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Abstract
A document spanner models a program for Information Extraction (IE) as a function that takes as
input a text document (string over a finite alphabet) and produces a relation of spans (intervals
in the document) over a predefined schema. A well-studied language for expressing spanners is
that of the regular spanners: relational algebra over regex formulas, which are regular expressions
with capture variables. Equivalently, the regular spanners are the ones expressible in non-recursive
Datalog over regex formulas (which extract relations that constitute the extensional database). This
paper explores the expressive power of recursive Datalog over regex formulas. We show that such
programs can express precisely the document spanners computable in polynomial time. We compare
this expressiveness to known formalisms such as the closure of regex formulas under the relational
algebra and string equality. Finally, we extend our study to a recently proposed framework that
generalizes both the relational model and the document spanners.
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1 Introduction

The abundance and availability of valuable textual resources position text analytics as
a standard component in data-driven workflows. To facilitate the incorporation of such
resources, a core operation is the extraction of structured data from text, a classic task known
as Information Extraction (IE). This task arises in a large variety of domains, including
healthcare analysis [28], social media analysis [4], customer relationship management [2],
and machine log analysis [12]. IE also plays a central role in cross-domain computational
challenges such as Information Retrieval [30] and knowledge-base construction [15, 26, 27, 29].

1 The work was done while the author was at IBM Research – Almaden.
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10:2 Recursive Programs for Document Spanners

Rule-based IE is incorporated in commercial systems and academic prototypes for text
analytics, either as a standalone extraction language or within machine-learning models.
IBM’s SystemT [20] exposes an SQL-like declarative language, AQL (Annotation Query
Language), for programming IE. Conceptually, AQL supports a collection of “primitive”
extractors of relations from text (e.g., tokenizer, dictionary lookup, part-of-speech tagger
and regular-expression matcher), together with a relational algebra for manipulating these
relations. Similarly, in Xlog [25], user-defined functions are used as primitive extractors, and
non-recursive Datalog is, again, allowed for relation manipulation. In DeepDive [24,26], rules
are used to generate features that are translated into the factors of a statistical model with
machine-learned parameters. Feature declaration combines, once again, primitive extractors
of relations alongside relational operators on these relations. In addition to the above,
different Datalog-like formalisms for IE were previously suggested and studied, including
monadic Datalog over trees as web-page languages [13], and a framework for annotating CSV
documents [3].

The framework of document spanners (or just spanners for short) [7] captures the above
IE methodology: a spanner is a function that extracts from a document a relation over
text intervals, called spans, using either a primitive extractor (e.g., a regular expression)
or a relational query on top of primitive extractors. More formally, by a document we
refer to a string s over a finite alphabet, and a span of s represents a substring of s by its
start and end positions. A spanner is a function P that maps every string s into a relation
P (s), over a fixed schema SP , over the spans of s. The most studied spanner language is
that of the regular spanners: primitive extraction is via regex formulas, which are regular
expressions with capture variables, and relational manipulation is via positive relational
algebra: projection, natural join, and union (while difference is expressible and not explicitly
needed) [7]. Equivalently, the regular spanners are the ones expressible in non-recursive
Datalog, where regex formulas are playing the role of the Extensional Data Base (EDB),
that is, the input database [8].

By adding string-equality selection on span variables, Fagin et al. [7] establish the extended
class of core spanners, viewed as the core language for AQL. A syntactically different language
for spanners is SpLog, which is based on the existential theory of concatenation, and was
shown by Freydenberger [9] to have precisely the expressiveness of core spanners. Such
spanners can express more than regular spanners. A simple example is the spanner that
extracts from the input s all spans x and y such that the string sx spanned by x is equal to
the string sy spanned by y. The class of core spanners does not behave as well as that of the
regular spanners; for instance, core spanners are not closed under difference, while regular
spanners are. Fagin et al. [7] prove this by showing that no core spanner extracts all spans x
and y such that sx is not a substring of sy. The proof is based on the core simplification
lemma: every core spanner can be represented as a regular spanner followed by a sequence of
string equalities and projections. The same technique has been used for showing that no
core spanner extracts all pairs x and y of spans having the same length [7].

In this paper we explore the power of recursion in expressing spanners. The motivation
came from the SystemT developers, who have interest in recursion for various reasons, such
as programming basic natural-language parsers by means of context-free grammars [19].
Specifically, we consider the language RGXlog of spanners that are defined by means of
Datalog where, again, regex formulas play the role of EDB relations, but this time recursion
is allowed. More precisely, given a string s, the regex formulas extract EDB relations from
s, and a designated relation Out captures the output of the program. Observe that such
a program operates exclusively over the domain of spans of the input string. In particular,
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the output is a relation over spans of s, and hence, RGXlog is yet another representation
language for spanners. As an example, the following program emits all pairs x and y of spans
of equal lengths. (See Section 3 for the formal definition of the syntax and semantics.)

I EqL(x, y)←〈x{ε}〉, 〈y{ε}〉
I EqL(x, y)←〈x{x′{.∗}.}〉, 〈y{y′{.∗}.}〉,EqL(x′, y′)

The first rule states that two empty spans have same length. The second rule states that two
spans x and y have equal lengths if they are obtained by adding a single symbol (represented
by dot) to spans x′ and y′, respectively, of equal lengths.

We explore the expressiveness of RGXlog. Without recursion, RGXlog captures precisely
the regular spanners [8]. With recursion, several observations are quite straightforward. First,
we can write a program that determines whether x and y span the same string. Hence, we
have string equality without explicitly including the string-equality predicate. It follows that
every core spanner can be expressed in RGXlog. Moreover, RGXlog can express more than
core spanners, an example being expressing that two spans have the same length (which
the above program shows can be expressed in RGXlog, but which, as said earlier, is not
expressible by a core spanner [7]). What about upper bounds? A clear upper bound is
polynomial time: every RGXlog program can be evaluated in polynomial time (under data
complexity, where the spanner is fixed and the input consists of only the string), and hence,
RGXlog can express only spanners computable in polynomial time.

We begin our investigation by diving deeper into the relationship between RGXlog and
core spanners. The inexpressiveness results to date are based on the aforementioned core
simplification lemma [7]. The proof of this lemma heavily relies on the absence of the
difference operator in the algebra. In fact, Freydenberger and Holldack [10] showed that it is
unlikely that in the presence of difference, there is a result similar to the core simplification
lemma. So, we extend the algebra of core spanners with the difference operator, and call
a spanner of this extended language a generalized core spanner. We then ask whether (a)
every generalized core spanner can be expressed in RGXlog (whose syntax is positive and
excludes difference/negation), and (b) RGXlog can express only generalized core spanners.

