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Abstract—Many scripting languages use Global Interpreter 
Locks (GIL) to simplify the internal designs of their interpreters, 
but this kind of lock severely lowers the multi-thread 
performance on multi-core machines. This paper shows the first 
results eliminating the GIL in Ruby using the Hardware 
Transactional Memory (HTM) in the new mainframe 
zEnterprise EC12 processor. Though prior prototypes replaced 
the GIL with HTM, we tested realistic programs, the Ruby NAS 
Parallel Benchmarks (NPB), as well as micro-benchmarks. We 
devised a new technique to dynamically adjust the transaction 
lengths on a per-bytecode basis, so that we can automatically 
optimize the likelihood of transaction aborts against the relative 
overhead of the instructions to begin and end the transactions. 
Our current results show that HTM achieved an 11-fold speed-
up over the GIL on 12 cores in the micro-benchmarks and 1.9- to 
4.4-fold speed-ups in the NPB programs. The dynamic 
transaction-length adjustment improved the throughput by up to 
18%. Our investigation on the scalability and overhead revealed 
further optimization opportunities. 

Keywords— global interpreter lock; hardware transactional 
memory; Ruby; lock elision 

I. INTRODUCTION 

Scripting languages such as Ruby [29] and Python [25] 
offer high productivity [7, 23], but at the cost of slow 
performance. The single-thread performance is limited because 
of interpreted execution, dynamic typing, and the support for 
meta-programming. Many projects [13,28,32] attempt to 
overcome these limitations through Just-in-Time (JIT) 
compilation with type specialization. 

Meanwhile, the multi-thread performance of the scripting 
languages is restricted due to the Global Interpreter Lock (GIL), 
or the Giant VM Lock (GVL) in Ruby’s terminology. Although 
each application thread is mapped to a native thread, only the 
single thread that acquired the GIL can actually run. At pre-
defined yield points, each thread releases the GIL, yields the 
CPU to another runnable thread if any exists, and then 
reacquires the GIL. The GIL eases the programming of the 
interpreters’ internal logic and the extension libraries because 
they do not need to worry about concurrency. In return, the 
GIL significantly limits the performance on multi-core systems. 
Some new implementations of the Ruby and Python languages 
[12,13,16,17] use complex fine-grained locking to remove the 
GIL. However, their class libraries still need to be globally 
protected to remain compatible with the original 
implementations of the languages. As a result, the typical use 

of the scripting languages is a multi-process approach. For 
example, in Web frameworks, a Web server instantiates many 
instances of the interpreter to handle the requests rather than 
relying on the multi-thread features of the languages. 

Transactional memory has been proposed as an alternative 
way to eliminate global locking without requiring the complex 
semantics of fine-grained locking. In transactional memory, a 
programmer encloses critical sections with transaction begin 
and end directives. A transaction is executed atomically so that 
its memory operations appear to be performed in a single step. 
Transactions can be executed concurrently as long as their 
memory operations do not conflict, so that transactional 
memory can outperform global locking. Although transactional 
memory is attractive for its potential concurrency, pure 
software implementations are slow [2]. 

Chipmakers in the industry regard transactional memory as 
a promising technology for parallel programming in the multi-
core era and are designing or producing hardware for 
transactional memory, called Hardware Transactional Memory 
(HTM). The Azul Vega processer uses HTM to replace 
contended Java locks [4]. Sun announced the Rock processor 
with a limited HTM facility [3], though the processor was 
cancelled before release into the market. Intel published 
documentation for an instruction set called Transactional 
Synchronization Extensions [11] and implemented it in the 
Haswell processor. IBM has released Blue Gene/Q and 
mainframe processor zEnterprise EC12 (zEC12) with HTM 
support [8,30]. IBM also presented HTM extensions for Power 
ISA [9]. These HTM implementations will offer effective 
concurrency with low overhead. There were a couple of 
previous studies [1,27,31] on replacing the GIL of a scripting 
language with HTM, but none have ever measured realistic 
benchmarks on real HTM hardware. 

This paper shows the empirical results of removing the GIL 
from Ruby using IBM’s HTM implementation in zEC12 [30] 
and measuring the NAS Parallel Benchmarks ported to Ruby 
[21], in addition to micro-benchmarks. Our obtained results are 
also applicable to other proposed HTM implementations. 
Unlike the results [31] on the more restrictive HTM of Sun’s 
Rock processor, the HTM implementation on which we 
experimented is similar to the generic ones proposed in the 
literature, e.g. [26]. Transactional data is marked as such in a 
CPU cache line, the conflict detection is incorporated into a 
cache-coherence protocol, and the transactional write data is 
buffered in a CPU cache. 
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To reduce transaction aborts and overhead, we propose a 
new technique to dynamically adjust the transaction lengths on 
a per-yield-point basis. On one hand, we desire long 
transactions as we amortize the overhead to begin and end a 
transaction. On the other hand, no HTM implementation allows 
for transactions of unlimited lengths, and longer transactions 
increase the amount of discarded work in case of transaction 
aborts. As in the GIL, a transaction ends and begins at pre-
defined transaction yield points, but it need not do so at every 
transaction yield point. We dynamically adjust the transaction 
lengths, i.e. how many yield points to skip, based on the abort 
statistics of the transactions started at each yield point. 

Our contributions are as follows: 

• We proposed an algorithm for the GIL elimination to 
adjust transaction lengths at each yield point. 

• We implemented and evaluated the GIL elimination on 
a real machine that supports HTM, using real-world 
applications in addition to micro-benchmarks. 

• We eliminated the GIL from Ruby, going beyond prior 
work focusing on Python. We also removed transaction 
conflict points in the Ruby interpreter. 

Section II describes the HTM implementation used in our 
studies and Section III explains Ruby’s GIL implementation. 
Section IV shows how we replaced the GIL with the HTM and 
then reduced the overhead, leading to the experimental results 
in Section V. Section VI covers related work. Section VII 
concludes this paper. 

II. HTM IMPLEMENTATION 

We used the HTM in a new IBM mainframe zEC12 [29] 
for our studies. This section briefly describes the instruction set 
architectures to support the HTM as well as its micro-
architecture implementation. A complete description appeared 
in [15]. The instruction set architecture is defined in [10]. 

