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Age of distributed programming

search engines

social networks

cloud computing

mobile computing

•

•

•
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Programming algorithms

significant advances in programming languages:

... ALGOL ... C++ ... Java ... Python ... Prolog ...

• statements: assignments, conditionals, loops

• expressions: arithmetic, Boolean, other data (sets)

• subroutines: functions, procedures (recursion)

• logic rules: predicates, deduction, though less used

• objects: keep data and do operations (organization)

that’s mostly sequential and centralized.
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Concurrent programming

threads: multiple threads accessing shared data

threads as concurrent objects

• is the concurrent programming model in Java

• is adopted by other languages, such as Python and C#

Java made concurrent programming easier.
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Distributed programming

low-level or complex libraries, or restricted programming models

• sockets: C, Java, ... most widely used languages

• MPI: Fortran, C++, ... for high performance computing

• RPC: C, ... just about any language, Java RMI

• processes: Erlang, and more theoretically studied languages

...

study of distributed algorithms, not for building real applications

• pseudocode, English: high-level but imprecise, not executable

• formal specification languages: precise but lower-level

much less progress
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Our work: DistAlgo

a simple and powerful new language: very high-level, executable

• distributed processes as objects, sending messages

• yield points for control flow, handling messages

• await and synchronization conditions as queries ofmsg history

• high-level constructs for system configuration

compilation, optimization to generate efficient implementations:

transform expensive synchronization conditions

into efficient handlers as messages are sent and received,

by incrementalizing queries — logic quantifications

via incremental aggregate ops on sophisticated data structures

experiments with well-known distributed algorithms

including Paxos and multi-Paxos for distributed consensus
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Example: distributed mutual exclusion

Lamport’s algorithm: developed to show logical timestamps

n processes access a shared resource, need mutex, go in CS

a process that wants to enter critical section (CS)

• send requests to all

• wait for replies from all

• enter CS

• send releases to all

each process maintains a queue of requests

• order by logical timestamps

• enter CS only if it is the first on the queue

• when receiving a request, enqueue

• when receiving a release, dequeue

safety, liveness, fairness, efficiency
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How to express it

two extremes, and many in between

1. English: clear high-level flow; imprecise, informal

2. state machine based specs: precise; low-level control flow

Nancy Lynch’s I/O automata: 1 1/5 pages, most two-column

in between:

• Michel Raynal’s pseudocode: still informal and imprecise

• Leslie Lamport’s PlusCal: 90 lines (excluding comments and

empty lines, by Merz)

• Robbert van Renesse’s pseudocode: precise, almost high-level

lack concepts and ways for building real distributed applications

most of these are not executable at all.
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Original description in English

The algorithm is then defined by the following five rules. For convenience,
the actions defined by each rule are assumed to form a single event.

1. To request the resource, process Pi sends the message Tm : Pi requests

resource to every other process, and puts that message on its request queue,
where Tm is the timestamp of the message.

2. When process Pj receives the message Tm : Pi requests resource, it
places it on its request queue and sends a (timestamped) acknowledgment
message to Pi.

3. To release the resource, process Pi removes any Tm : Pi requests resource

message from its request queue and sends a (timestamped) Pi releases re-

source message to every other process.
4. When process Pj receives a Pi releases resource message, it removes

any Tm : Pi requests resource message from its request queue.
5. Process Pi is granted the resource when the following two conditions

are satisfied: (i) There is a Tm : Pi requests resource message in its request
queue which is ordered before any other request in its queue by the relation
<. (To define the relation < for messages, we identify a message with the
event of sending it.) (ii) Pi has received an acknowledgment message from
every other process timestamped later than Tm.
Note that conditions (i) and (ii) of rule 5 are tested locally by Pi.
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Challenges

each process must

• act as both Pi and Pj in interactions with all other processes

• have an order of handling all events by the 5 rules, trying to

enter and exit cs while also responding to msgs from others

• keep testing the complex condition in rule 5 as events happen

actual implementations need many more details:

• create processes, let them establish channels w each other

• incorporate appropriate clocks (e.g., Lamport, vector) if needed

• guarantee the specified channel properties (e.g., reliable, FIFO)

