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Motivation

Theme
How do we effectively handle bottleneck resources in networks?

Data Storage

Resource Replication Problems.

Computational Resources

Container Selection Problem.

Energy

Connected Dominating Set Problem.
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Motivation

Theme
How do we effectively handle bottleneck resources in networks?

Data
Video content providers, such
as Netflix, must replicate data

to minimize client latency.

Content Distribution Network
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Motivation

Theme
How do we effectively handle bottleneck resources in networks?

Computational Resources

Cross platform schedulers
must fairly allocate cluster

resources to various platforms.

Cluster Network
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Motivation

Theme
How do we effectively handle bottleneck resources in networks?

Energy

Wireless ad hoc networks have
nodes with limited battery life.
Key issues here are routing,

target monitoring and
interference.

Wireless Adhoc Network
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Part I

Computational Resources: Container
Selection Problem
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Cross platform scheduler
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Examples of Cross Platform Schedulers

Dominant Resource Fairness (DRF) - NSDI 2011

Ghodsi, Zaharia, Hindman, Konwinski, Shenker, Stoica

X-Flex Cross Platform Scheduler- Middleware 2014
Wolf, Nabi, Nagarajan, Saccone, Wagle, Hildrum, Pring, S.
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Problem Definition

Example

Input

Given N jobs requiring two resources
say CPU and memory.

Number of dimensions d = 2.

Goal
Find a few representative points for all
the input points.
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Problem Definition

Example

Container point

A point (x ,y) dominates another point
(x ′,y ′) if

x ′ ≤ x and y ′ ≤ y

We call such a point (x ,y) a container
point.
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Problem Definition

Example

Cost of assignment

Cost of assigning an input point to a
container point (x ,y) = x + y
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Problem Definition

Example

Objective

Find k container points that minimize
the total assignment cost of all input

points.
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Problem Definition

Example

Total cost computation

2(2 + 4) + 2(4 + 3) + 2(5 + 5) = 46
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Main Result for the Continuous Setting

Definition (continuous container selection)

In an instance of the problem, we are given a set of input points C in Rd and a
budget k . The goal is to find a subset S of k container points in Rd , such that
the following cost is minimized:

∑
p∈C

min
c∈S
p≺c

‖c‖

Theorem
For any fixed dimension d, there is a polynomial time approximation scheme
for the container selection problem.
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The Main Idea
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Potential Container Points

The Sets X and Y

X be the set of all input x-coordinates and Y be the set of all input
y -coordinates.

Observation
Any container point chosen by an optimal solution must be in X ×Y .
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Reducing General Case to Restricted Case

Transformation

Input:

Set of N points and a budget k on the
number of containers.

Kanthi Kiran Sarpatwar 21 / 82



Reducing General Case to Restricted Case

Transformation

Compute:

The set of potential container points.
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Reducing General Case to Restricted Case

Transformation

Constant number of lines:
For a given ε , we construct

equiangular rays separated by
θ ≈ ε/2.
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Reducing General Case to Restricted Case

Transformation Shifting:

Shift potential container points onto
these rays.

Magnified View:
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Reducing General Case to Restricted Case

Transformation Shifting:

Using basic trigonometry, we obtain
min(∆x ,∆y)≤ (x + y)2θ ≤ (x + y)ε

Magnified View:

Theorem
There is a poly-time algorithm for the restricted container selection problem.
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PTAS in Two and Higher Dimensions

Higher Dimensions

The transformation can be extended to higher fixed dimensions!

Restricted Problem
There is a poly-time algorithm for the restricted container selection problem in

any fixed dimension d .

Theorem (PTAS)

This implies a PTAS for the continuous container selection problem in any fixed
dimension.

Theorem (NP-hard)

We further show that the problem is NP-hard in any fixed dimension d ≥ 3.
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Discrete Variant

Discrete vs Continuous
Containers must be chosen from a given set of potential container points
F .

The previous transformation fails as we are not allowed to “move” them!

Much harder than continuous version! In fact, we show that:

Theorem (Hardness of Approximation)

For any dimension d ≥ 3, the discrete container selection problem is NP-hard
to obtain any approximation.
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What do we do?

Relax the problem a little

We relax the restriction on the number of container points. What do we know?

Bi-approximation Results

Special case of non-metric k -median problem.

There is a (1 + ε,(1 + 1
ε

) lnn) bi-approximation algorithm (Lin and Vitter,
STOC 1992).

The Question
Can we still use the geometric properties of our special problem to do better?
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Our Results

2-Dimensions

We obtain a (1 + ε,3) bi-approximation algorithm.

This approach does not work for higher dimensions.