A. Instruction Set Architecture 

Each transaction begins with a TBEGIN instruction and is 
ended by a TEND instruction. Transactions can be nested. In 
that case, all of the transactions commit when the outermost 
transaction commits (also called flattened nesting). The 
TBEGIN instruction saves the general purpose registers. 

The TBEGIN instruction initially sets the condition code to 
0. If a transaction aborts, then the execution returns back to the 
instruction immediately after the outermost TBEGIN. All of 
the transactionally written data is discarded and the saved 
general purpose registers are restored. The hardware 
transaction facilities also set the condition code to 2 or 3, 
depending on whether the cause of the abort is transient or 
persistent, respectively. Therefore, a program typically checks 
the condition code immediately after TBEGIN and jumps to a 
fallback path if it is not 0. 

A transaction can abort for various reasons. The most 
frequent causes include external interrupts, overflows, conflicts, 
and restricted instructions. Aborts are classified as either 
transient or persistent by the CPU and the condition code is set 

accordingly. When the abort is transient, e.g. because of a 
conflict, simply retrying the transaction is likely to succeed. On 
persistent aborts, e.g. due to attempted execution of a restricted 
instruction, the program should cancel the execution of the 
transaction. Restricted instructions include system calls and 
access-register manipulation, but most of the non-privileged 
instructions are allowed. A transaction can also be aborted by 
software with a TABORT instruction. 

The programmer can specify the address of a 256-byte 
memory in the operand of the TBEGIN instruction. This 
memory area is called a Transaction Diagnostic Block (TDB) 
and is used for storing debug information when a transaction 
aborts. A TDB contains the abort reason code and the 
instruction virtual address where the abort was detected. 

B. Micro-Architecture 

The Central Processor (CP) chip has 6 cores, and 6 CP 
chips are packaged in a multi-chip module (MCM). Up to 4 
MCMs can be connected in a single cache-coherent system. 
Each core has 96-KB L1 and 1-MB L2 data caches. Both the 
L1 and L2 caches are store-through with 256-byte cache lines. 
The 6 cores on a CP chip share a 64-MB L3 cache and the 6 
CP chips share an off-chip 384-MB L4 cache included in the 
same MCM. All four levels of the caches are inclusive. Each 
core supports a single hardware thread. The TBEGIN 
instruction saves the general purpose registers to a transaction-
backup register file. The maximum nesting depth is 16. 

The HTM facilities of zEC12 are built on top of its cache 
structure. Each L1 data cache line is augmented with its own 
tx-read and tx-dirty bits. A load instruction during a transaction 
sets a tx-read bit. Transactionally written data is stored into the 
L1 with an active tx-dirty bit. An abort is triggered if a cache-
coherency request from another CPU conflicts with a 
transactionally read or written line. This means zEC12 uses an 
eager abort scheme and provides strong atomicity. On an abort, 
all of the lines whose tx-dirty bits are set are invalidated. The 
general purpose registers are restored from the transaction 
backup register file. 

A special LRU-extension vector records the lines that are 
transactionally read but evicted from the L1. Thus the 
maximum read-set size is roughly the size of the L2. The 
transactionally written data is buffered in the Gathering Store 
Cache between the L1 and the L2/L3. The maximum write-set 
size is limited to the cache size, which is 8 KB. 

III.  RUBY IMPLEMENTATION 

This section introduces the Ruby language and its original 
implementation, often called CRuby, and describes how the 
GIL works in CRuby. Our description is based on CRuby 
1.9.3-p194. 

A. The Ruby language and CRuby 

Ruby is a modern object-oriented scripting language that is 
widely known as part of the Ruby on Rails Web application 
framework. Nevertheless, Ruby is a general-purpose language 
that has many features in common with other scripting 
languages such as JavaScript, Python, or Perl: a flexible, 
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dynamic type system; meta-programming; closures; and an 
extensive standard runtime library.  

The reference Ruby implementation [29] is called CRuby, 
which is written in the C language. The recent releases of 
CRuby use a stack-based virtual machine. Ruby code is 
compiled into an internal bytecode representation at runtime. 
On the mainframe platform CRuby uses a large switch-case 
statement to interpret the bytecode. 

B. The GIL in CRuby 

The Ruby language supports multi-threaded programming 
through objects of the standard Thread class that synchronize 
through standard concurrency constructs like Mutex or 
ConditionVariable objects. Since CRuby 1.9, the interpreter 
supports native threads, where each Ruby application thread 
maps to a kernel thread. In our studies, we ported CRuby to the 
mainframe z/OS UNIX System Services (USS), which 
supports the POSIX interfaces. Thus each application thread 
corresponds to a Pthread. 

Unfortunately, the concurrency is limited. The interpreter 
has a GIL, guaranteeing that only one application thread is 
executing in the interpreter at any given time. The GIL 
eliminates the need for complex concurrency programming in 
the interpreter and libraries. Unlike normal locking, which 
holds a lock only during part of the execution, the GIL is 
almost always held by one of the application threads during 
execution and is released only when necessary. An application 
thread acquires and releases the GIL when it starts and ends, 
respectively. It also releases the GIL when it is about to 
perform a blocking operation, such as I/O, and it acquires the 
GIL again after the operation is finished. 

However, if the GIL were released only at the blocking 
operations, compute-intensive application threads could not be 
switched with one another at all. Therefore, at certain pre-
defined points, the application thread yields the GIL by 
releasing the GIL, calling the sched_yield() system call to yield 
the CPU, and then acquiring the GIL again. To insure reaching 
a yield point within a finite time, CRuby sets yield points at 
loop back-edges and each exit of a method and block. 

As an optimization, each application thread does not 
necessarily yield the GIL at every yield point, because the yield 
operation is heavyweight. To allow for occasional yields, 
CRuby runs a timer thread in background. It wakes up every 
250 msec and sets a flag in the per-thread data structure of the 
running application thread. Each application thread checks the 
flag at each yield point and yields the GIL only when it is set. 
In addition, if there is only one application thread, then no 
yield operations will be performed at all.  

In Python, the GIL is implemented in a similar wary. The 
yield points are set in some of the bytecode operations. Instead 
of using a timer thread, each application thread runs through a 
pre-defined number (100, by default) of yield points before 
yielding the GIL. 

