
 1

�
June 14, 2013

RT0950
Computer Science 12 pages

Research Report

Eliminating Global Interpreter Locks in Ruby
through Hardware Transactional Memory

Rei Odaira and Jose G. Castanos

IBM Research - Tokyo
IBM Japan, Ltd.
NBF Toyosu Canal Front Building
6-52, Toyosu 5-chome, Koto-ku
Tokyo 135-8511, Japan

����

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

�
�

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has been issued as
a Research Report for early dissemination of its contents. In view of the expected transfer of copyright to an outside publisher, its
distribution outside IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or copies of the article legally obtained (for example, by payment of
royalities).

 2

Eliminating Global Interpreter Locks in Ruby
through Hardware Transactional Memory

Rei Odaira
IBM Research – Tokyo

odaira@jp.ibm.com

Jose G. Castanos
IBM Research – Thomas J. Watson Research Center

castanos@us.ibm.com

Abstract—Many scripting languages use Global Interpreter
Locks (GIL) to simplify the internal designs of their interpreters,
but this kind of lock severely lowers the multi-thread
performance on multi-core machines. This paper shows the first
results eliminating the GIL in Ruby using the Hardware
Transactional Memory (HTM) in the new mainframe
zEnterprise EC12 processor. Though prior prototypes replaced
the GIL with HTM, we tested realistic programs, the Ruby NAS
Parallel Benchmarks (NPB), as well as micro-benchmarks. We
devised a new technique to dynamically adjust the transaction
lengths on a per-bytecode basis, so that we can automatically
optimize the likelihood of transaction aborts against the relative
overhead of the instructions to begin and end the transactions.
Our current results show that HTM achieved an 11-fold speed-
up over the GIL on 12 cores in the micro-benchmarks and 1.9- to
4.4-fold speed-ups in the NPB programs. The dynamic
transaction-length adjustment improved the throughput by up to
18%. Our investigation on the scalability and overhead revealed
further optimization opportunities.

Keywords— global interpreter lock; hardware transactional
memory; Ruby; lock elision

I. INTRODUCTION

Scripting languages such as Ruby [29] and Python [25]
offer high productivity [7, 23], but at the cost of slow
performance. The single-thread performance is limited because
of interpreted execution, dynamic typing, and the support for
meta-programming. Many projects [13,28,32] attempt to
overcome these limitations through Just-in-Time (JIT)
compilation with type specialization.

Meanwhile, the multi-thread performance of the scripting
languages is restricted due to the Global Interpreter Lock (GIL),
or the Giant VM Lock (GVL) in Ruby’s terminology. Although
each application thread is mapped to a native thread, only the
single thread that acquired the GIL can actually run. At pre-
defined yield points, each thread releases the GIL, yields the
CPU to another runnable thread if any exists, and then
reacquires the GIL. The GIL eases the programming of the
interpreters’ internal logic and the extension libraries because
they do not need to worry about concurrency. In return, the
GIL significantly limits the performance on multi-core systems.
Some new implementations of the Ruby and Python languages
[12,13,16,17] use complex fine-grained locking to remove the
GIL. However, their class libraries still need to be globally
protected to remain compatible with the original
implementations of the languages. As a result, the typical use

of the scripting languages is a multi-process approach. For
example, in Web frameworks, a Web server instantiates many
instances of the interpreter to handle the requests rather than
relying on the multi-thread features of the languages.

Transactional memory has been proposed as an alternative
way to eliminate global locking without requiring the complex
semantics of fine-grained locking. In transactional memory, a
programmer encloses critical sections with transaction begin
and end directives. A transaction is executed atomically so that
its memory operations appear to be performed in a single step.
Transactions can be executed concurrently as long as their
memory operations do not conflict, so that transactional
memory can outperform global locking. Although transactional
memory is attractive for its potential concurrency, pure
software implementations are slow [2].

Chipmakers in the industry regard transactional memory as
a promising technology for parallel programming in the multi-
core era and are designing or producing hardware for
transactional memory, called Hardware Transactional Memory
(HTM). The Azul Vega processer uses HTM to replace
contended Java locks [4]. Sun announced the Rock processor
with a limited HTM facility [3], though the processor was
cancelled before release into the market. Intel published
documentation for an instruction set called Transactional
Synchronization Extensions [11] and implemented it in the
Haswell processor. IBM has released Blue Gene/Q and
mainframe processor zEnterprise EC12 (zEC12) with HTM
support [8,30]. IBM also presented HTM extensions for Power
ISA [9]. These HTM implementations will offer effective
concurrency with low overhead. There were a couple of
previous studies [1,27,31] on replacing the GIL of a scripting
language with HTM, but none have ever measured realistic
benchmarks on real HTM hardware.

This paper shows the empirical results of removing the GIL
from Ruby using IBM’s HTM implementation in zEC12 [30]
and measuring the NAS Parallel Benchmarks ported to Ruby
[21], in addition to micro-benchmarks. Our obtained results are
also applicable to other proposed HTM implementations.
Unlike the results [31] on the more restrictive HTM of Sun’s
Rock processor, the HTM implementation on which we
experimented is similar to the generic ones proposed in the
literature, e.g. [26]. Transactional data is marked as such in a
CPU cache line, the conflict detection is incorporated into a
cache-coherence protocol, and the transactional write data is
buffered in a CPU cache.

 3

To reduce transaction aborts and overhead, we propose a
new technique to dynamically adjust the transaction lengths on
a per-yield-point basis. On one hand, we desire long
transactions as we amortize the overhead to begin and end a
transaction. On the other hand, no HTM implementation allows
for transactions of unlimited lengths, and longer transactions
increase the amount of discarded work in case of transaction
aborts. As in the GIL, a transaction ends and begins at pre-
defined transaction yield points, but it need not do so at every
transaction yield point. We dynamically adjust the transaction
lengths, i.e. how many yield points to skip, based on the abort
statistics of the transactions started at each yield point.

Our contributions are as follows:

• We proposed an algorithm for the GIL elimination to
adjust transaction lengths at each yield point.

• We implemented and evaluated the GIL elimination on
a real machine that supports HTM, using real-world
applications in addition to micro-benchmarks.

• We eliminated the GIL from Ruby, going beyond prior
work focusing on Python. We also removed transaction
conflict points in the Ruby interpreter.

Section II describes the HTM implementation used in our
studies and Section III explains Ruby’s GIL implementation.
Section IV shows how we replaced the GIL with the HTM and
then reduced the overhead, leading to the experimental results
in Section V. Section VI covers related work. Section VII
concludes this paper.

II. HTM IMPLEMENTATION

We used the HTM in a new IBM mainframe zEC12 [29]
for our studies. This section briefly describes the instruction set
architectures to support the HTM as well as its micro-
architecture implementation. A complete description appeared
in [15]. The instruction set architecture is defined in [10].