Higher Dimensions

We obtain a (1 + ε,O( d
ε

logdk)) bi-approximation algorithm for
dimension d .

Based on an LP relaxation.
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Our Algorithm for 2-Dimensions

Cells

X

X X
X

XX
XX

Decompose

Decompose the space in O(logn) cells. “Guess” which cells are touched by a
fixed optimal solution. Call them good cells.
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Our Algorithm for 2-Dimensions

Cells

Representative points

From the good cells choose two container points - one with maximum
x-coordinate and the other with maximum y -coordinate.
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Our Algorithm for 2-Dimensions

Cells

pmax

pmin

Cells are approximately uniform

Using a trigonometric argument, we can show that the costs of container
points in any given cell are approximately the same, i.e., pmax/pmin ≤ (1 + ε).
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Our Algorithm for 2-Dimensions

Cells

i
j
r1

r2
C1

C2

Decoupling the cells

Given input point i ∈ C1 and container point j ∈ C2 such that i ≺ j , then i ≺ r1

or i ≺ r2.
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Our Algorithm for 2-Dimensions

Single Cell Problem

For a given budget k1 to a cell, we try and satisfy input points only from that
cell. We can use a simple DP to solve this optimally.

Restricted problem

The only “inter cell” allocations are to the representative container points.

We use a dynamic program based scheme to solve the problem under
this restrictions.
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Results Summary

Continuous CSP

PTAS for any d ≥ 2 NP-hard for any d ≥ 3

Discrete CSP

For two dimensions, a
(1 + ε,3)-bi-approximation

algorithm

For any fixed dimension d , a
(1 + ε,O( 1

ε
logdk))

bi-approximation algorithm.

NP-hard to approximate, for any
d ≥ 3
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Part II

Data: Resource Replication Problems
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Resource Replication Problems

Example Framework
Clients and servers are
embedded into a metric
space.

Clients need a subset of data
objects {A,B,C,D,E}.
Servers have limited
capacities to store data
objects.

Kanthi Kiran Sarpatwar 37 / 82



Resource Replication Problems

Example Framework
Goal: Place data items on

different servers to meet the
demands of all clients.

Minimize the distance a client has
to travel to go to get a required

data item.
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Resource Replication Problems

Example Objectives: Min Sum

Minimize the aggregate distance
travelled by all clients to obtain all

of their required data objects.
For this example, total cost =

10 + 3 + (20 + 7) + 15 + (10 +
10) + (10 + 5 + 5) = 95

Kanthi Kiran Sarpatwar 40 / 82
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Resource Replication Problems

Example Objectives: Min Max

Minimize the maximum distance
travelled by all clients to obtain all

of their required data objects.
For this example, cost = 20

Kanthi Kiran Sarpatwar 41 / 82



Resource Replication Problems

Example Objectives: Min Max

Minimize the maximum distance
travelled by all clients to obtain all

of their required data objects.
For this example, cost = 20

Kanthi Kiran Sarpatwar 41 / 82



Related Work

Min Sum Objective : Baev, Rajaraman and Swamy - SIAM J. Compt. 2008

LP-based approximation algorithm.

Has an approximation guarantee of 10.

Min Max Objective : Ko and Rubenstein - ICNP 2003, ICNP 2004

Heuristic approach.

3-approximation algorithm for a basic version - but the algorithm does not
necessarily terminate in poly time.

No approximation guarantee for the general problem.
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Basic Resource Replication

Definition

Given a graph G = (V ,E), a metric d : E → R+∪{0} and data types set C .
Find a mapping φ : V → C to minimize the following quantity:

max
v∈V ,r∈C

min
u3φ(u)=r

d(u,v)

Every node needs all data items.

Every node has a unit storage capacity.

We give a simple 3-approximation algorithm.
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Algorithm for Basic Resource Replication

Example

Input

Set of nodes and objects
{R,G,B}
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Algorithm for Basic Resource Replication

Example

Construct Threshold Graph:

“Guess” optimal dist. δ .

Add uv if d(u,v)≤ δ .
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Algorithm for Basic Resource Replication

Example

Compute 2-hop MIS:

Keep picking nodes and
delete nodes within two hops.
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Algorithm for Basic Resource Replication

Example

Assign colors:

For each vertex in MIS, we
place k = 3 resources in its

neighborhood in Gδ .
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Algorithm for the Basic Resource Replication

Analysis

Every vertex has a degree at least k−1 in Gδ . Therefore, our coloring is
valid.

By definition, every vertex is within a 2-hop distance of some vertex in
MIS.

Hence, every vertex has all the colors within a 3-hop distance.

