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Abstract—Many scripting languages use Global Interpreter
Locks (GIL) to simplify the internal designs of ther interpreters,
but this kind of lock severely lowers the multi-thread
performance on multi-core machines. This paper shosvthe first
results eliminating the GIL in Ruby using the Hardware
Transactional Memory (HTM) in the new mainframe
zEnterprise EC12 processor. Though prior prototypesreplaced
the GIL with HTM, we tested realistic programs, the Ruby NAS
Parallel Benchmarks (NPB), as well as micro-benchmks. We
devised a new technique to dynamically adjust theransaction
lengths on a per-bytecode basis, so that we can amtatically
optimize the likelihood of transaction aborts agaist the relative
overhead of the instructions to begin and end therdnsactions.
Our current results show that HTM achieved an 11-ftd speed-
up over the GIL on 12 cores in the micro-benchmarksand 1.9- to
4.4-fold speed-ups in the NPB programs. The dynamic
transaction-length adjustment improved the throughpt by up to
18%. Our investigation on the scalability and overlead revealed
further optimization opportunities.

Keywords— global interpreter lock; hardware trangamnal
memory; Ruby; lock elision

. INTRODUCTION

Scripting languages such as Ruby [29] and Pythdj [2
offer high productivity [7, 23], but at the cost alow
performance. The single-thread performance is dichitecause
of interpreted execution, dynamic typing, and thpport for
meta-programming. Many projects [13,28,32] attentpt
overcome these limitations through Just-in-Time TYJI
compilation with type specialization.

Meanwhile, the multi-thread performance of the oy
languages is restricted due to GBebal Interpreter Lock (GIL),
or theGiant VM Lock (GVL) in Ruby’s terminology. Although
each application thread is mapped to a native dhrealy the
single thread that acquired the GIL can actually. Wit pre-
defined yield points, each thread releases the @Hlds the
CPU to another runnable thread if any exists, anent
reacquires the GIL. The GIL eases the programmihthe
interpreters’ internal logic and the extensiondilies because
they do not need to worry about concurrency. lnirretthe
GIL significantly limits the performance on multi@ systems.
Some new implementations of the Ruby and Pythoguages
[12,13,16,17] use complex fine-grained locking émove the
GIL. However, their class libraries still need te blobally
protected to remain compatible with the
implementations of the languages. As a resulttyp&al use
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of the scripting languages is a multi-process aggiio For
example, in Web frameworks, a Web server instagiatany
instances of the interpreter to handle the requesker than
relying on the multi-thread features of the langsag

Transactional memory has been proposed as anatltern
way to eliminate global locking without requiriniget complex
semantics of fine-grained locking. In transactioma&mory, a
programmer encloses critical sections with tramsacbegin
and end directives. A transaction is executed atalfyiso that
its memory operations appear to be performed inglesstep.
Transactions can be executed concurrently as lengheir
memory operations do not conflict, so that trarieaet
memory can outperform global locking. Although sadational
memory is attractive for its potential concurrengyire
software implementations are slow [2].

Chipmakers in the industry regard transactional orgras
a promising technology for parallel programminghe multi-
core era and are designing or producing hardwane
transactional memory, called Hardware Transactitedhory

fo

(HTM). The Azul Vega processer uses HTM to replace

contended Java locks [4]. Sun announced the Raméepsor
with a limited HTM facility [3], though the process was
cancelled before release into the market. Intel ligiodd
documentation for an instruction set called Tratisaal
Synchronization Extensions [11] and implementednitthe
Haswell processor.
mainframe processor zEnterprise EC12 (zEC12) wiffivMH
support [8,30]. IBM also presented HTM extensiomsHower
ISA [9]. These HTM implementations will offer effiace

concurrency with low overhead. There were a coupfie
previous studies [1,27,31] on replacing the GlLadécripting
language with HTM, but none have ever measuredstieal
benchmarks on real HTM hardware.

This paper shows the empirical results of remotiegGIL
from Ruby using IBM's HTM implementation in zEC13(]
and measuring the NAS Parallel Benchmarks portedutoy
[21], in addition to micro-benchmarks. Our obtaimedults are
also applicable to other proposed HTM implementetio
Unlike the results [31] on the more restrictive HTo¥1Sun’s

IBM has released Blue Gene/Q and

Rock processor, the HTM implementation on which we

experimented is similar to the generic ones proghdsethe
literature, e.g. [26]. Transactional data is marksdsuch in a
CPU cache line, the conflict detection is incorpedainto a
|cache-coherence protocol, and the transactionaé wiata is
buffered in a CPU cache.



To reduce transaction aborts and overhead, we peopo
new technique to dynamically adjust the transadiogths on

accordingly. When the abort is transient, e.g. bseaof a
conflict, simply retrying the transaction is likely succeed. On

a per-yield-point basis. On one hand, we desireg lonpersistent aborts, e.g. due to attempted execafiarrestricted

transactions as we amortize the overhead to beginead a
transaction. On the other hand, no HTM implemeoitaillows
for transactions of unlimited lengths, and longansactions
increase the amount of discarded work in caseaofsaction
aborts. As in the GIL, a transaction ends and fseginpre-
defined transaction yield points, but it need notsd at every
transaction yield point. We dynamically adjust thensaction
lengths, i.e. how many yield points to skip, basadhe abort
statistics of the transactions started at eacl yieint.

