K, whereas I ′ is a solution
for K.

Universal solutions. It is well known that the univer-
sal solutions exhibit good properties that make them to
be the preferred solutions (see, e.g., (Fagin et al. 2005;
Calı̀, Gottlob, and Kifer 2013; Calvanese et al. 2007)). To
introduce the notion of a universal solution in our frame-
work, we first need to adapt the notion of homomorphism.
We begin with some auxiliary definitions and notation.

Definition 6. Let T = ⟨T1, . . . , Tn⟩ and T′ = ⟨T ′
1, . . . , T

′
n⟩

be two tuples such that each Ti and each T ′
i is either a set of

entities and entity-nulls or a set of values and value-nulls.

• T′ dominates T, denoted T ≤ T′, if Ti ⊆ T ′
i , for all i.

• T′ strictly dominates T, denoted T < T′, if T ≤ T′ and
T ̸= T′.

• Let P (T) and P (T′) be facts. P (T′) dominates P (T),
denoted P (T) ≤ P (T′), if T ≤ T′; P (T′) strictly dom-
inates P (T), denoted P (T) < P (T′), if T < T′.

Definition 7. Let I1 and I2 be two instances of a KB K. A
homomorphism h : I1 → I2 is a mapping from the elements
of under(I1) to elements of under(I2) such that:

1. h(e) = e, for every entity e in underE(I1) ∩ SE ;
2. h(e⊥) belongs to underE(I2), for every entity-null e⊥ in

underE(I1) ∩ SEN ;
3. h(v) = v, for every value v in underV (I1) ∩ SV ;
4. h(v⊥) belongs to underV (I2), for every value-null v⊥ in

underV (I1) ∩ SV N ;
5. for every P (T1, . . . , Tn) in I1, there is a P (U1, . . . , Un)

in I2 such that P (h(T1), . . . , h(Tn)) ≤ P (U1, . . . , Un),
where h(Ti) = {h(x) | x ∈ Ti)}, for 1 ≤ i ≤ n.

In the sequel, we may use h(⟨T1, . . . , Tn⟩) to denote the
tuple ⟨h(T1), . . . , h(Tn)⟩.

We now define the key notion of a universal solution.

Definition 8. A solution U for a KB K is universal if, for
every I ∈ Sol(K), there is a homomorphism h : U → I.

The instance I ′ in Example 3 is a universal solution for
K, as is the instance obtained by eliminating e⊥

1 from I ′.
Two instances I1 and I2 are homomorphically equivalent

if there are homomorphisms h : I1 → I2 and h′ : I2 → I1.
All universal solutions are homomorphically equivalent.

4 Query answering
A conjunctive query (CQ) q is a formula ∃yϕ(x,y), where
ϕ(x,y) is a built-in free conjunction of atoms. The arity of
q is the number of its free variables in x; we will often write
q(x), instead of just q, to indicate the free variables of q.

Let q(x) : ∃xϕ(x,y) be a CQ, where x = x1, . . . , xn.
Given a KB K and an instance I for K, the answer to q on
I, denoted by qI , is the set of all tuples ⟨T1, . . . , Tn⟩ such
that there is an assignment µ from ϕ(x,y) to I for which

• Ti = µ(xi), if xi is an entity-variable;

• Ti =
⋂k

j=1 µ(S
xi
j), if xi is a value-variable, where

{Sxi
1 , . . . , S

xi

k } = SetVar(xi, τ(ϕ(x,y))).

We will also say that µ is an assignment from q(x) to I.

Example 7. Let q(x) be the CQ:

∃p1, p2 CI (p1,J. Doe, x) ∧ CI (p2,Mary Doe, x)

asking for the phone number in common between (the enti-
ties named) J. Doe and Mary Doe. The answer to q(x)
on the instance I ′ in Example 3 is qI

′
= {⟨{358}⟩}. This

is obtained through the assignment µq defined as follows:

µq(p1) = [Doe1,Doe2], µq(J. Doe) = {J. Doe,John Doe}
µq(S

x
1) = {358,635}, µq(p2) = [Doe3]

µq(Mary Doe) = {Mary Doe}, µq(S
x
2) = {358}.

If q1(x) : ∃z CEO(z, x) is the query asking for the CEOs,
then qI

′

1 = {⟨[Doe1,Doe2]⟩, ⟨[e⊥
2]⟩}.

The next result tells how conjunctive queries are pre-
served under homomorphisms in our framework.