A. Instruction Set Architecture

Each transaction begins with a TBEGIN instruction and is
ended by a TEND instruction. Transactions can be nested. In
that case, all of the transactions commit when the outermost
transaction commits (also called flattened nesting). The
TBEGIN instruction saves the general purpose registers.

The TBEGIN instruction initially sets the condition code to
0. If a transaction aborts, then the execution returns back to the
instruction immediately after the outermost TBEGIN. All of
the transactionally written data is discarded and the saved
general purpose registers are restored. The hardware
transaction facilities also set the condition code to 2 or 3,
depending on whether the cause of the abort is transient or
persistent, respectively. Therefore, a program typically checks
the condition code immediately after TBEGIN and jumps to a
fallback path if it is not 0.

A transaction can abort for various reasons. The most
frequent causes include external interrupts, overflows, conflicts,
and restricted instructions. Aborts are classified as either
transient or persistent by the CPU and the condition code is set

accordingly. When the abort is transient, e.g. because of a
conflict, simply retrying the transaction is likely to succeed. On
persistent aborts, e.g. due to attempted execution of a restricted
instruction, the program should cancel the execution of the
transaction. Restricted instructions include system calls and
access-register manipulation, but most of the non-privileged
instructions are allowed. A transaction can also be aborted by
software with a TABORT instruction.

The programmer can specify the address of a 256-byte
memory in the operand of the TBEGIN instruction. This
memory area is called a Transaction Diagnostic Block (TDB)
and is used for storing debug information when a transaction
aborts. A TDB contains the abort reason code and the
instruction virtual address where the abort was detected.

B. Micro-Architecture

The Central Processor (CP) chip has 6 cores, and 6 CP
chips are packaged in a multi-chip module (MCM). Up to 4
MCMs can be connected in a single cache-coherent system.
Each core has 96-KB L1 and 1-MB L2 data caches. Both the
L1 and L2 caches are store-through with 256-byte cache lines.
The 6 cores on a CP chip share a 64-MB L3 cache and the 6
CP chips share an off-chip 384-MB L4 cache included in the
same MCM. All four levels of the caches are inclusive. Each
core supports a single hardware thread. The TBEGIN
instruction saves the general purpose registers to a transaction-
backup register file. The maximum nesting depth is 16.

The HTM facilities of zEC12 are built on top of its cache
structure. Each L1 data cache line is augmented with its own
tx-read and tx-dirty bits. A load instruction during a transaction
sets a tx-read bit. Transactionally written data is stored into the
L1 with an active tx-dirty bit. An abort is triggered if a cache-
coherency request from another CPU conflicts with a
transactionally read or written line. This means zEC12 uses an
eager abort scheme and provides strong atomicity. On an abort,
all of the lines whose tx-dirty bits are set are invalidated. The
general purpose registers are restored from the transaction
backup register file.

A special LRU-extension vector records the lines that are
transactionally read but evicted from the L1. Thus the
maximum read-set size is roughly the size of the L2. The
transactionally written data is buffered in the Gathering Store
Cache between the L1 and the L2/L3. The maximum write-set
size is limited to the cache size, which is 8 KB.

III. RUBY IMPLEMENTATION

This section introduces the Ruby language and its original
implementation, often called CRuby, and describes how the
GIL works in CRuby. Our description is based on CRuby
1.9.3-p194.

A. The Ruby language and CRuby

Ruby is a modern object-oriented scripting language that is
widely known as part of the Ruby on Rails Web application
framework. Nevertheless, Ruby is a general-purpose language
that has many features in common with other scripting
languages such as JavaScript, Python, or Perl: a flexible,

 4

dynamic type system; meta-programming; closures; and an
extensive standard runtime library.

The reference Ruby implementation [29] is called CRuby,
which is written in the C language. The recent releases of
CRuby use a stack-based virtual machine. Ruby code is
compiled into an internal bytecode representation at runtime.
On the mainframe platform CRuby uses a large switch-case
statement to interpret the bytecode.

B. The GIL in CRuby

The Ruby language supports multi-threaded programming
through objects of the standard Thread class that synchronize
through standard concurrency constructs like Mutex or
ConditionVariable objects. Since CRuby 1.9, the interpreter
supports native threads, where each Ruby application thread
maps to a kernel thread. In our studies, we ported CRuby to the
mainframe z/OS UNIX System Services (USS), which
supports the POSIX interfaces. Thus each application thread
corresponds to a Pthread.

Unfortunately, the concurrency is limited. The interpreter
has a GIL, guaranteeing that only one application thread is
executing in the interpreter at any given time. The GIL
eliminates the need for complex concurrency programming in
the interpreter and libraries. Unlike normal locking, which
holds a lock only during part of the execution, the GIL is
almost always held by one of the application threads during
execution and is released only when necessary. An application
thread acquires and releases the GIL when it starts and ends,
respectively. It also releases the GIL when it is about to
perform a blocking operation, such as I/O, and it acquires the
GIL again after the operation is finished.

However, if the GIL were released only at the blocking
operations, compute-intensive application threads could not be
switched with one another at all. Therefore, at certain pre-
defined points, the application thread yields the GIL by
releasing the GIL, calling the sched_yield() system call to yield
the CPU, and then acquiring the GIL again. To insure reaching
a yield point within a finite time, CRuby sets yield points at
loop back-edges and each exit of a method and block.

As an optimization, each application thread does not
necessarily yield the GIL at every yield point, because the yield
operation is heavyweight. To allow for occasional yields,
CRuby runs a timer thread in background. It wakes up every
250 msec and sets a flag in the per-thread data structure of the
running application thread. Each application thread checks the
flag at each yield point and yields the GIL only when it is set.
In addition, if there is only one application thread, then no
yield operations will be performed at all.

In Python, the GIL is implemented in a similar wary. The
yield points are set in some of the bytecode operations. Instead
of using a timer thread, each application thread runs through a
pre-defined number (100, by default) of yield points before
yielding the GIL.

IV. GIL ELIMINATION THROUGH HTM

This section presents a new algorithm for eliminating the
GIL by using an HTM. Our algorithm is based on

Transactional Lock Elision (TLE) [5,26]. Like TLE, our
algorithm retains the GIL as a fallback mechanism. A thread
first executes Ruby code as a transaction. If the transaction
aborts, the thread can retry the transaction, depending on the
abort reason. If the transaction does not succeed after several
retries, the thread uses the GIL to proceed.

Transactions should begin and end at the same points as
where the GIL is acquired, released, and yielded, because those
points are guaranteed as safe critical-section boundaries.
However, our preliminary experiments showed the original
yield points in CRuby were too coarse-grained for the HTM,
which caused overflows. Thus we added new yield points as
explained in Section IV.B.

We first show the algorithms to begin and end a transaction
that replace the GIL acquisition and release, respectively. The
simple replacement causes many transaction aborts due to
conflicts and overflows. Therefore, in the later parts of this
section we introduce dynamic transaction-length adjustment.