Theorem
There is a 3-approximation algorithm for the basic resource replication
problem.
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Subset Resource Replication

Given:

a graph G = (V ,E) embedded into a metric d : E → R+∪{0} and a set
of data items C

each vertex has a storage capacity of sv

each vertex needs a subset of data items Cv

Goal:

find a mapping φ : V → 2C that assigns at most sv data items to v and
minimizes the following quantity:

max
v∈V

min
r∈Cv

u3φ(u)=r

d(u,v)
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Subset Resource Replication

Given:

a graph G = (V ,E) embedded into a metric d : E → R+∪{0} and a set
of data items C

each vertex has a storage capacity of sv

each vertex needs a subset of data items Cv

Goal:

find a mapping φ : V → 2C that assigns at most sv data items to v and
minimizes the following quantity:

max
v∈V

min
r∈Cv

u3φ(u)=r

d(u,v)

Kanthi Kiran Sarpatwar 51 / 82



Subset Resource Replication

Given:

a graph G = (V ,E) embedded into a metric d : E → R+∪{0} and a set
of data items C

each vertex has a storage capacity of sv

each vertex needs a subset of data items Cv

Goal:

find a mapping φ : V → 2C that assigns at most sv data items to v and
minimizes the following quantity:

max
v∈V

min
r∈Cv

u3φ(u)=r

d(u,v)

Kanthi Kiran Sarpatwar 51 / 82



Subset Resource Replication

Given:

a graph G = (V ,E) embedded into a metric d : E → R+∪{0} and a set
of data items C

each vertex has a storage capacity of sv

each vertex needs a subset of data items Cv

Goal:

find a mapping φ : V → 2C that assigns at most sv data items to v and
minimizes the following quantity:

max
v∈V

min
r∈Cv

u3φ(u)=r

d(u,v)

Kanthi Kiran Sarpatwar 51 / 82



Subset Resource Replication

Given:

a graph G = (V ,E) embedded into a metric d : E → R+∪{0} and a set
of data items C

each vertex has a storage capacity of sv

each vertex needs a subset of data items Cv

Goal:

find a mapping φ : V → 2C that assigns at most sv data items to v and
minimizes the following quantity:

max
v∈V

min
r∈Cv

u3φ(u)=r

d(u,v)

Kanthi Kiran Sarpatwar 51 / 82



Algorithm for Subset Resource Replication

Example Input:

Objects set {R,G,B}
Subsets of data items
needed by vertices are
next to them

Storage capacities (for
this example) are unit
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Algorithm for Subset Resource Replication

Example Threshold Graph:

Guess optimal δ

Construct threshold Gδ

Mark 2-hop edges,
represented by dashed
lines
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Algorithm for Subset Resource Replication

Decompose:

For each color r , construct a subgraph on nodes needing resource r .

Example
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Algorithm for Subset Resource Replication

Decompose:

Compute 2-hop maximal independent set in each of these subgraphs.

Example
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Algorithm for Subset Resource Replication

Example

Side A:
Union of 2-hop maximal
independent sets in each
subgraph

Side B:
Vertices of the graph.
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Algorithm for Subset Resource Replication

Example

Compute:

A b-matching with bounds

sv on the vertex v on the
right side

1 on the vertices on the
left.
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Algorithm for Subset Resource Replication

Example

Color:
Use the determined matching
to color the nodes

Theorem
There is a 3-approximation algorithm for the subset resource replication
problem.
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Results Summary

Problem Approx. Guar. Hardness

Basic Resource Replication (BRR) 3 2− ε

Subset Resource Replication (SRR) 3 3− ε

Robust BRR 3 2− ε

Robust K-BRR 5 2− ε

Robust SRR - NP-hard to approx.
Capacitated BRR (4,2)-bi-approx. -
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Part III

Energy: Partial and Budgeted Connected
Dominating Set
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Energy Issues in Wireless Adhoc Network

Wireless Adhoc Network
Routing

Communication backbones, i.e.,
virtual backbone

Monitoring

Target monitoring in sensor networks

Interference
Message propagation in radio
networks

Kanthi Kiran Sarpatwar 61 / 82



Problem Definitions

Dominating Set (DS) Connected Dominating Set (CDS)

Definition (CDS)

Given an undirected graph G = (V ,E), find a connected subgraph with fewest
number of nodes that dominates all the nodes.
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Previous Work on CDS

Guha and Khuller, ESA 1996

ln∆ + 3 approximation algorithm in general graphs. Set cover hard.

Dubhashi, Mei, Panconesi, Radhakrishnan, and Srinivasan, SODA 2003

Distributed O(ln∆) approximation algorithm in general graphs.

Demaine and Hajiaghayi, SODA 2005

PTAS in planar graphs.

