Efficient Runtime Tracking of
Allocation Sites in Java

Rei Odaira, Kazunori Ogata, ;
Kiyokuni Kawachiya, Tamiya Onodera, ™
Toshio Nakatani 3

IBM Research - Tokyo

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Why Do You Need Allocation Site Information?

How to fix a memory

> java com.example.Server
started

...... running for one week
...... running for two weeks

server crashed due to java.lang.outOofMemoryError!
>

[ava Memory Profiler=Mafn
File Options Help
Dump Reset Restore System.GC | Heapdump Monitors Freeze ui Threads
Heap 96.75921 MB Used ©60.95346 MB Filtered 60.95346 MB
Garbage collection completed: 0 objects moved, 160277 objects freed in 1.478211 seconds ﬂl

VEE 2010 | Mar 19, 2010

eak after two weeks of execution?

© 2010 IBM Corporation

IBM Research - Tokyo

Allocation Site Tracker Helps!

Tracker tells you where each object was allocated.

Bytes Class Allocation site

(Method name and bytecode index)
900,278,800 String com.example.Property.putProperty()#191
98,148,020 LinkedList com.example aTable.putInteger()#187
20,352,384 String com.example .prepare()#35

Allocation site is a good starting point for fixing the leak.

Also, optimizations in JVM can benefit from the tracker.

3 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Tracker Should Be Always Enabled.

= For fixing memory leaks ...

> java com.example.Server

started

...... running for one
...... running for two
server crashed due to
> java —-enableTracker
started

...... running for one
...... running for two

week
weeks

java. lang.outOfMemoryError!

com.example.Server

week
weeks

@ should have always enabled the tracker.

= And also for JVM optimizations

VEE 2010 | Mar 19, 2010

© 2010 IBM Corporation

= Adding allocation site information to each object
hits performance [Hauswirth et al., 2004].

— Reducing effective CPU cache size,

IBM Research - Tokyo

Challenge: Performance Overhead Java object layout

Header

Instance fields

increasing GC frequency and overhead, etc. [Allocation site info

IBM Java 6 SR3 64-bit compressed pointer / Linux 2.6.18 / 8x x86-64 Intel Xeon 1.86GHz

© Not good for production environments ___|

10
8
6
4
2
0
-2 ~§" o’E 5 b\g L\‘\” o4e & \é: $ —{”—°—Q—§—é\'—°—b—‘9—%¢v 2 Q O L
T L& o §F o o F & & K ¥ & & & § @
S & LY F o & o § ¢ 3 o & g 9 §
S <o & & ® & & ¢ TN L o
€ & & &
£ X %

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Minimal-Overhead Allocation Site Trackers

Never increase per-object space.

= Allocation-Site-as-a-Hash-code (ASH)
Tracker Java object layout

— Performance overhead: Class pointer
~0% on average, 1.4% at maximum.

Hash code| Flags

—Some JVMs do not always
have a hash code field.

» Allocation-Site-via-a-Class-pointer (ASC) Instance fields
Tracker

— Performance overhead:
1% on average, 2% at maximum.

— Almost all JVMs have a class pointer field.

6 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Outline

= Introduction

= ASH Tracker

= ASC Tracker

= Experiments

= Applications of ASH/ASC Trackers

= Conclusions

7 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Allocation-Site-as-a-Hash-code (ASH) Tracker

= Embed an allocation-site ID into a hash code field.

— Embed at allocation time.
= ID is a unique integer of the site.

— Assigned by an interpreter or a JIT compiler.

Original layout w/ ASH Tracker
Class pointer Class pointer
Hash code| Flags Flags
Instarce fields Instagce fields
| I
Object-specific random value, Allocation site ID

used as a hash table index, for example.

8 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

How to Deal with Hash Code Collisions?

= Hash code values should be as distinct as possible from all others
[Java API| Spec].

— Collisions slow down hash-table access, for example.

= How about appending a site ID field when hash code is first
referred to?

® Some programs often refer to hash code.

First time hash code
Allocation time is referred to.

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Collision Avoidance without Increasing Space

= Qur solution:

— Embed a shorter dynamic ID and a random value.
= Hash code value = dynamic ID + random value

— Random value helps avoid collisions.

First time hash code Other objects are
Allocation time is referred to. not affected.
Object X Object X Object Y
1111010111 0001100101 1111010111

=) St
///\\

Static ID Dynamic ID | Object-specific random value
Hash code value

10 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

How to Deal with Hash Code Collisions? (2"d Round)

= All objects allocated at the same site have the same
high-order bits in their hash code values.

Need a long random-value field to avoid collisions.

Hash code field: |Dynamic ID| Random

‘\

Need a long ID field to track allocation sites accurately.

11 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

for (i = 0;
1 < BIG_NUMBER;
1++) {
obj = new Object();

Variable-Length Dynamic ID

= Shorter IDs for hot allocation sites.

