
© 2013 IBM Corporation

Eliminating Global Interpreter Locks
in Ruby through Hardware 
Transactional Memory

Rei Odaira
IBM Research – Tokyo,

Jose G. Castanos
IBM Research – Watson Research Center



© 2013 IBM Corporation2

IBM Research – Tokyo

Global Interpreter Locks in Scripting Languages

� Scripting languages (Ruby, Python, etc.) 
everywhere. � Increasing demand on speed.

� Many existing projects for single-thread speed.

– JIT compiler (Rubinius, ytljit, PyPy, Fiorano, etc.)

– HPC Ruby

� Multi-thread speed restricted by global interpreter locks.

– Only one thread can execute interpreter at one time.

☺No parallel programming needed in interpreter.

� No scalability on multi cores.



© 2013 IBM Corporation3

IBM Research – Tokyo

Hardware Transactional Memory (HTM) Coming into the Market

� Improve performance by simply replacing locks with TM?

� Realize lower overhead than software TM by hardware.

Blue Gene/Q
2012

zEC12
2012

Rock Processor
Cancelled

Transactional
Synchronization
eXtensions, 2013

Sun Microsystems

Intel



© 2013 IBM Corporation4

IBM Research – Tokyo

Our Goal

� What will the performance of real applications be if we 
replace GIL with HTM?

– Global Interpreter Lock (GIL)

� What modifications and new techniques are needed?



© 2013 IBM Corporation5

IBM Research – Tokyo

Our Goal

� What will the performance of real applications be if we 
replace GIL with HTM?

– Global Interpreter Lock (GIL)

� What modifications and new techniques are needed?

zEC12
atomic { }

� Eliminate GIL in Ruby through zEC12’s HTM
� Evaluate Ruby NAS Parallel Benchmarks



© 2013 IBM Corporation6

IBM Research – Tokyo

Related Work
� Eliminate Python’s GIL with HTM

� Micro-benchmarks on non-cycle-accurate simulator
[Riley et al. ,2006]

� Micro-benchmarks on cycle-accurate simulator
[Blundell et al., 2010]

� Micro-benchmarks on Rock’s restricted HTM [Tabba, 2010]

� Eliminate Ruby and Python’s GILs with fine-grain locks

– JRuby, IronRuby, Jython, IronPython, etc.

� Huge implementation effort

� Incompatibility in multithreaded execution of class libraries

� Eliminate the GIL in Ruby …
� through HTM on a real machine …
� and evaluate it using non-micro-benchmarks.
� Small implementation effort
� No incompatibility problem in the class libraries



© 2013 IBM Corporation7

IBM Research – Tokyo

Outline

� Motivation

� Transactional Memory

� GIL in Ruby

� Eliminating GIL through HTM

� Experimental Results

� Conclusion



© 2013 IBM Corporation8

IBM Research – Tokyo

Transactional Memory

� At programming time

– Enclose critical sections with 
transaction begin/end 
instructions.

� At execution time

– Memory operations within a 
transaction observed as one step 
by other threads.

– Multiple transactions executed in 
parallel as long as their memory 
operations do not conflict.
� Higher parallelism than locks.

tbegin();
a->count++;
tend();

tbegin();
b->count++;
tend();

tbegin();
a->count++;
tend();

tbegin();
a->count++;
tend();

Thread X

Thread Y

lock();
a->count++;
unlock();

tbegin();
a->count++;
tend();



© 2013 IBM Corporation9

IBM Research – Tokyo

HTM in zEC12
� Instruction set

– TBEGIN: Begin a transaction

– TEND: End a transaction

– TABORT, NTSTG, etc.

� Micro-architecture

– Hold read set in L1 and L2 caches (~2MB)

– Hold write set in L1 cache and store buffer (8KB)

– Conflict detection using cache coherence protocol

� Roll back to immediately after TBEGIN in the following cases:

– Read set and write set conflict

– Read set and write set overflow

– Restricted instructions (e.g. system calls)

– External interruptions, etc.