IV. GIL ELIMINATION THROUGH HTM 

This section presents a new algorithm for eliminating the 
GIL by using an HTM. Our algorithm is based on 

Transactional Lock Elision (TLE) [5,26]. Like TLE, our 
algorithm retains the GIL as a fallback mechanism. A thread 
first executes Ruby code as a transaction. If the transaction 
aborts, the thread can retry the transaction, depending on the 
abort reason. If the transaction does not succeed after several 
retries, the thread uses the GIL to proceed.  

Transactions should begin and end at the same points as 
where the GIL is acquired, released, and yielded, because those 
points are guaranteed as safe critical-section boundaries. 
However, our preliminary experiments showed the original 
yield points in CRuby were too coarse-grained for the HTM, 
which caused overflows. Thus we added new yield points as 
explained in Section IV.B. 

We first show the algorithms to begin and end a transaction 
that replace the GIL acquisition and release, respectively. The 
simple replacement causes many transaction aborts due to 
conflicts and overflows. Therefore, in the later parts of this 
section we introduce dynamic transaction-length adjustment. 

A. Beginning and Ending a Transaction 

Fig. 1 shows the algorithm to begin a transaction. The GIL 
status is tracked by the global variable GIL.acquired, which is 
set to true when the GIL is acquired. The original CRuby also 
uses this global variable for the same purpose. 

If there is no other live application thread in the interpreter, 
then the algorithm reverts to the GIL (Lines 2-3), because 
concurrency is unnecessary in this case. Otherwise, the 
algorithm first sets the length of the transaction to be executed 
(Line 5). This will be explained in Section IV.C.  

Before beginning a transaction, the algorithm checks the 
GIL and if it has been acquired by some other thread, waits 
until it is released (Lines 6-8 and 40-48). This is not mandatory 
but an optimization. Rather than uselessly rushing into a 
transaction that will never succeed because the GIL was 
already acquired, the current thread should wait for its release. 

Lines 9 and 10 initialize local retry counters for transient 
aborts and conflicts at the GIL, respectively. The first_retry 
flag (Line 11) is used to adjust the transaction length only at 
the first retry (Lines 17-20).  

The TBEGIN() function (Line 13) is a wrapper for the 
TBEGIN instruction described in Section II.A. The TBEGIN() 
function initially returns 0. If the transaction aborts, the 
execution returns back to within the TBEGIN() function and 
then it returns an abort reason code, referring to a TDB. 

Lines 14-15 are within the transaction. As in the original 
TLE, the transaction first reads the GIL (Line 15) into its 
transaction read set, so that later the transaction can be aborted 
if the GIL is acquired by another thread. The transaction must 
abort immediately if the GIL is already acquired, because 
otherwise the transaction could read data being modified. 

Lines 16-37 are for abort handling. We describe Lines 17-
20 in Section IV.C. If the GIL is acquired (Line 21), there is a 
conflict at the GIL. In the same way as in Lines 6-8, Lines 22-
27 waits until the GIL is released. The algorithm first tries to 
use spin locking, but after GIL_RETRY_MAX-time aborts, it 
forcibly acquires the GIL (Line 27). If the abort is persistent, 
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retrying the transaction will not succeed, so the execution 
immediately reverts to the GIL (Lines 28-29). The abort reason 
code in the TDB is used to determine whether the abort is 
persistent. We regard overflows and restricted instructions as 
persistent. The other abort reasons, such as conflicts are 
considered transient. For the transient aborts, we retry the 
transaction TRANSIENT_RETRY_MAX times before falling 
back on the GIL (Lines 31-35).  

Ending a transaction is much simpler than beginning a 
transaction, as shown in Fig. 2. The acquired GIL (Line 2) 
means this transaction has been executed not as a transaction 
but with the GIL being held. Thus the GIL must be released. 
Otherwise, the TEND instruction is issued. 

B. Yielding a Transaction 

As described in Section III.B, the original CRuby 
implementation has a timer thread to force yielding among the 
application threads. We no longer need the timer thread 
because the application threads are running in parallel using the 
HTM, but we still need the yield points. Without them, some 

transactions would last so long that there would be many 
conflicts and overflows.  

In our preliminary experiments, we found the original yield 
points in CRuby were too coarse-grained for the HTM. As de-
scribed in Section III.B, the original CRuby sets yield points at 
branches and method and block exits. With only these yield 
points, most of the transactions abort due to store overflows. 
Therefore, we defined the following bytecode types as 
additional yield points: get_local, getinstancevariable, 
getclassvariable, send, opt_plus, opt_minus, opt_mult, and 
opt_aref. We chose these bytecodes because they appear 
frequently in bytecode sequences or they consume many CPU 
cycles. This means that in the NAS Parallel Benchmarks, more 
than half of the bytecode instructions are now yield points.  

We also need to guarantee that the new yield points are safe. 
In language interpreters, the bytecode boundaries are natural 
yield points. Because the bytecode instructions can be 
generated in any orders, it is unlikely that the interpreters 
internally have a critical section straddling a bytecode 
boundary. However, for applications that are incorrectly 
synchronized, such as those assuming the GIL can be yielded 
only at branches or method exits, the new yield points can 
change their behavior. 

At each yield point, we call the transaction_yield() function 
in Fig. 2, which simply calls the functions to end and begin 
transactions (Lines 12-13), but with two optimizations. First, as 
described in Section III.B, no yield operation is performed if 
there is only one application thread (Line 9). Note that the GIL 
is used in this case (Line 3 of Fig. 1). Second, a transaction 
does not yield at every yield point but only after a set number 
of yield points (using yield_point_counter) have been passed 
(Lines 10-11). This optimization is described in Section IV.C. 
Unlike the original GIL-yield operation, we do not need to call 
the sched_yield() system call, because the multiple threads are 
already running in parallel and the OS is scheduling them. 

C. Dynamic Transaction-Length Adjustment 

As shown in Fig. 2, each transaction will skip a 
predetermined number of yield points before it ends. This 
means that the transaction lengths vary with the granularity of 
the yield points. The length of a transaction means the number 
of yield points the transaction passes through plus one. 