Proposition 1. Let q be a CQ and let K a KB. If I1, I2 are
two instances for K and h : I1 → I2 is a homomorphism
from I1 to I2, then, for every T ∈ qI1 , there is U ∈ qI2

such that h(T) ≤ U.

When querying a KB K, we are interested in reasoning
over all solutions for K. We adapt the classical notion of cer-
tain answers to our framework. A tuple T = ⟨T1, . . . , Tn⟩
is null-free if each Ti is non-empty and contains no nulls.

Definition 9. Let q be a CQ and let K be a KB. A null-free
tuple T is a certain answer to q w.r.t. K if

1. for every solution I for K, there is a tuple T′ ∈ qI such
that T ≤ T′;

2. there is no null-free tuple T′ that satisfies 1. and T < T′.

We write cert(q,K) for the set of certain answers to q.

Note that the second condition in the above definition as-
serts that a certain answer has to be a maximal null-free tuple
with respect to the tuple dominance order ≤ given in Defi-
nition 6, among the tuples satisfying Condition 1.

The next result tells that if two sets of entities appear in
a certain answer or in different certain answers, then either
they are the same set or they are disjoint. In particular, the
sets of entities that appear in certain answers can be viewed
as equivalence classes of some equivalence relation.

Proposition 2. Let q be a CQ of arity n, let K be a KB, and
let T = ⟨T1, . . . , Tn⟩ and T′ = ⟨T ′

1, . . . , T
′
n⟩ be two certain

answers to q w.r.t. K. If Ti and T ′
j are sets of entities, then

either Ti = T ′
j or Ti ∩ T ′

j = ∅, where 1 ≤ i, j ≤ n.

In data exchange and related areas, the certain answers to
CQs can be obtained by evaluating the query on a univer-
sal solution and then applying an operator ↓ that eliminates
the tuples that contain nulls (see, e.g., (Fagin et al. 2005;
Calvanese et al. 2007)). The operator ↓ can easily be adapted
to our framework as follows. If E is a set of entities and
entity-nulls, then E↓ = {e | e ∈ SE ∩ E}. Similarly,
if V is a non-empty set of values and value-nulls, then
V ↓ = {v | v ∈ SV ∩V }. In words, ↓ removes all nulls from
E and from V . If ⟨T1, . . . , Tn⟩ is a tuple such that each Ti is
either a set of entities and entity-nulls or a set of values and
value-nulls, then we set ⟨T1, . . . , Tn⟩↓ = ⟨T1↓, . . . , Tn↓⟩.
Finally, given a set Θ of tuples of the above form, Θ↓ is the

set obtained from Θ by removing all tuples in Θ contain-
ing a Ti such that Ti↓ = ∅, and replacing every other tuple
⟨T1, . . . , Tn⟩ in Θ by the tuple ⟨T1, . . . , Tn⟩↓.

The next example shows that, in our framework, the cer-
tain answers to a CQ q cannot always be obtained by evalu-
ating q on a universal solution and then applying ↓.
Example 8. Let P1 and P2 be such that type(P1) =
type(P2) = ⟨e, v⟩, T ′ be the TBox consisting of the rules

P1(x, y) → P2(x, y), P1(x, y) ∧ P1(x, z) → y = z

and D′ = {P1(e, 1), P1(e, 2)}. Consider the following uni-
versal solutions for K′ = (T ′,D′)

I1 = {P1([e], {1,2}), P2([e], {1,2})},
I2 = {P1([e], {1,2}), P2([e], {1}), P2([e], {1,2})},

and the query q(x, y) : P2(x, y). Then qI1↓ =
qI1 = {⟨[e], {1,2}⟩}, and qI2↓ = qI2 =
{⟨[e], {1,2}⟩, ⟨[e], {1}⟩}. Thus, qI2↓ does not coincide
with the set of certain answers to q w.r.t. K′, because the
tuple ⟨[e], {1}⟩ does not satisfy the second condition in Def-
inition 9.

Intuitively, in the above example the universal solution I2
is not “minimal”, in the sense that the fact P2([e], {1}) in I2
is dominated by another fact of I2, namely P2([e], {1,2}).
This behaviour causes that the answer to the query over I2
contains also tuples that are not maximal with respect to tu-
ple dominance (cf. Definition 9). This suggests that we need
some additional processing besides elimination of nulls. We
modify the operator ↓ by performing a further reduction
step.
Definition 10. Given a query q and an instance I for a KB
K, we write qI↓ρ to denote the set of null-free tuples ob-
tained by removing from qI↓ all tuples strictly dominated
by other tuples in the set, that is, if T and T′ are two tuples
in qI↓ such that T < T′, then remove T from qI↓.