TBEGIN
if (cc!=0)
goto abort handler
...
...
TEND



© 2013 IBM Corporation10

IBM Research – Tokyo

Ruby Multi-thread Programming and GIL based on 1.9.3-p194

� Ruby language 

– Program with Thread, Mutex, and ConditionVariable classes

� Ruby virtual machine

– Ruby threads assigned to native threads (Pthread)

– Only one thread can execute the interpreter at any give time 
due to the GIL.

� GIL acquired/released when a thread starts/finishes.

� GIL yielded during a blocking operation, such as I/O.

� GIL yielded also at pre-defined yield-point bytecode ops.

– Conditional/unconditional jumps, method/block exits, etc.



© 2013 IBM Corporation11

IBM Research – Tokyo

How GIL is Yielded in Ruby

� It is too costly to yield GIL at every yield point.
� Yield GIL every 250 msec using a timer thread.

Timer thread Application threads

W
ak

e 
up

 e
ve

ry
 2

50
 m

se
c

Release
GIL

Set flag

Set flag

Acquire
GIL

if (flag is true){
gil_release();
sched_yield();
gil_acquire();
}

Check the flag at 
every yield point.

Actual implementation is more 
complex to ensure fairness.



© 2013 IBM Corporation12

IBM Research – Tokyo

Outline

� Motivation

� Transactional Memory

� GIL in Ruby

� Eliminating GIL through HTM

– Basic Algorithm

– Dynamic Adjustment of Transaction Lengths

– Conflict Removal

� Experimental Results

� Conclusion



© 2013 IBM Corporation13

IBM Research – Tokyo

Eliminating GIL through HTM
� Execute as a transaction first.

– Begins/ends at the same points as GIL’s yield points.

� Acquire GIL after consecutive aborts in a transaction.

Begin transaction

End transaction Conflict Retry if abort

Acquire GIL 
in case of consecutive aborts

Release GIL
Wait for GIL release



© 2013 IBM Corporation14

IBM Research – Tokyo

Beginning a Transaction

� Persistent aborts

– Overflow

– Restricted 
instructions

� Otherwise, transient 
aborts

– Read-set and write-
set conflicts, etc.

� Abort reason reported by 
CPU

– Using a specified 
memory area

if (TBEGIN()) {
/* Transaction */
if (GIL.acquired)
TABORT();

} else {
/* Abort */
if (GIL.acquired) {
if (Retried 16 times)
Acquire GIL;
else {
Retry after GIL release;

} else if (Persistent abort) {
Acquire GIL;
} else { /* Transient abort */
if (Retried 3 times)
Acquire GIL�
else
Retry;

}}
Execute Ruby code;



© 2013 IBM Corporation15

IBM Research – Tokyo

Where to Begin and End Transactions?
� Should be the same as GIL’s acquisition/release/yield points.

– Guaranteed as critical section boundaries.

� However, the original yield points are too coarse-grained.

– Cause many transaction overflows.

� Bytecode boundaries are supposed to be safe critical section boundaries.

– Bytecode can be generated in arbitrary orders.

– Therefore, an interpreter is not supposed to have a critical section that 
straddles a bytecode boundary.

� Ruby programs that are not correctly synchronized can change behavior.

� Added the following bytecode instructions as transaction yield points.
– getinstancevariable, getclassvariable, getlocal, send, opt_plus, 
opt_minus, opt_mult, opt_aref

– Criteria: they appear frequently or are complex.



© 2013 IBM Corporation16

IBM Research – Tokyo

Ending and Yielding a Transaction

if (GIL.acquired)
Release GIL;
else
TEND();

Ending a transaction

if (--yield_counter == 0) {
End a transaction;
Begin a transaction;
}

Yielding a transaction
(transaction boundary)

Dynamic adjustment of a transaction length

� Source code changes limited to only part of files
�� Changes for fine-grain locking scattered 

throughout files



© 2013 IBM Corporation17

IBM Research – Tokyo

Tradeoff in Transaction Lengths
� No need to end and begin transactions at every yield point.

= Variable transaction lengths with the granularity of yield points.

� Longer transaction = Smaller relative overhead to begin/end transaction.