 1. transaction_begin(current_thread, pc) {
2. if (there is no other live thread) {
3. gil_acquire();
4. } else {
5. set_transaction_length(current_thread, pc);
6. if (GIL.acquired) {
7. if (spin_and_gil_acquire()) return;
8. }
9. transient_retry_counter = TRANSIENT_RETRY_MAX;
10. gil_retry_counter = GIL_RETRY_MAX;
11. first_retry = 1;
12. transaction_retry:
13. if ((tbegin_result = TBEGIN()) == 0) {
14. /* transactional path */
15. if (GIL.acquired) TABORT();
16. } else { /* abort path */
17. if (first_retry) {
18. first_retry = 0;
19. adjust_transaction_length(pc);
20. }
21. if (GIL.acquired) {
22. gil_retry_counter--;
23. if (gil_retry_counter > 0) {
24. if (spin_and_gil_acquire()) return;
25. else goto transaction_retry;
26. }
27. gil_acquire();
28. } else if (is_persistent(tbegin_result)) {
29. gil_acquire();
30. } else {
31. /* transient abort */
32. transient_retry_counter--;
33. if (transient_retry_counter > 0)
34. goto transaction_retry;
35. gil_acquire();
36. }
37. }
38. }
39. }

40. spin_and_gil_acquire() {
41. Spin for a while until the GIL is released;
42. if (! GIL.acquired) return false;
43. gil_acquire();
44. return true;
45. }

46. gil_acquire() {
47. /* Omitted. Original GIL-acquisition logic. */
48. }  

Fig. 1. Algorithm to begin a transaction. 

 1. transaction_end() {
2. if (GIL.acquired) gil_release();
3. else TEND();
4. }

5. gil_release() {
6. /* Omitted.  Original GIL-release logic */

7. }

8. transaction_yield(current_thread, pc) {
9. if (there is other live thread) {
10. current_thread->yield_point_counter--;

11. if (current_thread->yield_point_counter == 0) {
12. transaction_end();
13. transaction_begin(current_thread, pc);
14. }
15. }
16. }  

Fig. 2. Algorithm to end and yield a transaction. 
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1) Tradeoff in transaction length 
In general, there are three reasons the total abort overhead 

decreases as the transaction lengths shorten. First, the amount 
of work that becomes useless and has to be rolled-back at the 
time of an abort is smaller. Second, the probabilities of 
overflows are smaller, because they depend on the amount of 
data accessed in each transaction. Third, if the execution 
reverts to the GIL, the serialized sections are shorter. 

In contrast, the shorter the transactions are, the larger the 
relative overhead to begin and end the transactions. In 
particular, beginning a transaction suffers from the overhead of 
not only TBEGIN but also the surrounding code in Fig. 1. 

The best transaction length depends on each yield point. If 
the intervals (i.e. the number of bytecode instructions) between 
the subsequent yield points are small, then the lengths of the 
transactions starting at the current yield point should be long. 
As another example, suppose there are three consecutive yield 
points, A, B, and C. If the code between B and C contains a 
restricted instruction, then the length of any transaction starting 
at A should be one. If the length was two or more, then the 
transactions would definitely abort. 

2) Adjustment algorithm 
We propose a mechanism to adjust the transaction lengths 

on a per-yield-point basis. The transaction length is initialized 
to a certain large number at each yield point. The abort ratios 
of the transactions starting at each yield point are monitored. If 
the abort ratio is above a threshold at a particular yield point, 
then the transaction length is shortened. This process continues 
during a profiling period until the abort ratio falls below the 
threshold. 

The set_transaction_length() function in Fig. 3 is invoked 
from Line 5 in Fig. 1 before each transaction begins. The 
parameter pc is the program counter of the yield-point 
bytecode from which this transaction is about to start. If the 
Ruby interpreter is configured to use a constant transaction 
length, that constant value is assigned to the transaction length 

(yield_point_counter) at Line 3. Otherwise, the yield-point-
specific length is assigned at Line 7. If it has not yet been 
initialized, then a pre-defined long length is assigned (Lines 5-
6). To calculate the abort ratio, this function also counts the 
number of the transactions started at each yield point (Line 9). 
To avoid the overhead of monitoring the abort ratio after the 
program reaches a steady state, there is an upper bound for the 
counter (Line 8).  

The adjust_transaction_length() function is called when a 
transaction aborts for the first time (Line 19 in Fig. 1). If the 
transaction length has not yet reached the minimum value 1 
(Line 13), and if this is during a profiling period (Line 14), then 
the abort ratio is checked and updated (Lines 16-17). If the 
number of aborts in the transactions started from the current 
yield point exceeds a threshold (Line 16) before the PROFIL-
ING_PERIOD number of transactions began, then the 
transaction length is shortened (Line 19). The two counters to 
monitor the abort ratio are reset (Lines 20-21), to extend the 
profiling period. 

Note that even when the execution reverts to the GIL, the 
length of the transaction is unchanged. If the current length is 3, 
for example, the current thread passes through 2 yield points 
and releases the GIL at the third one. 

3) Implementation 
We allocate additional arrays to associate the three 

variables used in Fig. 3 with each yield point, that is, 
transaction_length, transaction_counter, and abort_counter. 
The additional arrays are the same size as the bytecode-
sequence arrays for each method or block. From each yield-
point bytecode, the associated variables can be accessed easily 
at the same offset in the additional array. This implementation 
works for the Ruby NAS Parallel Benchmarks, but a more 
memory-efficient structure would be required for larger 
applications. These variables are referenced and updated 
outside of the transactions, but they could still cause conflicts 
on the memory bus. Therefore, we limit the accesses only to 
the profiling periods (Line 8 in Fig. 3). 

We needed to modify only 6 source-code files among the 
125 files of the CRuby interpreter to implement the algorithms 
in Sections IV.A, B, and C. 

D. Conflict Removal 

To obtain better scalability with the HTM, any transaction 
conflicts must be removed. We fixed five major sources of 
conflicts in CRuby, which appeared one by one. Removing the 
first conflict source exposed the second one, and so on. Each of 
the five conflict removals was limited to a few dozen modified 
lines in the source code. 

The most severe conflicts happened at global variables 
pointing to the Ruby-thread structure of the running thread. 
Immediately after the GIL is acquired, the global variables 
point to the running thread. If multiple threads write to these 
variables every time any transaction begins, they will cause 
many store conflicts. Therefore we moved these variables from 
the global scope to the Pthread thread-local storage. 