Our contributions are as follows:

« We proposed an algorithm for the GIL elimination to

adjust transaction lengths at each yield point.

instruction, the program should cancel the exeoutib the
transaction. Restricted instructions include systaiis and
access-register manipulation, but most of the morilgged
instructions are allowed. A transaction can alsaberted by
software with a TABORT instruction.

The programmer can specify the address of a 256-byt
memory in the operand of the TBEGIN instruction.isTh
memory area is called a Transaction Diagnostic IBIG®DB)
and is used for storing debug information whenaadaction
aborts. A TDB contains the abort reason code arel th
instruction virtual address where the abort waedet.

B. Micro-Architecture

* We implemented and evaluated the GIL elimination on  The Central Processor (CP) chip has 6 cores, aGP 6
a real machine that supports HTM, using real-worldchips are packaged in a multi-chip module (MCM). tdp4

applications in addition to micro-benchmarks.

* We eliminated the GIL from Ruby, going beyond prior
work focusing on Python. We also removed transactio

conflict points in the Ruby interpreter.

Section Il describes the HTM implementation useatin
studies and Section IIl explains Ruby's GIL implertsion.
Section 1V shows how we replaced the GIL with thEMHand
then reduced the overhead, leading to the expetahessults
in Section V. Section VI covers related work. SattiVIl
concludes this paper.

Il HTM IMPLEMENTATION

MCMs can be connected in a single cache-coheresiersy
Each core has 96-KB L1 and 1-MB L2 data cachesh Buo¢

L1 and L2 caches are store-through with 256-bytdedines.
The 6 cores on a CP chip share a 64-MB L3 cacheten®

CP chips share an off-chip 384-MB L4 cache includethe
same MCM. All four levels of the caches are inclesiEach
core supports a single hardware thread. The TBEGIN
instruction saves the general purpose registeasttansaction-
backup register file. The maximum nesting deptbbis

The HTM facilities of zEC12 are built on top of itache
structure. Each L1 data cache line is augmenteld igtown
tx-read and tx-dirty bits. A load instruction dugia transaction
sets a tx-read bit. Transactionally written datst@ed into the

We used the HTM in a new IBM mainframe zEC12 [29]L1 with an active tx-dirty bit. An abort is trigget if a cache-

for our studies. This section briefly describesittstruction set
architectures to support the HTM as well as its rmic
architecture implementation. A complete descriptaupeared
in [15]. The instruction set architecture is defirie [10].

A. Instruction Set Architecture

Each transaction begins with a TBEGIN instructiowl &
ended by a TEND instruction. Transactions can lstede In
that case, all of the transactions commit whendadbtermost
transaction commits (also called flattened nestinghe
TBEGIN instruction saves the general purpose regist

The TBEGIN instruction initially sets the conditiande to
0. If a transaction aborts, then the executionrnstback to the
instruction immediately after the outermost TBEGIAI of
the transactionally written data is discarded ane saved

coherency request from another CPU conflicts with a
transactionally read or written line. This mean£2E uses an
eager abort scheme and provides strong atomicityarOabort,

all of the lines whose tx-dirty bits are set arealidated. The
general purpose registers are restored from thesadciion
backup register file.

A special LRU-extension vector records the linest tre
transactionally read but evicted from the L1. Thime
maximum read-set size is roughly the size of the TRe
transactionally written data is buffered in the l@gsing Store
Cache between the L1 and the L2/L3. The maximurtevaet
size is limited to the cache size, which is 8 KB.

lll.  RuBY IMPLEMENTATION
This section introduces the Ruby language andritgnal

general purpose registers are restored. The hadwajmplementation, often called CRuby, and describew ithe

transaction facilities also set the condition cdade2 or 3,
depending on whether the cause of the abort isiganor
persistent, respectively. Therefore, a programcsihi checks
the condition code immediately after TBEGIN and paro a
fallback path if it is not 0.

GIL works in CRuby. Our description is based on 6Ru
1.9.3-p194.

A. The Ruby language and CRuby
Ruby is a modern object-oriented scripting languhge is

A transaction can abort for various reasons. Thestmo widely known as part of the Ruby on Rails Web aggtlon

frequent causes include external interrupts, owed| conflicts,
and restricted instructions. Aborts are classifigsl either
transient or persistent by the CPU and the conditmde is set

framework. Nevertheless, Ruby is a general-purpesguage
that has many features in common with other sagpti
languages such as JavaScript, Python, or Perlexblii,



dynamic type system; meta-programming; closurest an
extensive standard runtime library.

The reference Ruby implementation [29] is calleduBR
which is written in the C language. The recent asés of
CRuby use a stack-based virtual machine. Ruby dsede
compiled into an internal bytecode representationuatime.
On the mainframe platform CRuby uses a large svatde
statement to interpret the bytecode.

B. The GIL in CRuby

The Ruby language supports multi-threaded programmi
through objects of the standard Thread class trathsonize
through standard concurrency constructs like Mutax
ConditionVariable objects. Since CRuby 1.9, thesrpteter
supports native threads, where each Ruby applicdticead
maps to a kernel thread. In our studies, we pdciedby to the

Transactional Lock Elision (TLE) [5,26]. Like TLEour
algorithm retains the GIL as a fallback mechanignthread
first executes Ruby code as a transaction. If thashaction
aborts, the thread can retry the transaction, dépgron the
abort reason. If the transaction does not succéed several
retries, the thread uses the GIL to proceed.