� Shorter transaction = Smaller abort overhead

– Smaller amount of wasteful work rolled-back at aborts

– Smaller probability of size overflow

Longer transaction

Shorter transaction

Begin BeginEnd

Begin BeginEnd

Wasteful work

BeginEnd BeginEnd



© 2013 IBM Corporation18

IBM Research – Tokyo

Dynamic Adjustment of Transaction Lengths

Adjust transaction lengths on a per-yield-point basis.

1. Initialize with a long length (255).

2. Calculate abort ratio at each yield point base on the 
following two numbers�

– Number of transactions started from the yield point

– Number of aborted transactions started from the yield point

3. If the abort ratio exceeds a threshold (1%), shorten the 
transaction length (x 0.75) and return to Step 2.

4. If a pre-defined number (300) of transactions started 
before the abort ratio exceeds the threshold, finish 
adjustment for the yield point.



© 2013 IBM Corporation19

IBM Research – Tokyo

5 Sources of Conflicts and How to Remove Them (1/2)

� Global variables pointing to the current running thread

– Cause conflicts because they are written every time 
transactions yield

�Moved to Pthread’s thread-local storage

� Updates to inline caches at the time of misses

– Cache the result of hash table access for method 
invocation and instance-field access

– Cause conflicts because caches are shared among threads.

�Implemented miss reduction techniques.

�Source code needs to be changed for higher performance,
but each change is limited to only a few dozen lines.



© 2013 IBM Corporation20

IBM Research – Tokyo

5 Sources of Conflicts and How to Remove Them (2/2)
� Manipulation of global free list when allocating objects

�Introduced thread-local free lists

• When a thread-local free list becomes empty, take 256 
objects in bulk from the global free list.

� Garbage collection

– Cause conflicts when multiple threads try to do GC.

– Cause overflows even when a single thread performs GC.

�Reduced GC frequency by increasing the Ruby heap. 

� False sharing in Ruby’s thread structures (rb_thread_t)

– Added many fields to store thread-local information.
� Conflicted with other structures on the same cache line.

�Assign each thread structure to a dedicated cache line.



© 2013 IBM Corporation21

IBM Research – Tokyo

Platform-Specific Optimizations

� Performed spin-wait for a while at GIL contention.

– Original GIL is acquired and released every ~250 msec.

– Fallback GIL for HTM is acquired and released far more 
frequently.
� Parallelism severely damaged if sleep in OS every time GIL is 
contended.

– Some environments already include this optimization in Pthread
implementation.

� Implemented our own setjmp() without a restricted instruction.

– setjmp() in z/OS contains an address-space manipulation 
instruction.

– It suffices to save general-purpose registers for Ruby’s purpose.



© 2013 IBM Corporation22

IBM Research – Tokyo

Outline

� Motivation

� Transactional Memory

� GIL in Ruby

� Eliminating GIL through HTM

� Experimental Results

� Conclusion



© 2013 IBM Corporation23

IBM Research – Tokyo

Experimental Environment

� Implemented in Ruby 1.9.3-p194.

� Ported to z/OS 1.13 UNIX System Services.

– Not yet succeeded in building full-featured Ruby due to EBCDIC.

– Instead, used miniruby, which supports core class libraries.

� Experimented on 12-core 5.5-GHz zEC12

– 1 hardware thread on 1 core

� Configurations

– GIL: Original Ruby

– HTM-n (n = 1, 16, 256)�
Fixed transaction length (Skip n-1 yield points)

– HTM-dynamic:
Dynamic adaptive transaction length



© 2013 IBM Corporation24

IBM Research – Tokyo

Benchmark Programs

� Two micro-benchmarks

– Embarrassingly parallel programs running while and iterator loops.

– 11-fold speed-ups over 1-thread GIL by HTM with 12 threads.

– At least 5-14% single-thread overhead

� Ruby NAS Parallel Benchmarks (NPB) 
[Nose et al., 2012]

– 7 programs translated from the Java version

– Consist of single-threaded and multi-threaded sections

� Inherent scalability limitation exists.

� Trying to measure Web-based workloads

– Difficulties in EBCDIC support on z/OS, etc.



© 2013 IBM Corporation25

IBM Research – Tokyo

Throughput of Ruby NPB (1/2)
CG

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

BT

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

FT

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

GIL
HTM-1
HTM-16
HTM-256
HTM-dynamic

� Achieved up to 4.4-fold 
speed-up in FT.