Cheng, Huang, Li, Wu, and Du, Networks 2003

PTAS in unit disk graphs.
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Motivation

CDS as Virtual Backbone
A “small” CDS is a good model for a virtual backbone (Bhargavan and Das,
ICC 1997)

Outliers
A few “far off” nodes might necessitate a large CDS - making it a bad model for
a backbone.

More Robust Model?

Can we find a good backbone if we were to “serve” say only 90% of all nodes?
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Problem Definitions

Partial Connected Dominating Set
(PCDS)

Figure: PCDS on with quota Q = 19

Definition (PCDS)

Given:

undirected graph G = (V ,E)

a quota Q

Find a connected subgraph with
fewest number of nodes that
dominates at least Q nodes.
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Problem Definitions

Budgeted Connected Dominating Set
(BCDS)

Figure: BCDS on with budget k = 4

Definition (BCDS)

Given:

undirected graph G = (V ,E)

a budget k

Find a connected subgraph on at
most k nodes that dominates as

many nodes as possible.
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Our Results

Theorem

A polynomial time algorithm with 4ln∆ + 2 approximation guarantee for the
PCDS problem.

Theorem

A polynomial time algorithm with 1
13 (1− 1

e ) approximation guarantee for the
BCDS problem.
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Challenges in Solving the PCDS problem.

Dominating Set (DS) Connected Dominating Set (CDS)

Converting DS to CDS

It can be shown that any dominating set of size D can be connected using at
most 2D extra vertices.
This yields a simple O(log∆) approximation.
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Challenges in Solving the PCDS problem.

How about PCDS?
Unfortunately, such an approach does not work for the PCDS problem.

Greedy Approach?

Greedily picking vertices until Q vertices are satisfied and then
connecting them - bad idea.

The components could be far away from each other.

Conservative Greedy?

Greedily picking vertices while maintaining connectivity.

Fails! Favors “locally” productive areas over “globally” rich areas.
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An Idea

An “easier” problem.

Profit function in PCDS is a non-linear “coverage” function.

What happens if the profit function is “linear”?

We obtain (a simpler variant of) the well known quota Steiner tree.

Definition

Given an undirected graph G(V ,E) and profit function p : V → Z+∪{0} and
a quota Q. Find the tree T with least number of vertices with total profit ≥ Q

Theorem (Johnson et al. [SODA 2000], Garg [STOC 2005])

Quota Steiner tree has a 2-approximation algorithm.
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Our Approach

Use QST

=⇒PCDS QST

Ideas
Approximate the coverage function by a linear function? Can we do it with
a logn loss?

What are the candidates? How about degree function? bad idea!

Somewhat surprisingly, a natural linear function defined by a greedy
scheme to find the complete dominating set works!
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Our Approach

Greedy Linear Function

Description

Use the natural greedy algorithm to define a linear function.
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Our Approach

Greedy Linear Function

4

4

3 3

6

5

3

3

34

3

Description

For each vertex, compute the number of uncovered neighbors.
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Our Approach

Greedy Linear Function

1

1

1 1

6

2

2

2

33

0

Description

Choose most profitable vertex and recompute for rest.
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Our Approach

Greedy Linear Function

1

1

1 1

6

1

1

0

31

0

Description

Tie breaking is arbitrary.
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Our Approach

Greedy Linear Function

1

0

0 0

6

1

0

0

30

0

Description

We may choose covered vertices if they qualify.
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Our Approach

Greedy Linear Function

1

0

0 0

6

1

0

0

30

0

The Profit Function

p(v) = # of newly covered neighbors by v .
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The Algorithm for PCDS

Input

Given an undirected graph G = (V ,E) and a quota Q.

STEP 1
Run the greedy dominating set algorithm and compute the linear profit function

p : V → Z+∪{0}.

STEP 2

Solve the quota Steiner tree on the instance (G,Q,p) and return it.

Theorem
Let OPT denote the optimal PCDS solution and T denote the optimal quota

Steiner tree. Then T is a feasible solution for the PCDS instance and
|T | ≤ (2 logn + 1)|OPT |.
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Part IV

Conclusion
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Open Problems

Container Selection Problem
Resolving the hardness of 2-dimensions problem

What happens in the case of non-fixed dimensions - esp. the continuous
variant

Improving bounds for the discrete case.

Resource Replication Problem

Most results are almost tight, except the capacitated variant. Can we
tighten the bounds further?

Partial/Budgeted Connected Dominating Set

Distributed setting? Planar graphs? Unit disk graphs?

Tighten the bounds

Capacitated PCDS/BCDS?
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Thank You! Questions?
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