A. Beginning and Ending a Transaction

Fig. 1 shows the algorithm to begin a transaction. The GIL
status is tracked by the global variable GIL.acquired, which is
set to true when the GIL is acquired. The original CRuby also
uses this global variable for the same purpose.

If there is no other live application thread in the interpreter,
then the algorithm reverts to the GIL (Lines 2-3), because
concurrency is unnecessary in this case. Otherwise, the
algorithm first sets the length of the transaction to be executed
(Line 5). This will be explained in Section IV.C.

Before beginning a transaction, the algorithm checks the
GIL and if it has been acquired by some other thread, waits
until it is released (Lines 6-8 and 40-48). This is not mandatory
but an optimization. Rather than uselessly rushing into a
transaction that will never succeed because the GIL was
already acquired, the current thread should wait for its release.

Lines 9 and 10 initialize local retry counters for transient
aborts and conflicts at the GIL, respectively. The first_retry
flag (Line 11) is used to adjust the transaction length only at
the first retry (Lines 17-20).

The TBEGIN() function (Line 13) is a wrapper for the
TBEGIN instruction described in Section II.A. The TBEGIN()
function initially returns 0. If the transaction aborts, the
execution returns back to within the TBEGIN() function and
then it returns an abort reason code, referring to a TDB.

Lines 14-15 are within the transaction. As in the original
TLE, the transaction first reads the GIL (Line 15) into its
transaction read set, so that later the transaction can be aborted
if the GIL is acquired by another thread. The transaction must
abort immediately if the GIL is already acquired, because
otherwise the transaction could read data being modified.

Lines 16-37 are for abort handling. We describe Lines 17-
20 in Section IV.C. If the GIL is acquired (Line 21), there is a
conflict at the GIL. In the same way as in Lines 6-8, Lines 22-
27 waits until the GIL is released. The algorithm first tries to
use spin locking, but after GIL_RETRY_MAX-time aborts, it
forcibly acquires the GIL (Line 27). If the abort is persistent,

 5

retrying the transaction will not succeed, so the execution
immediately reverts to the GIL (Lines 28-29). The abort reason
code in the TDB is used to determine whether the abort is
persistent. We regard overflows and restricted instructions as
persistent. The other abort reasons, such as conflicts are
considered transient. For the transient aborts, we retry the
transaction TRANSIENT_RETRY_MAX times before falling
back on the GIL (Lines 31-35).

Ending a transaction is much simpler than beginning a
transaction, as shown in Fig. 2. The acquired GIL (Line 2)
means this transaction has been executed not as a transaction
but with the GIL being held. Thus the GIL must be released.
Otherwise, the TEND instruction is issued.

B. Yielding a Transaction

As described in Section III.B, the original CRuby
implementation has a timer thread to force yielding among the
application threads. We no longer need the timer thread
because the application threads are running in parallel using the
HTM, but we still need the yield points. Without them, some

transactions would last so long that there would be many
conflicts and overflows.

In our preliminary experiments, we found the original yield
points in CRuby were too coarse-grained for the HTM. As de-
scribed in Section III.B, the original CRuby sets yield points at
branches and method and block exits. With only these yield
points, most of the transactions abort due to store overflows.
Therefore, we defined the following bytecode types as
additional yield points: get_local, getinstancevariable,
getclassvariable, send, opt_plus, opt_minus, opt_mult, and
opt_aref. We chose these bytecodes because they appear
frequently in bytecode sequences or they consume many CPU
cycles. This means that in the NAS Parallel Benchmarks, more
than half of the bytecode instructions are now yield points.

We also need to guarantee that the new yield points are safe.
In language interpreters, the bytecode boundaries are natural
yield points. Because the bytecode instructions can be
generated in any orders, it is unlikely that the interpreters
internally have a critical section straddling a bytecode
boundary. However, for applications that are incorrectly
synchronized, such as those assuming the GIL can be yielded
only at branches or method exits, the new yield points can
change their behavior.

At each yield point, we call the transaction_yield() function
in Fig. 2, which simply calls the functions to end and begin
transactions (Lines 12-13), but with two optimizations. First, as
described in Section III.B, no yield operation is performed if
there is only one application thread (Line 9). Note that the GIL
is used in this case (Line 3 of Fig. 1). Second, a transaction
does not yield at every yield point but only after a set number
of yield points (using yield_point_counter) have been passed
(Lines 10-11). This optimization is described in Section IV.C.
Unlike the original GIL-yield operation, we do not need to call
the sched_yield() system call, because the multiple threads are
already running in parallel and the OS is scheduling them.

C. Dynamic Transaction-Length Adjustment

As shown in Fig. 2, each transaction will skip a
predetermined number of yield points before it ends. This
means that the transaction lengths vary with the granularity of
the yield points. The length of a transaction means the number
of yield points the transaction passes through plus one.

 1. transaction_begin(current_thread, pc) {
2. if (there is no other live thread) {
3. gil_acquire();
4. } else {
5. set_transaction_length(current_thread, pc);
6. if (GIL.acquired) {
7. if (spin_and_gil_acquire()) return;
8. }
9. transient_retry_counter = TRANSIENT_RETRY_MAX;
10. gil_retry_counter = GIL_RETRY_MAX;
11. first_retry = 1;
12. transaction_retry:
13. if ((tbegin_result = TBEGIN()) == 0) {
14. /* transactional path */
15. if (GIL.acquired) TABORT();
16. } else { /* abort path */
17. if (first_retry) {
18. first_retry = 0;
19. adjust_transaction_length(pc);
20. }
21. if (GIL.acquired) {
22. gil_retry_counter--;
23. if (gil_retry_counter > 0) {
24. if (spin_and_gil_acquire()) return;
25. else goto transaction_retry;
26. }
27. gil_acquire();
28. } else if (is_persistent(tbegin_result)) {
29. gil_acquire();
30. } else {
31. /* transient abort */
32. transient_retry_counter--;
33. if (transient_retry_counter > 0)
34. goto transaction_retry;
35. gil_acquire();
36. }
37. }
38. }
39. }

40. spin_and_gil_acquire() {
41. Spin for a while until the GIL is released;
42. if (! GIL.acquired) return false;
43. gil_acquire();
44. return true;
45. }

46. gil_acquire() {
47. /* Omitted. Original GIL-acquisition logic. */
48. }

Fig. 1. Algorithm to begin a transaction.

 1. transaction_end() {
2. if (GIL.acquired) gil_release();
3. else TEND();
4. }

5. gil_release() {
6. /* Omitted. Original GIL-release logic */

7. }

8. transaction_yield(current_thread, pc) {
9. if (there is other live thread) {
10. current_thread->yield_point_counter--;

11. if (current_thread->yield_point_counter == 0) {
12. transaction_end();
13. transaction_begin(current_thread, pc);
14. }
15. }
16. }

Fig. 2. Algorithm to end and yield a transaction.