• integrate the algorithm with the overall application

how to do all of these in an easy and modular fashion?
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Original algorithm in DistAlgo
1 def setup(s):
2 self.s = s # set of all other processes
3 self.q = {} # set of pending requests with logical clock

4 def cs(task): # for calling task() in critical section
5 -- request
6 self.c = Lamport_clock() # rule 1
7 send (’request’, c, self) to s #
8 q.add((’request’, c, self)) #
9 await each (’request’,c2,p2) in q | (c2,p2) != (c,self) implies (c,self) < (c2,p2)

10 and each p2 in s | some received(’ack’,c2,p2) | c2 > c # rule 5
11 task() # critical section
12 -- release
13 q.del((’request’, c, self)) # rule 3
14 send (’release’, Lamport_clock(), self) to s #

15 receive (’request’, c2, p2): # rule 2
16 q.add((’request’, c2, p2)) #
17 send (’ack’, Lamport_clock(), self) to p2 #

18 receive (’release’, c2, p2): # rule 4
19 q.del((’request’, _, p2)) #
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Complete program in DistAlgo
0 class P extends Process:

... # content of the previous slide

20 def run():
...

21 def task(): ...
22 cs(task)

...

23 def main():
...

24 use reliable_channel
25 use fifo_channel
26 use Lamport_clock
27 ps = newprocesses(50,P)
28 for p in ps: p.setup(ps-{p})
29 for p in ps: p.start()

...
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Optimized program after incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s # self.q was removed
3 self.total = size(s) # total number of other processes
4 self.ds = new DS() # aux DS for maint min of requests by other processes

6 def cs(task):
7 -- request
8 self.c = Lamport_clock()
9 self.responded = {} # set of responded processes

10 self.count = 0 # count of responded processes
11 send (’request’, c, self) to s # q.add(...) was removed
12 await (ds.is_empty() or (c,self) < ds.min()) and count == total # use maintained
13 task()
14 -- release
15 send (’release’, Lamport_clock(), self) to s # q.del(...) was removed

16 receive (’request’, c2, p2):
17 ds.add((c2,p2)) # add to the auxiliary data structure
18 send (’ack’, Lamport_clock(), self) to p2 # q.add(...) was removed

19 receive (’ack’, c2, p2): # new message handler
20 if c2 > c: # test comparison in condition 2
21 if p2 in s: # test membership in condition 2
22 if p2 not in responded: # test whether responded already
23 responded.add(p2) # add to responded
24 count += 1 # increment count

25 receive (’release’, c2, p2): # q.del(...) was removed
26 ds.del((c2,p2)) # remove from the auxiliary data structure 13



Simplified program by un-incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s

3 def cs(task):
4 -- request
5 self.c = Lamport_clock()
6 send (’request’, c, self) to s
7 await each received(’request’,c2,p2)
8 | not received(’release’,c2,p2) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’,c2,p2) | (c,self) < (c2,p2)
9 task()

10 -- release
11 send (’release’, Lamport_clock(), self) to s

12 receive (’request’, c2, p2):
13 send (’ack’, Lamport_clock(), self) to p2
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Optimizedw/o queue after incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s
3 self.q = {} # self.q is kept as a set, need no aux DS ds
4 self.total = size(s) # total number of other processes

5 def cs(task):
6 -- request
7 self.c = Lamport_clock()
8 self.responded = {} # set of responded processes
9 self.count = 0 # count of responded processes

10 self.count2 = size(q) # count of pending earlier requests
11 send (’request’, c, self) to s # q.add(...) was removed
12 await count2 == 0 and count == total # use maintained results
13 task()
14 -- release
15 send (’release’, Lamport_clock(), self) to s # q.del(...) was removed

16 receive (’request’, c2, p2):
17 if (c2,p2) not in q: # test membership in q
18 if (c2,p2) < (c,self): # test comparison in condition 1
19 count2 +=1 # increment count2
20 q.add((c2,p2)) # q.add is kept, need no aux ds.add
21 send (’ack’, Lamport_clock(), self) to p2

