

 Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VEE’10 March 17--19, 2010, Pittsburgh, Pennsylvania, USA.
Copyright (c) 2010 ACM 978-1-60558-910-7/10/03…$10.00.

Efficient Runtime Tracking of Allocation Sites in Java

Rei Odaira, Kazunori Ogata, Kiyokuni Kawachiya, Tamiya Onodera, Toshio Nakatani

IBM Research – Tokyo

1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan

{ odaira, ogatak, kawatiya, tonodera, nakatani } @jp.ibm.com

Abstract

Tracking the allocation site of every object at runtime is useful for
reliable, optimized Java. To be used in production environments,
the tracking must be accurate with minimal speed loss. Previous
approaches suffer from performance degradation due to the addi-
tional field added to each object or track the allocation sites only
probabilistically. We propose two novel approaches to track the
allocation sites of every object in Java with only a 1.0% slow-
down on average. Our first approach, the Allocation-Site-as-a-
Hash-code (ASH) Tracker, encodes the allocation site ID of an
object into the hash code field of its header by regarding the ID as
part of the hash code. ASH Tracker avoids an excessive increase
in hash code collisions by dynamically shrinking the bit-length of
the ID as more and more objects are allocated at that site. For
those Java VMs without the hash code field, our second approach,
the Allocation-Site-via-a-Class-pointer (ASC) Tracker, makes the
class pointer field in an object header refer to the allocation site
structure of the object, which in turn points to the actual class
structure. ASC Tracker mitigates the indirection overhead by
constant-class-field duplication and allocation-site equality
checks. While a previous approach of adding a 4-byte field
caused up to 14.4% and an average 5% slowdown, both ASH and
ASC Trackers incur at most a 2.0% and an average 1.0% loss. We
demonstrate the usefulness of our low-overhead trackers by an
allocation-site-aware memory leak detector and allocation-site-
based pretenuring in generational GC. Our pretenuring achieved
on average 1.8% and up to 11.8% speedups in SPECjvm2008.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – memory management (garbage collec-
tion)

General Terms Measurement, Performance, Reliability.

Keywords Memory allocation, hash code, allocation site

1. Introduction

Tracking the allocation sites where objects are allocated is useful
to improve software reliability and performance. Many memory
leak detectors [7,16,17,27,29] present a programmer with the
allocation sites of possibly leaking objects. The allocation site
information is also beneficial for debugging other memory-related

problems such as buffer overflows [25,30]. Also, tracking alloca-
tion site enables various optimization techniques to be used. Allo-
cation-site-based pretenuring [1,5,9,15,23] needs to collect
statistics on the allocation sites of tenured objects in a genera-
tional garbage collector. Tracking allocation sites is also essential
for other allocation-site-based optimizations such as object segre-
gation [4,28], object co-allocation [10], reference locality optimi-
zation [11], and field-level optimization [8].

Unfortunately, previous methods of tracking allocation sites
have serious limitations in production Java environments. Trace-
based approaches [5,8,9,10,11,28] generate huge trace files for the
allocation site each time an object is allocated. In practice, they
can only be used for offline debugging and optimizations, limiting
their capabilities compared to online methods. In contrast, many
runtime tracking approaches [16,17,25,27,29,30] have per-object
space overhead for the allocation site information. Some of them
add an extra field to each object, which increases the CPU cache
misses. The larger objects also increase the frequency and over-
head of GC. Other approaches record per-object information in a
separate table indexed by an object identifier, but this is not com-
patible with copying or generational GC because the object ad-
dress cannot be used as the identifier. Several algorithms have
been proposed to track allocation sites probabilistically, such as
bit-encoding leak location [7] or object sampling [1,15,23]. How-
ever, they require a large number of samples to detect memory
leaks, pretenuring opportunities, or other important events.

In this paper, we propose two novel techniques to track the al-
location sites of every Java object at runtime with minimal speed
overhead, which enables various kinds of online debugging and
optimization in production environments. Our first technique, the
Allocation-Site-as-a-Hash-code (ASH) Tracker, encodes an ID
number for the allocation site of each object into part of its hash
code field. In those environments where an object header contains
the hash code field, including production-quality environments
such as IBM J9 [14] and Sun HotSpot [33], ASH Tracker does not
increase the per-object memory usage. A potential problem is that
the hash code values should be as distinct as possible for distinct
objects [21]. A novel idea in ASH Tracker is that it does not steal
any bits from the hash code field. Instead it regards the allocation
site ID as a part of the hash code field and puts an object-specific
random value in the other bits. ASH Tracker avoids excessively
increasing the hash code collisions by making the bit-length of the
ID variable. ASH Tracker initially assigns long IDs to every allo-
cation site. As an allocation site allocates many objects and as the
hash code values of those objects are referred to, the site is as-
signed a new and shorter ID. As a result, those many objects can
be distinguished from one another by leaving more bits in the
hash code field for the random values.

For those environments where an object header does not con-
tain a hash code field, we propose a second technique, the Alloca-

tion-Site-via-a-Class-pointer (ASC) Tracker. ASC Tracker uses
the class pointer field of an object header to refer not to the class
structure of the object but to its allocation site structure. The allo-
cation site structure in turn points to the original class structure.
Like ASH Tracker, ASC Tracker has no per-object space over-
head. However, it can degrade performance because an additional
load is required to access the class fields via the class pointer. To
mitigate the indirection overhead, we developed two optimization
techniques. One is to duplicate the frequently accessed almost-
constant class fields, such as an instance size field, into each allo-
cation site structure. The other is to avoid class equality checks in
just-in-time (JIT) compiled code, which compare the class of an
object with a pre-determined class to check the assumption of
virtual-call inlining, the validity of class casting, and so on. The
trick here is that allocation-site equality implies class equality.
Thus we can replace the class equality checks with allocation-site
equality checks. Combining these techniques, ASC Tracker
achieves a far smaller slowdown than current approaches. ASC
tracker suffers from slightly more overhead than ASH Tracker,
but it can be applied to almost all Java environments because
embedding the class pointer in each object header is a common
implementation technique.

We demonstrate how useful our trackers are for both reliability
and optimization purposes. For reliability, we implemented a
minimal-overhead memory leak detector that records at each GC
time the histories of the numbers of live objects on a per-
allocation-site basis. Our leak detector can inform a user of the
exact allocation sites of any leaking objects that appear even after
running for days or weeks in a production environment. For opti-
mization, we propose Allocation-site-based Copy-time (A-C) Pre-
tenuring for generational GC. If certain allocation sites are found
to frequently allocate long-lived objects, A-C Pretenuring preten-
ures the objects allocated at those sites. Instead of copying these
objects many times in young semi-spaces, it copies them directly
into a tenured space the first time they are copied during young
GC. This can be implemented easily by modifying several pro-
gram points in the GC, but it is not feasible without also tracking
the allocation sites of every object at runtime.

The contributions of this paper are:
• We propose ASH and ASC Trackers to track the allocation
sites of every object at runtime, which are the first techniques
that enable various kinds of allocation-site-based online de-
bugging and optimization in production environments.

• We implemented ASH Tracker and ASC Tracker in IBM
J9/TR JVM [14]. We show their effectiveness through ex-
periments with industrial standard benchmarks [12,13,31,32].

• We demonstrate the usefulness of our minimal-overhead
trackers by an allocation-site-aware memory leak detector and
by an allocation-site-based copy-time pretenuring.
The rest of the paper is structured as follows. Sections 2 and 3

explain the details of ASH Tracker and ASC Tracker, respectively.
Section 4 presents experimental results. Section 5 shows the
memory leak detector and A-C Pretenuring. Section 6 discusses
related research and Section 7 concludes this paper.

2. Allocation Site as a Hash Code

This section describes ASH Tracker, a technique to encode an
allocation site ID into a hash code field. Our principle is not to
increase any per-object space overhead, so that ASH Tracker is
robust in terms of space and speed even on applications that heav-
ily use hash code. The allocation site of an object is the program
site where the object is allocated, and its ID is a unique integer
number assigned to the site. In fact, as explained in Section 2.2,
ASH Tracker assigns multiple IDs to a single allocation site.

2.1 Object layout

Throughout this paper, we assume Java is our target execution
environment and the object shown in Figure 1(a) is the original
object layout. However, the following discussion also applies to
other environments that have a hash code or a class pointer in the
object headers. The class pointer field points to the class structure
of this object and is used to invoke virtual methods and to access
per-class data. The flags are used by GC and a monitor, and the
instance fields hold the actual data of the object. The hash code
field contains the hash code value of the object, which should be
as distinct as possible from all others. The field is usually initial-
ized at allocation time with an object-specific random value, such
as some of the address bits of the object. A program refers to the
hash code value through standard interfaces such as
java.lang.Object.hashCode() or java.lang.System.

identityHashCode(). We call those objects whose hash code
values are referred to hashed objects.