The answer to the first question is positive. We establish a negative answer to the second
question by deploying the theory of Presburger arithmetic [23]. Specifically, we consider
Boolean spanners on a unary alphabet. Each such spanner can be viewed as a predicate over
natural numbers: the lengths of the strings that are accepted (evaluated to true) by the
spanner. We prove that every predicate expressible by a Boolean generalized core spanner is
also expressible in Presburger arithmetic (first-order theory of the natural numbers with the
addition (+) binary function and the constant 0 and 1). Yet, we show a very simple RGXlog
program that expresses a predicate that is not expressible in Presburger arithmetic, namely
being a power of two [17].

We prove that RGXlog can express every spanner computable in polynomial time. Formally,
recall that a spanner is a function P that maps an input string s into a relation P (s), over
a fixed schema SP , over the spans of s. We prove that the following are equivalent for a
spanner P : (a) P is expressible in RGXlog, and (b) P is computable in polynomial time. As
a special case, Boolean RGXlog captures exactly the polynomial-time languages.

Related formalisms that capture polynomial time include the Range Concatenation
Grammars (RCG) [5]. In RCG, the grammar defines derivation rules for reducing the input
string into the empty string; if reduction succeeds, then the string is accepted. Unlike
context-free and context-sensitive grammars, RCGs have predicate names in addition to
variables and terminals—this allows us to maintain connections between different parts
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10:4 Recursive Programs for Document Spanners

of the input string. Another formalism that captures polynomial time is the multi-head
alternating automata [16], which are finite state machines with several cursors that can
perform alternating transitions. Though related, these results do not seem to imply our
results on document spanners.

We prove equivalence to polynomial time via a result by Papadimitriou [22], stating that
semipositive Datalog (i.e., Datalog where only EDB relations can be negated) can express
every database property computable in polynomial time, under certain assumptions: (a) the
property is invariant under isomorphism, (b) a successor relation that defines a linear order
over the domain is accessible as an EDB, and (c) the first and last elements in the database
are accessible as constants (or single-element EDBs). We show that in the case of RGXlog,
we get all of these for free, due to the fact that our EDBs are regex formulas. Specifically, in
string logic (over a finite alphabet), isomorphism coincides with identity, negation of EDBs
(regex formulas) are expressible as EDBs (regex formulas), and we can express a linear order
by describing a successor relation along with its first and last elements.

Interestingly, our construction shows that, to express polynomial time, it suffices to
use regex formulas with only two variables. In other words, binary regex formulas already
capture the entire expressive power. Can we get away with only unary regex formulas?
Using past results on monadic Datalog [14] and non-recursive RGXlog [7] we conclude a
negative answer—Boolean RGXlog with unary regex formulas can express precisely the class
of Boolean regular spanners. In fact, we can characterize explicitly the class of spanners
expressible by RGXlog with unary regex formulas.

Lastly, we analyze recursive Datalog programs in a framework that generalizes both the
relational and the spanner model. The framework, introduced by Nahshon, Peterfreund
and Vansummeren [21] and referred to as Spannerlog〈RGX〉, aims to establish a unified
query language for combining structured and textual data. In this framework, the input and
output databases consist of relations that have two types of attributes: strings and spans.
In the associated Datalog program, we refer to the relations of the input database as EDB
relations (that is, extensional) and to those of the output database as IDB relations (that
is, intensional, or inferred). The body of a Datalog rule may have three types of atoms:
EDB, IDB, and regex formulas over string attributes. We prove that Spannerlog〈RGX〉 with
stratified negation, restricted to string EDB relations, can express precisely the queries that
are computable in polynomial time.

The remainder of the paper is organized as follows. We provide basic definitions and
terminology in Section 2, and introduce RGXlog in Section 3. In Section 4, we illustrate
RGXlog in the context of a comparison with (generalized) core spanners. Our main result
(equivalence to polynomial time) is proved in Section 5. We describe the generalization of
our main result to Spannerlog〈RGX〉 in Section 6, and conclude in Section 7.

2 Preliminaries

We first introduce the basic terminology and notation that we use throughout the paper.

2.1 Document Spanners
We begin with the basic terminology from the framework of document spanners [7].

Strings and spans. We fix a finite alphabet Σ of symbols. A string s is a finite sequence
σ1 · · ·σn over Σ (i.e., each σi ∈ Σ). We denote by Σ∗ the set of all strings over Σ. A language
over Σ is a subset of Σ∗. A span identifies a substring of s by specifying its bounding indices.
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C a i n ␣ s o n ␣ o f ␣ A d a m , ␣ A b e l ␣ s o n ␣ o f ␣ A d a m , ␣ E n o c h ␣ s o n ␣ o f ␣ C a i n , ␣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Figure 1 The input string s in our running example

Formally, a span of s has the form [i, j〉 where 1 ≤ i ≤ j ≤ n + 1. If [i, j〉 is a span of s,
then s[i,j〉 denotes the substring σi · · ·σj−1. Note that s[i,i〉 is the empty string, and that
s[1,n+1〉 is s. Note also that the spans [i, i〉 and [j, j〉, where i 6= j, are different, even though
s[i,i〉 = s[j,j〉 = ε where ε stands for the empty string. We denote by Spans the set of all spans
of all strings, that is, all expressions [i, j〉 where 1 ≤ i ≤ j. By Spans(s) we denote the set
spans of string s (and in this case we have j ≤ n+ 1).

I Example 1. In all of the examples throughout the paper, we use the alphabet Σ that
consists of the lowercase and capital letters from the English alphabet (i.e., a, . . . , z and
A, . . . , Z), the comma symbol “,”, and the symbol “␣” that stands for whitespace. Figure 1
depicts an example of a prefix of a string s. (For convenience, it also depicts the position of
each of the characters in s.) Observe that the spans [13, 17〉 and [31, 35〉 are different, yet
they span the same substring, that is, s[13,17〉 = s[31,35〉 = Adam. J

Document spanners. We assume an infinite collection Vars of variables such that Vars
and Σ are disjoint. Let s be a string and V ⊂ Vars a finite set of variables. A (V, s)-record2
is a function r : V → Spans(s) that maps the variables of V to spans of s. A (V, s)-relation is
a set of (V, s)-records. A document spanner (or just spanner for short) is a function P that
maps strings s to (V, s)-relations P (s), for a predefined finite set V of variables that we denote
by Vars(P ). As a special case, a Boolean spanner is a spanner P such that Vars(P ) = ∅; in
this case, P (s) can be either the singleton that consists of the empty function, a situation
denoted by P (s) = true, or the empty set, a situation denoted by P (s) = false. A Boolean
spanner P recognizes the language {s ∈ Σ∗ | P (s) = true} .