22 receive (’ack’, c2, p2): # new message handler
23 if c2 > c: # test comparison in condition 2
24 if p2 in s: # test membership in condition 2
25 if p2 not in responded: # test whether responded already
26 responded.add(p2) # add to responded
27 count += 1 # increment count

28 receive (’release’, c2, p2):
29 if (c2,p2) in q: # test membership in q
30 if (c2,p2) < (c,self): # test comparison in condition 1
31 count2 -=1 # decrement count2
32 q.del((c2,p2)) # q.del is kept, need no aux ds.del 15



Implementation of Lamport’s algorithm

Language Dist. programming features used Total Clean

C TCP socket library 358 272

Java TCP socket library 281 216

Python multiprocessing package 165 122

Erlang built-in message passing 177 99

PlusCal single process simulation w array 134 90

DistAlgo built-in high-level synchronization 41 32

program size in total number of lines of code,

and number of lines excluding comments and empty lines
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Performance of generated implementation
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averaged over processes and over runs of 30 calls each;

raw size of all data structures created, measured using pympler
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Program size for well-known algorithms

Algorithm DistAlgo PlusCal IOA Overlog Bloom

La mutex 31 90 64

La mutex2 32

RA mutex 32

RA token 36

SK token 39

CR leader 25 41

HS leader 41

2P commit 32 68 85

DS crash 24

La Paxos 44 83 145 230 157

CL Paxos 72 166

vR Paxos 132

number of lines excluding comments and empty lines,

compared with specifications written by others in other languages
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Compilation and optimization

Compilation DistAlgo Generated
Algorithm time (ms) size Python size

La mutex 4.45 31 951

La mutex2 4.71 32 955

RA mutex 3.92 32 949

RA token 4.26 36 952

SK token 4.72 39 954

CR leader 3.15 25 939

HS leader 5.87 41 957

2P commit 5.91 33 978

DS crash 3.42 24 940

La Paxos 9.12 44 1003

CL Paxos 13.06 72 1044

vR Paxos 21.60 132 1099

Compilation DistAlgo Generated
Incrementalized time (ms) size Python size

La mutex 4.99 43 960

2P commit 6.82 55 1001

La Paxos 7.61 59 999

CL Paxos 12.35 81 1024



Grad and undergrad projects in DistAlgo

Project Description Notes

Leader ring, randomized; arbitrary net 3 algorithms

Narada overlay multicast system

Chord distributed hash table (DHT)

Kademlia DHT

Pastry DHT

Tapestry DHT

HDFS Hadoop distributed file system part

UpRight cluster services part

AODV wireless mesh network routing python

OLSR optimized link state routing python

part: omitted replication, but done in our impl. of vR Paxos

python: in Python, but knew it would be easier in DistAlgo

each is about 300-600 lines of code, took about half a semester.
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Summary and conclusion

programming distributed algorithms: much to do

need both clarity (both high-level and precise) and efficiency

DistAlgo: a new language, simple, powerful

distributed processes and sending messages

yield points and handling messages

await and synchronization conditions as queries ofmsg history

high-level constructs for system configuration

new optimization: powerful

transform expensive synchronization conditions

into efficient handlers as messages are sent and received,

by incrementalizing queries — logic quantifications

via incremental aggregate ops on sophisticated data structures

experiments with well-known distributed algorithms

including Paxos and multi-Paxos for distributed consensus
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Thanks!
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Example: two-phase commit

a coordinator and a set of cohorts try to commit a transaction

phase 1:

• coordinator sends a prepare to all cohorts.

• each cohort replies with a ready vote if it is prepared to commit,

or else replies with an abort vote and aborts.

phase 2:

• if coordinator receives a ready vote from all cohorts,

it sends a commit to all cohorts;

each cohort commits and sends a done to coordinator;

coordinator completes when receives a done from all cohorts.