Figure 1(b) shows the object layout as modified by ASH
Tracker. ASH Tracker encodes the allocation site ID of the object
into a part of the hash code field. The bit position of the ID in the
hash code field is insignificant. The rest of the bits are filled with
an object-specific random value in the same manner as the origi-
nal hash code field. ASH Tracker regards the bit combination of
the ID and the random value as the hash code value of this object.

2.2 Algorithm

We use an artificial example in Figure 2 in this section. Actual
data structures and pseudo code are explained in Section 2.4. This
example allocates 600 objects (Loop A) and refers to the hash
code values of every 10th object (Loop B). Suppose the bit-length
of the hash code field is six in this example. There are two alloca-
tion sites, i.e. two new expressions, in the example. For each allo-
cation site, ASH Tracker assigns a static ID when an interpreter
first executes the code at that site or when a JIT compiler com-
piles the method containing the site. When an object is allocated,
the static ID of the site is embedded to it, occupying all of the bits
of its hash code field. Since each allocation site always allocates
objects of the same class and each object has a class pointer, it
suffices to make the ID unique among the allocation sites of the
same class. Figure 2(a) shows the hash code fields of the allocated
objects immediately after Loop A. Note that we chose 14 repre-
sentative objects among the 600. For example, since X[0] is allo-
cated at P, 111111 is embedded into its hash code field.

When hashCode() is invoked on the objects in Loop B, their
hash code values must be returned. However, simply returning the
static IDs leads to excessive hash code collisions because all of
the objects allocated at the same site contain the same static ID.
Therefore, when hashCode() is invoked on an object for the first
time, ASH Tracker replaces the embedded static ID with the cur-
rent dynamic ID of its allocation site and its object-specific ran-
dom value. If there is no current dynamic ID of the site, a new
one is assigned. The return value of hashCode() is the combina-

 class pointer

hash code flags

instance fields

class pointer

flags

instance fields

allocation site ID
object-specific

random value

Used as a hash code

(a) (b)

object-specific

random value

Figure 1. Object layout. (a) Original format. (b) ASH Tracker

encodes an allocation site ID into a part of the hash code field.

tion of the dynamic ID and the random value. Since the hash code
value contains the random value, collisions can be avoided.
Figure 2(b) shows the hash code fields during Loop B when j is
30. When hashCode() is invoked on X[0], the allocation site
111111 is assigned a dynamic ID 0000. We also show the object-
specific random value 0x41 of X[0], which can be calculated
from, for example, its address bits. The dynamic ID 0000 and the
least significant two bits of 0x41 are embedded into the hash code
field. On Y[0].hashCode(), a dynamic ID 0001 is assigned to
the allocation site 111110. For X[5] and Y[5], hashCode() is
not invoked on them, so the hash code fields are unchanged.

Even if a random value is contained in a hash code value, the
bit length of the random value may not be sufficient to avoid col-
lisions if many objects are hashed. ASH Tracker solves this prob-
lem by assigning shorter dynamic IDs to an allocation site as
more and more objects allocated at the site are hashed. Shorter
IDs mean longer random values, which help avoid collisions. We
call this process dynamic shrinking. However, it is not desirable
to count the numbers of hashed objects because such global
counters can become a major scalability bottleneck. Instead, ASH
Tracker uses a probabilistic approach. A new shorter dynamic ID
is assigned only when the bits of the random value field become
all zero. An advantage of this approach is that the probability of
the dynamic shrinking naturally becomes lower as the bit-length
of the random value field becomes longer. Thus we can avoid
consuming the bit space of short IDs too quickly. Section 2.5
explains an ID overflow. On X[20].hashCode() and Y[30].

hashCode() in the example, the dynamic shrinking is triggered
for each allocation site because the least significant two bits of
their random values are all zero. Then the shorter dynamic IDs,
001 and 010, are assigned, respectively. Figure 2(c) shows the
status in Loop B when j is 130. Further dynamic shrinking oc-
curred at Y[100] and X[120]. Note that ASH Tracker avoids
collisions by effectively distributing hash code values.

Once the hash code field of an object is set by hashCode(),
the field is never modified again. When hashCode() is next in-
voked on the object, its hash code field is simply returned. To
implement this behavior, we must be able to tell whether the field
contains a static ID or a dynamic ID by looking at its bit pattern.
For that purpose, ASH Tracker assigns static IDs from the top of
the bit space of the hash code field, 111111 in this example, while
the dynamic IDs are assigned from the bottom. It also maintains
the current minimum static ID for each class, 111110 in this ex-
ample. If the value in the hash code field of an object is smaller
than the current minimum, the field contains a dynamic ID.

At any time during the execution, we can identify the alloca-
tion sites of all of the objects by inspecting their hash code fields.
If the field contains a static ID, we simply consult a per-class
table using the static ID as an index. If it contains a dynamic ID,
we can find where the dynamic ID ends in the bit pattern by trav-
ersing down a per-class binary tree as explained in Section 2.4.

2.3 Rationale

The reason we embed a static ID instead of a dynamic ID at an
allocation time is for smaller performance overhead. Embedding a
static ID is lightweight especially when done with JIT-compiled
code because the static ID is a compile-time constant. On the
other hand, embedding a dynamic ID requires looking up the
current dynamic ID. Since the number of hashed objects is usu-
ally smaller than the number of allocated objects [2], we defer
embedding the dynamic ID until the object is really hashed.

The reason we do not assign a short dynamic ID from the be-
ginning is that there are many allocation sites that allocate only a
few objects, such as those on error-handling paths. We need long
dynamic IDs to distinguish between those allocation sites. In con-
trast, there are only a couple of allocation sites that allocate many
objects of a certain class [26]. Therefore, an overflow in ID num-
bers rarely occurs even with few bits.

2.4 Implementation

Figure 3 shows the data structures and pseudo code for ASH
Tracker. The object type (object_t) represents the object layout
shown in Figure 1. ASH Tracker maintains the current minimum
static ID (min_static_ID) as described in Section 2.2. If the
hash code value is smaller than the current minimum, then the
value contains a dynamic ID, which we can simply return (Lines
4 and 5). A per-class lock (cls_lock) is acquired to perform
dynamic shrinking (Lines 12 and 14). On the fastest path of
hashCode(), one compare-and-swap is sufficient to replace the
hash code field atomically (Line 16). A per-class random value
(cls_rand) is needed to reduce hash code collisions among ob-
jects of different classes because the dynamic shrinking only
helps avoid collisions among objects of the same class. The per-
class random value is XORed with an ID, regardless of whether it
is static or dynamic, and the resulting value is stored in the hash
code field (Line 10). Thus, when decoding the hash code field,
another XOR is needed (Line 3). When assigning a static ID, an
interpreter or a JIT compiler consults a hash table (map_table) to
map each allocation site (method + bytecode index) to an alloca-

 // Method: com.example.App.main
for (i = 0; i < 300; i++) { // Loop A
X[i] = new Object(); // P: Bytecode index: 158, Static ID: 111111
Y[i] = new Object(); // Q: Bytecode index: 165, Static ID: 111110

}
// (a) shows the state of the hash code fields at this timing.
for (j = 0; j < 300; j += 10) { // Loop B
use(X[j].hashCode());
use(Y[j].hashCode());
// (b) j == 30, (c) j == 130

}

01

0000 01

X[0]

(a)
X[5] X[20] X[30] X[100] X[120] X[130]

111111 111111 111111 111111 111111 111111 111111

Y[0] Y[5] Y[20] Y[30] Y[100] Y[120] Y[130]

111110 111110 111110 111110 111110 111110 111110

0111

object name / random value of the object

hash code

Legend:

object name / random value of the object

hash code

Legend:

X[0]/0x41

(b)
X[5] X[20]/0x0C X[30]/0x3C X[100] X[120] X[130]

111111 111111 111111

Y[0]/0x03 Y[5] Y[20]/0xF2 Y[30]/0xAC Y[100] Y[120] Y[130]

111110 111110 1111100001 11

0000 00

0001 10 0001 00

001 100

0000 01

X[0]/0x41

(c)
X[5] X[20]/0x0C X[30]/0x3C X[100]/0x4FX[120]/0xE8 X[130]/0x05

111111

Y[0]/0x03 Y[5] Y[20]/0xF2 Y[30]/0xAC Y[100]/0x60Y[120]/0x37 Y[130]/0xBD

1111100001 11

0000 00

0001 10 0001 00

001 100

010 000

001 111

111111

111110

001 000

01 1101

10 0101

Figure 2. Example behavior of ASH Tracking. The program
allocates 600 objects at two allocation sites, and refers to the
hash code values of every 10th one. (a) The hash code fields of
objects immediately after Loop A. We only show 14 among the
600 objects. Static IDs are set in the hash code fields. (b) Dur-
ing Loop B when j==30. X[5] and Y[5] still contains the
static IDs, while X[0, 20, 30], Y[0, 20, and 30] have
dynamic IDs plus their own random values. The random values
of X[20] and Y[30] triggered dynamic shrinking for each site.
(c) During Loop B when j==130. The random values of
Y[100] and X[120] triggered further dynamic shrinking.

tion site structure (alloc_site_t). A mapping from static IDs to
allocation site structures is maintained in site_array.