By a spanner representation language, or simply spanner language for short, we refer to a
collection L of finite expressions p that represent a spanner. For instance, we next define
the spanner language RGX of regex formulas. For an expression p in a spanner language,
we denote by JpK the spanner that is defined by p, and by Vars(p) the variable set Vars(JpK).
Hence, for a string s we have that JpK(s) is a (Vars(p), s)-relation. We denote by JLK the
class of all spanners JpK definable by expressions p in L.

Regex formulas. A regex formula is a representation of a spanner by means of a regular
expression with capture variables. It is defined by γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ∗ | x{γ}.
Here, ε stands for the empty string, σ ∈ Σ, and the alternative beyond regular expressions
is x{γ} where x is a variable in Vars. We denote the set of variables that occur in γ by
Vars(γ). Intuitively, every match of a regex formula in an input string s yields an assignment
of spans to the variables of γ. A crucial assumption we make is that the regex formula
is functional [7], which intuitively means that every match assigns precisely one span to
each variable in Vars(γ). For example, the regex formula a∗ · x{a · b∗} · a is functional, but
a∗ · (x{a · b})∗ · a is not; similarly, (x{a}) ∨ (b · x{a}) is functional, but (x{a}) ∨ (b · a) is
not. A regex formula γ defines a spanner, where the matches produce the (V, s)-records for
V = Vars(γ). We refer the reader to Fagin et al. [7] for the precise definition of functionality,
including its polynomial-time verification, and for the precise definition of the spanner JγK

2 Fagin et al. [7] refer to (V, s)-records as (V, s)-tuples; we use “record” to avoid confusion with the concept
of “tuple” that we later use in ordinary relations.

ICDT 2019



10:6 Recursive Programs for Document Spanners

represented by γ. As previously said, we denote by RGX the spanner language of (i.e., the
set of all) regex formulas.

Throughout the paper, we use the following abbreviations when we define regex formulas.
We use “.” instead of “∨σ∈Σσ” (e.g., we use “.∗” instead of “(∨σ∈Σσ)∗”). For convenience,
we put regex formulas in brackets and write 〈γ〉 (using angular instead of ordinary brackets)
to denote that γ can occur anywhere in the document; that is, 〈γ〉 := [.∗ γ .∗].

I Example 2. Following are examples of regex formulas that we use later on.
γtoken(x) := 〈 ␣ x{(a− zA− Z)∗} (␣ ∨ , ) 〉
γcap(x) := 〈 ␣ x{(A− Z)(a− zA− Z)∗} (␣ ∨ , ) 〉
γprnt(x, y) := 〈y{.∗}␣son␣of␣x{.∗}〉

The regex formula γtoken(x) extracts the spans of tokens (defined simplistically for presentation
sake), γcap(x) extracts capitalized tokens, and γprnt(x, y) extracts spans separated by ␣son␣of␣
(where prnt stands for “parent”). For illustration, applying JγcapK to s of Figure 1 results in
a set of ({x}, s)-records that includes the record r that maps x to [19, 23〉. J

2.2 Spanner Algebra
The algebraic operators union, projection, natural join, and difference are defined in the
usual way, for all spanners P1 and P2 and strings s, as follows. For a (V, s)-record r and
Y ⊆ V , we denote by r

↼

Y the (Y, s)-record obtained by restricting r to the variables in Y .
We say that P1 and P2 are union compatible if Vars(P1) = Vars(P2).

Union: Assuming P1 and P2 are union compatible, the union P = P1 ∪P2 is defined by
Vars(P ) := Vars(P1) with P (s) := P1(s) ∪ P2(s).
Projection: For Y ⊆ Vars(P1), the projection P = πY P1 is defined by Vars(P ) := Y

with P (s) = {r

↼

Y | r ∈ P1(s)}.
Natural join: Let Vi := Vars(Pi) for i ∈ {1, 2}. The (natural) join P = (P1 ./ P2) is
defined by Vars(P ) := Vars(P1) ∪ Vars(P2) with P (s) consisting of all (V1 ∪ V2, s)-records
r such that there exist r1 ∈ P1(s) and r2 ∈ P2(s) with r

↼

V1 = r1 and r

↼

V2 = r2.
Difference: Assuming P1 and P2 are union compatible, the difference P = P1 \ P2 is
defined by Vars(P1 \ P2) := Vars(P1) with P (s) := P1(s) \ P2(s).
String-equality selection: For variables x and y in Vars(P1), the string-equality
selection P := ζ=

x,yP1 is defined by Vars(P ) := Vars(P1) with P (s) consisting of all records
r ∈ P1(s) such that sr(x) = sr(y).

If L is a spanner language and O is a set of operators in a spanner algebra, then LO

denotes the spanner language obtained by closing L under the operations of O.

2.3 Regular and (Generalized) Core Spanners
Following Fagin et al. [7], we define a regular spanner to be one definable in RGX{∪,π,./},
that is, a spanner P such that P = JpK for some p in RGX{∪,π,./}. Similarly, we define a core
spanner to be a spanner definable in RGX{∪,π,./,ζ

=}.

I Example 3. Consider the regex formulas of Example 2. We can take their join and
obtain a regular spanner: γprnt(x, y) ./ γcap(x) ./ γcap(y). This spanner extracts a set of
({x, y}, s)-records r such that r maps x and y to strings that begin with a capital letter and
are separated by ␣son␣of␣. Assume we wish to extract a binary relation that holds the
tuples (x, y) such that the span x spans the name of the grandparent of y. (For simplicity, we
assume that the name is a unique identifier of a person.) For that, we can define the following
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core spanner on top of the regex formulas from Example 2: πx,wζ=
y,z

(
γprnt(x, y) ./ γprnt(z, w)

)
.

We denote this spanner by γgrpr(x,w). J

Note that we did not include difference in the definition of regular and core spanners; this
does not matter for the class of regular spanners, since it is closed to difference (i.e., a spanner
is definable in RGX{∪,π,./,\} if and only if it is definable in RGX{∪,π,./}), but it matters for
the class of core spanners, which is not closed under difference [7]. We define a generalized
core spanner to be a spanner definable in RGX{∪,π,./,ζ

=,\}. We study the expressive power of
the class of generalized core spanners in Section 4.