— Allocate many objects. use(obj.hashCode());
- Need a long random value. }

— Not so many hot allocation sites in Dyn. ID Random
a program.

- Short site IDs sulffice. if (errorl) {

obj = new Object();
= Longer IDs for cold allocation sites. use(obj.hashcode());
— Allocate few objects. }
- Short random values suffice. if (error2) {

— Many cold allocations sites in a obj = new Object();
program. use(obj.hashCode());
- Need long site IDs. ¥

Dynamic |1D Random|

12 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Dynamic Shrinking of ID Field

13

= |t is not known in advance ...

— How many objects will be allocated at each site; or

— How many of their hash code values will be referred to.
= Qur solution: Make the IDs of a site shorter and shorter ...

— As more and more hash code values are referred to.

Hash code of objects allocated

at putProperty()#191

Object 1
Object 2
Object 3
Object 4
Object 5
Object 6

000110

0101

000110

1001

000110

1011

000110

000 03

00101

01110

00101

01000

VEE 2010 | Mar 19, 2010

1) Assign a long dynamic ID at first.

2) Occasionally, a random
value becomes all zero.

3) Assign a new shorter ID.
Maintain a mapping table.

Dynamic ID Allocation site
000110 -> putProperty()#191
00101 - putProperty()#191

© 2010 IBM Corporation

IBM Research - Tokyo

Outline

= Introduction

= ASH Tracker

= ASC Tracker

= Experiments

= Applications of ASH/ASC Trackers

= Conclusions

14 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

What If There Is No Hash Code Field?

= Some JVMs do not always have a hash code field.
= Almost all JVMs have a class pointer field.

—To access class meta data.

Class pointer Class pointer
Flags Class structure Flags
| field Virtual Inst field
nstance fields function table nstance tieldas
Instance size

Objects allocated at Objects allocated at
putProperty O#191 Other class prepare()#35
- m a -
Class pointer eta dat Class pointer
Flags Flags
Instance fields Instance fields

15 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Allocation-Site-via-a-Class-pointer (ASC) Tracker

= Replace the class pointer with a pointer to its allocation
site structure.

— This is possible because each allocation site always
allocates objects of the same class.

Alloc site ptr Alloc site ptr
Class pointer Class pointer
putProperty) (prepare()
()#191/_/ #35
Objects allocated at Objects allocated at
putProperty()#19 Virtual function \ﬁrepare()#BS
Alloc site ptr table Alloc site ptr

Instance size

Other class
meta data

16 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Mitigating Indirection Overhead (1)

= Duplicate frequently-accessed constant class fields.
= Need to choose carefully which fields to duplicate.
— Not to increase cache misses.

— Not to increase space overhead.

: Alloc site ptr
Alloc site ptr Class pointer Class pointer D
Instance size Instance size
putProperty prepare()
O#191 A \I35
(A Virtual) \
Alloc site ptr function table Alloc site ptr

Instance size

Other class
meta data

17 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Mitigating Indirection Overhead (2)

Profiling-based if (object->class_ptr != HOT_CLASS)
devirtualization by goto SlowPath;
a JIT compiler. /* Inlined method, etc. */

Another load needed l
by ASC Tracker.

if (object->alloc_site->class_ptr != HOT_CLASS)
goto SlowPath;
/* Inlined method, etc. */

Emit an allocation-site equality j,
check where possible.

if (object->alloc_site != HOT_ALLOCATION_SITE)
goto SlowPath;
/* Inlined method, etc. */

18 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Outline

= Introduction

= ASH Tracker

= ASC Tracker

= Experiments

= Applications of ASH/ASC Trackers

= Conclusions

19 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Evaluation

= Environment
— 64-bit IBM J9/TR JVM 1.6.0 SR3

« 3-word header (1 word = 32 bits)
» Generational GC (copying young + mark-and-sweep old GC)

— 4x minimum Java heap
— 8-core 1.8GHz Intel Xeon

— Linux 2.6.18
= Benchmarks

— SPECjvm2008, DaCapo, and SPECjbb2005
= ASH Tracker

— Uses a 15-bit hash code field.

— Shrinks a dynamic ID field from 11 bits to 2 bits.
= ASC Tracker

— Duplicates an instance-size field and an array-element-class field.

20 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Performance Overhead

= ASH Tracker: on average ~0% and at most 1.4% overhead.

— Up to 1.73x hash code collisions compared with the baseline.
= ASC Tracker: on average 1.0% and at most 2.0% overhead.

9 16 @ Per-object 4-byte field
.14 [l ASH Tracker
12 W ASC Tracker

IS N &
¥ \°$ 3 lé fF &S & & & S F bé\' & @b & 0‘§
L § & o F g §&§ £ 5y » & K S & & I F
S & g ¥ & o & o B o o & e & &
00 OQ & q,q (oo @Q ‘,}\ < << \° 59 #\Q o
PO S 4 L S QA N O &
N § § & &
g & & %
S
o

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Performance Overhead

= ASH Tracker: on average ~0% and at most 1.4% overhead.