Transactions should begin and end at the samespast
where the GIL is acquired, released, and yieldedabse those
points are guaranteed as safe critical-section demigs.
However, our preliminary experiments showed theginal
yield points in CRuby were too coarse-grained far HTM,
which caused overflows. Thus we added new yieldhtpoas
explained in Section IV.B.

We first show the algorithms to begin and end adaation
that replace the GIL acquisition and release, &@smdy. The
simple replacement causes many transaction abows tal

mainframe z/OS UNIX System Services (USS), whichconflicts and overflows. Therefore, in the latertpeof this

supports the POSIX interfaces. Thus each applicatioead
corresponds to a Pthread.

Unfortunately, the concurrency is limited. The mpreter
has a GIL, guaranteeing that only one applicatioead is
executing in the interpreter at any given time. TG&
eliminates the need for complex concurrency prognarg in
the interpreter and libraries. Unlike normal loakinwhich
holds a lock only during part of the execution, B&. is
almost always held by one of the application thseddring
execution and is released only when necessary pflication
thread acquires and releases the GIL when it stadsends,
respectively. It also releases the GIL when it ow to
perform a blocking operation, such as I/O, anccguires the
GIL again after the operation is finished.

However, if the GIL were released only at the biogk
operations, compute-intensive application threamsgdcnot be
switched with one another at all. Therefore, ataterpre-
defined points, the application thread vyields thél Gy
releasing the GIL, calling the sched_yield() systaihto yield
the CPU, and then acquiring the GIL again. To ieseaching
a yield point within a finite time, CRuby sets yeboints at
loop back-edges and each exit of a method and block

As an optimization, each application thread doe$ no

necessarily yield the GIL at every yield point, dese the yield
operation is heavyweight. To allow for occasion#&tlds,

CRuby runs a timer thread in background. It wakesvery
250 msec and sets a flag in the per-thread datetste of the
running application thread. Each application threhecks the
flag at each yield point and yields the GIL onlyemhit is set.
In addition, if there is only one application thdedahen no
yield operations will be performed at all.

In Python, the GIL is implemented in a similar wafhe
yield points are set in some of the bytecode ofmerst Instead
of using a timer thread, each application threams hhrough a
pre-defined number (100, by default) of yield psiftefore
yielding the GIL.

IV. GIL ELIMINATION THROUGHHTM
This section presents a new algorithm for elimimgtihe

section we introduce dynamic transaction-lengtlhistdjent.

A. Beginning and Ending a Transaction

Fig. 1 shows the algorithm to begin a transactidre GIL
status is tracked by the global variable GIL.acegiirwhich is
set to true when the GIL is acquired. The origi@®uby also
uses this global variable for the same purpose.

If there is no other live application thread in theerpreter,
then the algorithm reverts to the GIL (Lines 2-Bgcause
concurrency is unnecessary in this case. Otherwile,
algorithm first sets the length of the transactofe executed
(Line 5). This will be explained in Section IV.C.

Before beginning a transaction, the algorithm chkettle
GIL and if it has been acquired by some other threeits
until it is released (Lines 6-8 and 40-48). Thisds mandatory
but an optimization. Rather than uselessly rushimp a
transaction that will never succeed because the @#Hs
already acquired, the current thread should wait$aelease.

Lines 9 and 10 initialize local retry counters fomnsient
aborts and conflicts at the GIL, respectively. Thst_retry
flag (Line 11) is used to adjust the transactiamgte only at
the first retry (Lines 17-20).

The TBEGIN() function (Line 13) is a wrapper foreth
TBEGIN instruction described in Section II.A. Th8BEGIN()
function initially returns 0. If the transaction ats, the
execution returns back to within the TBEGIN() fuootand
then it returns an abort reason code, referriry T®B.

Lines 14-15 are within the transaction. As in thigioal
TLE, the transaction first reads the GIL (Line 1liBjo its
transaction read set, so that later the transactiarbe aborted
if the GIL is acquired by another thread. The teation must
abort immediately if the GIL is already acquirecechuse
otherwise the transaction could read data beingfiadd

Lines 16-37 are for abort handling. We describeskid7-
20 in Section IV.C. If the GIL is acquired (Line)2there is a
conflict at the GIL. In the same way as in Line8,8-ines 22-
27 waits until the GIL is released. The algorithinstftries to
use spin locking, but after GIL_RETRY_MAX-time aksrit

GIL by using an HTM. Our algorithm is based onforcibly acquires the GIL (Line 27). If the abos persistent,



transaction_begin(current_thread, pc) {

if (there is no other 1ive thread) {
gil_acquire(Q;

} else {
set_transaction_length(current_thread, pc);
if (GIL.acquired) {

if (spin_and_gil_acquire()) return;
}
transient_retry_counter = TRANSIENT_RETRY_MAX;
gil_retry_counter = GIL_RETRY_MAX;
first_retry = 1;

transaction_retry:

if ((tbegin_result = TBEGIN()) == 0) {
/* transactional path */
if (GIL.acquired) TABORT();

16. } else { /* abort path */

17. if (first_retry) {

18. first_retry = 0;

19. adjust_transaction_length(pc);
20. }

21. if (GIL.acquired) {

22. gil_retry_counter--;

23. if (gil_retry_counter > 0) {

24. if (spin_and_gil_acquire()) return;
25. else goto transaction_retry;
26.