I Example 4. Recall the definition of γgrpr(x,w) from Example 3. The generalized core
spanner γcap(w) \ (πwγgrpr(x,w)) finds all spans of capitalized words w such that the text
has no mentioning of any grandparent of w. J

2.4 Span Databases
We also use the terminology and notation of ordinary relational databases, with the exception
that database values are all spans. (In Section 6 we allow more general values in the database.)
More formally, a relation symbol R has an associated arity that we denote by arity(R), and
a span relation over R is a finite set of tuples t ∈ Spansarity(R) over R. We denote the ith
element of a tuple t by ti. A (relational) signature R is a finite set {R1, . . . , Rn} of relation
symbols. A span database D over a signature R := {R1, . . . , Rn} consists of span relations
RDi over the Ri. We call RDi the instantiation of Ri by D.

3 RGXlog: Datalog over Regex Formulas

In this section, we define the spanner language RGXlog, pronounced “regex-log,” that
generalizes regex formulas to (possibly recursive) Datalog programs.

LetR be a signature. By an atom overR we refer to an expresion of the form R(x1, . . . , xk)
where R ∈ R is a k-ary relation symbol and each xi is a variable in Vars. Note that a variable
can occur more than once in an atom (i.e., we may have xi = xj for some i and j with i 6= j),
and we do not allow constants in atoms. A RGXlog program is a triple 〈I,Φ,Out(x)〉 where:
I is a signature referred to as the IDB signature;
Φ is a finite set of rules of the form ϕ ← ψ1, . . . , ψm, where ϕ is an atom over I, and
each ψi is either an atom over I or a regex formula;
Out ∈ I is a designated output relation symbol;
x is a sequence of k distinct variables in Vars, where k is the arity of Out.

If ρ is the rule ϕ← ψ1, . . . , ψm, then we call ϕ the head of ρ and ψ1, . . . , ψm the body of ρ.
Each variable in ϕ is called a head variable of ρ. We make the standard assumption that
each head variable of a rule occurs at least once in the body of the rule.

We now define the semantics of evaluating a RGXlog program over a string. Let Q =
〈I,Φ,Out(x)〉 be a RGXlog program, and let s be a string. We evaluate Q on s using the
usual fixpoint semantics of Datalog, while viewing the regex formulas as extensional-database
(EDB) relations. More formally, we view a regex formula γ as a logical assertion over
assignments to Vars(γ), stating that the assignment forms a tuple in JγK(s). The span
database with signature I that results from applying Q to s is denoted by Q(s), and it is
the minimal span database that satisfies all rules, when viewing each left arrow (←) as a
logical implication with all variables being universally quantified.

Next, we define the semantics of RGXlog as a spanner language. Let Q = 〈I,Φ,Out(x)〉
be a RGXlog program. As a spanner, the program Q constructs D = Q(s) and emits the
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10:8 Recursive Programs for Document Spanners

relation OutD as assignments to x. More precisely, suppose that x = x1, . . . , xk. The
spanner P = JQK is defined as follows.

Vars(P ) := {x1, . . . , xk}.
Given s and D = Q(s), the set P (s) consists of all records ra obtained from tuples
a = (a1, . . . , ak) ∈ OutD by setting ra(xi) = ai.

Finally, recursive and non-recursive RGXlog programs are defined similarly to ordinary
Datalog (e.g., using the acyclicity of the dependency graph over the IDB predicates).

I Example 5. In the following and later examples of programs, we use the cursor sign I
to indicate where a rule begins. Importantly, for brevity we use the following convention:
Out(x) is always the left hand side of the last rule.

I Ancstr(x, z)← γprnt(x, z)
I Ancstr(x, y)← Ancstr(x, z), γprnt(z, y)

By our convention, Out(x) is Ancstr(x, y). This program returns the transitive closure of
the relation obtained by applying the regex formula γprnt(x, z) from Example 2. J

4 Comparison to Core Spanners

We begin the exploration of the expressive power of RGXlog by a comparison to the class
of core spanners and the class of generalized core spanners. We first recall the following
observation by Fagin et al. [8] for later reference.

I Proposition 6. [8] The class of spanners definable by non-recursive RGXlog is precisely
the class of regular spanners, namely JRGX{∪,π,./}K.

In addition to RGXlog being able to express union, projection and natural join, the
following program shows that RGXlog can express the string-equality selection, namely ζ=.

I StrEq(x, y)← 〈x{ε}〉, 〈y{ε}〉
I StrEq(x, y)← 〈x{σx̃{.∗}}〉, 〈y{σỹ{.∗}}〉,StrEq(x̃, ỹ)

Here, the second rule is repeated for every alphabet letter σ. (Note that we are using the
assumption that the alphabet is finite.) It thus follows that every core spanner is definable
in RGXlog. The other direction is false. As an example, no core spanner extracts all spans x
and y such that sx is not a substring of sy [7], or all pairs x and y of spans having the same
length [8]. In the following example, we construct a RGXlog program that extracts both of
these relationships.

I Example 7. In the following program, rules that involve σ and τ are repeated for all
letters σ and τ such that σ 6= τ , and the ones that involve only σ are repeated for every σ.

I Len=(x, y)← 〈x{ε}〉, 〈y{ε}〉
I Len=(x, y)← 〈x{.x̃{.∗}}〉, 〈y{.ỹ{.∗}}〉,Len=(x̃, ỹ)
I Len>(x, y)← 〈x{.+ỹ{.∗}}〉,Len=(ỹ, y)
I NotPrfx(x, y)← 〈x{σ.∗}〉, 〈y{ε} ∨ y{τ.∗}〉
I NotPrfx(x, y)← 〈x{σx̃{.∗}}〉, 〈y{σỹ{.∗}}〉,NotPrfx(x̃, ỹ)
I NotCntd(x, y)← Len>(x, y)
I NotCntd(x, y)← NotPrfx(x, y), 〈y{.ỹ{.∗}}〉,NotCntd(x, ỹ)

The program defines the following relations:
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Len=(x, y) contains all spans x and y of the same length.
Len>(x, y) contains all spans x and y such that x is longer than y.
NotPrfx(x, y) contains all spans x and y such that sx is not a prefix of sy. The rules
state that sx is not a prefix of sy if sx is nonempty but sy is empty, or the two begin with
different letters, or the two begin with the same letter but the rest of sx is not a prefix of
the rest of sy.
NotCntd(x, y) contains all spans x and y such that sx is not contained in sy. The rules
state that this is the case if x is longer than y, or both of the following hold: sx is not a
prefix of sy, and sx is not contained in the suffix of sy following the first symbol.