We are now able to present the main result of this section,
which asserts that universal solutions can be used to com-
pute the certain answers to CQs in our framework.
Theorem 1. Let q be a CQ, let K be a KB, and let U be a
universal solution for K. Then cert(q,K) = qU↓ρ.
Example 9. As seen earlier in Example 6, I ′ is a universal
solution for K. Then, for the query q1(x) : ∃zCEO(z, x),
we have that cert(q1,K) = qI

′

1 ↓ρ = {⟨[Doe1,Doe2]⟩}.

5 Computing a universal model
In this section, we adapt the well-known notion of restricted
chase (Beeri and Vardi 1984; Johnson and Klug 1984;
Fagin et al. 2005; Calvanese et al. 2007) to our framework.
Interestingly, the chase procedure we define never produces
a failure, unlike, e.g., the restricted chase procedure in the
case of standard data exchange, where the application of
egds may cause a failure when two different constants have
to be made equal. Instead, in our framework, when an entity-
egd forces two different equivalence classes of entities to be
equated, we combine the two equivalence classes into a big-
ger equivalence class. Similarly, when a value-egd forces

two different sets of values to be equated, we take the union
of the two sets and modify the instance accordingly. How-
ever, it is possible that the chase procedure may have in-
finitely many steps, each producing a new instance. As a
consequence, some care is required in defining the result of
the application of this (potentially infinite) procedure to a
KB K, so that we can obtain an instance that can be used
(at least in principle) for query answering. We call such in-
stance the result of the chase of the KB K, and distinguish the
case in which the chase terminates from the case in which it
does not. In the former case, the result of the chase of K
is simply the instance produced in the last step of the chase
procedure, and we show that this instance is a universal so-
lution for K. In the latter case, we point out that previous
approaches from the literature for infinite standard chase se-
quences under tgds and egds cannot be smoothly adapted
to our framework, and we leave it open for this case how to
define the result of the chase so that it is a universal solution.

We start with the notion of the base instance for a KB.
Given a KB K = (T ,D), we define the set

ID = {P ({c1}, . . . , {cn}) | P (c1, . . . , cn) ∈ D}.

ID is an instance for K w.r.t. the identity relation id over
the set SE ∩ sig(K). We call ID the base instance for K.
Note that the base instance for K is also a base instance for
every KB having D as database, and is a solution for (∅,D).
As an example, note that the instance I of Example 3 is
the base instance for the KB K defined in Example 1 and in
Example 2.

We next define three chase steps, one for tgds, one for
entity-egds, and one for value-egds.

Definition 11. Let K = (T ,D) be a KB and I1 an instance
for K w.r.t. an equivalence relation ∼1 on underE(I1).
• (tgd) Let r be a tgd of the form (1). Without loss of

generality, we assume that all atoms in ψ(x,y) are of
the form P (x1, . . . , xk, y1, . . . , yℓ), where x1, . . . , xk be-
long to x and y1, . . . , yℓ belong to y, and we denote with
ye = y1e , . . . y

h
e and yv = y1v , . . . , y

j
v the entity-variables

and value-variables in y, respectively. Let µ be an as-
signment from ϕ(x) to I1 such that there is no ψ(x,y)-
compatible tgd-extension of µ to I1. We say that r is
applicable to I1 with µ (or that µ triggers r in I1), and
construct I2 via the following procedure:

let {f1e , . . . , fhe } ⊆ SEN and {f1v , . . . , f jv} ⊆ SV N be
two sets of fresh nulls (i.e., not occurring in I1),
which are distinct from each other

put I2 := I1
for each atom P (x1, . . . , xk, y1, . . . , yℓ) in ψ(x,y) do
I2 := I2 ∪ {P (T1, . . . , Tk, U1, . . . , Uℓ)}

where,
– for 1 ≤ i ≤ k, we have Ti = µ(xi), if xi is an entity-

variable, or Ti =
⋂m

p=1 µ(S
xi
p), if xi is a value-variable

and {Sxi
1 , . . . , S

xi
m } = SetVar(xi, τ(ϕ(x)));

– for 1 ≤ i ≤ ℓ, we have Ui = {fse } if yi = yse , with
1 ≤ s ≤ h, or Ui = {fqv} if yi = yqv , with 1 ≤ q ≤ j.
(Thus, each singleton {fse } is a new equivalence class.)