Each allocation site structure records its containing method
(method) and a bytecode index (index). This structure is first
created when the corresponding static ID is assigned. The infor-
mation can be enhanced by the dynamic calling context at the
time the object is allocated. In this paper, we do not deal with
dynamic calling contexts, but most optimizing JIT compilers per-
form aggressive method inlining, which has some of the same
effects as using dynamic calling contexts. The current dynamic ID
(dynamic_ID) and random value mask (rand_mask) are used to
replace each static ID with the combination of the dynamic ID
and a random value in hashCode() (Lines 8 and 9).

Dynamic shrinking is triggered when the bits of a random
value are all zero (Line 11), as described in Section 2.2. By ini-
tializing rand_mask to zero, we can trigger shrinking at the first
invocation of hashCode() for a site. Dynamic shrinking uses a
binary tree rooted at a per-class tree_root to assign the dy-
namic IDs efficiently. Figure 4 shows an example that corre-
sponds to the dynamic shrinking in Figure 2. Figure 4(a) shows a
case when hashCode() is invoked on X[0]. Since this is the first
time hashCode() is invoked on an object of Object class, the
tree for Object class is created and initialized as shown. Dy-
namic ID 0000 is assigned to the allocation site P. The “(P)”s in
the upper nodes indicate that these IDs can be assigned to P but
are not yet assigned. The “--” in the root node means that it can-
not be assigned to any site, because the static IDs (111111 and
111110) already implicitly occupy the same bit space. The “(P)”
and “--” are only shown for this explanation. There is no need to
set those values in the nodes. For Y[0].hashCode(), the initial
ID 0001 is assigned to allocation site Q (Figure 4(b)). After that,
none of the nodes from the root to 000 can be assigned to either
site, because the allocation site of an object with 000 in the sig-
nificant bits of its hash code could not be identified.

Here is the process for dynamic shrinking. On X[20].hash-
Code(), ASH Tracker searches for the next dynamic ID for P.
The search starts from the current node and goes to its parent. The
parent cannot be assigned to P because it has “Q” as a child, so
the search continues to the node on the right side at the same
height in the tree and a new node is created for P (Figure 4(c)).
Figure 4(d) shows the search on Y[30].hashCode(). For
Y[100].hashCode(), the parent node can be assigned to Q
(Figure 4(e)). Finally, 10 is assigned to P in X[120].hash-
Code() (Figure 4(f)). Note that the dynamic ID 1 cannot be as-
signed to any allocation site because static IDs already occupy
111111 and 111110.

This binary tree also functions as the mapping table from dy-
namic IDs to the allocation sites. When decoding a dynamic ID,
the bits of the dynamic ID are inspected from left to right to trav-
erse down the tree accordingly. If a node assigned to an allocation
site is encountered, that site is where the object was allocated.
Note that using the binary tree, we can find where the dynamic ID
ends in the bit pattern without explicitly having its bit-length.

2.5 Avoiding an overflow

Since the length of the hash code field is finite, an overflow in
allocation site IDs is inherently possible. We want to avoid over-

(f)

P Q

0 1
--

--
0

--
0

P

1
Q

1

Q

0

--

--

1

P

0

0
(e)

P Q

0 1
--

--
0

--
0

P

1
Q

1

Q

0

--
0

(d)

P Q

0 1
--

--
0

--
0

P

1
(Q)

1

Q

0

--
0

(c)

P Q

0 1
--

--
0

--
0

P

1

--
0

(b)

P Q

0 1
--

--
0

--
0

--
0

(a)

P

0
(P)

(P)
0

(P)
0

--
00

bit length

1

2

3

4

0

1

2

3

4

0000

001

10

(a)

(b)

(c)

(d)

(e)

(f)

Allocation site P

static ID: 111111

Allocation site Q

static ID: 111110
0001

010

01

(g)

P Q

0 1
--

--
0

--
0

P

1
(Q)

1

(Q)

0

--

--

1

P

0

0

1

Q

0 1 0 1

(g) reclamation

Figure 4. Assigning dynamic IDs using a binary tree. This ex-

ample corresponds to the example in Figure 2. Each node in the

tree is a dynamic ID, and the 0s and 1s on the edges from the root

to the node represent its ID number. “P” or “Q” in a node indi-

cates that the dynamic ID is already assigned to the allocation

site. A node with “(P)” or “(Q)” is not yet assigned but is ready to

be assigned to the site, while “--” means the ID cannot be as-

signed to any site. A thick arrow indicates a search for the next

dynamic ID for an allocation site.

 struct object_t {
class_t *cls_ptr;
unsigned hash_code, flags;
/* instance fields */ ……;
};

struct class_t {
/* virtual function table,
class variables, etc. */ ……;
unsigned min_static_ID;
mutex_lock_t cls_lock;
unsigned cls_rand;
alloc_site_t **map_table;
alloc_site_t **site_array;
dynamic_ID_node_t *tree_root;
};

struct alloc_site_t {
method_t *method;
bytecode_index index;
unsigned static_ID;
unsigned dynamic_ID;
unsigned rand_mask;
dynamic_ID_node_t *node;
};

struct dynamic_ID_node_t {
alloc_site_t *alloc_site;
dynamic_ID_node_t *parent,
*child_zero, *child_one;

};

1: int hashCode(object_t *this) {
2: RETRY: old_hash = this->hash_code; cls = this->cls_ptr;
3: static_ID = old_hash ^ cls->cls_rand;
4: if (static_ID < cls->min_static_ID) {
5: return old_hash;
6: } else {
7: site = cls->site_array[static_ID];
8: new_hash = get_random_value(this) & site->rand_mask;
9: rand_val = new_hash; new_hash |= site->dynamic_ID;
10: new_hash ^= cls->cls_rand;
11: if (rand_val == 0) {
12: lock(cls->cls_lock);
13: dynamic_shrinking(cls, site);
14: unlock(cls->cls_lock);
15: }
16: if (COMPARE_AND_SWAP(&this->hash_code,
17: old_hash, new_hash) == FAILURE) goto RETRY:
18: return new_hash;
19: }
20: }
Figure 3. Data structures and pseudo code for ASH Tracker.

flow whenever possible to make the allocation-site tracking as
accurate as possible.

The most problematic overflow occurs when the maximum
dynamic ID becomes equal to or greater than the minimum static
ID. If this happens, ASH Tracker cannot assign a new static or
dynamic ID to a new allocation site. To avoid this situation when-
ever possible, ASH Tracker monitors the coverage ratio of a tree
relative to the bit space of the hash code. For example in Figure
4(f), the bit space is 26 = 64. The dynamic IDs cover 22 + 22 + 23
+ 24 + 24 = 48, and there are two static IDs. Therefore, the cover-
age ratio is (48 + 2) / 64 = 0.78125. If the ratio exceeds a certain
threshold, ASH Tracker will reclaim some of the dynamic IDs.
Based on experiments, we chose 0.97 as the threshold for a 15-bit
hash code field. The reclamation scans the whole Java heap and
records the dynamic IDs embedded in live objects. ASH Tracker
chooses the dynamic ID that is embedded in the smallest number
of live objects. It then expands the sub-tree of the corresponding
node in the tree. For example in Figure 4(g), suppose the node 01
is expanded and only the leaf 0101 has live objects. Then the
other three leaves can be assigned to other allocation sites without
compromising the accuracy of the tracking. The reclamation is
lightweight because it is rarely invoked in practice and because
the heap scanning can be piggybacked on the regular global GC.

ASH Tracker does not guarantee the uniqueness of allocation
site IDs, but the successful reclamation keeps them unique as long
as the number of allocation sites (= static IDs) plus the number of
distinct hash code values being assigned to live objects are
smaller than the bit space. Without the reclamation, the bit space
for a class would get consumed proportionally to the number of
hashed objects of the class from the beginning of a program’s
execution. Thus the overflow would eventually happen. With the
reclamation, the occupied bit space is proportional to the number
of live hashed objects. Thus the overflow will rarely happen even
in a long running application.

The other overflow case is when dynamic shrinking cannot
find a shorter dynamic ID for an allocation site. This can increase
hash code collisions but does not affect the accuracy of allocation
site tracking. Therefore, the allocation site simply continues to
use the current dynamic ID.

3. Allocation Site via an Indirect Class Pointer

This section describes ASC Tracker, a technique to track alloca-
tion sites when an object does not contain a hash code field.

3.1 Organization

Figure 5(a) shows the original components and the links from
objects to their class structures. The class pointer field in each
object header points directly to the class structure and is used to
access per-class fields. For example, GC finds the size of a non-
array object by looking at the instance size field of its class struc-
ture. A virtual function table to implement polymorphism is also
normally located in the class structure. In addition, the class
pointer field of an object is often used in class equality checks.
For example, the field is compared against another class pointer
value to check the assumption of an inlined virtual call.