In particular, the program defines both equal-length and non-containment relationships. J

The impossibility proofs of Fagin et al. [7,8] are based on the core simplification lemma [7],
which states that every core spanner can be represented as a regular spanner, followed by
a sequence of string-equality selections (ζ=) and projections (π). In turn, the proof of this
lemma relies on the absence of the difference operator in the algebra. See Freydenberger and
Holldack [10] for an indication of why a result similar to the core simplification lemma is not
likely to hold in the presence of difference. Do things change when we consider generalized
core spanners, where difference is allowed? To be precise, we are interested in two questions:
1. Can RGXlog express every generalized core spanner?
2. Is it true that every spanner definable in RGXlog is a generalized core spanner?
In the next section, we show that the answer to the first question is yes. In the remainder of
this section, we show that the answer to the second question is no.

We begin by constructing the following RGXlog program, which defines a Boolean is
spanner that returns true if and only if the length of the input s is a power of two.

I Pow2(x)← 〈x{.}〉
I Pow2(x)← 〈x{x1{.∗}x2{.∗}}〉,Pow2(x1),Len=(x1, x2)
I Out()← [x{.∗}],Pow2(x)

We prove the following.

I Theorem 8. There is no Boolean generalized core spanner that determines whether the
length of the input string is a power of two.

Hence, we get a negative answer to the second question. In the remainder of this section, we
discuss the proof of Theorem 8. We need to prove that no generalized core spanner recognizes
precisely all strings whose length is a power of two.

Let a be a letter, and La the language of all strings s that consist of 2n occurrences of
a for n ≥ 0, that is: La

def= {s ∈ a∗ | |s| is a power of 2}. We will restrict our discussion to
generalized core spanners that accept only strings in a∗, and show that no such spanner
recognizes La. This is enough, since every generalized core spanner S can be restricted into
a∗ by joining S with the regex formula [a∗]. For simplicity, we will further assume that our
alphabet consists of only the symbol a. Then, a language L is identified by a set of natural
numbers—the set of all numbers m such that am ∈ L. We denote this set by N(L).

Presburger Arithmetic (PA) is the first-order theory of the natural numbers with the
addition (+) binary function and the constants 0 and 1 [23]. For example, the relationship
x > y is expressible by the PA formula ∃z[x = y + z + 1] and by the PA formula x 6=
y ∧ ∃z[x = y + z]. As another example, the set of all even numbers x is definable by the PA
formula ∃y[x = y + y]. When we say that a set A of natural numbers is definable in PA we
mean that there is a unary PA formula ϕ(x) such that A = {x ∈ N | ϕ(x)}.

It is known that being a power of two is not definable in PA [17]. Theorem 8 then follows
from the next theorem.
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I Theorem 9. A language L ⊆ {a}∗ is recognizable by a Boolean generalized core spanner if
and only if N(L) is definable in PA.

5 Equivalence to Polynomial Time

While RGXlog programs output relations (which are sets of tuples), the result of evaluating a
spanner on s is given as a set of (V, s)-records. Therefore, to compare the expressiveness of
RGXlog programs and spanners, in what follows we implicitly treat tuples as records and
vice-versa as described now. We assume that there is a fixed predefined order on Vars (e.g.,
the lexicographic order on the variables’ names) and denote the i’th element in this order by
vi. A tuple t ∈ Spansn is viewed as the record whose domain is {v1, . . . , vn} that maps each
vi to ti; a (V, s)-record r is viewed as the tuple whose i’th element equals the value of r on v
where v is the i’th variable of V according to the fixed predefined order on Vars.

An easy consequence of existing literature [1,11] is that every RGXlog program can be
evaluated in polynomial time (as usual, under data complexity). Indeed, the evaluation
of a RGXlog program P can be done in two steps: (1) materialize the regex atoms on the
input string s and get relations over spans, and (2) evaluate P as an ordinary Datalog
program over an ordinary relational database, treating the regex formulas as the names of
the corresponding materialized relations. The first step can be completed in polynomial
time [11], and so can the second [1]. Quite remarkably, RGXlog programs capture precisely
the spanners computable in polynomial time.

I Theorem 10. A spanner is definable in RGXlog if and only if it is computable in polynomial
time.

In the remainder of this section, we discuss the proof of Theorem 10. The proof of the
“only if” direction is described right before the theorem. To prove the “if” direction, we need
some definitions and notation.

Definitions. We apply ordinary Datalog programs to databases over arbitrary domains,
in contrast to RGXlog programs that we apply to strings, and that involve databases over
the domain of spans. Formally, we define a Datalog program as a quadruple (E , I,Φ,Out)
where E and I are disjoint signatures referred to as the EDB (input) and IDB signatures,
respectively, Out is a designated output relation symbol in I, and Φ is a finite set of Datalog
rules.3 As usual, a Datalog rule has the form ϕ← ψ1, . . . , ψm, where ϕ is an atomic formula
over I and ψ1, . . . , ψm are atomic formulas over E and I. We again require each variable in
the head ϕ to occur in the body ψ1, . . . , ψm. In this paper, we restrict Datalog programs to
ones without constants; that is, an atomic formula ψi is of the form R(x1, . . . , xk) where R is
a k-ary relation symbol and the xi are (not necessarily distinct) variables. An input for a
Datalog program Q is an instance D over E that instantiates every relation symbol of E with
values from an arbitrary domain. The active domain of an instance D, denoted adom(D), is
the set of constants that occur in D.

An ordered signature E is a signature that includes three distinguished relation symbols: a
binary relation symbol Succ, and two unary relation symbols First and Last. An ordered
instance D is an instance over an ordered signature E such that Succ is interpreted as a

3 Note that unlike RGXlog, here there is no need to specify variables for Out. This is because a spanner
evaluates to assignments of spans to variables, which we need to relate to Out, whereas a Datalog
program evaluates to an entire relation, which is Out itself.
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successor relation of some linear (total) order over adom(D), and First and Last determine
the first and last elements in this linear order, respectively.