27. gil_acquireQ;

28. } else if (is_persistent(tbegin_result)) {
29. gil_acquire(Q;

30. } else {

31. /* transient abort */

32. transient_retry_counter--;

33. if (transient_retry_counter > 0)
34. goto transaction_retry;

35. gil_acquireQ;

36. }

37. }

38. }

39. }

40. spin_and_gil_acquire() {

41. spin for a while until the GIL is released;
42. 4if (! GIL.acquired) return false;

43. gil_acquireQ;
44. return true;
45. }

46. gil_acquire() {
47. /* omitted. original GIL-acquisition logic. */
48. }

Fig. 1. Algorithm to begin a transaction.

retrying the transaction will not succeed, so thecetion

immediately reverts to the GIL (Lines 28-29). Th®d reason
code in the TDB is used to determine whether thertais

persistent. We regard overflows and restrictedriicibns as
persistent. The other abort reasons, such as cinfire
considered transient. For the transient aborts,retgy the
transaction TRANSIENT_RETRY_MAX times before fallin
back on the GIL (Lines 31-35).

Ending a transaction is much simpler than beginrdng
transaction, as shown in Fig. 2. The acquired Qling 2)
means this transaction has been executed not rassattion
but with the GIL being held. Thus the GIL must leéeased.
Otherwise, the TEND instruction is issued.

B. Yielding a Transaction

As described in Section 11I.B, the original
implementation has a timer thread to force yieldingong the
application threads. We no longer need the timeeath
because the application threads are running irflelauaing the
HTM, but we still need the yield points. Withouteth, some

CRuby

1. transaction_end() {

2. if (GIL.acquired) gil_release();

3. else TENDQ);

4. 3}

5. gil_release() {

6. /* omitted. oOriginal GIL-release logic */
7.

8. transaction_yield(current_thread, pc) {

9. if (there 1is other live thread) {

10. current_thread->yield_point_counter--;
11. if (current_thread->yield_point_counter == 0) {
12. transaction_end();

13. transaction_begin(current_thread, pc);
14.

15. }

16. }

Fig. 2. Algorithm to end and yield a transaction.

transactions would last so long that there would nieny
conflicts and overflows.

In our preliminary experiments, we found the oraiyield
points in CRuby were too coarse-grained for the H'Hd de-
scribed in Section 111.B, the original CRuby setsl¢ points at
branches and method and block exits. With onlyehgsld
points, most of the transactions abort due to storrflows.
Therefore, we defined the following bytecode typas
additional yield points: get local, getinstancezhie,
getclassvariable, send, opt_plus, opt_minus, opit, namnd
opt_aref. We chose these bytecodes because thegarapp
frequently in bytecode sequences or they consuntg/ IG&U
cycles. This means that in the NAS Parallel Benchmanore
than half of the bytecode instructions are nowdyints.

We also need to guarantee that the new yield panetsafe.
In language interpreters, the bytecode boundariesnatural
yield points. Because the bytecode instructions d¢en
generated in any orders, it is unlikely that théerpreters
internally have a critical section straddling a dungde
boundary. However, for applications that are inectty
synchronized, such as those assuming the GIL canelsed
only at branches or method exits, the new yielchigocan
change their behavior.

At each yield point, we call the transaction_yiglgfction
in Fig. 2, which simply calls the functions to eadd begin
transactions (Lines 12-13), but with two optimipas. First, as
described in Section III.B, no yield operation irformed if
there is only one application thread (Line 9). Nibtat the GIL
is used in this case (Line 3 of Fig. 1). Secondaasaction
does not yield at every yield point but only aféeset number
of yield points (using yield_point_counter) havesbepassed
(Lines 10-11). This optimization is described irc8m IV.C.
Unlike the original GIL-yield operation, we do nued to call
the sched_yield() system call, because the multipleads are
already running in parallel and the OS is schedutirem.

C. Dynamic Transaction-Length Adjustment

As shown in Fig. 2, each transaction will skip a
predetermined number of yield points before it entisis
means that the transaction lengths vary with tlegarity of
the yield points. The length of a transaction mdhesnumber
of yield points the transaction passes through phes



1. set_transaction_length(current_thread, pc) {

2. if (transaction length is constant) {

3. current_thread->yield_point_counter =
TRANSACTION_LENGTH;

4. } else {

5. if (transaction_length[pc] == 0)

6. transaction_length[pc] =
INITIAL_TRANSACTION_LENGTH;

7. current_thread->yield_point_counter =

transaction_length[pc];
8. if (transaction_counter[pc] < PROFILING_PERIOD)
9. transaction_counter[pc]l++;
10. }

11. adjust_transaction_length(pc) {
12. if (transaction Tength is NOT constant &&

13. transaction_length[pc] > 1 &

14. transaction_counter[pc] <= PROFILING_PERIOD) {

15. num_aborts = abort_counter[pc];

16. if (num_aborts <= ADJUSTMENT_THRESHOLD) {

17. abort_counter[pc] = num_aborts + 1;

18. } else {

19. transaction_length[pc] =
transaction_length[pc] * ATTENUATION_RATE;

20. transaction_counter[pc] = 0;

21. abort_counter[pc] = 0;

22. }

23.

24. }

Fig.3. Algorithm to set and adjust a transactiorgte.