ASC Tracker inserts an allocation site structure between an
object and a class structure, as shown in Figure 5(b). Objects allo-
cated at the same site point to their allocation site structure, which
in turn points to the actual class structure. This organization is
possible because any one allocation site always allocates objects
of the same class. An additional load instruction is necessary to
access the class fields and to perform the class equality check.
The allocation site of an object can obviously be identified by

dereferencing its indirect class pointer field. Like a static ID in
ASH Tracker, an allocation site structure is created when an in-
terpreter first executes the code at that site or when a JIT compiler
compiles the method containing the site.

3.2 Optimizations

To reduce the indirection overhead, ASC Tracker implements two
types of optimizations. One is constant-class-field duplication and
the other is allocation-site equality checks.

Constant-class-field duplication
Most of the class fields that are frequently accessed via the class
pointer field of an object are found to be constant or rarely
changed. ASC Tracker duplicates such fields for each allocation
site structure as shown in Figure 5(c), so that they can be accessed
with the same number of load instructions as before. For example,
GC needs the instance size field, which is constant during a pro-
gram’s execution. As another example, the element class of an
array class is also constant. Java requires class checking at each
store to an array of references [22], which accesses the element
class of the array class of the destination array object. A virtual

indirect class ptr.

flags

(b)

indirect class ptr.

flags

class fields

instance size

virtual function

table

indirect class ptr.

flags
allocation site

information for

P

allocation site

information for

Q

class pointer
class pointer

Objects allocated at P

Object allocated at Q

class pointer

flags

(a)

class pointer

flags

class fields

instance size

virtual function

table

class pointer

flags

Objects allocated at P
Object allocated at Q

Class structure

Allocation site

structure

Allocation site

structure

instance fields

instance fields

instance fields

instance fields

instance fields

instance fields

indirect class ptr.

flags

(c)

indirect class ptr.

flags

class fields

instance size

virtual function

table

indirect class ptr.

flags

allocation site

information for

P

allocation site

information for

Q

class pointer

class pointer

instance fields

instance fields

instance fields

instance size

virtual function

table

instance size

virtual function

table

Figure 5. (a) Original components. A class pointer field points

directly at a class structure. (b) ASC Tracker makes the class

pointer field point to an allocation site structure. (c) Mostly

unchanging fields can be duplicated to each allocation site

structure to mitigate the indirection overhead.

function table is also a candidate for the duplication. A JIT com-
piler occasionally installs the entry of a JIT-compiled method into
multiple table slots. This installation need not be done atomically,
because JIT compilation is not a semantic change but just an op-
timization. Of course, the class-field duplication is at the cost of
space and cache misses. ASC Tracker must carefully choose
which class fields to be duplicated. As we will describe in Section
4.1, we chose to duplicate the instance size and element class
fields. Also note that class fields visible from Java programmers,
such as System.out, are not accessed via an object. Therefore
there is no indirection overhead for them.

Allocation-site equality checks
Optimizing JIT compilers generate many class equality checks.
Figure 6(a) shows a typical one, which compares the class pointer
of an object with a compile-time-constant class pointer value,
using a fast path if the check succeeds. This kind of checking
often appears when a JIT compiler inlines a virtual call. If profil-
ing reveals that a certain class accounts for most of the receiver
classes of the virtual call invocation, the compiler can inline the
call by assuming the receiver is an instance of the dominant class
and can generate an class equality check before the inlined code.
The same kind of checking is also used in the fastest path of a
class cast check (checkcast/instanceof).

Without optimization, ASC Tracker requires another load in-
struction for the class equality check as shown in Figure 6(b).
However, if we find that a certain allocation site accounts for
most of the allocation sites of the objects, we can generate an
equality check for the allocation site as in Figure 6(c). Since an
allocation site always allocates objects of the same class, we can
assume that on the fast path, the object is an instance of the class
allocated at the site. We call this check an allocation-site equality
check. ASC Tracker profiles the allocation sites of receiver ob-
jects at virtual calls and argument objects at class cast checks. If it
finds a certain allocation site is dominant, it generates an alloca-
tion-site equality check. If not, it generates a class equality check.

4. Experiments

This section describes our implementation of ASH and ASC
Trackers and our experiments to evaluate their effectiveness.

4.1 Implementation

We implemented ASH and ASC Trackers in 64-bit IBM J9/TR
1.6.0 SR3 [14]. An object header consists of three words, each of
which is 32 bits long because our virtual machine supports com-
pressed pointers. We used 15 bits in the object header as the hash
code field. The baseline implementation embeds 15 bits from the

object address, while the ASH Tracker embeds a 15-bit static ID.
For the dynamic shrinking, the initial bit-length of a dynamic ID
is 11 and the minimum is 2. This implementation effectively
avoids an overflow.

Our ASC Tracker duplicates to each allocation site structure
the instance size field of a non-array class and the element class
field of an array class. We did not duplicate a virtual function
table because experiments showed that it increased CPU cache
misses. The ASC Tracker generates allocation-site equality
checks at inlined virtual method calls, interface calls, and class
cast checks, based on value profiling.

We also implemented an earlier approach, which adds an extra
field to each object. Our implementation appends an additional 4-
byte field at the end of each object. Since objects are aligned with
at least a 4-byte boundary, it is a waste of space to add a field of
shorter than 4 bytes. The extra field contains a pointer to the allo-
cation site structure of the object. The allocation site structures
are allocated in a low region of the memory space, so that they
can be addressed using a 32-bit pointer.

Our JVM first executes a method using an interpreter, and if
the method is executed frequently, it invokes JIT compilation. As
the method is executed more often, our JVM can invoke recom-
pilation multiple times to apply more advanced optimizations,
including aggressive method inlining and redundancy elimination.

Our virtual machine is equipped with a two-generation GC,
and we used the following configuration [19]. One fourth of the
Java heap is used as the young space, which consists of two semi-
spaces. The young GC copies an object multiple times between
the semi-spaces before making it tenured. The age of an object is
stored in its header. The global GC performs mostly concurrent
mark-and-sweep collection. These are the default configurations
in our JVM, which has been tested on multiple customer applica-
tions in production environments. Similar configurations of GC
have been adopted also in Sun HotSpot [33]. Our implementation
of the ASH Tracker requests the reclamation of dynamic IDs
when the coverage ratio for a class described in Section 2.5 ex-
ceeds 0.97. We chose this number based on experiments. The
actual reclamation is performed during the next global GC.

4.2 Benchmarks and evaluation environment

To evaluate the effectiveness of our techniques, we used
SPECjvm2008 [32], DaCapo Benchmarks [12], SPECjbb2005
[31], and Eclipse IDE for Java EE Developers 3.4.2 [13]. We
excluded the scimark and crypto benchmarks from SPECjvm2008
because they create fewer objects than the other benchmarks and
thus are less interesting for allocation site tracking. We did not
use bloat, jython, and xalan from DaCapo Benchmarks because
their execution times did not converge within 20 iterations and
thus are not reliable. We used a single-JVM configuration for
SPECjbb2005. For Eclipse, we created a new project for Java and
another new project for plug-in development, imported the source
files of SPECjbb2005 as the Java project, and then manually
opened all of the files. We call this benchmark “Eclipse/manual”
because DaCapo Benchmarks also include another eclipse
benchmark. We ran the benchmarks eight times by restarting the
JVM each time and took the averages. For SPECjvm2008, we
performed a two-minute warm-up and a four-minute iteration. For
DaCapo Benchmarks, we used large data sets and ran each
benchmark with at most 20 iterations until the execution time
converged for 5 consecutive iterations. We ran the benchmarks on
an 8-core 1.8 GHz Intel Xeon [20] machine with 8GB of main
memory running Linux 2.6.18. We measured the minimum Java
heap requirement for each benchmark, and specified four times
the minimum as the initial and maximum Java heap sizes.

 if (object->cls_ptr != HOT_CLASS)
goto SlowPath;

/* Fast path here, such as an inlined call, assumes
that object is an instance of HOT_CLASS. */

if (object->alloc_site->cls_ptr != HOT_CLASS)
goto SlowPath;

if (object->alloc_site != HOT_ALLOCATION_SITE)
goto SlowPath;

/* Fast path here assumes that object is
an instance of HOT_ALLOCATION_SITE->cls_ptr. */

(a)

(b)

(c)

Figure 6. (a) Class equality check. (b) ASC Tracker requires

another load instruction. (c) Allocation-site equality check

reduces the number of load instructions to the same as for (a).