A semipositive Datalog program P , or Datalog⊥ program in notation, is a Datalog
program in which the EDB atoms (i.e., atoms over EDB relation symbols) can be negated.
We make the safety assumption that in each rule ρ, every variable that appears in the head
of ρ is either (1) a variable appearing in a positive (i.e., non-negated) atom of the body of
the rule, or (2) in Vars(γ) for a regex formula γ that appears in the body of the rule. For an
instance D over E , we denote by P (D) the database with the signature I that results from
applying P on D.

A query Q over a signature E is associated with a fixed arity arity(Q) = k, and it maps
an input database D over E into a relation Q(D) ⊆ (adom(D))k. As usual, Q is Boolean if
k = 0. We say that Q respects isomorphism if for all isomorphic databases D1 and D2 over
E , and for all isomorphisms ϕ : adom(D1)→ adom(D2) between D1 and D2, it is the case
that ϕ(Q(D1)) = Q(D2).

Proof idea for Theorem 10. We now discuss the proof of the “if” direction. The proof
is based on Papadimitriou’s theorem [22], stating a close connection between semipositive
Datalog and polynomial time:

I Theorem 11. [6, 22] Let E be an ordered signature and let Q be a query over E such
that Q respects isomorphism. Then Q is computable in polynomial time if and only if Q is
computable by a Datalog⊥ program.

Our proof continues as follows. Let S be a spanner that is computable in polynomial
time. We translate S into a RGXlog program P in two main steps. In the first step, we
translate S into a Datalog⊥ program PS by an application of Theorem 11. In the second
step, we translate PS into P . To realize the first step of the construction, we need to encode
our input string by a database, since PS operates over databases (and not over strings). To
use Theorem 11, we need to make sure that this encoding is computable in polynomial time,
and that it is invariant under isomorphism, that is, the encoding allows to restore the string
even if replaced by an isomorphic database. To realize the second step of the construction,
we need to bridge several differences between RGXlog and Datalog⊥. First, the former takes
as input a string, and the latter a database. Second, the latter assumes an ordered signature
while the former does not involve any order. Third, the former does not allow negation while
in the latter EDB atoms can be negated.

For the first step of our translation, we use a standard representation (which we shall
explain shortly) of a string as a logical structure and extend it with a total order on its active
domain. Note that we have to make sure that the active domain contains the output domain
(i.e., all spans of the input string). We define Rord to be an ordered signature with the unary
relation symbols Rσ for each σ ∈ Σ, in addition to the required Succ, First and Last. Let
s = σ1 · · ·σn be an input string. We define an instance Ds over Rord by materializing the
relations as follows.

Each relation Rσ consists of all tuples ([i, i+ 1〉) such that σi = σ.
Succ consists of the pairs ([i, i′〉, [i, i′+ 1〉) and all pairs ([i, n+ 1〉, [i+ 1, i+ 1〉) whenever
the involved spans are legal spans of s.
First and Last consist of [1, 1〉, and [n+ 1, n+ 1〉, respectively.

I Comment 12. Observe that we view the linear order as the lexicographic order over the
spans. The only difference from the usual lexicographic order on ordered pairs (i, j) in that
for spans, we must have i ≤ j. The successor relation Succ is inferred from this order. J
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An encoding instance (or just encoding) D is an instance over Rord that is isomorphic
to Ds for some string s. In this case, we say that D encodes s. Note that the entries of an
encoding are not necessarily spans. Nevertheless, every encoding encodes a unique string.
The following lemma is straightforward.

I Lemma 13. Let D be an instance over Rord. The following hold:
1. Whether D is an encoding can be determined in polynomial time.
2. If D is an encoding, then there are unique string s and isomorphism ι such that D encodes

s and ι(Ds) = D; moreover, both s and ι are computable in polynomial time.

Let S be a spanner. We define a query QS over Rord as follows. If the input database D
is an encoding and s and ι are as in Lemma 13, then QS(D) = ι(JSK(s)); otherwise, QS(D)
is empty. To apply Theorem 11, we make an observation.

I Observation 14. The query QS respects isomorphism, and moreover, is computable in
polynomial time whenever S is computable in polynomial time.

We can now apply Theorem 11 on QS :

I Lemma 15. If S is computable in polynomial time, then there exists a Datalog⊥ program
P ′ over Rord such that P ′(D) = QS(D) for every instance D over Rord.

The second step of the translation simulates the Datalog⊥ program P ′ using a RGXlog
program. With RGXlog, we can construct Ds from s with the following rules:

I Rσ(x)← 〈x{σ}〉 I Succ(x1, x2)← 〈x2{x1{.∗} .}〉 ∨ [.∗x2{ . x1{ε} .∗}]
I First(x)← [x{ε}.∗] I Last(x)← [.∗x{ε}]

Indeed, if we evaluate the above RGXlog rules on a string s, we get exactly Ds. Note that
rules in Datalog⊥ that do not involve negation can be viewed as RGXlog rules. However,
since RGXlog do not allow negation, we need to include the negated EDBs as additional
EDBs. Nevertheless, we can negate EDBs without explicit negation, because regular spanners
are closed under difference and complement [7]. We therefore conclude the following lemma.

I Lemma 16. If P ′ is a Datalog⊥ program over Rord, then there exists a RGXlog program
P such that P (s) = P ′(Ds) for every string s.

To summarize the proof of the “if” direction of Theorem 10, let S be a spanner computable
in polynomial time. We defined QS to be such that QS(Ds) = JSK(s) for all s. Lemma 15
implies that there exists a Datalog⊥ program P ′ such that P ′(Ds) = QS(Ds) for all s. By
Lemma 16, there exists a RGXlog program P such that P (s) = P ′(Ds) for all s. Therefore,
P is the required RGXlog program such that P (s) = S(s) for all s.

5.1 RGXlog over Monadic Regex Formulas
Our proof of Theorem 10 showed that RGXlog programs over binary regex formulas (i.e.,
regex formulas with two variables) suffice to capture every spanner that is computable in
polynomial time. Next, we show that if we allow only monadic regex formulas (i.e., regex
formulas with one variable), then we strictly decrease the expressiveness. We call such
programs regex-monadic programs. We can characterize the class of spanners expressible by
regex-monadic programs, as follows.

I Theorem 17. Let S be a spanner. The following are equivalent:
1. S is definable as a regex-monadic program.
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2. S is definable as a RGXlog program where all the rules have the form

Out(x1, . . . , xk)← γ1(x1), . . . , γk(xk), γ()

where each γi(xi) is a unary regex formula and γ is a Boolean regex formula.