The second source of severe conflicts is the head of the 
single global linked list of free objects. CRuby allocates each 

 1. set_transaction_length(current_thread, pc) {
2. if (transaction length is constant) {
3. current_thread->yield_point_counter = 

TRANSACTION_LENGTH;
4. } else {
5. if (transaction_length[pc] == 0)
6. transaction_length[pc] = 

INITIAL_TRANSACTION_LENGTH;
7. current_thread->yield_point_counter = 

transaction_length[pc];
8. if (transaction_counter[pc] < PROFILING_PERIOD)
9. transaction_counter[pc]++;
10. }

11. adjust_transaction_length(pc) {
12. if (transaction length is NOT constant &&
13. transaction_length[pc] > 1 &&
14. transaction_counter[pc] <= PROFILING_PERIOD) {
15. num_aborts = abort_counter[pc];
16. if (num_aborts <= ADJUSTMENT_THRESHOLD) {
17. abort_counter[pc] = num_aborts + 1;
18. } else {
19. transaction_length[pc] =

transaction_length[pc] * ATTENUATION_RATE;
20. transaction_counter[pc] = 0;
21. abort_counter[pc] = 0;
22. }
23. }
24. }  

Fig.3. Algorithm to set and adjust a transaction length. 
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new object from the head of the list. This mechanism obviously 
causes conflicts in multi-threaded execution. We modified 
CRuby’s memory allocator, so that each thread maintains a 
short thread-local free list. A specified number (256, in our 
implementation) of objects are moved in bulk from the global 
free list to the thread-local free list, and each new object is 
allocated on a thread-local basis, without conflicts. 

Garbage collection (GC) is the third conflict point. The 
mark-and-sweep GC in CRuby is not parallelized. GC will 
cause conflicts if invoked from multiple transactions. Even if it 
is triggered from one transaction, the transaction size will 
overflow. This implies that GC is always executed with the 
GIL acquired. To mitigate the serialization by GC, we reduced 
the frequency of GC by increasing the initial Ruby heap size. 
We changed the initial number of free objects from 10,000 to 
10,000,000, which corresponded to about 400 MB on z/OS. 

Fourth, inline caches cause aborts when they miss. CRuby 
searches a hash table to invoke a method or to access an 
instance variable. To cache the search result, a one-entry inline 
cache is collocated with each method-invocation and instance-
variable-access bytecode. Since the inline caches are shared 
among threads, an update to an inline cache at the time of a 
cache miss can result in a transaction conflict. We reduced the 
cache misses at instance-variable accesses by changing the 
inline cache guard from a class-equality check to an instance-
variable-table equality check, because some classes share the 
same instance-variable table. Because we could not use the 
same technique at method invocations, we changed the caching 
logic so that each cache is filled only at the first miss.  

Finally, as we added frequently updated fields, such as 
yield_point_counter (Line 10 in Fig. 2), to CRuby’s thread 
structures, they began to cause false sharing. We avoided this 
by aligning the thread structures to the cache line boundaries. 

E. Platform-Specific Optimizations 

The fallback GIL is far more frequently acquired and 
released than the original GIL. The original is acquired and 
released roughly every 250 msec, while the fallback GIL is 
whenever a persistent abort or excessive transient aborts 
happen. If each thread went to sleep in the OS each time it 
failed to acquire the GIL, then it would significantly degrade 
the parallelism. This is because even when the GIL is released 
and a waiting thread is notified, the thread cannot immediately 
wake up and return to the user-space. Therefore, we added the 
spin-waiting before the original GIL logic in the gil_acquire() 
function (Lines 46-48 in Fig. 1) to briefly keep the thread 
waiting in the user space. In some platforms, the mutex lock in 
the native thread library already implements this mechanism. 
In those platforms, this optimization is unnecessary. Also note 
that this optimization does not speed up the original GIL, 
which is infrequently acquired and released. 

The setjmp() function on the z/OS USS includes the Set 
Address Space Control (SAC) instruction, which is not allowed 
in a transaction. CRuby uses the setjmp() function to 
implement exception jumps and to save the register contents. 
The saved registers are later scanned by the garbage collector 
as part of the root set. For both of these usages, we found it 
suffices to save the contents of the general-purpose registers in 

a buffer. Therefore, we replaced the calls to the setjmp() 
function with calls to our own implementation, effectively 
avoiding aborts due to the restricted instruction. 

V. EXPERIMENTAL RESULTS 

This section describes our implementation for the z/OS 
UNIX System Services (USS) on zEC12. Then our 
experimental results are presented for our micro-benchmarks 
and the Ruby NAS Parallel Benchmarks (NPB) [21]. 

A. Implementation 

We ported CRuby 1.9.3-p194 into the USS of z/OS 1.13. 
The building process for CRuby first builds a core subset of the 
Ruby interpreter, called miniruby, which implements all of 
Ruby’s language features but supports only the core class 
library. This miniruby is then used to generate Makefiles and 
some C source code for the extension libraries. All of our 
experiments used miniruby, because we encountered problems 
in building the extension libraries, mainly due to the EBCDIC 
character encoding used in the mainframe. Miniruby is capable 
of running the NPB. 

We implemented our algorithms and optimizations 
explained in Section IV in the ported CRuby. For the conflict 
removals in Section IV.D and the platform-specific 
optimizations in Section IV.E, we implemented the thread-
local free lists in the original CRuby too, although they did not 
affect the performance. For fair comparison, we replaced the 
setjmp() calls in the original CRuby with our own 
implementation because it improved the performance. We 
tested a back-port to the original CRuby of the global variable 
removal, the changes in the inline caches, and the spin-lock 
before the GIL but found they degraded the performance. The 
new yield points (Section IV.B) were not added in the original 
CRuby because they would increase the overhead without any 
benefit. In all of the experiments, the initial Ruby heap size 
was set to 10,000,000, using the RUBY_HEAP_MIN_SLOTS 
environmental variable. 