 6

1) Tradeoff in transaction length
In general, there are three reasons the total abort overhead

decreases as the transaction lengths shorten. First, the amount
of work that becomes useless and has to be rolled-back at the
time of an abort is smaller. Second, the probabilities of
overflows are smaller, because they depend on the amount of
data accessed in each transaction. Third, if the execution
reverts to the GIL, the serialized sections are shorter.

In contrast, the shorter the transactions are, the larger the
relative overhead to begin and end the transactions. In
particular, beginning a transaction suffers from the overhead of
not only TBEGIN but also the surrounding code in Fig. 1.

The best transaction length depends on each yield point. If
the intervals (i.e. the number of bytecode instructions) between
the subsequent yield points are small, then the lengths of the
transactions starting at the current yield point should be long.
As another example, suppose there are three consecutive yield
points, A, B, and C. If the code between B and C contains a
restricted instruction, then the length of any transaction starting
at A should be one. If the length was two or more, then the
transactions would definitely abort.

2) Adjustment algorithm
We propose a mechanism to adjust the transaction lengths

on a per-yield-point basis. The transaction length is initialized
to a certain large number at each yield point. The abort ratios
of the transactions starting at each yield point are monitored. If
the abort ratio is above a threshold at a particular yield point,
then the transaction length is shortened. This process continues
during a profiling period until the abort ratio falls below the
threshold.

The set_transaction_length() function in Fig. 3 is invoked
from Line 5 in Fig. 1 before each transaction begins. The
parameter pc is the program counter of the yield-point
bytecode from which this transaction is about to start. If the
Ruby interpreter is configured to use a constant transaction
length, that constant value is assigned to the transaction length

(yield_point_counter) at Line 3. Otherwise, the yield-point-
specific length is assigned at Line 7. If it has not yet been
initialized, then a pre-defined long length is assigned (Lines 5-
6). To calculate the abort ratio, this function also counts the
number of the transactions started at each yield point (Line 9).
To avoid the overhead of monitoring the abort ratio after the
program reaches a steady state, there is an upper bound for the
counter (Line 8).

The adjust_transaction_length() function is called when a
transaction aborts for the first time (Line 19 in Fig. 1). If the
transaction length has not yet reached the minimum value 1
(Line 13), and if this is during a profiling period (Line 14), then
the abort ratio is checked and updated (Lines 16-17). If the
number of aborts in the transactions started from the current
yield point exceeds a threshold (Line 16) before the PROFIL-
ING_PERIOD number of transactions began, then the
transaction length is shortened (Line 19). The two counters to
monitor the abort ratio are reset (Lines 20-21), to extend the
profiling period.

Note that even when the execution reverts to the GIL, the
length of the transaction is unchanged. If the current length is 3,
for example, the current thread passes through 2 yield points
and releases the GIL at the third one.

3) Implementation
We allocate additional arrays to associate the three

variables used in Fig. 3 with each yield point, that is,
transaction_length, transaction_counter, and abort_counter.
The additional arrays are the same size as the bytecode-
sequence arrays for each method or block. From each yield-
point bytecode, the associated variables can be accessed easily
at the same offset in the additional array. This implementation
works for the Ruby NAS Parallel Benchmarks, but a more
memory-efficient structure would be required for larger
applications. These variables are referenced and updated
outside of the transactions, but they could still cause conflicts
on the memory bus. Therefore, we limit the accesses only to
the profiling periods (Line 8 in Fig. 3).

We needed to modify only 6 source-code files among the
125 files of the CRuby interpreter to implement the algorithms
in Sections IV.A, B, and C.

D. Conflict Removal

To obtain better scalability with the HTM, any transaction
conflicts must be removed. We fixed five major sources of
conflicts in CRuby, which appeared one by one. Removing the
first conflict source exposed the second one, and so on. Each of
the five conflict removals was limited to a few dozen modified
lines in the source code.

The most severe conflicts happened at global variables
pointing to the Ruby-thread structure of the running thread.
Immediately after the GIL is acquired, the global variables
point to the running thread. If multiple threads write to these
variables every time any transaction begins, they will cause
many store conflicts. Therefore we moved these variables from
the global scope to the Pthread thread-local storage.

The second source of severe conflicts is the head of the
single global linked list of free objects. CRuby allocates each

 1. set_transaction_length(current_thread, pc) {
2. if (transaction length is constant) {
3. current_thread->yield_point_counter =

TRANSACTION_LENGTH;
4. } else {
5. if (transaction_length[pc] == 0)
6. transaction_length[pc] =

INITIAL_TRANSACTION_LENGTH;
7. current_thread->yield_point_counter =

transaction_length[pc];
8. if (transaction_counter[pc] < PROFILING_PERIOD)
9. transaction_counter[pc]++;
10. }

11. adjust_transaction_length(pc) {
12. if (transaction length is NOT constant &&
13. transaction_length[pc] > 1 &&
14. transaction_counter[pc] <= PROFILING_PERIOD) {
15. num_aborts = abort_counter[pc];
16. if (num_aborts <= ADJUSTMENT_THRESHOLD) {
17. abort_counter[pc] = num_aborts + 1;
18. } else {
19. transaction_length[pc] =

transaction_length[pc] * ATTENUATION_RATE;
20. transaction_counter[pc] = 0;
21. abort_counter[pc] = 0;
22. }
23. }
24. }

Fig.3. Algorithm to set and adjust a transaction length.

 7

new object from the head of the list. This mechanism obviously
causes conflicts in multi-threaded execution. We modified
CRuby’s memory allocator, so that each thread maintains a
short thread-local free list. A specified number (256, in our
implementation) of objects are moved in bulk from the global
free list to the thread-local free list, and each new object is
allocated on a thread-local basis, without conflicts.

Garbage collection (GC) is the third conflict point. The
mark-and-sweep GC in CRuby is not parallelized. GC will
cause conflicts if invoked from multiple transactions. Even if it
is triggered from one transaction, the transaction size will
overflow. This implies that GC is always executed with the
GIL acquired. To mitigate the serialization by GC, we reduced
the frequency of GC by increasing the initial Ruby heap size.
We changed the initial number of free objects from 10,000 to
10,000,000, which corresponded to about 400 MB on z/OS.

Fourth, inline caches cause aborts when they miss. CRuby
searches a hash table to invoke a method or to access an
instance variable. To cache the search result, a one-entry inline
cache is collocated with each method-invocation and instance-
variable-access bytecode. Since the inline caches are shared
among threads, an update to an inline cache at the time of a
cache miss can result in a transaction conflict. We reduced the
cache misses at instance-variable accesses by changing the
inline cache guard from a class-equality check to an instance-
variable-table equality check, because some classes share the
same instance-variable table. Because we could not use the
same technique at method invocations, we changed the caching
logic so that each cache is filled only at the first miss.

Finally, as we added frequently updated fields, such as
yield_point_counter (Line 10 in Fig. 2), to CRuby’s thread
structures, they began to cause false sharing. We avoided this
by aligning the thread structures to the cache line boundaries.