Note that in the second part of Theorem 17, the Boolean γ() can be omitted whenever
k > 0, since γ() can be compiled into γk(xk). To prove the theorem, we use a result by
Levy et al. [18], stating that recursion does not add expressive power when every relation in
the EDB is unary. This theorem implies that every spanner definable as a regex-monadic
program is regular. We then draw the following direct consequence on Boolean programs.

I Corollary 18. A language is accepted by a Boolean regex-monadic program if and only if it
is regular.

For non-Boolean spanners, we can use Theorem 17 to show that regex-monadic programs
are strictly less expressive than regular spanners. For instance, we can show that the relation
“the span x contains the span y” is not expressible as a regex-monadic program, although it
is clearly regular. Therefore, we conclude the following.

I Corollary 19. The class of regex-monadic programs is strictly less expressive than the class
of regular spanners.

6 Extension to a Combined Relational/Textual Model

In this section, we extend our main Theorem (Theorem 10) to Spannerlog—a data and query
model introduced by Nahshon et al. [21] that unifies and generalizes relational databases
and spanners by considering relations over both strings and spans.

6.1 Spannerlog
The fragment of Spannerlog that we consider is referred to by Nahshon et al. [21] as
Spannerlog〈RGX〉, and we abbreviate it as simply Spl〈RGX〉. A mixed signature is a collection
of mixed relation symbols R that have two types of attributes: string attributes and span
attributes. We denote by [R]str and [R]spn the sets of string attributes and span attributes of
R, respectively, where an attribute is represented by its corresponding index. Hence, [R]str
and [R]spn are disjoint and [R]str ∪ [R]spn = {1, . . . , arity(R)}. A mixed relation over R is a
set of tuples (a1, . . . , am) where m is the arity of R and each a` is a string in Σ∗ if ` ∈ [R]str
and a span [i, j〉 if ` ∈ [R]spn. A mixed instance D over a mixed signature consists of a
mixed relation RD for each mixed relation symbol R. A query Q over a mixed signature E is
associated with a mixed relation symbol RQ, and it maps every mixed instance D over E
into a mixed relation Q(D) over RQ.

A mixed signature whose attributes are all string attributes (in all of the mixed relation
symbols) is called a span-free signature. A mixed relation over a relation symbol whose
attributes are all string (respectively, span) attributes is called a string relation (respectively,
span relation). To emphasize the difference between mixed signatures (respectively, mixed
relation symbols, mixed relations) and the signatures that do not involve types (which we
have dealt with up to this section), we often relate to the latter as standard signatures
(respectively, standard relation symbols, standard relations).

We consider queries defined by Spl〈RGX〉 programs, which are defined as follows. We
assume two infinite and disjoint sets Varsstr and Varsspn of string variables and span variables,
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Geneo:
Cain␣son␣of ␣Adam,␣Abel␣son␣of␣Adam,␣Enoch␣son␣of␣Cain,␣Irad␣...
Obed␣son␣of␣Ruth,␣Obed␣son␣of␣Boaz,␣Jesse␣son␣of␣Obed,␣David␣...

Figure 2 The input for the program in Example 20

respectively. To distinguish between the two, we mark a string variable with an overline
(e.g., x). By a string term we refer to an expression of the form x or xy, where x is a string
variable and y is a span variable. In Spl〈RGX〉, an atom over an m-ary relation symbol R
is an expression of the form R(τ1, . . . , τm) where τ` is a string term if ` ∈ [R]str or a span
variable if ` ∈ [R]spn. A regex atom is an expression of the form 〈τ〉[γ] where τ is a string
term and γ is a regex formula. Unlike RGXlog, in which there is a single input string, in
Spl〈RGX〉 a regex atom 〈τ〉[γ] indicates that the input for γ is τ . We allow regex formulas to
use only span variables. An Spl〈RGX〉 program is a quadruple 〈E , I,Φ,Out〉 where:
E is a mixed signature referred to as the EDB signature;
I is a mixed signature referred to as the IDB signature;
Φ is a finite set of rules of the form ϕ← ψ1, . . . , ψm where ϕ is an atom over I and each
ψi is an atom over I, an atom over E , or a regex atom;
Out ∈ I is a designated output relation symbol.

We require the rules to be safe in the following sense: (a) every head variable occurs at least
once in the body of the rule, and (b) every string variable x in the rule occurs, as a string
term, in at least one relational atom (over E or I) in the rule.

We extend Spl〈RGX〉 with stratified negation in the usual way: the set of relation symbols
in E ∪ I is partitioned into strata I0, I1, . . . , Im such that I0 = E , the body of each rule
contains only relation symbols from strata that precede or the same as that of the head,
and negated atoms in the body are from strata that strictly precede that of the head. In
this case, safe rules are those for which every head variable occurs at least once in a positive
atom in the body of the rule and every string variable x in the rule occurs, as a string term,
in at least one positive relational atom (over E or I) in the rule.

The semantics of an Spl〈RGX〉 program (with stratified negation) is similar to the semantics
of RGXlog programs (with the standard interpretation of stratified negation in Datalog).
Given a mixed instance D over E , the Spl〈RGX〉 program P = 〈E , I,Φ,Out〉 computes the
mixed instance P (D) over I and emits the mixed relation Out of P (D). A query Q over E
is definable in Spl〈RGX〉 if there exists an Spl〈RGX〉 program P = 〈E , I,Φ,Out〉 such that
OutP (D) = Q(D) for all mixed instances D over E .

I Example 20. Following is an Spl〈RGX〉 program over the mixed signature of the instance
of Figure 2. As usual, Out is the relation symbol in the head of the last rule, here NonRltv.

Ancstr(x̄, y, x̄, z)←Geneo(x̄) , 〈x̄〉γprnt(y, z)
Ancstr(w̄, y, x̄, z)←Ancstr(w̄, y, v̄, y′) , Geneo(x̄) , 〈x̄〉γprnt(z′, z) , StrEq(x̄z′ , v̄y′ )

Rltv(w̄, y, x̄, z)←Ancstr(v̄, y′, w̄, y) , Ancstr(ū, z′, x̄, z, ) , StrEq(v̄y′ , ūz′ )
NonRltv(w̄, y, x̄, z)←Geneo(w̄) , 〈w̄〉γprsn(y) , Geneo(x̄) , 〈x̄〉γprsn(z), ¬Rltv(w̄, y, x̄, z)

The relation Geneo in Figure 2 contains strings that describe (partial) family trees. We
assume for simplicity that every name that occurs in such a string is a unique identifier.
The regex formulas γprsn(x) and γprnt(y, z) are the same as γcap(x) and γprnt(y, z) defined in
Example 2, respectively. The first two rules of the program extract the relation Ancstr
that has four attributes: the first and third are string attributes and the second and fourth
are span attributes. The first (respectively, third) attribute is the “context” string of the
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second (respectively, fourth) span attribute. Observe the similarity to the corresponding
definition in Example 5. Here, unlike Example 5, we need also to save the context string of
each of the spans, and hence, we need two additional attributes. The second and third rules
use the relation StrEq that holds pairs (w̄y, x̄z) such that w̄y and x̄z are identical. This
relation can be expressed in Spl〈RGX〉 similarly to RGXlog, as described in Section 4.