1) Tradeoff in transaction length

In general, there are three reasons the total averhead
decreases as the transaction lengths shorten, thiesamount
of work that becomes useless and has to be ro#iell-bt the
time of an abort is smaller. Second, the probadslitof
overflows are smaller, because they depend onrtfwiat of
data accessed in each transaction. Third, if thecigion
reverts to the GIL, the serialized sections aretsho

In contrast, the shorter the transactions are Jatger the
relative overhead to begin and end the transactidéns
particular, beginning a transaction suffers from tiverhead of
not only TBEGIN but also the surrounding code ig. Hi.

The best transaction length depends on each yaid. pf
the intervals (i.e. the number of bytecode instanst) between
the subsequent yield points are small, then thgttesnof the
transactions starting at the current yield poirduith be long.
As another example, suppose there are three cdnseygield
points, A, B, and C. If the code between B and Gtaios a
restricted instruction, then the length of any $etion starting
at A should be one. If the length was two or mdinen the
transactions would definitely abort.

2) Adjustment algorithm

We propose a mechanism to adjust the transactiathe
on a per-yield-point basis. The transaction lengtimitialized
to a certain large number at each yield point. @bert ratios
of the transactions starting at each yield poietrapnitored. If
the abort ratio is above a threshold at a particyikeld point,
then the transaction length is shortened. Thisgg®continues
during a profiling period until the abort ratio l&albelow the
threshold.

The set_transaction_length() function in Fig. 3nigoked
from Line 5 in Fig. 1 before each transaction begifhe
parameter pc is the program counter of the vyieldtpo
bytecode from which this transaction is about trtstf the
Ruby interpreter is configured to use a constaas@action
length, that constant value is assigned to thesa&@tion length

(vield_point_counter) at Line 3. Otherwise, theldipoint-

specific length is assigned at Line 7. If it had et been
initialized, then a pre-defined long length is gasd (Lines 5-
6). To calculate the abort ratio, this functionoatounts the
number of the transactions started at each yieiat foine 9).

To avoid the overhead of monitoring the abort ratiter the
program reaches a steady state, there is an uppadHtor the
counter (Line 8).

The adjust_transaction_length() function is caleten a
transaction aborts for the first time (Line 19 iig.FL). If the
transaction length has not yet reached the minimmatae 1
(Line 13), and if this is during a profiling peri¢dine 14), then
the abort ratio is checked and updated (Lines 164f%he
number of aborts in the transactions started frben durrent
yield point exceeds a threshold (Line 16) before RIROFIL-
ING_PERIOD number of transactions began,
transaction length is shortened (Line 19). The twaonters to
monitor the abort ratio are reset (Lines 20-21)extend the
profiling period.

Note that even when the execution reverts to tHe Gl
length of the transaction is unchanged. If theenirtength is 3,
for example, the current thread passes throughel@ yioints
and releases the GIL at the third one.

3) Implementation

We allocate additional arrays to associate the ethre
variables used in Fig. 3 with each yield point, tths,
transaction_length, transaction_counter, and abounter.
The additional arrays are the same size as thecdmjee
sequence arrays for each method or block. From gizbth-
point bytecode, the associated variables can bessed easily
at the same offset in the additional array. Thipl@mentation
works for the Ruby NAS Parallel Benchmarks, but aren
memory-efficient structure would be required forrgker
applications. These variables are referenced andateg
outside of the transactions, but they could stlise conflicts
on the memory bus. Therefore, we limit the accessigs to
the profiling periods (Line 8 in Fig. 3).

We needed to modify only 6 source-code files amibreg
125 files of the CRuby interpreter to implement &hgorithms
in Sections IV.A, B, and C.

D. Conflict Removal

To obtain better scalability with the HTM, any tsaiction
conflicts must be removed. We fixed five major smsr of
conflicts in CRuby, which appeared one by one. Rengpthe
first conflict source exposed the second one, armhs Each of
the five conflict removals was limited to a few dazmodified
lines in the source code.

The most severe conflicts happened at global Jasab
pointing to the Ruby-thread structure of the rugnthread.
Immediately after the GIL is acquired, the globariables
point to the running thread. If multiple threadstento these
variables every time any transaction begins, thdly cause
many store conflicts. Therefore we moved theseabbes from
the global scope to the Pthread thread-local s¢orag

The second source of severe conflicts is the hdatieo
single global linked list of free objects. CRubjoahtes each

then the



new object from the head of the list. This mechamibviously
causes conflicts in multi-threaded execution. Wedifiex
CRuby’'s memory allocator, so that each thread ragista
short thread-local free list. A specified numbebg2in our
implementation) of objects are moved in bulk frdme global
free list to the thread-local free list, and ea@&wrobject is
allocated on a thread-local basis, without corglict

Garbage collection (GC) is the third conflict poifithe
mark-and-sweep GC in CRuby is not parallelized. @i
cause conflicts if invoked from multiple transaaso Even if it
is triggered from one transaction, the transactime will
overflow. This implies that GC is always executeithwthe
GIL acquired. To mitigate the serialization by G@ reduced
the frequency of GC by increasing the initial RutBap size.
We changed the initial number of free objects frbd000 to
10,000,000, which corresponded to about 400 MB/@%z

Fourth, inline caches cause aborts when they rGBsiby
searches a hash table to invoke a method or tosacae
instance variable. To cache the search resulteaeatry inline
cache is collocated with each method-invocation iasthnce-
variable-access bytecode. Since the inline cacheskared
among threads, an update to an inline cache atirttee of a
cache miss can result in a transaction conflict.réériced the
cache misses at instance-variable accesses by icbatip
inline cache guard from a class-equality checkrtonstance-
variable-table equality check, because some clads@e® the
same instance-variable table. Because we couldusetthe
same technique at method invocations, we changedatthing
logic so that each cache is filled only at thet fingss.