� HTM-dynamic was the best 
in 6 of 7 benchmarks.

� HTM-1 suffered high 
overhead.

� HTM-256 incurred high 
abort ratios.



© 2013 IBM Corporation26

IBM Research – Tokyo

Throughput of Ruby NPB (2/2)
IS

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

LU

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

MG

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)

SP

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d 
G

IL
)



© 2013 IBM Corporation27

IBM Research – Tokyo

Abort Ratios
� Transaction lengths well adjusted by HTM-dynamic with 1% as a 

target abort ratio.

� No correlation to the scalabilities.

Abort ratios of HTM-dynamic

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

A
bo

rt 
ra

tio
 (%

)

BT
CG
FT
IS
LU
MG
SP



© 2013 IBM Corporation28

IBM Research – Tokyo

Cycle Breakdowns
� No correlation to the scalabilities.

– Result of IS is not reliable because 79% of its execution was 
spent in initialization, outside of the measurement period.

Cycle breakdowns

0%

20%

40%

60%

80%

100%

BT CG FT IS LU MG SP

Transaction begin/end Successful transactions
GIL acuired Aborted transactions
Waiting for GIL release



© 2013 IBM Corporation29

IBM Research – Tokyo

Categorization by Abort Reasons

� Conflicts at read set accounted for most of the aborts.

– Cache fetch-related + Fetch conflict

Abort categorization by reasons (HTM-dynamic / 12 threads)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG FT IS LU MG SP

TABORT_instruction

Undetermined_condition

Cache_other

Cache_store-related

Cache_fetch-related

Nesting_depth_exceeded

Program-interruption_condition

Restricted_instruction

Store_conflict

Fetch_conflict

Store_overflow

Fetch_overflow

I/O_interruption

Machine-check_interruption

Program_interruption

External_interruption

Restart_interruption



© 2013 IBM Corporation30

IBM Research – Tokyo

Categorization by Functions Aborted by Fetch Conflicts

� Half of the aborts occurred in manipulating the global free list
(rb_newobj) and lazy sweep in GC (gc_lazy_sweep).

– A lot of Float objects allocated.

� To be fixed in Ruby 2.0 with Flonum?

Abort categorization by functions
HTM-dynamic / 12 threads / Cache fetch-related

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG FT IS LU MG SP

Others

vm_getivar

vm_exec_core

tend

rb_newobj

rb_mutex_sleep...

rb_mutex_lock

libc

gc_lazy_sweep



© 2013 IBM Corporation31

IBM Research – Tokyo

Comparing Scalabilities of CRuby, JRuby, and Java

� CRuby (HTM) was similar to Java 
(almost no VM-internal bottleneck).

� Scalability saturation in CRuby (HTM) 
is inherent in the applications.

� JRuby (fine-grain locking) behaved 
differently from CRuby (HTM).

� On average, HTM achieved the same 
scalability as fine-grain locking.

Scalability of HTM-dynamic / CRuby

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d)
Scalability of JRuby (12x Intel Xeon)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t 

(1
 =

 1
 t

hr
ea

d)

Scalability of Java NPB (12x Intel Xeon)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t (

1 
= 

1 
th

re
ad

) BT
CG
FT
IS
LU
MG
SP



© 2013 IBM Corporation32

IBM Research – Tokyo

Single-thread Overhead

� Single-thread speed is important too.

� With 1 thread, use the GIL instead of HTM.

� 5-14% overhead in the micro-benchmarks even with 
this optimization.

� Sources of the overhead:

– Checks at the yield points

– Newly added yield points

– Slow access to Pthread’s thread-local storage
(z/OS specific)



© 2013 IBM Corporation33

IBM Research – Tokyo

Conclusion

� What was the performance of real applications when GIL was 
replaced with HTM?

– Up to 4.4-fold speed-up with 12 threads.

� What was required for that purpose?

– Modified only a couple of source code files to replace the GIL 
with HTM.

– Changed up to a few dozens of lines to remove each conflict.

– Proposed dynamic transaction-length adjustment.

� Using HTM is an effective way to outperform 
the GIL with only small source code changes