The values of TRANSIENT_RETRY_MAX and 
GIL_RETRY_MAX in Fig. 1 were set to 3 and 16, 
respectively. In our preliminary experiments, it was unlikely 
that a transaction would ever succeed after 3-or-more 
consecutive transient aborts. In contrast, a thread should wait 
more patiently for the GIL release, because the GIL will 
eventually be released and the fallback to GIL is very slow.  
The INITIAL_TRANSACTION_LENGTH from Fig. 3 was 
set to 255, and the PROFILING_PERIOD to 300. Unless set to 
extremely large values, these constants did not affect the 
performance. Our target abort ratio was 1%, so 
ADJUSTMENT_THRESHOLD (Line 16 in Fig. 3) was set to 
3, which meant that the ADJUSTMENT_THRESHOLD / 
PROFILING_PERIOD = 3 / 300 = 1%. The 
ATTENUATION_RATE (Line 19 in Fig. 3) was set to 0.75. 

B. Experimental Environment 

We evaluated our GIL elimination using the HTM in 
zEC12 [30]. The experimental system was divided into 
multiple Logical PARtitions (LPARs), and each LPAR 
corresponds to a virtual machine. Our LPAR was assigned 12 
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cores, all running at 5.5 GHz. Although the system was not 
totally dedicated to our experiments, no other process was 
running at the time of the experiments, and the performance 
fluctuations were negligible. 

C. Benchmarks 

We measured two micro-benchmarks and 7 programs in the 
Ruby NPB. We ran them four times and took the averages. 

The two micro-benchmarks are similar to the Python 
benchmarks used in [31]. Both of the micro-benchmarks are 
embarrassingly parallel. The top of Fig. 4 shows the workloads 
of each thread. The While benchmark uses a while statement. 
The Iterator benchmark uses an iterator that takes a block 
construct as an argument. Block constructs are almost the same 
as methods in CRuby, which means the Iterator benchmark 
contains a method invocation in its innermost loop. These 
benchmarks are useful to assess how the HTM works for these 
embarrassingly parallel programs.  

The Ruby NPB [21] was semi-automatically translated 
from the Java version of the NPB version 3.0 [20]. It contains 7 
programs, BT, CG, FT, IS, LU, MG, and SP. We chose the 
class size W for IS and MG and S for the other programs. With 
these sizes, the programs took 10 to 300 seconds to finish.  

The NPB programs are composed of serialized sections and 
multi-threaded sections. To investigate their scalability 
characteristics, we ran the Ruby NPB on JRuby 1.7.3 [16] as 
well as the original Java NPB. JRuby is an alternative 
implementation of the Ruby language written in Java. JRuby is 
suitable as a comparison target for HTM because it minimizes 
its internal scalability bottlenecks by using fine-grained locking 
instead of the GIL. Note that this means JRuby sacrifices its 
compatibility with CRuby, as discussed in Section VI. Because 
JRuby does not support the EBCDIC character encoding on 
z/OS, we measured it on a 12-core 2.93 GHz Intel Xeon 
machine (with hyper-threading disabled) running Linux and 
HotSpot Server VM 1.7.0_06.  

The Java version of the NPB is useful for estimating the 
scalability of the application programs themselves, because the 
Java VM has even fewer VM-internal scalability bottlenecks 
than JRuby. We ran the Java NPB on the same Xeon machine, 
using IBM J9 VM 1.7.0 SR3. Since the class sizes of S and W 
are small and Java is much faster than Ruby, each run of the 
Java NPB took only several seconds. To give the just-in-time 
compiler time to compile the methods at high optimization 
levels, we invoked each NPB program multiple times for 2 
minutes in a single run on the Java VM and calculated the 
average of the execution times of the invocations. 

D. Results of Micro-Benchmarks 

We first show the scalability results of the micro-
benchmarks and then their single-thread performance. 

1) Scalability 
The middle of Fig. 4 shows the throughput, with the 

number of threads set to 1 to 2, 4, 6, 8, and 12. HTM-1, -16, 
and -256 denote the fixed transaction lengths of 1, 16, and 256, 
respectively. These configurations correspond to Lines 2-3 in 
Fig. 3. HTM-dynamic uses the dynamic transaction-length 

adjustment described in Section IV.C. The throughput results 
are normalized to the 1-thread GIL.  

The best HTM configurations for each benchmark achieved 
an 11- and 10-fold speed-ups over the GIL using 12 threads in 
the While and Iterator benchmarks, respectively. These results 
are better than the previous study [31] of Python on Sun’s 
Rock processor. In that study, the While and Iterator 
benchmarks showed only 4.5- and 7-fold speed-ups, 
respectively, over the GIL with 16 threads. This was due to 
their implementation’s large single-thread overhead. 

Among the four HTM configurations, HTM-dynamic 
delivered performance close to the best of the other three 
configurations. In the While benchmark, HTM-1 incurred the 
overhead to begin and end the transactions because the number 
of instructions (both in bytecode and in native CPU) between 
the yield points was small in this benchmark. In contrast, the 
innermost loop of the Iterator benchmark contained a method 
invocation, which is a complex operation in CRuby. Therefore, 
even with HTM-1, the relative overhead to begin and end the 
transactions was not as large as in the While benchmark. 
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Fig.4. (Top) The two embarrassingly parallel micro-benchmarks. (Middle) 
Throughput of the two micro-benchmarks, normalized to the GIL with 1 thread. 
The HTM achieved 11- and 10-fold speed-ups on 12 cores. (Bottom) Single-
thread performance of the micro-benchmarks. The HTM suffered from at least 
5-14% overhead because of the additional yield points  and the checking 
operation at each yield point. 
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2) Single-thread performance 
The bottom of Fig. 4 presents the single-thread 

performance. Since aborts were rare swith one thread, these 
results expose the overhead of the yield-point operation in Fig. 
3 as well as the overhead to begin and end the transactions. The 
term “a single thread” has two meanings in this experiment. On 
one hand, if the main application thread executes the workload 
functions in Fig. 4, then there is truly only one live application 
thread in the interpreter. In this case, the original CRuby does 
not perform any yield operations, and neither does our 
interpreter, but always uses the GIL (Lines 2-3 in Fig. 1 and 
Line 9 in Fig. 2). “GIL/main thread only” and “HTM/main 
thread only” in Fig. 4 correspond to this case. On the other 
hand, if the main application thread spawns another thread to 
execute the workload functions and goes to sleep, then there 
are two live application threads, although only one of them is 
running. In this case, the optimization is not enabled, and our 
interpreter uses the HTM. The original CRuby has a further 
optimization so that if there is only one thread running and the 
others are asleep, then it does not perform any yield operations. 
GIL, HTM-1, -16, -256, and HTM-dynamic in Fig. 4 and 
throughout this paper correspond to this case.  