Finally, as we added frequently updated fields,hsas
yield_point_counter (Line 10 in Fig. 2), to CRubytlsread
structures, they began to cause false sharing. Wieled this
by aligning the thread structures to the cacheldmendaries.

E. Platform-Specific Optimizations

The fallback GIL is far more frequently acquireddan
released than the original GIL. The original is @woed and
released roughly every 250 msec, while the fallb&k is
whenever a persistent abort or excessive transibirts
happen. If each thread went to sleep in the OS &awh it
failed to acquire the GIL, then it would signifi¢gndegrade
the parallelism. This is because even when thei&leleased
and a waiting thread is notified, the thread canmobediately
wake up and return to the user-space. Therefor@dded the
spin-waiting before the original GIL logic in thd_gcquire()
function (Lines 46-48 in Fig. 1) to briefly keepethhread
waiting in the user space. In some platforms, thgemlock in
the native thread library already implements thischanism.
In those platforms, this optimization is unnecegsaAtso note
that this optimization does not speed up the oaigiBIL,
which is infrequently acquired and released.

The setjmp() function on the z/OS USS includes $le¢
Address Space Control (SAC) instruction, whichas allowed
in a transaction. CRuby uses the setjimp() function
implement exception jumps and to save the registaetents.
The saved registers are later scanned by the gadmigctor
as part of the root set. For both of these usagesfound it
suffices to save the contents of the general-perpegisters in

a buffer. Therefore, we replaced the calls to tegngp()
function with calls to our own implementation, effieely
avoiding aborts due to the restricted instruction.

V.

This section describes our implementation for theSz
UNIX System Services (USS) on zEC12. Then our
experimental results are presented for our micrchearks
and the Ruby NAS Parallel Benchmarks (NPB) [21].

EXPERIMENTAL RESULTS

A. Implementation

We ported CRuby 1.9.3-p194 into the USS of z/0.1.1
The building process for CRuby first builds a ceubset of the
Ruby interpreter, called miniruby, which implemera of
Ruby’'s language features but supports only the atess
library. This miniruby is then used to generate bfd&s and
some C source code for the extension libraries. oAliour
experiments used miniruby, because we encountecddems
in building the extension libraries, mainly duetihe@ EBCDIC
character encoding used in the mainframe. Minirslgapable
of running the NPB.

We implemented our algorithms and optimizations
explained in Section IV in the ported CRuby. Fag ttonflict
removals in Section IV.D and the platform-specific
optimizations in Section IV.E, we implemented theetd-
local free lists in the original CRuby too, althduiipey did not
affect the performance. For fair comparison, wdaegd the
setimp() calls in the original CRuby with our own
implementation because it improved the performantfe.
tested a back-port to the original CRuby of thebglosariable
removal, the changes in the inline caches, andsgire-lock
before the GIL but found they degraded the perfoiceaThe
new yield points (Section IV.B) were not addedhe briginal
CRuby because they would increase the overheaduwtitiny
benefit. In all of the experiments, the initial Bubeap size
was set to 10,000,000, using the RUBY_HEAP_MIN_SIOT
environmental variable.

The values of TRANSIENT _RETRY_MAX and
GIL_RETRY_MAX in Fig. 1 were set to 3 and 16,
respectively. In our preliminary experiments, itsmanlikely
that a transaction would ever succeed after 3-aemo
consecutive transient aborts. In contrast, a thetemlld wait
more patiently for the GIL release, because the @il
eventually be released and the fallback to GIL asyvslow.
The INITIAL_TRANSACTION_LENGTH from Fig. 3 was
set to 255, and the PROFILING_PERIOD to 300. Untetgo
extremely large values, these constants did nactfthe
performance. Our target abort ratio was 1%, so
ADJUSTMENT_THRESHOLD (Line 16 in Fig. 3) was set to
3, which meant that the ADJUSTMENT_THRESHOLD /
PROFILING_ PERIOD = 3 / 300 = 1%. The
ATTENUATION_RATE (Line 19 in Fig. 3) was set to 8.7

B. Experimental Environment

We evaluated our GIL elimination using the HTM in
ZEC12 [30]. The experimental system was dividedo int
multiple Logical PARtitions (LPARs), and each LPAR
corresponds to a virtual machine. Our LPAR wasgassl 12



cores, all running at 5.5 GHz. Although the systeas not
totally dedicated to our experiments, no other esscwas
running at the time of the experiments, and thdopgance
fluctuations were negligible.

C. Benchmarks

We measured two micro-benchmarks and 7 prograrigin
Ruby NPB. We ran them four times and took the ayesa

The two micro-benchmarks are similar to the Pyth
benchmarks used in [31]. Both of the micro-benchsare
embarrassingly parallel. The top of Fig. 4 shoveswlorkloads
of each thread. The While benchmark uses a wtalersient.
The Iterator benchmark uses an iterator that takdsock
construct as an argument. Block constructs arestlthe same
as methods in CRuby, which means the Iterator beadh
contains a method invocation in its innermost lodpese
benchmarks are useful to assess how the HTM workhése
embarrassingly parallel programs.

The Ruby NPB [21] was semi-automatically translat
from the Java version of the NPB version 3.0 [R0ontains 7
programs, BT, CG, FT, IS, LU, MG, and SP. We chtise
class size W for IS and MG and S for the other . With
these sizes, the programs took 10 to 300 secorfasdio.