— Up to 1.73x hash code collisions compared with the baseline.
= ASC Tracker: on average 1.0% and at most 2.0% overhead.

9 16 @ Per-object 4-byte field
=14 I ASH Tracker

Serial and pmd refer to the hash code of:
= more than 20% of allocated objects, and
= 5-11% of average live objects.

e N &
¥ \5.‘x 3 lé L & & &S ' § & S F bé\. & kg & 0‘§
Q & ¢ o & o & & & & & & &F & I &
S §f &£ ¥ g 9o & o F o S g & 9 & §
oo 00 & Q’Q (oo @Q ‘,}\ Qo << \° 59 #\Q o
&L K S S o &
PN € & & &
g K T %
o’~° o
o

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Outline

= Introduction

= ASH Tracker

= ASC Tracker

= Experiments

= Applications of ASH/ASC Trackers

= Conclusions

23 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Minimal-Overhead Memory Leak Detector

= Scan the entire Java heap at each global GC time.
— Count the numbers of live objects for each allocation site.

— Save the numbers in per-allocation-site histories.
= (Inform users of possible memory leaks.)

Java heap

”@’[obﬂ[om][objJEZZZE:’.IZE’@CIE”

A 4

A 4

Per-allocation-site counters . 3 -

2
#11ve objects history Allocation site
6, 5, 4, ... Property.putProperty()#191
3, 3, 3, ... DataTable.putInteger()#187
2, 1, 1, ... Property.prepare()#35
24 VEE 2010 | Mar 19, 2010

© 2010 IBM Corporation

IBM Research - Tokyo

Performance Overhead of the Leak Detector

= ASH Tracker: on average 0.3% and at most 1.7% overhead
= ASC Tracker: on average 1.1% and at most 2.4% overhead

E ASH Tracker @ ASC Tracker

N

-
OO0 MNOW

S
o

1
-—

-1.5

Performance overhead (%)
o

25 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

Speed-up (%)

Allocation-Site-Based Object Pretenuring
for Generational GC

Refer to our paper for more details.
= 4x min Java heap: at maximum 11% speed-up
= 2x min Java heap: at maximum 15% speed-up

16

— -

IBM Research - Tokyo

B 2x min Java heap M 4x min Java heap

VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Related Work

= Bit-Encoding Leak Location (Bell)
[Bond, et al., ASPLOS 2006]

— Probabilistic allocation site tracker
— Requires a sufficient number of samples.

— Cannot identify the allocation site of each object.
-> Not suitable for JVM optimizations.

= Techniques for object header compression
[Bacon, et al., ECOOP 2002]

— Remove the hash code field.
- Use ASC Tracker.

— Steal several bits of the class pointer.
- Steal those bits of the allocation site pointer.

27 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Conclusion
Minimal-overhead allocation site trackers

= ASH Tracker
— Embeds an allocation site ID into the hash code field.

— Performance overhead:
~0% on average, 1.4% at maximum.

= ASC Tracker
— Makes the class pointer field point to an allocation site structure.

— Performance overhead:
1% on average, 2% at maximum.

= Useful for both reliability and optimization.
— Reliability: minimal-overhead memory leak detector.

— Optimization: allocation-site-based object pretenuring.

28 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Thank you!

* Questions?

29 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Back-up

30 VEE 2010 | Mar 19, 2010 © 2010 IBM Corporation

o
>
N
o
T
1
L
3}
|
®
o)
n
o)
o
=
o

Space Overhead Compared with Physical Memory Usage

= ASH Tracker: on average 0.4% overhead
= ASC Tracker: on average 0.2% overhead

@ Per-object 4-byte field

@ ASH Tracker
@ ASC Tracker

AL D, e e D, P 0 [|

OCOO0OMNOUTMAN~«™O
1

(%) peaysano asedg

c
.8
=

©

—

o}

o

—

o}
(@)
=
o
o
~~
o
I
©

VEE 2010 | Mar 19, 2010

31

IBM Research - Tokyo

Using ASH Tracker for Object Pretenuring

= Copy likely-to-be-long-lived objects directly to a “tenured” space.
— Not copying such objects multiple times within a young space.

1. Online profiling

Compute the ratio of tenured
objects (#t/#s) for each

allocation site at young GC time.

2. Pretenuring

Enable pretenuring for an
allocation site if its ratio
exceeds a certain threshold.

Young space

Young space

Allocation space Survivor space

(Object) ("

Allocation spa

C; iSurvivor space

Tenured space

Tenured s&e

32 VEE 2010 | Mar 19, 2010

© 2010 IBM Corporation