• if coordinator receives an abort vote from any cohort,

it sends an abort to all cohorts who sent a ready vote;

each cohort who sent a ready vote aborts.

agreement, validity, weak termination, 4n-4 msgs 23



How to express it

two extremes, and many in between

1. English: clear high-level flow; imprecise, informal

2. state machine based specs: precise; low-level control flow

Nancy Lynch’s I/O automata: (book p183-184, but 2n-2 msgs)

in between:

• Michel Raynal’s pseudocode: still informal and imprecise

• Leslie Lamport’s PlusCal: still complex

(P2TwoPhase, 68 lines excluding comments and empty lines)

• Robbert van Renesse’s pseudocode: precise, almost high-level

lack concepts and ways for building real distributed applications

most of these are not executable at all. 24



Original description in English
Phase 1: Summary of the protocol [KBL06 DB and TP]

1. The coordinator sends a prepare message to all cohorts.

2. Each cohort waits until it receives a prepare message from the coordinator. If it is
prepared to commit, it forces a prepared record to its log, enters a state in which it cannot
be aborted by its local control, and sends “ready” in the vote message to the coordinator.

If it cannot commit, it appends an abort record to its log. Or it might already have
aborted. In either case, it sends “aborting” in the vote message to the coordinator, rolls
back any changes the subtransaction has made to the database, release the subtransaction’s
locks, and terminates its participation in the protocol.

Phase 2:

1. The coordinator waits until it receives votes from all cohorts. If it receives at least one
“aborting” vote, it decides to abort, sends an abort message to all cohorts that voted “ready”,
deallocates the transaction record in volatile memory, and terminates its participation in the
protocol.

If all votes are “ready”, the coordinator decides to commit (and stores that fact in the
transaction record), forces a commit record (which includes a copy of the transaction record)
to its log, and sends a commit message to each cohort.

2. Each cohort that voted “ready” waits to receive a message from the coordinator. If
a cohort receives an abort message, it rolls back any changes the subtransaction has made
to the database, appends an abort record to its log, releases the subtransaction’s locks, and
terminates it participation in the protocol.

If the cohort received a commit message, it forces a commit record to its log, releases
all locks, sends a done message to the coordinator, and terminates its participation in the
protocol.

3. If the coordinator committed the transaction, it waits until it receives done message

from all cohorts. Then it appends a completion record to its log, deletes the transaction
record from volatile memory, and terminates it participation in the protocol.



Original algorithm in DistAlgo
1 class Coordinator extends Process:

2 def setup(tid, cohorts): pass # transaction id and cohorts

3 def run():

4 send (’prepare’,tid) to cohorts

5 await each c in cohorts | received(’vote’,_,tid) from c

6 if each c in cohorts | received(’vote’,’ready’,tid) from c:

7 send (’commit’,tid) to cohorts

8 await each c in cohorts | received(’done’,tid) from c

9 print(complete’+tid)

10 else:

11 s = {c in cohorts | received(’vote’,’ready’,tid) from c}
12 send (’abort’,tid) to s

13 print(’terminate’+tid)

14 class Cohort extends Process:

15 def setup(f): pass # failure rate

16 def run():

17 await(False)

18 receive (’prepare’,tid) from c:

19 if prepared(tid):

20 send (’vote’,’ready,tid) to c # await commit or abort here?

21 else:

22 send (’vote’,’abort’,tid) to c

23 abort(tid)

24 receive (’commit’,tid) from c:

25 commit(tid)

26 send (’done’,tid) to c 29 def prepared(tid): return randint(0,100) > f

27 receive (’abort’,tid): 30 def abort(tid): print(’abort’+tid)

28 abort(tid) 31 def commit(tid): print(’commit’+tid)



Complete program in DistAlgo
0 from random import randint

... # content of the previous slide

32 def main():

33 cs = createprocs(Cohort,25,(10)) # create 25 cohorts

34 c = createprocs(Coordinator,1,(0,cs)) # create 1 coordinator

35 startprocs(cs) # start cohorts

36 startprocs(c) # start coordinator



Optimized after incrementalization (part 1)
1 class Coordinator extends Process:

2 def setup(tid, cohorts):