• (entity-egd) Let r be an entity-egd of the form (2), and µ
an assignment from ϕ(x) to I1 such that µ(y) ̸= µ(z).
We say that r is applicable to I1 with µ (or that µ triggers
r in I1), and we construct I2 from I1 by replacing in I1
all occurrences of µ(y) and µ(z) with µ(y) ∪ µ(z).
(Thus, we merge two equivalence classes into a new one.)

• (value-egd) let r be a value-egd of the form (2). Let
{Sy

1 , . . . , S
y
m} = SetVar(y, τ(ϕ(x))), {Sz

1 , . . . , S
z
k} =

SetVar(z, τ(ϕ(x))), 1 ≤ i ≤ m, 1 ≤ j ≤ k, and µ be
an assignment from ϕ(x) to I1 such that µ(Sy

i) ̸= µ(Sz
j).

We say that r is applicable to I1 with µ (or that µ triggers
r in I1), and we construct I2 from I1 by replacing in the
image µ(ϕ(x)) each set µ(Sy

1), . . . , µ(S
y
m), µ(Sz

1), . . .
and µ(Sz

k) with µ(Sy
1)∪. . .∪µ(Sy

m)∪µ(Sz
1)∪. . .∪µ(Sz

k).

If r is a tgd or egd that can be applied to I1 with µ, we say
that I2 is the result of applying r to I1 with µ and we write
I1

r,µ−−→ I2. We call I1
r,µ−−→ I2 a chase step.

For both the entity-egd step and the value-egd step, the
chase procedure constructs I2 by replacing some facts of
I1. However, whereas for entity-egds the replacement is
“global” (i.e., the two equivalence classes merged in the step
are substituted by their union everywhere in I1), for value-
egds the replacement is “local”, in the sense that the two sets
merged in the step are substituted by their union only in facts
occurring in the image µ(ϕ(x)), which is a subset of I1.

Example 10. Consider again the KB K = (T ,D) of Ex-
ample 1 and Example 2. The instance I of Example 3 is
the base instance ID for K. We depict below the applica-
tion of the rules of Definition 11, starting from the instance
I = ID.
tgd application: ID r4,µ0−−−→ I1, where µ0 is such that
µ0(body(r4)) = {d3}. The set I1 consists of the facts d1-d6
(see Example 3), as well as the facts:

(d7)Emp([Doe3], [e⊥
1]), (d8)CEO([e⊥

1], [e⊥
2]).

entity-egd application: I1
r1,µ1−−−→ I2,

where µ1 is such that µ1(body(r1)) =
{d1, d2, JaccSim({J. Doe}, {John Doe}, {0.6})}.
The set I2 consists of the facts d3, d5, d7, d8, as well as the
facts:

(d1) → (d9) CI ([Doe1,Doe2], {J. Doe}, {358})
(d2) → (d10) CI ([Doe1,Doe2], {John Doe}, {635})
(d4) → (d11) Emp([Doe1,Doe2], [Yahoo])
(d6) → (d12) CEO([Yahoo], [Doe1,Doe2]).

value-egd application: I2
r2,µ2−−−→ I3, where µ2 is such that

µ2(body(r2)) = {d9, d10}. The set I3 consists of the facts
d3, d11, d5, d12, d7, d8, as well as the facts:

(d9) → (d13) CI ([Doe1,Doe2], {J. Doe,John Doe},
{358})

(d10) → (d14) CI ([Doe1,Doe2], {J. Doe,John Doe},
{635}).

We now define the notion of a chase sequence.

Definition 12. Let K = (T ,D) be a KB. A chase sequence
for K is a (finite or infinite) sequence σ = I0, I1, I2 . . . ,
such that I0 = ID and Ii

ri,µi−−−→ Ii+1 is a chase step, for
each consecutive pair (Ii, Ii+1) in the sequence σ.

The following propositions state some basic properties of
the elements in a chase sequence.

Proposition 3. Let K be a KB.

• If I is an instance for K w.r.t. an equivalence relation ∼
on underE(I) and if I ′ is such that I r,µ−−→ I ′, then there
is an equivalence relation ∼′ such that I ′ is an instance
for K w.r.t. ∼′ on underE(I ′).

• Every Ii occurring in a chase sequence for a KB K =
(T ,D) is an instance for K.

Proposition 4. Let K be a KB, let σ be a chase sequence
for K, and let Ii and Ij , with i ≤ j, be two instances for
K w.r.t. equivalence relations ∼i and ∼j , respectively, such
that Ii and Ij belong to σ. Then the following holds:

• ∼i⊆∼j and under(Ii) ⊆ under(Ij);
• If P (T) is a fact in Ii, then there is a fact P (T′) in Ij

such that P (T) ≤ P (T′).