E. Platform-Specific Optimizations

The fallback GIL is far more frequently acquired and
released than the original GIL. The original is acquired and
released roughly every 250 msec, while the fallback GIL is
whenever a persistent abort or excessive transient aborts
happen. If each thread went to sleep in the OS each time it
failed to acquire the GIL, then it would significantly degrade
the parallelism. This is because even when the GIL is released
and a waiting thread is notified, the thread cannot immediately
wake up and return to the user-space. Therefore, we added the
spin-waiting before the original GIL logic in the gil_acquire()
function (Lines 46-48 in Fig. 1) to briefly keep the thread
waiting in the user space. In some platforms, the mutex lock in
the native thread library already implements this mechanism.
In those platforms, this optimization is unnecessary. Also note
that this optimization does not speed up the original GIL,
which is infrequently acquired and released.

The setjmp() function on the z/OS USS includes the Set
Address Space Control (SAC) instruction, which is not allowed
in a transaction. CRuby uses the setjmp() function to
implement exception jumps and to save the register contents.
The saved registers are later scanned by the garbage collector
as part of the root set. For both of these usages, we found it
suffices to save the contents of the general-purpose registers in

a buffer. Therefore, we replaced the calls to the setjmp()
function with calls to our own implementation, effectively
avoiding aborts due to the restricted instruction.

V. EXPERIMENTAL RESULTS

This section describes our implementation for the z/OS
UNIX System Services (USS) on zEC12. Then our
experimental results are presented for our micro-benchmarks
and the Ruby NAS Parallel Benchmarks (NPB) [21].

A. Implementation

We ported CRuby 1.9.3-p194 into the USS of z/OS 1.13.
The building process for CRuby first builds a core subset of the
Ruby interpreter, called miniruby, which implements all of
Ruby’s language features but supports only the core class
library. This miniruby is then used to generate Makefiles and
some C source code for the extension libraries. All of our
experiments used miniruby, because we encountered problems
in building the extension libraries, mainly due to the EBCDIC
character encoding used in the mainframe. Miniruby is capable
of running the NPB.

We implemented our algorithms and optimizations
explained in Section IV in the ported CRuby. For the conflict
removals in Section IV.D and the platform-specific
optimizations in Section IV.E, we implemented the thread-
local free lists in the original CRuby too, although they did not
affect the performance. For fair comparison, we replaced the
setjmp() calls in the original CRuby with our own
implementation because it improved the performance. We
tested a back-port to the original CRuby of the global variable
removal, the changes in the inline caches, and the spin-lock
before the GIL but found they degraded the performance. The
new yield points (Section IV.B) were not added in the original
CRuby because they would increase the overhead without any
benefit. In all of the experiments, the initial Ruby heap size
was set to 10,000,000, using the RUBY_HEAP_MIN_SLOTS
environmental variable.

The values of TRANSIENT_RETRY_MAX and
GIL_RETRY_MAX in Fig. 1 were set to 3 and 16,
respectively. In our preliminary experiments, it was unlikely
that a transaction would ever succeed after 3-or-more
consecutive transient aborts. In contrast, a thread should wait
more patiently for the GIL release, because the GIL will
eventually be released and the fallback to GIL is very slow.
The INITIAL_TRANSACTION_LENGTH from Fig. 3 was
set to 255, and the PROFILING_PERIOD to 300. Unless set to
extremely large values, these constants did not affect the
performance. Our target abort ratio was 1%, so
ADJUSTMENT_THRESHOLD (Line 16 in Fig. 3) was set to
3, which meant that the ADJUSTMENT_THRESHOLD /
PROFILING_PERIOD = 3 / 300 = 1%. The
ATTENUATION_RATE (Line 19 in Fig. 3) was set to 0.75.

B. Experimental Environment

We evaluated our GIL elimination using the HTM in
zEC12 [30]. The experimental system was divided into
multiple Logical PARtitions (LPARs), and each LPAR
corresponds to a virtual machine. Our LPAR was assigned 12

 8

cores, all running at 5.5 GHz. Although the system was not
totally dedicated to our experiments, no other process was
running at the time of the experiments, and the performance
fluctuations were negligible.

C. Benchmarks

We measured two micro-benchmarks and 7 programs in the
Ruby NPB. We ran them four times and took the averages.

The two micro-benchmarks are similar to the Python
benchmarks used in [31]. Both of the micro-benchmarks are
embarrassingly parallel. The top of Fig. 4 shows the workloads
of each thread. The While benchmark uses a while statement.
The Iterator benchmark uses an iterator that takes a block
construct as an argument. Block constructs are almost the same
as methods in CRuby, which means the Iterator benchmark
contains a method invocation in its innermost loop. These
benchmarks are useful to assess how the HTM works for these
embarrassingly parallel programs.

The Ruby NPB [21] was semi-automatically translated
from the Java version of the NPB version 3.0 [20]. It contains 7
programs, BT, CG, FT, IS, LU, MG, and SP. We chose the
class size W for IS and MG and S for the other programs. With
these sizes, the programs took 10 to 300 seconds to finish.

The NPB programs are composed of serialized sections and
multi-threaded sections. To investigate their scalability
characteristics, we ran the Ruby NPB on JRuby 1.7.3 [16] as
well as the original Java NPB. JRuby is an alternative
implementation of the Ruby language written in Java. JRuby is
suitable as a comparison target for HTM because it minimizes
its internal scalability bottlenecks by using fine-grained locking
instead of the GIL. Note that this means JRuby sacrifices its
compatibility with CRuby, as discussed in Section VI. Because
JRuby does not support the EBCDIC character encoding on
z/OS, we measured it on a 12-core 2.93 GHz Intel Xeon
machine (with hyper-threading disabled) running Linux and
HotSpot Server VM 1.7.0_06.

The Java version of the NPB is useful for estimating the
scalability of the application programs themselves, because the
Java VM has even fewer VM-internal scalability bottlenecks
than JRuby. We ran the Java NPB on the same Xeon machine,
using IBM J9 VM 1.7.0 SR3. Since the class sizes of S and W
are small and Java is much faster than Ruby, each run of the
Java NPB took only several seconds. To give the just-in-time
compiler time to compile the methods at high optimization
levels, we invoked each NPB program multiple times for 2
minutes in a single run on the Java VM and calculated the
average of the execution times of the invocations.

D. Results of Micro-Benchmarks

We first show the scalability results of the micro-
benchmarks and then their single-thread performance.

1) Scalability
The middle of Fig. 4 shows the throughput, with the

number of threads set to 1 to 2, 4, 6, 8, and 12. HTM-1, -16,
and -256 denote the fixed transaction lengths of 1, 16, and 256,
respectively. These configurations correspond to Lines 2-3 in
Fig. 3. HTM-dynamic uses the dynamic transaction-length

adjustment described in Section IV.C. The throughput results
are normalized to the 1-thread GIL.