Table 1 summarizes the general characteristics of the bench-
marks we used. The second column shows four times the mini-
mum Java heap requirement for each benchmark, as we specified
to our JVM. The third column indicates the average physical
memory usage during the steady state of each benchmark. This
includes Java heap, Java classes, static code, JIT-generated code,
and JVM-internal data structures. The usage can be smaller than
the specified Java heap size because OS does not necessarily as-
sign physical memory to the entire Java heap. The fourth column
is the number of allocated objects during one iteration of each
benchmark. The fifth column is the average numbers of objects
before GC, while the sixth column is live objects after GC. The
seventh column is the percentage of the live objects on which
java.lang.Object.hashCode() or java.lang.System.

identityHashCode() was invoked at least once. We also
counted the number of times those standard interfaces were in-
voked during one iteration of each benchmark, as shown in the

eighth column. Note that we did not count the invocations on the
objects of sub-classes that overwrite hashCode(). The results
indicate that the usage of the hash code value in the object header
greatly varies from program to program. The last column shows
the percentages of the allocated objects that were copied at least
once or tenured during young GC.

4.3 Allocation site statistics

Table 2 shows the statistics on the allocation sites for each
benchmark. The second column is the number of classes at least
one of its allocation sites was assigned a static ID in ASH Tracker.
The third column is the total number of allocation sites for all of
the classes. The fourth column shows the total number of the allo-
cation sites that appeared in inlined contexts during JIT compila-
tion. Although our JIT compiler performs aggressive method
inlining, only less than 26% of the allocation sites were in inlined

 4x the

minimum

Java heap

(MB)

Avg.

physical

memory

(MB)

Number of allocated

objects

Avg. number of

total (live + dead)

objects

Avg. number of

live objects

Avg.

hashed

(%)

Number of times

hash codes are

referred to

Avg.

copied /

tenured (%)

compiler.compiler 816 915 4.80 * 100,000,000 1.83 * 10,000,000 6.33 * 1,000,000 0.70 3.34 * 100,000,000 16.2/14.6

compiler.sunflow 508 660 1.20 * 1,000,000,000 1.18 * 10,000,000 3.75 * 1,000,000 0.36 2.87 * 100,000,000 21.7/20.0

compress 384 485 5.74 * 100,000 7.04 * 10,000 4.78 * 10,000 0.22 617 8.8/5.1

derby 2032 2214 8.20 * 1,000,000,000 5.36 * 10,000,000 6.29 * 1,000,000 0.71 1.57 * 10,000,000 0.04/0.02

mpegaudio 36 111 5.77 * 1,000,000 4.93 * 10,000 4.05 * 10,000 0.34 780 5.8/1.5

serial 1220 1437 3.09 * 1,000,000,000 2.62 * 10,000,000 9.98 * 10,000 5.30 1.02 * 1,000,000,000 0.06/0.001

sunflow 60 143 2.60 * 1,000,000,000 1.34 * 1,000,000 2.42 * 100,000 0.19 2.72 * 10,000 1.2/0.82

xml.transform 164 315 2.87 * 100,000,000 2.23 * 1,000,000 2.32 * 100,000 0.20 5.62 * 1,000,000 3.0/0.33

xml.validation 252 340 6.42 * 100,000,000 3.37 * 1,000,000 1.92 * 100,000 0.07 2.02 * 100,000,000 9.0/1.4

antlr 12 71 1.01 * 10,000,000 1.81 * 100,000 4.25 * 10,000 0.61 8.49 * 1,000 6.5/2.6

chart 80 237 9.20 * 10,000,000 2.18 * 1,000,000 2.75 * 100,000 0.12 3.17 * 1,000 5.1/0.36

eclipse 160 257 1.39 * 100,000,000 2.37 * 1,000,000 5.34 * 100,000 1.08 2.01 * 10,000,000 6.8/1.8

fop 44 82 1.19 * 1,000,000 1.02 * 1,000,000 2.57 * 100,000 0.09 357 14.4/13.9

hsqldb 832 604 1.16 * 10,000,000 8.80 * 1,000,000 6.67 * 1,000,000 0.004 2.14 * 10,000 5.7/4.9

luindex 12 82 1.16 * 10,000,000 2.84 * 100,000 6.23 * 10,000 0.38 1.19 * 1,000 6.5/0.23

lusearch 36 195 4.60 * 10,000,000 3.95 * 100,000 6.68 * 10,000 0.40 549 0.56/0.14

pmd 76 165 1.54 * 100,000,000 2.47 * 1,000,000 2.63 * 100,000 11.61 3.06 * 10,000,000 2.3/0.57

SPECjbb2005 2176 2340 1.20 * 10,000,000,000 4.46 * 10,000,000 1.13 * 10,000,000 0.003 5.53 * 1,000 2.1/0.08

Eclipse/manual 400 637 2.92 * 10,000,000 4.37 * 1,000,000 1.44 * 1,000,000 0.79 1.31 * 1,000,000 9.0/5.0

Table 1. General characteristics of the benchmarks.

 Number of

classes

Number of alloca-

tion sites

Number of alloca-

tion sites in

inlined contexts

Number of alloca-

tion sites with

dynamic shrinking

Max static ID Frequency of ID

reclamation

(times/min)

Frequency

of global GC

(times/min)

compiler.compiler 1,491 11,475 2,658 261 1,752 1.2 11.7

compiler.sunflow 1,481 11,095 2,356 254 1,698 1.8 23.5

compress 1,174 7,311 226 176 1,278 0 0.3

derby 1,619 11,198 1,076 202 1,352 0 0.3

mpegaudio 1,205 10,587 270 177 3,327 0 4.5

serial 1,239 7,943 472 239 1,323 0 0.3

sunflow 1,257 8,242 364 186 1,504 0 33

xml.transform 2,221 18,964 2,834 438 1,887 0.2 6.3

xml.validation 1,412 9,329 626 187 1,501 0 5.0

antlr 6,68 6,852 1,462 145 1,319 0.1 11.6

chart 1,109 8,655 1,081 156 1,343 0 0.6

eclipse 1,713 14,006 3,623 352 1,421 0.6 1.8

fop 1,082 4,965 351 143 560 0 13.6

hsqldb 707 4,351 387 147 551 0 41.7

luindex 665 4,326 657 143 602 0 7.3

lusearch 658 4,226 645 143 599 0 18.9

pmd 832 4,446 567 227 554 0.2 4.2

SPECjbb2005 981 6,269 373 176 984 0 0.0008

Eclipse/manual 6,821 29,107 3,108 746 1,459 0 7.3

Table 2. Statistics on the allocation sites in the benchmarks.

methods. These results suggest future work on embedding a dy-
namic allocation context into an object header. The fifth column
is the total number of the allocation sites to which dynamic
shrinking was applied in ASH Tracker, which means the alloca-
tion sites that allocated at least one hashed object. Since the value
is less than 5% of the number of allocation sites, the space over-
head for the binary trees is negligible in practice as explained in
Section 4.5. The sixth column is the maximum static IDs assigned
to an allocation site of a class in each program, which is the maxi-
mum number of allocation sites per class. Since the maximum
was 3,327, all of these IDs were successfully embedded into the
15-bit hash code field in ASH Tracker. We confirmed that no ID
overflow due to a conflict between the bit spaces of the static and
dynamic IDs occurred in any of these benchmarks. The seventh
and eighth columns are the frequency of the reclamation of dy-
namic IDs and global GC, respectively. These columns show that
the reclamation during global GC is rarely triggered in practice.

4.4 Performance overhead

We compared the performance overhead of the per-object-
overhead approach, ASH, and ASC Trackers with the baseline
implementation that does not track allocation sites. We exclude
Eclipse because we controlled it manually in the experiments. The
results are reported in Figure 7. The bars are, from left to right,
the per-object-overhead approach, ASH Tracker, ASC Tracker
without optimizations, and ASC Tracker with optimizations.

The per-object-overhead approach slowed down the bench-
marks by up to 14.4% and 5.2% on average because an additional

field for each object increased the CPU cache misses, GC fre-
quency, and copying GC’s overhead. In compiler.compiler, the
cache misses in Java code increased by 18%, and 24% more time
was spent in GC. For ASH Tracker, the overhead was negligible
on average and up to 1.4% in serial. ASH Tracker can degrade
performance if many objects are hashed. At the same time, it can
speed up object allocation because embedding a static ID, which
is a compile-time constant value, is faster than computing a 15-bit
random value from an object address.

ASC Tracker without any optimizations suffered from at most
3.0% and on average 1.8% overhead. The extra overhead for vir-
tual calls was mitigated by aggressive method inlining. In addi-
tion, redundancy elimination removed unnecessary load
instructions for class and allocation-site pointers. Our optimiza-
tions further reduced the overhead to 2.0% at maximum and 1.0%
on average. The allocation-site equality checks reduced more
overhead than the constant-class-field duplication in most bench-
marks because there were many class equality checks in the fre-
quently executed paths of JIT-compiled methods. Overall, ASH
Tracker and ASC Tracker incurred far less performance overhead
than the per-object-overhead approach in the benchmarks.