After evaluating the program, the relation Ancstr holds tuples (w̄, y, x̄, z) such that w̄y
is an ancestor of x̄z. The relation Rltv holds tuples (w̄, y, x̄, z) such that according to the
information stored in Geneo, w̄y is a relative of x̄z (i.e., they share a common ancestor).
The relation NonRltv holds tuples (w̄, y, x̄, z) such that w̄y is not a relative of x̄z. J

6.2 Equivalence to Polynomial Time
Let E be a span-free signature, and D an instance over E . We define the extended active
domain of D, in notation adom+(D), to be the union of the following two sets: (a) the set
of all strings that appear in D, as well as all of their substrings; and (b) the set of all spans
of strings of D.

Note that for every query Q definable as an Spl〈RGX〉 program P = 〈E , I,Φ,Out〉, and
every input database D over E , we have adom(Q(D)) ⊆ adom+(D), that is, every output
string is a substring of some string in D, and every output span is a span of some string in
D. Our result in this section states that, under this condition, we can express in Spl〈RGX〉
with stratified negation every query Q computable in polynomial time.

I Theorem 21. Let Q be a query over a span-free signature E, with the property that
adom(Q(D)) ⊆ adom+(D) for all instances D over E. The following are equivalent:
1. Q is computable in polynomial time.
2. Q is computable in Spl〈RGX〉 with stratified negation.

We remark that Theorem 21 can be extended to general mixed signatures E if we assume
that every span mentioned in the input database D is within the boundary of some string in
D. We also remark that Theorem 21 is incorrect without negation, and this can be shown
using standard arguments of monotonicity. In addition, since we use negation, in order to
prevent ambiguity we use the stratified semantics.

Proof idea. We now discuss the proof idea of Theorem 21. The direction 2 → 1 is
straightforward, so we discuss only the direction 1→ 2. Let Q be a query over a span-free
signature E , with the property that adom(Q(D)) ⊆ adom+(D) for all instances D over
E . Assume that Q is computable in polynomial time. We need to construct an Spl〈RGX〉
program P with stratified negation for computing Q. We do so in two steps. In the first
step, we apply Theorem 10 to get a (standard) Datalog⊥ program P ′ that simulates Q. Yet,
P ′ does not necessarily respect the typing conditions of Spl〈RGX〉 with respect to the two
types string and span. So, in the second step, we transform P ′ to an Spl〈RGX〉 program P

as desired. Next, we discuss each step in more detail.

First step. In order to produce the Datalog⊥ program P ′, some adaptation is required to
apply Theorem 10. First, we need to deal with the fact that the output of Q may include
values that are not in the active domain of the input (namely, spans and substrings). Second,
we need to establish a linear order over the active domain. Third, we need to assure that the
query that Theorem 10 is applied on respects isomorphism. To solve the first problem, we
extend the input database D with relations that contain every substring and every span of
every string in D. This can be done using Spl〈RGX〉 rules with regex atoms. For the second
problem, we construct a linear order over the domain of all substrings and spans of strings of
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D, again using Spl〈RGX〉 rules. For this part, stratified negation is needed. For the third
problem, we show how our extended input database allows us to restore D even if all values
(strings and spans) are replaced with other values by applying an injective mapping.

Second step. In order to transform P ′ into a “legal” Spl〈RGX〉 program P that obeys
the typing of attributes and variables, we do the following. First, we replace every IDB
relation symbol R with every possible typed version of R by assigning types to attributes.
Semantically, we view the original R as the union of all of its typed versions. Second, we
replace every rule with every typed version of the rule by replacing relation symbols with
their typed versions. Third, we eliminate rules that treat one or more variable inconsistently,
that is, the same variable is treated once as a string variable and once as a span variable.
The following example demonstrates the steps described above:

I Example 22. Let us consider the Datalog⊥ program that contains the rule R(x, y) ←
S(x), T (y, z). The relation atom R(x, y) has four different typed versions, such as the
following.

Rstr,str(x, y) wherein both attributes are string attributes.
Rspn,str(x, y) wherein the first attribute is a span attribute and the second is a string
attribute.

The ruleR(x, y)← S(x), T (y, z) has 25 different typed versions, one for each “type assignment”
for its variables, such as the following.

Rstr,str(x, y)← Sstr(x), Tstr,str(y, z)
Rspn,str(x, y)← Sstr(x), Tstr,str(y, z)

Note that the second rule is type inconsistent due to the variable x that is regarded as a
span variable in the head atom and as a string variable in the atom Sstr(x), and thus it is
eliminated.

Finally, we prove that this replacement preserves the semantics of the program.

7 Conclusions

We studied RGXlog, namely, Datalog over regex formulas. We proved that this language
expresses precisely the spanners computable in polynomial time. RGXlog is more expressive
than the previously studied language of core spanners and, as we showed here, more expressive
than even the language of generalized core spanners. We also observed that it takes very
simple binary regex formulas to capture the entire expressive power. Unary regex formulas,
on the other hand, do not suffice: in the Boolean case, they recognize precisely the regular
languages, and in the non-Boolean case, they produce a strict subset of the regular spanners.
Finally, we extended the equivalence result to Spl〈RGX〉 with stratified negation over mixed
instances, a model that generalizes both the relational model and the document spanners.

The expressive power of RGXlog is somewhat mysterious, since we do not yet have a good
understanding of how to phrase some simple polynomial-time programs naturally in RGXlog.
The constructive proof simulates the corresponding polynomial-time Turing machine, and
does not lend itself to program clarity. For instance, is there a natural program for computing
the complement of the transitive closure of a binary relation encoded by the input? An
interesting future work is to investigate this aspect by studying the complexity of translating
simple formalisms, such as generalized core spanners, into RGXlog.
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