3 ncohorts = size(cohorts) # number of cohorts

4 svoted = {} # set of voted cohorts

5 nvoted = 0 # number of voted cohorts

6 sready = {} # set of ready cohorts

7 nready = 0 # number of ready cohorts

8 sdone = {} # set of done cohorts

9 ndone = 0 # number of done cohorts

10 def run():

11 send (’prepare’,tid) to cohorts

12 await nvoted == ncohorts # replaced universal quantification

13 if nready == ncohorts: # replaced universal quantification

14 send (’commit’,tid) to cohorts

15 await ndone == ncohorts # replaced universal quantification

16 print(’complete’+tid)

17 else:

18 s = sready # replaced set query

19 send (’abort’,tid) to s

20 print(’terminate’+tid)

28



Optimized after incrementalization (part 2)
# new message handler

21 receive (’vote’,v,tid) from c:

22 if c in cohorts:

23 if c not in svoted:

24 svoted.add(c)

25 nvoted += 1

26 if v == ’ready’:

27 if c not in sready:

28 sready.add(c)

29 nready += 1

# new message handler

30 receive (’done’,tid) from c:

31 if c in cohorts:

32 if c not in sdone:

33 sdone.add(c)

34 ndone += 1

35 class Cohort extends Process:

52 ... # no change

53 def main():

57 ... # no change

29



Performance of generated implementation
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DistAlgo: distributed procs and sending msgs

process definition

class P extends Process: class body

defines class P of process objects, with private fields

process creation

new P(...,s) newprocesses(n,P)

creates a new proc of class P on site s, returns the proc

sending messages

send m to p send ms to ps

sends message m to process p

tuples or objects for messages;

first component or class indicates the kind of the message
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DistAlgo: control flows and receiving msgs

label for statement

-- l

defines program point l where the control flow can yield to

handling of certain messages and resume afterwards

handling messages received

receive m from p at l: stmt receive ms at ls

allows handling of ms at ls; default is at all labels

synchronization

await bexp timeout time

awaits value of bexp to be true, or time seconds have passed

can query sequences of messages received and sent
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Optimization: incrementalization

1. identify all expensive queries

2. determine all updates to the parameters of these queries

3. transform queries into efficient incremental comp. at updates

new: systematic handling of

1. quantifications for synchronization as expensive queries

2. updates caused by sending, receiving, and handling of msgs

in the same way as other updates in the program

transform expensive synchronization conditions into efficient

tests and incremental updates as msgs are sent and received

sequences received and sent will be removed

only values needed for incremental computation of synchro-

nization conditions will be stored and incrementally updated
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Incrementalization: example

expensive computation of synchronization condition:

each (’request’,c2,p2) in q | (c2,p2) != (c,self) implies (c,self) < (c2,p2)
and each p2 in s | some received(’ack’,c2,p2) | (c,self) < (c2,p2)

all updates to variable used by expensive computation:

4 self.q = {}
9 q.add((’request’, c, self))
14 q.del((’request’, c, self))
17 q.add((’request’, c2, p2))
20 q.del((’request’, _, p2))

7 self.c = Lamport_clock()

3 self.s = s

new received.add((’ack’,c2,p2))

incrementalize: how?
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Incrementalization: at a high-level

aggregates:

( {(c2,p2) : (’request’,c2,p2) in q | (c2,p2) != (c,self)} == {} or
(c,self) < min({(c2,p2) :

(’request’,c2,p2) in q | (c2,p2) != (c,self)}) )
and
size({p2 in s : (’ack’,c2,p2) in received | c2 > c}) == size(s)

• introduce variables to store values of 4 aggregates

• transform the aggregates to use introduced variables

• incrementally maintain stored values at each update

synchronization condition will become:

(ds.is_empty() or (c,self) < ds.min()) and count == total
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Implementation

syntax and parsing: build on python parser.

provide two options for yield points and message handlers:

• modify python ASDL to take succinct syntax

• use unmodified python exploiting existing python syntax

compilation:

• generate python code, using multi-processing and socket

• could generate C, Java, and Erlang too

• plan to generate PlusCal and others for verification

optimization:

• transform quantifications to aggregates & comprehensions

• build an interface to incrementalizer

• use InvTS for incrementalization
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