The NPB programs are composed of serialized sectiod
multi-threaded sections. To investigate their duibig
characteristics, we ran the Ruby NPB on JRuby 1163 as
well as the original Java NPB. JRuby is an altéveat
implementation of the Ruby language written in JaNRuby is
suitable as a comparison target for HTM becausdgritmizes
its internal scalability bottlenecks by using figeained locking
instead of the GIL. Note that this means JRubyifees its
compatibility with CRuby, as discussed in SectidnBecause
JRuby does not support the EBCDIC character engodm
z/0OS, we measured it on a 12-core 2.93 GHz IntebnXe
machine (with hyper-threading disabled) runninguxinand
HotSpot Server VM 1.7.0_06.

The Java version of the NPB is useful for estintatine
scalability of the application programs themsehNeEs;ause the
Java VM has even fewer VM-internal scalability bmtecks
than JRuby. We ran the Java NPB on the same Xechingg
using IBM J9 VM 1.7.0 SR3. Since the class sizeS ahd W
are small and Java is much faster than Ruby, aattofrthe
Java NPB took only several seconds. To give theijusme
compiler time to compile the methods at high opmation
levels, we invoked each NPB program multiple tinfies 2
minutes in a single run on the Java VM and caledlahe
average of the execution times of the invocations.

D. Results of Micro-Benchmarks

While benchmark Iterator benchmark

1. def workload(numIter) 1. def workload(numIter)
2. x =0 2 x =0
3. i=1 3 (1..numiter).each do |1|
4. while i <= numIter 4. X += 1
5. X += 1 5 end
6. i+=1 6. end
7. end
8. end
While benchmark Iterator benchmark
12
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Fig.4. (Top) The two embarrassingly parallel micro-benchmarfgiddle)
Throughput of the two micro-benchmarks, normaliethe GIL with 1 thread.
The HTM achieved 11- and 10-fold speed-ups on I2sc@Bottom) Single-
thread performance of the micro-benchmarks. The Hliflered from at least
5-14% overhead because of the additional yield tpoirand the checking
operation at each yield point.

adjustment described in Section IV.C. The throughpaults
are normalized to the 1-thread GIL.

The best HTM configurations for each benchmark el
an 11- and 10-fold speed-ups over the GIL usinghi@ads in
the While and Iterator benchmarks, respectivelyesehresults
are better than the previous study [31] of PythonSun’'s
Rock processor. In that study, the While and Iterat
benchmarks showed only 4.5- and 7-fold speed-ups,
respectively, over the GIL with 16 threads. Thisswhe to
their implementation’s large single-thread overhead

Among the four HTM configurations, HTM-dynamic
delivered performance close to the best of therotheee
configurations. In the While benchmark, HTM-1 in&ad the
overhead to begin and end the transactions betaeiseimber

We first show the scalability results of the micro- of instructions (both in bytecode and in native GPetween

benchmarks and then their single-thread performance
1) Scalahility

The middle of Fig. 4 shows the throughput, with the

number of threads set to 1 to 2, 4, 6, 8, and I2MH, -16,
and -256 denote the fixed transaction lengths a61and 256,
respectively. These configurations correspond tte&i2-3 in
Fig. 3. HTM-dynamic uses the dynamic transactiomgtk

the yield points was small in this benchmark. Imtcast, the
innermost loop of the Iterator benchmark contaiaetiethod
invocation, which is a complex operation in CRublerefore,
even with HTM-1, the relative overhead to begin and the
transactions was not as large as in the While beadh
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Fig.5. Throughput of the Ruby NAS Parallel Benchksanormalized to the GIL with 1 thread. HTM-1, ;Hhd -256 ran transactions of fixed lengths 1,al@i
256, respectively. HTM-dynamic uses our proposathdyic transaction-length adjustment.

2) Sngle-thread performance

The bottom of Fig. 4 presents
performance. Since aborts were rare swith one dhréeese
results expose the overhead of the yield-pointatfmer in Fig.
3 as well as the overhead to begin and end theactinns. The
term “a single thread” has two meanings in thisegxpent. On
one hand, if the main application thread executesaorkload
functions in Fig. 4, then there is truly only omneslapplication
thread in the interpreter. In this case, the odhidRuby does
not perform any yield operations, and neither does
interpreter, but always uses the GIL (Lines 2-Fig. 1 and
Line 9 in Fig. 2). “GlL/main thread only” and “HTMiain
thread only” in Fig. 4 correspond to this case. t©a other
hand, if the main application thread spawns anadtmerad to
execute the workload functions and goes to sldem there
are two live application threads, although only ofiechem is
running. In this case, the optimization is not dedpand our
interpreter uses the HTM. The original CRuby hafurégher
optimization so that if there is only one threadnimg and the
others are asleep, then it does not perform arg gigerations.
GIL, HTM-1, -16, -256, and HTM-dynamic in Fig. 4 c&n
throughout this paper correspond to this case.

The results at the bottom of Fig. 4 show that ew&hout
using the HTM, “HTM/main thread only” incurred 5% 14%
overhead. This was due to the checking operatidririe 9 of
Fig. 2 and the new yield points described in Secth.B. If
the transactions end and begin at each yield paénty HTM-1,
the additional overhead is 74% and 20% in the Whihel
Iterator benchmarks, respectively. Most of the bead was
due not to the TBEGIN and TEND instructions buthe code
surrounding them. GIL and “GlL/main thread only”chthe
same performance, as expected.