The results at the bottom of Fig. 4 show that even without 
using the HTM, “HTM/main thread only” incurred 5% to 14% 
overhead. This was due to the checking operation in Line 9 of 
Fig. 2 and the new yield points described in Section IV.B. If 
the transactions end and begin at each yield point, as in HTM-1, 
the additional overhead is 74% and 20% in the While and 
Iterator benchmarks, respectively. Most of the overhead was 
due not to the TBEGIN and TEND instructions but to the code 
surrounding them. GIL and “GIL/main thread only” had the 
same performance, as expected.  

E. Results of the NAS Parallel Benchmarks 

Fig. 5 shows the throughput of the Ruby NAS Parallel 
Benchmarks, normalized to GIL with 1 thread. HTM-dynamic 

showed  up to a 4.4-fold speed-up in FT with 12 threads and at 
the minimum 1.9-fold speed-ups in CG, IS, and LU. From the 
four HTM configurations, HTM-dynamic was almost always 
the best or close to the best. HTM-dynamic was 18% faster 
than HTM-16 in FT with 12 threads. HTM-1 was worse than 
HTM-dynamic because of its larger overhead, although its 
abort ratios were lower. HTM-256 showed almost no 
scalability. Due to its excessively long transaction lengths, its 
abort ratios were above 90%, and the execution almost always 
fell back on the GIL. HTM-16 was the best among the fixed-
transaction-length configurations, but it incurred more conflict 
aborts as the number of threads increased.  

In summary, using HTM-dynamic, users do not need to 
specify different transaction lengths for different programs and 
numbers of threads to obtain near optimal performance. With 
12 threads, 40% of the frequently executed yield points had the 
transaction length of 1 in the Ruby NPB. That means HTM-
dynamic effectively chose better lengths for the other points. 

If the new yield points were not added as described in 
Section IV.B, all of the benchmarks except for CG suffered 
from more than 20% slow-downs compared with the GIL. 
Without the conflict removals in Section IV.D, the HTM 
provided no acceleration in any of the benchmarks. 

F. Further Improvement Opportunities 

We present the abort ratios and cycle breakdowns of HTM-
dynamic in Fig. 6. The abort ratios were mostly below 2% 
regardless of the number of threads, indicating that HTM-
dynamic successfully adjusted the transaction lengths with 1% 
as a target abort ratio (Section V.A). 

The cycle breakdowns of 12-thread HTM-dynamic in Fig. 
6 show that the time spent waiting for the GIL release was 
longer than the time for cycles wasted on aborted transactions. 
The cycle breakdown of IS does not represent its actual 
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Fig.5. Throughput of the Ruby NAS Parallel Benchmarks, normalized to the GIL with 1 thread. HTM-1, -16, and -256 ran transactions of fixed lengths 1, 16, and 
256, respectively. HTM-dynamic uses our proposed dynamic transaction-length adjustment. 
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execution, because 79% of its time was spent in data 
initialization, which was outside of the measurement period. 

Investigation on the abort reasons that caused the GIL to be 
acquired revealed that fetch (read-set) conflicts accounted for 
more than 80% in all of the benchmarks with 12 threads. 
Except for IS, more than 50% of those fetch conflicts occurred 
at the time of object allocation. Even with the thread-local free 
lists described in Section IV.D, the global free list still needed 
occasional manipulation. Also, when the global free list 
became empty, lazy sweeping of the heap was triggered and 
caused more conflicts. All of the benchmarks other than IS 
heavily use floating-point numbers, which are implemented as 
objects in CRuby 1.9.3. Because the latest CRuby 2.0 
represents floating-point numbers as unboxed values, we 
believe most of these conflicts have been eliminated. 

To overcome the conflicts at the general object allocation, 
the global free list must be eliminated. When a thread-local 
free list becomes empty, the lazy sweeping should be done on a 
thread-local basis. GC should also be parallelized or thread-
localized. The HTM can be utilized as a synchronization 
mechanism during GC. 

The single-thread overhead of the HTM against the GIL 
was 25% to 35% in Fig. 5. These numbers were even worse 
than the results of the micro-benchmarks in Fig. 4. This was 
because the Ruby NPB exposed two more overhead sources. 
First, Fig. 6 shows the Ruby NPB incurred 1.2% to 2.5% abort 
ratios even with a single thread. About 40% of the aborts were 
due to store overflows and 30% due to external interrupts. Both 
of these kinds of aborts can be reduced by shortening the 
transaction lengths, but at the cost of increased relative 
overhead in beginning and ending the transactions. Second, 
access to Pthread’s thread-local storage accounted for 9% of 
the total execution cycles on average. As explained in Section 
IV.D, we moved several global variables to the thread-local 
storage. Unfortunately, the access function, 
pthread_getspecific(), is not optimized in z/OS USS, but it is 
highly tuned in some environments, including Linux.  

G. Scalability Characterization 

In spite of the large differences in the speed-ups among the 
7 programs in Fig. 5, their abort ratios and cycle breakdowns 
did not much differ in Fig. 6 and had little correlation with the 
speed-ups. These facts suggest that although the overall speed-
ups achieved by HTM-dynamic were limited by the conflicts at 
the time of object allocation, the differences among the 
programs were due to their inherent scalability characteristics. 

In Fig. 7, we compare the scalability of HTM-dynamic, 
JRuby, and the Java NPB, from which the Ruby NPB was 
translated. The Java version did not scale well because we used 
the smallest or the second smallest problem size in our 
experiments. Since the Java version was 10 to 100 times faster 
than the Ruby version, the parallelization overhead negated the 
speed-ups in such small problems. 