Proposition 4 implies that for every i ≤ j and every
equivalence class E in underE(Ii)/∼i, there exists E′ in
underE(Ij)/∼j such that E ⊆ E′; in particular, we have
that [e]∼i ⊆ [e]∼j , for each entity e ∈ SE ∩ sig(K).

When a chase sequence for a KB is infinite, there might be
rules applicable to some instance Ii in the sequence that are
never applied, even though they remain applicable in subse-
quent chase steps. It is however always possible to establish
a suitable order in the application of the rules so that the
above situation never occurs. Chase sequences enjoying this
property are called fair. In what follows, we assume that all
chase sequences considered are fair.

We now investigate the possible outcomes of the chase
for a KB K. We first give the definition of the result of the
chase for a finite chase sequence. Then we attack the case of
infinite sequences.

Finite chase sequences. In this case, we can provide the
following natural definition.

Definition 13. Let K = (T ,D) be a KB.

• A finite chase of K is a finite chase sequence σ =
I0, I1, . . . , Im, for which there is no rule r in T and no
assignment µ such that r can be applied to Im with µ.

• We say that Im is the result of the finite chase σ for K,
and denote it by chase(K, σ).

Proposition 3 implies that chase(K, σ) is an instance for K.

Example 11. Consider the KB K = (T ,D) of Example 1
and Example 2. As said, interpretation I of Example 3 is
the base instance for K, i.e., I = ID. Consider now, in the
same order, the three chase steps described in Example 10,
and continue the chase procedure from I3 as follows:

Step 4: I3
r3,µ4−−−→ I4, where µ3 is such that µ3(body(r3)) =

{d13, d14}. The resulting instance I4 consists of the fact d3,

d11, d5, d12, d7, d8, as well as the fact:

(d13), (d14) → (d15) CI ([Doe1,Doe2], {J. Doe,John Doe},
{358,635}).

Note that d15 replaces facts d13 and d14 of I3.

Step 5: I4
r5,µ5−−−→ I5, where µ5 is such that µ5(body(r5)) =

{d5, d7}. The resulting instance I5 consists of the facts d14,
d3, d11, d12, as well as the facts:

(d5), (d7) → (d16) Emp([Doe3], [IBM, e⊥
1])

(d8) → (d17) CEO([IBM, e⊥
1], [e⊥

2]).

Note that d16 replaces facts d5 and d7 of I4.

Step 6: I5
r6,µ6−−−→ I6, where µ6 is such that µ6(body(r6)) =

{d14, d3}. The resulting instance I6 consists of the same
facts as I5, as well as the fact:

(d18) SameHouse([Doe1,Doe2], [Doe3], {358}).

Step 7: I6
r6,µ7−−−→ I7, where µ7 is such that µ7(body(r6)) =

{d14, d3}. The resulting instance I7 contains the same facts
as I6, as well as the fact:

(d19) SameHouse([Doe3], [Doe1,Doe2], {358}).

It is not difficult to see that no rule of T can be applied
to I7, and thus the chase procedure terminates. Therefore,
the sequence σ = ID, I1, . . . , I7 is a finite chase for K, and
chase(K, σ) = I7 (note that I7 coincides with I ′ given in
Example 3).

Actually, chase(K, σ) turns out to be a solution for K.
Lemma 1. Let K be a KB and let σ = I0, I1, . . . , Im be a
finite chase for K. Then chase(K, σ) is a solution for K.

The following lemma is used to prove that if σ is a fi-
nite chase, then chase(K, σ) is not just a solution for K, but
also a universal solution for K. A similar result, known as
the Triangle Lemma, was used in (Fagin et al. 2005) in the
context of data exchange.

Lemma 2. Let I1
r,µ−−→ I2 be a chase step. Let I be an

instance for K such that I satisfies r and there exists a ho-
momorphism h1 : I1 → I. Then there is a homomorphism
h2 : I2 → I such that h2 extends h1.

The following theorem is the main result of this section.
Theorem 2. If K is a KB and σ = I0, I1, . . . , Im is a finite
chase for K, then chase(K, σ) is a universal solution for K.

Theorem 2 implies that if both σ and σ′ are finite chases
for K, then chase(K, σ) and chase(K, σ′) are homomorphi-
cally equivalent. Thus, the result of a finite chase for K is
unique up to homomorphic equivalence.

It is easy to verify that if K = (T ,D) is a KB in which
every tgd in T is full (i.e., there are no existential quantifiers
in the heads of the tgds in T), then every chase sequence for
K is finite. In particular, this holds true if T consists of egds
only, which covers all entity resolution settings.