The best HTM configurations for each benchmark achieved
an 11- and 10-fold speed-ups over the GIL using 12 threads in
the While and Iterator benchmarks, respectively. These results
are better than the previous study [31] of Python on Sun’s
Rock processor. In that study, the While and Iterator
benchmarks showed only 4.5- and 7-fold speed-ups,
respectively, over the GIL with 16 threads. This was due to
their implementation’s large single-thread overhead.

Among the four HTM configurations, HTM-dynamic
delivered performance close to the best of the other three
configurations. In the While benchmark, HTM-1 incurred the
overhead to begin and end the transactions because the number
of instructions (both in bytecode and in native CPU) between
the yield points was small in this benchmark. In contrast, the
innermost loop of the Iterator benchmark contained a method
invocation, which is a complex operation in CRuby. Therefore,
even with HTM-1, the relative overhead to begin and end the
transactions was not as large as in the While benchmark.

1. def workload(numIter)

2. x = 0

3. i = 1

4. while i <= numIter

5. x += i

6. i += 1

7. end

8. end

1. def workload(numIter)

2. x = 0

3. (1..numIter).each do |i|

4. x += i

5. end

6. end

While benchmark Iterator benchmark

While benchmark

0
1
2
3
4
5
6
7
8
9

10
11
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t (

1=
1

th
re

ad
 G

IL
)

GIL
HTM-1
HTM-16
HTM-256
HTM-dynamic

Iterator benchmark

0
1
2
3
4
5
6
7
8
9

10
11
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

0

20

40

60

80

100

120

While benchmark Iterator benchmark

T
hr

ou
gh

pu
t %

(1
00

 =
 G

IL
/m

ai
n

th
re

ad
 o

nl
y)

GIL/main thread only

GIL

HTM/main thread only

HTM-1

HTM-16

HTM-256

HTM-dynamic

H
igher is better

Fig.4. (Top) The two embarrassingly parallel micro-benchmarks. (Middle)
Throughput of the two micro-benchmarks, normalized to the GIL with 1 thread.
The HTM achieved 11- and 10-fold speed-ups on 12 cores. (Bottom) Single-
thread performance of the micro-benchmarks. The HTM suffered from at least
5-14% overhead because of the additional yield points and the checking
operation at each yield point.

 9

2) Single-thread performance
The bottom of Fig. 4 presents the single-thread

performance. Since aborts were rare swith one thread, these
results expose the overhead of the yield-point operation in Fig.
3 as well as the overhead to begin and end the transactions. The
term “a single thread” has two meanings in this experiment. On
one hand, if the main application thread executes the workload
functions in Fig. 4, then there is truly only one live application
thread in the interpreter. In this case, the original CRuby does
not perform any yield operations, and neither does our
interpreter, but always uses the GIL (Lines 2-3 in Fig. 1 and
Line 9 in Fig. 2). “GIL/main thread only” and “HTM/main
thread only” in Fig. 4 correspond to this case. On the other
hand, if the main application thread spawns another thread to
execute the workload functions and goes to sleep, then there
are two live application threads, although only one of them is
running. In this case, the optimization is not enabled, and our
interpreter uses the HTM. The original CRuby has a further
optimization so that if there is only one thread running and the
others are asleep, then it does not perform any yield operations.
GIL, HTM-1, -16, -256, and HTM-dynamic in Fig. 4 and
throughout this paper correspond to this case.

The results at the bottom of Fig. 4 show that even without
using the HTM, “HTM/main thread only” incurred 5% to 14%
overhead. This was due to the checking operation in Line 9 of
Fig. 2 and the new yield points described in Section IV.B. If
the transactions end and begin at each yield point, as in HTM-1,
the additional overhead is 74% and 20% in the While and
Iterator benchmarks, respectively. Most of the overhead was
due not to the TBEGIN and TEND instructions but to the code
surrounding them. GIL and “GIL/main thread only” had the
same performance, as expected.

E. Results of the NAS Parallel Benchmarks

Fig. 5 shows the throughput of the Ruby NAS Parallel
Benchmarks, normalized to GIL with 1 thread. HTM-dynamic

showed up to a 4.4-fold speed-up in FT with 12 threads and at
the minimum 1.9-fold speed-ups in CG, IS, and LU. From the
four HTM configurations, HTM-dynamic was almost always
the best or close to the best. HTM-dynamic was 18% faster
than HTM-16 in FT with 12 threads. HTM-1 was worse than
HTM-dynamic because of its larger overhead, although its
abort ratios were lower. HTM-256 showed almost no
scalability. Due to its excessively long transaction lengths, its
abort ratios were above 90%, and the execution almost always
fell back on the GIL. HTM-16 was the best among the fixed-
transaction-length configurations, but it incurred more conflict
aborts as the number of threads increased.

In summary, using HTM-dynamic, users do not need to
specify different transaction lengths for different programs and
numbers of threads to obtain near optimal performance. With
12 threads, 40% of the frequently executed yield points had the
transaction length of 1 in the Ruby NPB. That means HTM-
dynamic effectively chose better lengths for the other points.

If the new yield points were not added as described in
Section IV.B, all of the benchmarks except for CG suffered
from more than 20% slow-downs compared with the GIL.
Without the conflict removals in Section IV.D, the HTM
provided no acceleration in any of the benchmarks.

F. Further Improvement Opportunities

We present the abort ratios and cycle breakdowns of HTM-
dynamic in Fig. 6. The abort ratios were mostly below 2%
regardless of the number of threads, indicating that HTM-
dynamic successfully adjusted the transaction lengths with 1%
as a target abort ratio (Section V.A).

The cycle breakdowns of 12-thread HTM-dynamic in Fig.
6 show that the time spent waiting for the GIL release was
longer than the time for cycles wasted on aborted transactions.
The cycle breakdown of IS does not represent its actual

 FT

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t (
1

 =
 1

 th
re

a
d

 G
IL

)

GIL
HTM-1
HTM-16
HTM-256
HTM-dynamic

SP

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
)

CG

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
) H

igher is better

BT

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
)

MG

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
)

LU

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
)

IS

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
hr

ou
gh

pu
t

(1
 =

 1
 t

hr
ea

d
G

IL
)

Fig.5. Throughput of the Ruby NAS Parallel Benchmarks, normalized to the GIL with 1 thread. HTM-1, -16, and -256 ran transactions of fixed lengths 1, 16, and
256, respectively. HTM-dynamic uses our proposed dynamic transaction-length adjustment.

 10

execution, because 79% of its time was spent in data
initialization, which was outside of the measurement period.

Investigation on the abort reasons that caused the GIL to be
acquired revealed that fetch (read-set) conflicts accounted for
more than 80% in all of the benchmarks with 12 threads.
Except for IS, more than 50% of those fetch conflicts occurred
at the time of object allocation. Even with the thread-local free
lists described in Section IV.D, the global free list still needed
occasional manipulation. Also, when the global free list
became empty, lazy sweeping of the heap was triggered and
caused more conflicts. All of the benchmarks other than IS
heavily use floating-point numbers, which are implemented as
objects in CRuby 1.9.3. Because the latest CRuby 2.0
represents floating-point numbers as unboxed values, we
believe most of these conflicts have been eliminated.