4.5 Space overhead

Figure 8 shows the relative space overhead, compared with the
average physical memory usage shown in the third column of
Table 1. The overhead of the per-object approach consists of per-
class, per-allocation-site, and per-object structures. The first two
structures are base overhead, which is unavoidable when tracking

-2
0

2
4
6

8
10
12

14
16

co
m

pile
r.c

om
pi

le
r

co
m

pile
r.s

unf
lo

w

co
m

pre
ss

de
rb

y

m
pe

ga
ud

io

se
ria

l

su
nf

lo
w

xm
l.t

ra
ns

fo
rm

xm
l.v

al
id
atio

n
an

tlr

ch
ar

t

ec
lip

se fo
p

hs
ql
db

lu
in
dex

lu
se

arc
h

pm
d

S
P
E
C
jb
b20

05

G
eo

. m
eanP

e
rf

o
rm

a
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

Per-object-overhead approach ASH Tracker

ASC Tracker w/o optimization ASC Tracker

Figure 7. Relative performance overhead compared with the baseline that does not track allocation sites.

0
1
2
3
4
5
6
7
8
9

10

co
m

pi
le
r.c

om
pi

le
r

co
m

pi
le
r.s

un
flo

w

co
m

pr
es

s

de
rb

y

m
pe

ga
ud

io

se
ria

l

su
nf

lo
w

xm
l.t

ra
ns

fo
rm

xm
l.v

al
id
at
io

n
an

tlr

ch
ar

t

ec
lip

se fo
p

hs
ql
db

lu
in
de

x

lu
se

ar
ch

pm
d

SP
EC

jb
b2

00
5

Ecl
ip
se

/m
an

ua
l

G
eo

. m
ea

nS
p
a

c
e
 o

v
e

rh
e
a

d
 (

%
)

Per-object-overhead approach ASH Tracker
ASC Tracker w/o optimization ASC Tracker

Figure 8. Relative space overhead compared with the physical memory usage. The per-object-overhead approach suffers from 4

bytes of per-object overhead times the average number of objects. The overhead in ASH Tracker mainly consists of per-class arrays

and binary trees. The overhead in ASC Tracker includes duplicated constant class fields.

allocation sites. They correspond to class_t::map_table, al-
loc_sit_t::method, and alloc_site_t::index in Figure 3.
Their overhead was less than 1%, so most of the overhead was
due to per-object structures. The overall overhead reached 9.2%
in derby and 8.3% in compiler.compiler. These benchmarks used
many objects during their executions, as shown in the fifth col-
umn of Table 1.

In contrast, ASH Tracker incurred much smaller space over-
head of less than 1.4%. The space overhead specific to ASH
Tracker consists of the per-class array indexed by a static ID
(class_t::site_array in Figure 3) and the binary trees used
for dynamic ID assignment. Since they are allocated separately
from each object, they do not pollute the CPU caches unlike a
per-object extra field. The space overhead of ASC Tracker is even
smaller, less than 0.7%. Its overhead is the sum of the per-class
and per-allocation site base overhead and duplicated constant
class fields. The duplicated fields are 8 bytes per allocation site,
so that their overhead was negligible.

4.6 Hash code collisions

Table 3 presents the results of hash code collisions in the baseline
implementation, which uses 15 bits from an object address, and
our ASH Tracker. In this experiment, we only took account of the
hashed objects, which corresponds to the seventh column in Table
1. After every GC, we scanned the Java heap and computed the
average number of collisions by dividing the number of such ob-
jects by the number of distinct hash code values. If every object
has a distinct hash code value, the average collision number
should be one. We also recorded the maximum number of colli-
sions at that time. After execution was finished, we computed the
time averages of those average and maximum collision numbers.

The average collision number in ASH Tracker was within 1.73
times the baseline, although the maximum collision number was
up to 3.38 times larger. The collision number became large when
dynamic shrinking chose the parent node of the current node. The
case in Figure 4(e) is an example. In that example, hash code
values with the dynamic ID 010 will appear frequently, because
about half of the hash code values with the dynamic ID 01 will

also have 010 in their significant bits. This is a tradeoff between
an ID overflow and hash code collision. We currently prefer to
avoid an overflow because it compromises tracking accuracy.

4.7 Discussion

Among the three approaches we compared, ASH Tracker
achieved the least performance overhead. If an object contains a
hash code field whose bit-length is long enough to encode alloca-
tion site IDs, ASH Tracker is the first choice. If not, ASC Tracker
provides the tracking functionality with sufficiently small over-
head. For accurate tracking, the hash code field must be long
enough at least to contain static IDs. The sixth column of Table 2
indicates that 12 bits are sufficient for these benchmarks.

ASC Tracker can also be used for tracking other information
such as last-use points. Each time an object is used, the pointer to
a use-point structure of the class of the object is looked up and
stored in the class pointer field. ASH Tracker is suitable only for
encoding allocation-time constants because the hash code value of
an object is not allowed to change once it is referred to [21].

For reflective calls like Class.newInstance, we used
“anonymous” per-class allocation site structures in our experi-
ments. Instead, we could track the allocation sites by passing an
allocation site ID to a generic allocation routine in the JVM.

For static language environments without GC like C++, ASC
Tracker is a suitable approach. Allocation site structures can be
statically generated in the data sections of object files.

5. Applications of Allocation Site Tracker

We demonstrate the usefulness of our minimal-overhead alloca-
tion site trackers by implementing a memory leak detector and
object pretenuring.

5.1 Minimal-overhead Memory Leak Detector

One of the most obvious applications of an allocation site tracker
is a memory leak detector that tells users where leaking objects
were allocated. Since Java is equipped with GC, a leak is a situa-
tion where the number of live objects increases steadily. With the
allocation site information, the users can focus on a particular
program region to fix the leak. Information about the classes of
the leaking objects is not sufficient. For example, the String
class may have 1000 allocation sites in typical programs.

It is important to be able to always enable the memory leak de-
tector while an application is running. This is because users need
to be able to investigate the histories of the number of live objects
on a per-allocation-site basis to find the objects that are causing
leaks. A leak can appear after a production environment has been
running days or weeks [16]. Thus any slowdown from the mem-
ory leak detector must be as small as possible. If performance
suffers, many users will prefer to disable the detector in produc-
tion environments, even if there are risks of reduced reliability.

We implemented a memory leak detector that works with ei-
ther ASH or ASC Tracker. Each time global GC occurs, the de-
tector scans the Java heap and counts the numbers of live objects
for each allocation site. It records the numbers in per-allocation-
site areas and also saves exponential histories, which are the
numbers of live objects at the most recent global GC, at the sec-
ond most recent, at the fourth most recent, at the eighth most re-
cent, and so on. Our implementation saves 16 histories for each
allocation site. At any time, users can look at the histories of the
allocation sites to detect leaking allocation sites. Also, the system
can automatically inform users about the possible memory leaks.
To define exactly which situations should be regarded as memory

Baseline

(15 bits from address)

ASH Tracker

Time avg.

of avg.

collision

Time avg.

of max

collision

Time avg.

of avg.

collision

Time avg.

of max

collision

compiler.compiler 1.921 12.757 3.328 15.149

compiler.sunflow 1.622 9.119 1.654 10.979

compress 1.000 1.000 1.000 1.000

derby 1.898 13.684 2.222 20.446

mpegaudio 1.007 1.999 1.007 1.999

serial 1.534 13.958 1.712 10.968

sunflow 1.054 3.999 1.066 3.999

xml.transform 1.084 2.045 1.105 3.437

xml.validation 1.015 1.997 1.015 1.999

antlr 1.005 1.688 1.065 3.785

chart 1.010 2.023 1.096 4.986

eclipse 1.849 6.713 2.014 20.163

fop 1.004 1.901 1.062 3.702

hsqldb 1.009 1.810 1.034 3.759

luindex 1.004 1.995 1.119 3.988

lusearch 1.004 2.000 1.074 3.000

pmd 3.178 12.791 4.111 19.640

SPECjbb2005 1.005 1.995 1.027 3.998

Eclipse/manual 1.185 4.000 1.902 13.500

Table 3. Time average of the average and maximum colli-

sion of hash code values.

leaks is beyond the scope of this paper, but our memory leak de-
tector provides all of the necessary information for decisions.

Figure 9 shows the slowdown caused by our memory leak de-
tector. The baseline is no memory leak detection or allocation site
tracking. The overhead includes not only that of the tracking but
also that of identifying the allocation sites for each of the live
objects at each global GC. The slowdown was a maximum of
2.4% in derby when using ASC Tracker, and on average 0.2% for
ASH Tracker and 1.1% for ASC Tracker. Identifying the alloca-
tion sites of objects slowed performance by only 0.1 to 0.2 % on
average. Decoding a dynamic ID in ASH Tracker requires trav-
ersing down a binary tree, which caused the slowdown for pmd.
The results show that ASH and ASC Trackers provide an efficient
infrastructure for our minimal-overhead memory leak detector.