Infinite chase sequences. For infinite chase sequences,
the definition of the result of the chase requires some
care. The typical approach adopted when only tgds are

present (Krötzsch, Marx, and Rudolph 2019; Grahne and
Onet 2018), or for settings involving separable tgds and
egds (Johnson and Klug 1984; Calvanese et al. 2007; Calı̀,
Gottlob, and Kifer 2013), is to define the result of an infinite
chase sequence as the union of all facts generated in the var-
ious chase steps. This approach does not work for arbitrary
tgds and egds since the resulting instance needs not satisfy
all the rules and thus needs not be a solution in our terminol-
ogy. Moreover, in our framework the union of all instances
in an infinite chase sequence is not even an instance for the
KB at hand, because the sets of entities in the result do not
correspond to equivalence classes with respect to an equiva-
lence relation.

An alternative approach, which might be better suited for
a setting with arbitrary tgds and egds, is to define the result
of an infinite chase sequence as the instance containing all
persistent facts, i.e., all facts that are introduced in some step
in the chase sequence and are never modified in subsequent
chase steps. This notion was introduced in (Beeri and Vardi
1984). In our setting, given a KB K and an infinite chase se-
quence σ = I0, I1, . . ., this means that we define the result
chase(K, σ) of the infinite chase σ of K as follows:

chase(K, σ) = {f | there is some i ≥ 0 such that
f ∈ Ij for each j ≥ i}. (3)

The following example shows that this definition does
not work in our framework, because the above set might be
empty (even if the database D is non-empty).
Example 12. Let K = ⟨T ,D⟩, where D = {P (1,2)} and
T consists of the two rules

(r1) P (x, y) → P (y, z)
(r2) P (x, y) ∧ P (y, z) → y = z

with type(P) = ⟨v, v⟩. We construct an infinite chase se-
quence starting with I0 = {P ({1}, {2})} and by repeat-
edly applying the above rules with suitable assignments in
the following order: r1, r1, r2, r1, r2, r1, r2, r1

We obtain the infinite chase sequence σ = I0, I1, . . .
I0 = {P ({1}, {2})}
I1 = {P ({1}, {2}), P ({2}, {v⊥

1 })}
I2 = {P ({1}, {2}), P ({2}, {v⊥

1 }), P ({v⊥
1 }, {v⊥

2 })}
I3 = {P ({1}, {2,v⊥

1 }), P ({2,v⊥
1 }, {2,v⊥

1 }),
P ({v⊥

1 }, {v⊥
2 })}

. . .
I7 = {P ({1}, {2,v⊥

1 ,v
⊥
2 }), P ({2,v⊥

1 }, {2,v⊥
1 ,v

⊥
2 }),

P ({2,v⊥
1 ,v

⊥
2 }, {2,v⊥

1 ,v
⊥
2 }), P ({v⊥

2 }, {v⊥
3 }),

P ({v⊥
3 }, {v⊥

4 })}
. . .

It is not difficult to see that the set chase(K, σ) defined in
(3) above is empty, i.e., no persistent facts occur in σ.

The infinite chase sequence σ in Example 12 is fair. At
the same time, there are finite fair sequences for the KB K
in this example. Indeed, if we apply rule r1 and then rule r2,
we get a finite chase sequence σ′ = I ′

0, I ′
1, I ′

2, where

I′
0 = {P ({1}, {2})}

I′
1 = {P ({1}, {2}), P ({2}, {v⊥

1 })}
I′
2 = {P ({1}, {2,v⊥

1 }), P ({2,v⊥
1 }, {2,v⊥

1 })}.

Consequently, chase(K, σ′) = I ′
2. Thus, further inves-

tigation is needed when both finite and infinite chase se-
quences exist for a KB. We leave this as a topic for future
work.

6 Related Work
From the extensive literature on entity resolution, and due
to space limitations, we comment briefly on only a small
subset of earlier work that is related to ours.

Swoosh (Benjelloun et al. 2009) is a generic approach to
entity resolution in which the functions used to compare and
merge records are “black boxes”. In our framework, the
match function is determined by entity-egds and value-egds,
whereas the merge function is implemented via the union
operation - an important special case of merge functions in
the Swoosh approach. In this sense, our framework is less
general than Swoosh. In another sense, our framework is
more general as it supports tgds, differentiates between en-
tities and values, and incorporates query answering.