To overcome the conflicts at the general object allocation,
the global free list must be eliminated. When a thread-local
free list becomes empty, the lazy sweeping should be done on a
thread-local basis. GC should also be parallelized or thread-
localized. The HTM can be utilized as a synchronization
mechanism during GC.

The single-thread overhead of the HTM against the GIL
was 25% to 35% in Fig. 5. These numbers were even worse
than the results of the micro-benchmarks in Fig. 4. This was
because the Ruby NPB exposed two more overhead sources.
First, Fig. 6 shows the Ruby NPB incurred 1.2% to 2.5% abort
ratios even with a single thread. About 40% of the aborts were
due to store overflows and 30% due to external interrupts. Both
of these kinds of aborts can be reduced by shortening the
transaction lengths, but at the cost of increased relative
overhead in beginning and ending the transactions. Second,
access to Pthread’s thread-local storage accounted for 9% of
the total execution cycles on average. As explained in Section
IV.D, we moved several global variables to the thread-local
storage. Unfortunately, the access function,
pthread_getspecific(), is not optimized in z/OS USS, but it is
highly tuned in some environments, including Linux.

G. Scalability Characterization

In spite of the large differences in the speed-ups among the
7 programs in Fig. 5, their abort ratios and cycle breakdowns
did not much differ in Fig. 6 and had little correlation with the
speed-ups. These facts suggest that although the overall speed-
ups achieved by HTM-dynamic were limited by the conflicts at
the time of object allocation, the differences among the
programs were due to their inherent scalability characteristics.

In Fig. 7, we compare the scalability of HTM-dynamic,
JRuby, and the Java NPB, from which the Ruby NPB was
translated. The Java version did not scale well because we used
the smallest or the second smallest problem size in our
experiments. Since the Java version was 10 to 100 times faster
than the Ruby version, the parallelization overhead negated the
speed-ups in such small problems.

Fig. 7 shows that HTM-dynamic resembled the Java NPB
rather than JRuby in terms of the scalability. These results
confirmed that the differences in the speed-ups by HTM-
dynamic among the benchmarks originated from each
program’s own scalability characteristics. We tried to run

 Scalability of Java NPB (12x Intel Xeon)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t (

1
=

1
th

re
ad

) BT
CG
FT
IS
LU
MG
SP

Scalability of JRuby (12x Intel Xeon)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t (

1
=

1
th

re
ad

)

Scalability of HTM-dynamic / CRuby

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

T
hr

ou
gh

pu
t (

1
=

1
th

re
ad

)

Fig.7. Scalability comparison of the Ruby NAS Parallel Benchmarks on HTM-dynamic/CRuby, fine-grained locking/JRuby, and the Java NAS Parallel
Benchmarks. JRuby and the Java version ran on 12-core Intel Xeon X5670 (Westmere-EP 2.93GHz, no hyper-threading).

Abort ratios

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of threads

A
bo

rt
ra

tio
 (%

)

BT
CG
FT
IS
LU
MG
SP

Low
er is better

Cycle breakdowns

0%

20%

40%

60%

80%

100%

BT CG FT IS LU MG SP

Waiting for GIL release

Aborted transactions

GIL acuired

Successful transactions

Transaction begin/end

Fig. 6. Abort ratios and cycle breakdowns (when running with 12 threads)
of HTM-dynamic.

 11

larger problems in the Ruby NPB, but the execution times were
prohibitively long. When compared with JRuby, HTM-
dynamic achieved the same scalability on average: 3.6-fold
with HTM-dynamic and 3.5-fold with JRuby, running 12
threads (not shown in the figure). We guess the characteristics
of each benchmark were different between HTM-dynamic and
JRuby because of JRuby’s internal scalability bottlenecks.

Overall, the GIL elimination through HTM is an effective
technique to deliver higher multi-thread performance than the
GIL with a small implementation cost. As discussed in Section
IV.C and IV.D, we needed to modify only a limited number of
source-code files to replace the GIL with the HTM, and each
conflict removal modified at most a few dozen lines of code.

VI. RELATED WORK

Riley et al. [27] used HTM to eliminate the GIL in PyPy,
one of the implementations of the Python language. However,
because they experimented with only two micro-benchmarks
on a non-cycle-accurate simulator, it is hard to assess how their
implementation would behave on real HTM. Tabba [31] used
the HTM of an early-access version of Sun’s Rock processor to
remove the GIL in the original Python interpreter. Although
their measurements were on real hardware, they ran only three
synthetic micro-benchmarks. Also, the HTM on Rock had a
severe limitation in that transactions could not contain any
function returns or tolerate TLB misses. These prototype
results cannot be extended to real-world applications. This
paper is the first to evaluate larger benchmarks on less-
restrictive HTM hardware.

RETCON [1] applied speculative lock elision to the GIL in
Python. The focus of the work was on reducing conflicts due to
reference-counting GC by symbolic re-execution. By avoiding
the conflicts, RETCON achieved a 25-fold speed-up with 32
processors for a micro-benchmark. However, because it was
evaluated on a simulator supporting an unlimited transaction
size, the aborts in the experiment were mostly due to conflicts.
In our experience with a real HTM implementation, the
effectiveness of GIL elimination is limited by overflows and
various other types of aborts. Thus the dynamic transaction-
length adjustment is necessary.

Dice et al. [5] evaluated a variety of programs using HTM
on an early-access version of the Sun Rock processor. Wang et
al. [33] measured the STAMP benchmarks [19] on the HTM in
Blue Gene/Q. Neither of these evaluations covered GIL
elimination for scripting languages.

Some alternative implementations of the Ruby and Python
languages [12,13,16,17,28] use or are going to use fine-grained
locking instead of the GIL. JRuby [16] maps Ruby threads to
Java threads and then uses concurrent libraries and
synchronized blocks and methods in Java to protect the internal
data structures. However, JRuby has two types of
incompatibility with CRuby. First, while some of the standard-
library classes in CRuby are written in C and are implicitly
protected by the GIL, JRuby rewrites them in Java and leaves
them unsynchronized for performance reasons. Thus any multi-
threaded programs that depend on the implicitly protected
standard-library classes in CRuby may behave differently in
JRuby. Second, because JRuby does not support CRuby-

compatible extension libraries, it does not need the GIL to
protect the thread-unsafe extension libraries. The current
version 1.2.4 of Rubinius [28] has the GIL, but there are plans
to remove it in a future version. However, the Rubinius support
for the CRuby-compatible extension libraries conflicts with
removing the GIL completely. In contrast, replacing the GIL
with HTM creates no compatibility problems in the libraries.
PyPy is planning to eliminate the GIL by using software
transactional memory [24], but it is unclear whether the
scalability improvement can offset the overhead of the
software transactional memory.