5.2 Allocation-site-based runtime pretenuring

Tracking the allocation sites of every object with minimal over-
head is also indispensable for allocation-site-based optimizations.
We demonstrate it by implementing allocation-site-based runtime
pretenuring in our generational GC framework. Pretenuring is an
optimization that allocates or moves a likely-to-be-long-lived
object directly into the tenured space. Pretenuring can save the
overhead of young GC because otherwise the young GC would
copy the object multiple times within the young space before
making it tenured. Since the pretenuring decision should be adap-
tive to application behavior, there have been several approaches
proposed for runtime pretenuring [1,15,23]. In this paper, we
assume two generations, young and tenured, but the same discus-
sion applies to a collector with more than two generations.

Allocation-site-based Copy-time (A-C) Pretenuring
Pretenuring is known to be effective when it is performed on a
per-allocation-site basis [5,9], which means that an object gets
pretenured at a certain time during its lifetime if it was allocated
at a certain allocation site. Previous allocation-site-based ap-
proaches perform pretenuring at the object allocation time. If an
allocation site is found to allocate many long-lived objects via
profiling, the site is modified to allocate objects directly into the
tenured space. A problem in the allocation-time approach when it
is performed at runtime is that it requires modifications to the
code generation in the JIT compiler [1,15,23]. This is because
current optimizing JIT compilers inline the fastest path of object
allocation in the JIT-generated code.

We propose an easier-to-implement approach, which we call
Allocation-site-based Copy-time (A-C) Pretenuring. The copy-
time approach performs pretenuring during young GC when an

object is copied for the first time. A generational collector usually
has logic written in a high-level language to decide whether an
object should be tenured or not based on its age. Thus the copy-
time approach does not need to modify the JIT-generated code. A
developer can write the pretenuring logic in a high-level language.
A copy-time approach was described in a previous report [1], but
it was not allocation-site-based. The allocation-site-based copy-
time approach is impossible without tracking allocation sites of
every object at runtime like ASH Tracker.

A drawback of the copy-time approach is that it must copy any
object at least once. However, it also has an advantage in that it
can filter out the lifetime heterogeneity of an allocation site. Even
if an allocation site allocates short-lived objects that die before the
next young GC mixed with other longer-lived objects, our copy-
time approach can effectively apply pretenuring to the site.

Online profiling
Pretenuring in general relies on profiling to decide which objects
should be pretenured. In A-C Pretenuring, when an object is cop-
ied for the first time during young GC, a counter s associated
with the allocation site of the object is incremented. When the
object is tenured later, another counter t for the allocation site is
incremented. If the ratio of t/s, which we call the tenuring ratio,
exceeds a certain threshold, pretenuring is turned on for that allo-
cation site. In our implementation, the counters are saved and
cleared each time young GC is invoked. Since our young GC
copies an object multiple times in the young space before making
it tenured, there is a time lag between the increments of s and t
for a particular object. Thus we preserve the last 16 values of both
of these counters and enable pretenuring when the tenuring ratio
of the average of these 16 historic values exceeds a threshold. We
used 0.85 as the threshold, based on our experiments.

Experimental results
We implemented A-C Pretenuring using ASH Tracker. Figure 10
shows the speedup results compared to the baseline that does not
perform allocation site tracking or pretenuring. A-C Pretenuring
improved sunflow by 15.7% and 11.8% with two times and four
times the minimum Java heap sizes, respectively. On average, it
delivered 3.8% and 1.8% speedups. Xml.transform and pmd were
degraded by about 2%, due to the overhead of ASH Tracker and
A-C Pretenuring. When the pretenuring was disabled and the
allocation sites of every copied object were just looked up, the
slowdown was within 2%. Thus ASH Tracker is an efficient in-
frastructure for allocation-site-based optimizations.

In sunflow, there were 10 allocation sites of Color class
where pretenuring was turned on. That means there were 10 allo-

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

co
m

pile
r.c

om
pi

le
r

co
m

pile
r.s

unf
lo

w

co
m

pre
ss

de
rb

y

m
pe

ga
ud

io

se
ria

l

su
nf

lo
w

xm
l.t

ra
ns

fo
rm

xm
l.v

al
id
atio

n
an

tlr

ch
ar

t

ec
lip

se fo
p

hs
ql
db

lu
in
dex

lu
se

arc
h

pm
d

S
P
E
C
jb
b20

05

G
eo

. m
ean

P
e

rf
o

rm
a

n
c
e

 o
v
e

rh
e

a
d

 (
%

)

ASH Tracker ASC Tracker

Figure 9. Relative slowdown of our memory leak detector com-

pared with the baseline with no memory leak detection or alloca-

tion site tracking.

-4
-2
0
2
4
6
8

10
12
14
16
18

co
m

pile
r.c

om
pi

le
r

co
m

pile
r.s

unf
lo

w

co
m

pre
ss

de
rb

y

m
pe

ga
ud

io

se
ria

l

su
nf

lo
w

xm
l.t

ra
ns

fo
rm

xm
l.v

al
id
atio

n
an

tlr

ch
ar

t

ec
lip

se fo
p

hs
ql
db

lu
in
dex

lu
se

arc
h

pm
d

S
PE

C
jb
b20

05

G
eo

. m
ean

S
p

e
e

d
u

p
 (

%
) 2x min Java heap

4x min Java heap

Figure 10. Performance of A-C Pretenuring on ASH Tracker

with two different Java heap sizes. The baseline is no A-C Pre-

tenuring or ASH Tracker.

cation sites of the Color class whose tenuring ratio exceeded 0.85.
We also found that there were 43 allocation sites of the Color
class. The tenuring ratio of the Color class as a whole was 0.65,
which indicates that pretenuring should be performed on a per
allocation-site basis. Without pretenuring, 1.2% of the allocated
objects were copied at least once in the young space (the last col-
umn of Table 1) and 70% of them were tenured. Note that al-
though 1.2% was small, the reduction in GC time by pretenuring
mostly depends on the ratio of the tenured objects (70%), which is
quite high in sunflow, compared with other benchmarks. A-C
Pretenuring successfully pretenured 89% of the tenured objects
and erroneously pretenured 31% of the non-tenured objects.

Figure 11 shows statistics for selected three benchmarks,
changing the Java heap size from 1.5x to 5x the minimum. In
these experiments, we specified a fixed amount of workload
rather than fixed time. Figure 11(a) is the fraction of time spent in
GC when no pretenuring was performed. Figure 11(b) to (d) pre-
sent relative GC, mutator, and total execution time, respectively,
when A-C Pretenuring was enabled. The speedup in sunflow was
because of the reduction in GC time, while the other two bench-
marks also benefited from the reduced mutator time. These results
of the mutators are similar to the ones previously reported [5] and
considered to be due to increased memory locality.

6. Related Work

As described in Section 1, most existing approaches that can track
allocation sites at runtime require space overhead proportional to
the number of objects. Some of them append or prepend an addi-
tional field to all objects, while others record per-object informa-
tion in a separate table indexed by an object identifier. The space
overhead was reported [17] to be as much as 25% for a program
that has many small objects. To make things worse, an additional
field in an object reduces the effective size of the CPU caches,
because it is typically in the same cache line as the other instance
fields that contain actual data. The separate-table approach avoids
such problems, but it does not work efficiently with a copying or
generational GC because the object addresses cannot be used as
object identifiers. The allocation site of an object can also be
identified from its address if the objects allocated at the same site
are arranged in a particular memory region [24]. This approach is

not compatible with a copying or generational GC either. In con-
trast, the ASH and ASC Trackers can track the allocation sites of
every object without any additional per-object space overhead.
Thus they do not reduce the effective CPU cache size.

Bit-Encoding Leak Location, or Bell [7], can probabilistically
track allocation sites by encoding an object address and its alloca-
tion site into a single bit in the object header. Bell performs de-
coding over all allocation sites and a subset of all objects, and
reports the allocation sites that match significant numbers of ob-
jects. Since Bell is a statistical approach, it requires a sufficient
number of samples to detect memory leaks with high confidence.
In contrast, our memory leak detector makes it possible to detect a
leak at any time during program execution and even to sense a
symptom of a leak before leaking objects dominate the Java heap.
Also, Bell is not useful for performance optimizations such as
pretenuring because it cannot identify the allocation site for each
object. Since Bell takes object addresses as input, it does not work
well with those types of GC that move objects. Therefore, it is not
suitable to use in pretenuring.

Previous runtime pretenuring approaches are based on object
sampling. They associate allocation site information only with
sampled objects, via weak references [1,15] or additional fields
[23]. They typically sample objects at every n-byte allocation,
where n is a tuning parameter. However, it is not clear how repre-
sentative those sampled objects are, and they do not report on the
relationship between the sampling rate and the accuracy of the
pretenuring decision. In contrast, ASH and ASC Tracker allows
us to detect pretenuring opportunities dynamically and accurately
without additional per-object space overhead.

Bacon et al. [2] proposed several approaches to compress an
object header. One of their techniques removes the hash code
field. In that case, ASC Tracker should be used to track allocation
sites. They also proposed stealing several bits from the class
pointer field. ASC Tracker is compatible with such a technique by
regarding the class pointer as an allocation site pointer.