As in the works on matching dependencies (MDs) (Fan
2008; Bertossi, Kolahi, and Lakshmanan 2013; Bahmani
et al. 2012), we consider variables in the head of egds to
be matched and merged rather than to be made equal. In
(Bertossi, Kolahi, and Lakshmanan 2013), generic functions
obeying some natural properties are used to compute the re-
sult of a match, while we use the union of the sets of values
or sets of entities involved in the match. In the MDs frame-
work, a version of the chase procedure is used to resolve
dependency violations. This chase acts locally on a pair of
tuples at each step, whereas our chase matches entities in a
global fashion and values in a local fashion. Furthermore,
we support tgds, which are not in the framework of MDs.

There is a body of work on declarative entity resolu-
tion and its variants that is related to our framework; rel-
evant references include the Dedupalog framework (Arasu,
Ré, and Suciu 2009), the declarative framework for entity
linking in (Burdick et al. 2016; Burdick et al. 2019), and
the more recent LACE framework (Bienvenu, Cima, and
Gutiérrez-Basulto 2022). In both Dedupalog and LACE,
there is a distinction between hard and soft entity resolu-
tion rules. LACE supports global merges and creates equiv-
alence classes as we do, but it does not support local merges.
A more recent extension, called LACE+ (Bienvenu et al.
2023) (which was not yet published at the time of our work),
combines both global merges and local merges, as in our
framework. Some important differences are that LACE+
combines entity resolution rules with denial constraints,
while our framework combines entity resolution rules with
tgds. Furthermore, they consider the complexity of various
problems such as the existence of solutions and deciding
whether a merge is certain or not, while we focus on the
chase and on the query answering problem. The declara-
tive framework for entity linking in (Burdick et al. 2016;
Burdick et al. 2019) uses key dependencies and disjunc-
tive constraints with “weighted” semantics that measure the
strength of the links. The key dependencies are interpreted
as hard rules that the solutions must satisfy in the standard
sense. Consequently, two conflicting links cannot co-exist in
the same solution, hence that approach uses repairs to define

the notion of the certain links. In contrast, in our framework
we carry along via the chase all the alternatives as either sets
of values or equivalence classes of entities. Another fea-
ture of our framework is the focus on the certain answers of
queries. Finally, the aforementioned declarative framework
for entity linking uses more general link relations without
rules for an equivalence relation of entities; thus, it is less
focused on entity resolution.

7 Conclusions and Future Work

The main contribution of this paper is the development of a
new declarative a framework that combines entity resolution
and query answering in KBs. This is largely a conceptual
contribution because the development of the new declara-
tive framework entailed rethinking from first principles the
definitions of such central notions as assignment, homomor-
phism, satisfaction of tgds and egds in a model, and uni-
versal solution. At the technical level, we designed a chase
procedure that never fails, and showed that, when it termi-
nates, it produces a universal solution that, in turn, can be
used in query answering.

As regards future directions, perhaps the most pressing
issue is to identify a “good” notion of the result of the
chase when the chase procedure does not terminate. This
may lead to extending the framework presented here to set-
tings where all universal solutions are infinite. While in-
finite universal solutions cannot be materialized, such so-
lutions have been used to obtain rewritability results (Cal-
vanese et al. 2007), occasionally combined with partial ma-
terialization of the result of an infinite chase (Lutz, Toman,
and Wolter 2009). In parallel, it is important to identify
structural conditions on the tgds and the egds of the TBox
that guarantee termination of the chase procedure in poly-
nomial time and, thus, yield tractable conjunctive query an-
swering. It is also worthwhile enriching our framework with
other kinds of axioms, e.g., denial constraints as in (Bi-
envenu, Cima, and Gutiérrez-Basulto 2022), and explor-
ing whether other variants of the chase procedure, such as
the semi-oblivious (a.k.a. Skolem) chase (Marnette 2009;
Calautti and Pieris 2021) or the core chase (Deutsch, Nash,
and Remmel 2008), can be suitably adapted to our frame-
work so that their desirable properties carry over.

Finally, we note that there are several different areas,
including data exchange (Fagin et al. 2005), data inte-
gration (Lenzerini 2002; Doan, Halevy, and Ives 2012),
ontology-mediated query answering (Bienvenu and Ortiz
2015), and ontology-based data access (Calvanese et al.
2018), in which tgds and egds play a crucial role. We be-
lieve that the framework presented here makes it possible to
infuse entity resolution into these areas in a principled way.

Acknowledgments

Kolaitis’ research was partially supported by NSF Award
No. 1814152. Lembo and Scafoglieri were supported by
EU ICT-48 2020 project TAILOR (No. 952215), EU project
ADCATER and PNRR MUR project PE0000013-FAIR.