Fig. 7 shows that HTM-dynamic resembled the Java NPB 
rather than JRuby in terms of the scalability. These results 
confirmed that the differences in the speed-ups by HTM-
dynamic among the benchmarks originated from each 
program’s own scalability characteristics. We tried to run 
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Fig.7. Scalability comparison of the Ruby NAS Parallel Benchmarks on HTM-dynamic/CRuby, fine-grained locking/JRuby, and the Java NAS Parallel 
Benchmarks. JRuby and the Java version ran on 12-core Intel Xeon X5670 (Westmere-EP 2.93GHz, no hyper-threading). 
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larger problems in the Ruby NPB, but the execution times were 
prohibitively long. When compared with JRuby, HTM-
dynamic achieved the same scalability on average: 3.6-fold 
with HTM-dynamic and 3.5-fold with JRuby, running 12 
threads  (not shown in the figure). We guess the characteristics 
of each benchmark were different between HTM-dynamic and 
JRuby because of JRuby’s internal scalability bottlenecks. 

Overall, the GIL elimination through HTM is an effective 
technique to deliver higher multi-thread performance than the 
GIL with a small implementation cost. As discussed in Section 
IV.C and IV.D, we needed to modify only a limited number of 
source-code files to replace the GIL with the HTM, and each 
conflict removal modified at most a few dozen lines of code. 

VI. RELATED WORK 

Riley et al. [27] used HTM to eliminate the GIL in PyPy, 
one of the implementations of the Python language. However, 
because they experimented with only two micro-benchmarks 
on a non-cycle-accurate simulator, it is hard to assess how their 
implementation would behave on real HTM. Tabba [31] used 
the HTM of an early-access version of Sun’s Rock processor to 
remove the GIL in the original Python interpreter. Although 
their measurements were on real hardware, they ran only three 
synthetic micro-benchmarks. Also, the HTM on Rock had a 
severe limitation in that transactions could not contain any 
function returns or tolerate TLB misses. These prototype 
results cannot be extended to real-world applications. This 
paper is the first to evaluate larger benchmarks on less-
restrictive HTM hardware.  

RETCON [1] applied speculative lock elision to the GIL in 
Python. The focus of the work was on reducing conflicts due to 
reference-counting GC by symbolic re-execution. By avoiding 
the conflicts, RETCON achieved a 25-fold speed-up with 32 
processors for a micro-benchmark. However, because it was 
evaluated on a simulator supporting an unlimited transaction 
size, the aborts in the experiment were mostly due to conflicts. 
In our experience with a real HTM implementation, the 
effectiveness of GIL elimination is limited by overflows and 
various other types of aborts. Thus the dynamic transaction-
length adjustment is necessary. 

Dice et al. [5] evaluated a variety of programs using HTM 
on an early-access version of the Sun Rock processor. Wang et 
al. [33] measured the STAMP benchmarks [19] on the HTM in 
Blue Gene/Q. Neither of these evaluations covered GIL 
elimination for scripting languages. 

Some alternative implementations of the Ruby and Python 
languages [12,13,16,17,28] use or are going to use fine-grained 
locking instead of the GIL. JRuby [16] maps Ruby threads to 
Java threads and then uses concurrent libraries and 
synchronized blocks and methods in Java to protect the internal 
data structures. However, JRuby has two types of 
incompatibility with CRuby. First, while some of the standard-
library classes in CRuby are written in C and are implicitly 
protected by the GIL, JRuby rewrites them in Java and leaves 
them unsynchronized for performance reasons. Thus any multi-
threaded programs that depend on the implicitly protected 
standard-library classes in CRuby may behave differently in 
JRuby. Second, because JRuby does not support CRuby-

compatible extension libraries, it does not need the GIL to 
protect the thread-unsafe extension libraries. The current 
version 1.2.4 of Rubinius [28] has the GIL, but there are plans 
to remove it in a future version. However, the Rubinius support 
for the CRuby-compatible extension libraries conflicts with 
removing the GIL completely. In contrast, replacing the GIL 
with HTM creates no compatibility problems in the libraries. 
PyPy is planning to eliminate the GIL by using software 
transactional memory [24], but it is unclear whether the 
scalability improvement can offset the overhead of the 
software transactional memory.  

Because of the GIL, programmers who need to exploit 
multiple cores in Ruby or Python have been using multi-
processing. Whether or not multi-threading is better than multi-
processing is beyond the scope of this paper, but the 
implementations of general-purpose languages should not 
inhibit a particular programming model because of their 
implementation-specific reasons. 

Scripting languages other than Ruby and Python mostly do 
not have a GIL, but that is because they do not support shared-
memory multi-thread programming, and thus their 
programming capabilities are limited on multi-core systems. 
Perl’s ithreads clone the entire interpreter and its data when a 
thread is created, and any data sharing among threads must be 
explicitly declared as such [22]. The cloning makes a GIL 
unnecessary, but it is as heavy as fork() and restricts shared-
memory programming. Lua [18] does not support multi-
threading but uses coroutines. The coroutines switch among 
themselves by explicitly calling a yield function. This means 
they never run simultaneously and do not require a GIL. 
JavaScript (AKA ECMAScript) [6] does not support multi-
threading, so the programs must be written in an asynchronous 
event-handling style. 

VII.  CONCLUSION AND FUTURE WORK 

This paper shows the first empirical results of eliminating 
the Global Interpreter Lock (GIL) in a scripting language 
through a real Hardware Transactional Memory (HTM) to 
improve the multi-thread performance of realistic programs. 
We eliminated the GIL in Ruby using the HTM facilities in the 
mainframe processor zEC12 and evaluated the Ruby NAS 
Parallel Benchmarks (NPB) and some micro-benchmarks. We 
proposed a new automatic mechanism to dynamically adjust 
the transaction lengths on a per-yield-point basis. Our 
mechanism chose a near optimal tradeoff point between the 
relative overhead of the instructions to begin and end the 
transactions and the likelihood of transaction conflicts and 
overflows. Our results show that HTM achieved a 11-fold 
speed-up over the GIL with 12 threads in the micro-
benchmarks and up to a 4.4-fold speed-up in the Ruby NPB 
programs. The dynamic transaction-length adjustment 
improved the throughput by up to 18%. From these results, we 
concluded that HTM is an effective approach to achieve higher 
multi-thread performance than the GIL at a small 
implementation cost. We also discussed further improvement 
opportunities for HTM. 

In addition to the performance improvement, the 
interactions between just-in-time-compiled code and the HTM-
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based GIL elimination must be studied further. Finally, we plan 
to measure Web-related workloads such as WEBrick and Ruby 
on Rails once we succeed in building CRuby’s extension 
libraries on z/OS USS. 
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