7. Conclusion

This paper proposes novel techniques, the Allocation-Site-as-a-
Hash-code (ASH) Tracker and the Allocation-Site-via-a-Class-
pointer (ASC) Tracker, to track the allocation sites of every Java
object at runtime. The ASH and ASC Trackers are the first tech-
niques that enable various kinds of allocation-site-based online
debugging and optimization in production environments. ASH
Tracker encodes the allocation site ID of an object in a part of its
hash code field. ASH Tracker does not steal any bits from the
hash code field but instead regards the ID as part of it. ASC
Tracker makes the class pointer field in an object header refer to
the allocation site structure, which in turn points to the actual
class structure. It is equipped with optimizations to mitigate the
indirection overhead. Both the ASH and ASC Trackers are light-
weight because they do not add any per-object fields. Our imple-
mentation of the ASH Trackers suffered from at most 1.4% and
on average a 0% slowdown for all of the benchmarks we meas-
ured. ASC Tracker has a slightly larger slowdown of 2% at maxi-
mum and 1.0% on average, but it does not require a hash code
field in the object headers.

This paper also demonstrates the effectiveness of minimal-
overhead allocation site tracking for both the reliability and opti-
mization. For reliability, we implemented an allocation-site-based
memory leak detector. At any time during execution, our memory
leak detector allows users to investigate the histories of the num-
ber of live objects on a per-allocation-site basis. The overhead
was 1.1% on average, which makes it possible to use the memory
leak detector in a production environment. For optimization, we

 (b) Relative GC time

(100% = no A-C pretenuring)

0

20

40

60

80

100

120

1 2 3 4 5 6

Java heap size relative to minimum

G
C

 t
im

e
 (

%
)

(a) Time spent in GC

(100% = total time)

0

20

40

60

80

100

1 2 3 4 5 6

Java heap size relative to minimum

R
e

la
tiv

e
 t
im

e
 (

%
)

sunflow

xml.validation

compiler.sunflow

(c) Relative mutator time

(100% = no A-C Pretenuring)

80

85

90

95

100

105

1 2 3 4 5 6

Java heap size relative to minimum

M
u

ta
to

r
ti
m

e
 (

%
)

(d) Relative total time

(100% = no A-C Pretenuring)

80

85

90

95

100

105

1 2 3 4 5 6

Java heap size relative to minimum

T
o

ta
l
ti
m

e
 (

%
)

Figure 11. Statistics for GC and A-C Pretenuring in sunflow,

xml.validation, and compiler.sunflow.

propose an Allocation-site-based Copy-time (A-C) Pretenuring.
During young GC, it copies directly into a tenured space the ob-
jects allocated at certain allocation sites that have frequently allo-
cated long-lived objects. Experimental results showed that A-C
Pretenuring achieved up to a 11.8% speedup with 4x the mini-
mum Java heap size. A-C Pretenuring is easy to implement by
modifying only a few places in the GC. This is made possible for
the first time by our trackers, because it depends upon inspecting
the allocation sites of all of the copied objects at runtime.

Acknowledgments

We thank Vijay Sundaresan in IBM Toronto Lab and the mem-
bers of the Systems group in IBM Research - Tokyo for their
valuable suggestions. We are also grateful to anonymous review-
ers for providing us with helpful comments.

References

 [1] Agesen, O. and Garthwaite, A. Efficient object sampling via weak
references. In Proceedings of the 2nd International Symposium on
Memory Management, pp. 121-126, 2000.

[2] Bacon, D. F., Fink, S. J., and Grove, D. Space- and time-efficient
implementation of the Java object model. In Proceedings of the 16th
European Conference on Object-Oriented Programming, pp. 111-
132, 2002.

[3] Bacon, D. F., Konuru, R., and Serrano, M. Thin locks: featherweight
synchronization for Java. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation,
pp. 258-268, 1998.

[4] Barrett, D. A., and Zorn, B. G. Using lifetime predictors to improve
memory allocation performance. In Proceedings of the ACM SIG-
PLAN 1993 Conference on Programming Language Design and Im-
plementation, pp. 187-196, 1993.

[5] Blackburn, S. M., Hertz, M., McKinley, K. S., Moss, J. E. B., and
Yang, T. Profile-based pretenuring. ACM Transactions on Program-
ming Languages and Systems, vol. 29, no. 1, pp. 1-57, 2007.

[6] Blackburn, S. M., Singhai, S., Hertz, M., McKinley, K. S., and Moss,
J. E. B. Pretenuring for Java. In Proceedings of the 16th ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Lan-
guages, and Applications, pp. 342-352, 2001.

[7] Bond, M. D. and Mckinley, K. S. Bell: bit-encoding online memory
leak detection. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 61-72, 2006.

[8] Chen, G., Kandemir, M., Vijaykrishnan, N., and Irwin, M. J. Field
level analysis for heap space optimization in embedded java envi-
ronments, In Proceedings of the 4th International Symposium on
Memory Management, pp. 131-142, 2004.

[9] Cheng, P., Harper, R., and Lee, P. Generational stack collection and
profile-driven pretenuring. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implemen-
tation, pp. 162-173, 1998.

[10] Chilimbi, T. M. and Shaham, R. Cache-conscious coallocation of hot
data streams. In Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, pp. 252-262,
2006.

[11] Chilimbi, T. M. Efficient representations and abstractions for quanti-
fying and exploiting data reference locality. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language De-
sign and Implementation, pp. 191-202, 2001.

[12] DaCapo Benchmarks. http://dacapobench.org/

[13] Eclipse.org. http://www.eclipse.org/ .

[14] Grcevski, N., Kilstra, A., Stoodley, K., Stoodley, M., and Sundaresan,
V. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In Proceedings of the 3rd Vir-
tual Machine Research and Technology Symposium, pp. 151-162,
2004.

[15] Harris, T. L. Dynamic adaptive pre-tenuring. In Proceedings of the
2nd international Symposium on Memory Management, pp. 127-136,
2000,

[16] Hastings, R. and Joyce, B. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Conference,
pp. 125-136, 1992.

[17] Hauswirth, M. and Chilimbi, T. M. Low-overhead memory leak
detection using adaptive statistical profiling. In Proceedings of the
11th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 156-164, 2004.

[18] Huang, W., Srisa-an, W., and Chang, J. M. Dynamic pretenuring
schemes for generational garbage collection. In Proceeding of the
2004 IEEE International Symposium on Performance Analysis of
Systems and Software, pp. 133-140, 2004.

[19] IBM Java Diagnosis Guide 6. http://www.ibm.com
/developerworks/java/jdk/diagnosis/ .

[20] Intel IA-32 Architecture Software Developer's Manual.

[21] Java SE 6 API Specification. http://java.sun.com/javase/6/docs/api/ .

[22] Java VM Specification. http://java.sun.com/docs/books/jvms/

[23] Jump, M., Blackburn, S. M., and Mckinley, K. S. Dynamic object
sampling for pretenuring. In Proceedings of the 4th International
Symposium on Memory Management, pp. 152-162, 2004.

[24] Novark, G., Berger, E. D., and Zorn, B. G. Efficiently and precisely
locating memory leaks and bloat. In Proceedings of the ACM SIG-
PLAN 2009 Conference on Programming Language Design and Im-
plementation , pp. 397-407, 2009.

[25] Novark, G., Berger, E. D., and Zorn, B. G. Exterminator: automati-
cally correcting memory errors with high probability. In Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation , pp. 1-11, 2007.

[26] Novark, G., Berger, E. D., and Zorn, B. G. Plug: automatically toler-
ating memory leaks in C and C++ applications. Technical Report
UM-CS-2008-009, University of Massachusetts, 2008.

[27] Qin, F., Lu, S., and Zhou, Y. SafeMem: exploiting ECC-memory for
detecting memory leaks and memory corruption during production
runs In Proceedings of the 2005 International Symposium on High-
Performance Computer Architecture, pp. 291-302, 2005.

[28] Seidl, M. L. and Zorn, B. G. Segregating heap objects by reference
behavior and lifetime. In Proceedings of the 8th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pp. 12-23, 1998.

[29] Seward, J. and Nethercote, N. Using valgrind to detect undefined
value errors with bit-precision. In Proceedings of the 2005 Annual
Conference on USENIX Annual Technical Conference, pp. 17-30,
2005.

[30] Shaham, R., Kolodner, E. K., and Sagiv, M. Heap profiling for space-
efficient java. In Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Implementation, pp.
104-113, 2001.

[31] Standard Performance Evaluation Corporation. SPECjbb2005.
http://www.spec.org/jbb2005/ .

[32] Standard Performance Evaluation Corporation. SPECjvm2008.
http://www.spec.org/jvm2008/ .

[33] Sun Microsystems. HotSpot VM. http://java.sun.com/javase/ tech-
nologies/hotspot/index.jsp