References
Arasu, A.; Ré, C.; and Suciu, D. 2009. Large-scale dedupli-
cation with constraints using dedupalog. In Proc. of the 25th
IEEE Int. Conf. on Data Engineering (ICDE), 952–963.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2007. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edition.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artificial Intelligence 175(9-10):1620–1654.
Bahmani, Z.; Bertossi, L. E.; Kolahi, S.; and Lakshmanan,
L. V. S. 2012. Declarative entity resolution via matching de-
pendencies and answer set programs. In Brewka, G.; Eiter,
T.; and McIlraith, S. A., eds., Proc. of the 13th Int. Conf.
on Principles of Knowledge Representation and Reasoning
(KR), 380–390.
Beeri, C., and Vardi, M. Y. 1984. A proof procedure for data
dependencies. J. of the ACM 31(4):718–741.
Benjelloun, O.; Garcia-Molina, H.; Menestrina, D.; Su,
Q.; Whang, S. E.; and Widom, J. 2009. Swoosh: a
generic approach to entity resolution. Very Large Database
J. 18(1):255–276.
Bertossi, L. E.; Kolahi, S.; and Lakshmanan, L. V. S. 2013.
Data cleaning and query answering with matching depen-
dencies and matching functions. Theoretical Computer Sci-
ence 52(3):441–482.
Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated
query answering with data-tractable description logics. In
Faber, W., and Paschke, A., eds., Reasoning Web. Semantic
Technologies for Intelligent Data Access – 11th Int. Summer
School Tutorial Lectures (RW), volume 9203, 218–307.
Bienvenu, M.; Cima, G.; Gutiérrez-Basulto, V.; and Ibáñez-
Garcı́a, Y. 2023. Combining global and local merges in
logic-based entity resolution. In Proc. of the 20th Int. Conf.
on Principles of Knowledge Representation and Reasoning
(KR).
Bienvenu, M.; Cima, G.; and Gutiérrez-Basulto, V. 2022.
LACE: A logical approach to collective entity resolution. In
Proc. of the 41st ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS), 379–391.
Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W.
2016. A declarative framework for linking entities. ACM
Trans. on Database Systems 41(3):17:1–17:38.
Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W.
2019. Expressive power of entity-linking frameworks. J. of
Computer and System Sciences 100:44–69.
Calautti, M., and Pieris, A. 2021. Semi-oblivious chase
termination: The sticky case. Theoretical Computer Science
65(1):84–121.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the in-
finite chase: Query answering under expressive relational
constraints. J. of Artificial Intelligence Research 48:115–
174.

Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
datalog-based framework for tractable query answering over
ontologies. J. of Web Semantics 14:57–83.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2018. Ontology-based data access and inte-
gration. In Liu, L., and Özsu, M. T., eds., Encyclopedia of
Database Systems, Second Edition. Springer.
Cuenca Grau, B.; Horrocks, I.; Krötzsch, M.; Kupke, C.;
Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity no-
tions for existential rules and their application to query an-
swering in ontologies. J. of Artificial Intelligence Research
47:741–808.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The
chase revisited. In Proc. of the 27th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS),
149–158.
Doan, A.; Halevy, A. Y.; and Ives, Z. G. 2012. Principles of
Data Integration. Morgan Kaufmann.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theoreti-
cal Computer Science 336(1):89–124.
Fan, W. 2008. Dependencies revisited for improving
data quality. In Proc. of the 27th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS),
159–170.
Grahne, G., and Onet, A. 2018. Anatomy of the chase.
Fundamenta Informaticae 157(3):221–270.
Johnson, D. S., and Klug, A. C. 1984. Testing containment
of conjunctive queries under functional and inclusion depen-
dencies. J. of Computer and System Sciences 28(1):167–
189.
Krötzsch, M.; Marx, M.; and Rudolph, S. 2019. The
power of the terminating chase (invited talk). In Proc. of the
22nd Int. Conf. on Database Theory (ICDT), volume 127 of
LIPIcs, 3:1–3:17.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS), 233–246.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI), 2070–2075.
Marnette, B. 2009. Generalized schema-mappings: from
termination to tractability. In Proc. of the 28th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems
(PODS), 13–22.
Papadakis, G.; Ioannou, E.; Thanos, E.; and Palpanas, T.
2021. The Four Generations of Entity Resolution. Synthesis
Lectures on Data Management. Morgan & Claypool Pub-
lishers.

	Introduction
	Basic Notions
	Framework
	Query answering
	Computing a universal model
	Related Work
	Conclusions and Future Work