Because of the GIL, programmers who need to exploit
multiple cores in Ruby or Python have been using multi-
processing. Whether or not multi-threading is better than multi-
processing is beyond the scope of this paper, but the
implementations of general-purpose languages should not
inhibit a particular programming model because of their
implementation-specific reasons.

Scripting languages other than Ruby and Python mostly do
not have a GIL, but that is because they do not support shared-
memory multi-thread programming, and thus their
programming capabilities are limited on multi-core systems.
Perl’s ithreads clone the entire interpreter and its data when a
thread is created, and any data sharing among threads must be
explicitly declared as such [22]. The cloning makes a GIL
unnecessary, but it is as heavy as fork() and restricts shared-
memory programming. Lua [18] does not support multi-
threading but uses coroutines. The coroutines switch among
themselves by explicitly calling a yield function. This means
they never run simultaneously and do not require a GIL.
JavaScript (AKA ECMAScript) [6] does not support multi-
threading, so the programs must be written in an asynchronous
event-handling style.

VII. CONCLUSION AND FUTURE WORK

This paper shows the first empirical results of eliminating
the Global Interpreter Lock (GIL) in a scripting language
through a real Hardware Transactional Memory (HTM) to
improve the multi-thread performance of realistic programs.
We eliminated the GIL in Ruby using the HTM facilities in the
mainframe processor zEC12 and evaluated the Ruby NAS
Parallel Benchmarks (NPB) and some micro-benchmarks. We
proposed a new automatic mechanism to dynamically adjust
the transaction lengths on a per-yield-point basis. Our
mechanism chose a near optimal tradeoff point between the
relative overhead of the instructions to begin and end the
transactions and the likelihood of transaction conflicts and
overflows. Our results show that HTM achieved a 11-fold
speed-up over the GIL with 12 threads in the micro-
benchmarks and up to a 4.4-fold speed-up in the Ruby NPB
programs. The dynamic transaction-length adjustment
improved the throughput by up to 18%. From these results, we
concluded that HTM is an effective approach to achieve higher
multi-thread performance than the GIL at a small
implementation cost. We also discussed further improvement
opportunities for HTM.

In addition to the performance improvement, the
interactions between just-in-time-compiled code and the HTM-

 12

based GIL elimination must be studied further. Finally, we plan
to measure Web-related workloads such as WEBrick and Ruby
on Rails once we succeed in building CRuby’s extension
libraries on z/OS USS.

REFERENCES
[1] Blundell, C., Raghavan, A., and Martin, M. M. K., "RETCON:

transactional repair without replay," in ISCA, pp. 258-269, 2010.

[2] Cascaval, C., Blundell, C., Michael, M., Cain, H. W., Wu, P., Chiras, S.,
and Chatterjee, S., "Software transactional memory: why is it only a
research toy?" ACM Queue, 6(5), pp. 46-58, 2008.

[3] Chaudhry, S., Cypher, R., Ekman, M., Karlsson, M., Landin, A., Yip, S.,
Zeffer, H., and Tremblay, M., "Rock: A high-performance SPARC CMT
processor," IEEE Micro, 29(2), pp. 6-16, 2009.

[4] Click, C., "Azul's experiences with hardware transactional memory," In
HP Labs - Bay Area Workshop on Transactional Memory, 2009.

[5] Dice, D., Lev, Y., Moir, M., and Nussbaum, D., "Early experience with
a commercial hardware transactional memory implementation," in
ASPLOS, pp. 157-168, 2009.

[6] ECMAScript. http://www.ecmascript.org/

[7] Fowler, Martin., "Ruby at ThoughtWorks,"
http://martinfowler.com/articles/rubyAtThoughtWorks.html , 2009

[8] Haring, R. A., Ohmacht, M., Fox, T. W., Gschwind, M. K., Satterfield,
D. L., Sugavanam, K., Coteus, P. W., Heidelberger, P., Blumrich, M. A.,
Wisniewski, R.W., Gara, A., Chiu, G. L.-T., Boyle, P.A., Chist, N.H.,
and Kim, C., "The IBM Blue Gene/Q compute chip," IEEE Micro, 32(2),
pp. 48-60, 2012.

[9] IBM, �Power ISA Transactional Memory,” Power.org, 2012.

[10] IBM, "z/Architecture Principles of Operation Tenth Edition (Septem-ber,
2012)," http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf

[11] Intel Corporation, "Intel Architecture Instruction Set Extensions
Programming Reference," 319433-012a edition, 2012.

[12] IronPython, http://ironpython.codeplex.com/

[13] IronRuby, http://www.ironruby.net/

[14] Ishizaki, K., Ogasawara, T., Castanos, J., Nagpurkar, P., Edelsohn, D.,
and Nakatani, T., "Adding dynamically-typed language support to a
statically-typed language compiler: performance evaluation, analysis,
and tradeoffs," in VEE, pp. 169-180, 2012.

[15] Jacobi, C., Slegel, T., and Greinder, D., "Transactional memory archi-
tecture and implementation for IBM System z," in MICRO45, 2012.

[16] JRuby, http://jruby.org/

[17] Jython, http://www.jython.org/

[18] Lua, http://www.lua.org/

[19] Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K., "STAMP:
Stanford transactional applications for multi-processing," in IISWC, pp.
35-46, 2008.

[20] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

[21] Nose, T., "Ruby version of NAS Parallel Benchmarks 3.0," http://www-
hiraki.is.s.u-tokyo.ac.jp/members/tknose/

[22] Perl threads, http://perldoc.perl.org/perlthrtut.html

[23] Prechelt, L., "An empirical comparison of seven programming
languages," IEEE Computer, 33(10), pp. 23-29, 2000.

[24] PyPy Status Blog, "We need Software Transactional Memory,"
http://morepypy.blogspot.jp/2011/08/we-need-software-transactional-
memory.html

[25] Python programming language, http://www.python.org/

[26] Rajwar, R. and Goodman, J. R., "Speculative lock elision: enabling
highly concurrent multithreaded execution," in MICRO, pp. 294-305,
2001.

[27] Riley, N. and Zilles, C., "Hardware transactional memory support for
lightweight dynamic language evolution," in Dynamic Language
Symposium (OOPSLA Companion), pp. 998-1008, 2006.

[28] Rubinius, http://rubini.us/

[29] Ruby programming language, http://www.ruby-lang.org/

[30] Shum, C.-L., "IBM zNext: the 3rd generation high frequency micro-
processor chip," in HotChips 24, 2012.

[31] Tabba, F., "Adding concurrency in python using a commercial
processor's hardware transactional memory support," ACM SIGARCH
Com-puter Architecture News, 38(5), pp. 12-19, 2010.

[32] Tatsubori, M., Tozawa, A., Suzumura, T., Trent, S., Onodera, T.,
"Evaluation of a just-in-time compiler retrofitted for PHP," in VEE, pp.
121-132, 2010.

[33] Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J. N., Barton, C.,
Silvera, R., Michael, M. M., "Evaluation of Blue Gene/Q hardware
support for transactional memories," in PACT, pp. 127-136, 2012.