E. Results of the NAS Paralld Benchmarks

showed up to a 4.4-fold speed-up in FT with 124ls and at

the single-threadhe minimum 1.9-fold speed-ups in CG, IS, and Lthnk the

four HTM configurations, HTM-dynamic was almost alyg
the best or close to the best. HTM-dynamic was 188ter
than HTM-16 in FT with 12 threads. HTM-1 was wotkan
HTM-dynamic because of its larger overhead, althoitg
abort ratios were lower. HTM-256 showed almost no
scalability. Due to its excessively long transattiengths, its
abort ratios were above 90%, and the execution stlalavays
fell back on the GIL. HTM-16 was the best among fiked-
transaction-length configurations, but it incurredre conflict
aborts as the number of threads increased.

In summary, using HTM-dynamic, users do not need to
specify different transaction lengths for differgmbgrams and
numbers of threads to obtain near optimal perfooeaakVith
12 threads, 40% of the frequently executed yieidtpdad the
transaction length of 1 in the Ruby NPB. That medid$/-
dynamic effectively chose better lengths for tHeeofpoints.

If the new yield points were not added as descriimed
Section IV.B, all of the benchmarks except for C@fesed
from more than 20% slow-downs compared with the .GIL
Without the conflict removals in Section IV.D, thHdTM
provided no acceleration in any of the benchmarks.

F. Further Improvement Opportunities

We present the abort ratios and cycle breakdowh&Tod-
dynamic in Fig. 6. The abort ratios were mostlyolel2%
regardless of the number of threads, indicating tham-
dynamic successfully adjusted the transaction kengtith 1%
as a target abort ratio (Section V.A).

The cycle breakdowns of 12-thread HTM-dynamic ig. Fi
6 show that the time spent waiting for the GIL asle was
longer than the time for cycles wasted on abonaastctions.

Fig. 5 shows the throughput of the Ruby NAS PadralleThe cycle breakdown of IS does not represent itsiahc

Benchmarks, normalized to GIL with 1 thread. HTMadynic
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To overcome the conflicts at the general objeaicalion,
the global free list must be eliminated. When aaldrlocal
free list becomes empty, the lazy sweeping shoelddme on a
thread-local basis. GC should also be paralleliaedhread-
localized. The HTM can be utilized as a synchraira
mechanism during GC.

The single-thread overhead of the HTM against thie G
was 25% to 35% in Fig. 5. These numbers were evasen
than the results of the micro-benchmarks in FigTHis was
because the Ruby NPB exposed two more overheadesour
First, Fig. 6 shows the Ruby NPB incurred 1.2% .62 abort
ratios even with a single thread. About 40% ofdberts were
due to store overflows and 30% due to externafrimpts. Both
of these kinds of aborts can be reduced by shogetiie
transaction lengths, but at the cost of increaseldtive
overhead in beginning and ending the transacti®esond,
access to Pthread’'s thread-local storage accodate@% of
the total execution cycles on average. As explaineslection
IV.D, we moved several global variables to the dhkréocal
storage. Unfortunately, the access function,
pthread_getspecific(), is not optimized in z/OS UB& it is
highly tuned in some environments, including Linux.

G. Scalability Characterization

In spite of the large differences in the speedamseng the
7 programs in Fig. 5, their abort ratios and cymleakdowns
did not much differ in Fig. 6 and had little coatdbn with the

execution, because 79% of its time was spent im datspeed-ups. These facts suggest that although #ralbspeed-

initialization, which was outside of the measuretrpariod.

Investigation on the abort reasons that causethdo be
acquired revealed that fetch (read-set) conflicoanted for
more than 80% in all of the benchmarks with 12 dbee
Except for IS, more than 50% of those fetch cotflmccurred
at the time of object allocation. Even with theethul-local free
lists described in Section IV.D, the global frest Etill needed
occasional manipulation. Also, when the global friest
became empty, lazy sweeping of the heap was tedgand
caused more conflicts. All of the benchmarks otthem IS

heavily use floating-point numbers, which are inpdmted as
objects in CRuby 1.9.3. Because the latest CRuly 2.

represents floating-point numbers as unboxed values
believe most of these conflicts have been elimihate
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ups achieved by HTM-dynamic were limited by theftiots at
the time of object allocation, the differences amothe
programs were due to their inherent scalabilityrabteristics.

In Fig. 7, we compare the scalability of HTM-dynami
JRuby, and the Java NPB, from which the Ruby NPB wa
translated. The Java version did not scale wekbse we used
the smallest or the second smallest problem sizeoun
experiments. Since the Java version was 10 to it tfaster
than the Ruby version, the parallelization overheagiated the
speed-ups in such small problems.

Fig. 7 shows that HTM-dynamic resembled the Jav8 NP
rather than JRuby in terms of the scalability. Ehessults
confirmed that the differences in the speed-upsHIWM-
dynamic among the benchmarks originated from each
program’s own scalability characteristics. We triea run



larger problems in the Ruby NPB, but the execultiioires were
prohibitively long. When compared with JRuby, HTM-
dynamic achieved the same scalability on averaggfabd
with HTM-dynamic and 3.5-fold with JRuby, running2 1
threads (not shown in the figure). We guess tlegaddteristics
of each benchmark were different between HTM-dymcaanid
JRuby because of JRuby’s internal scalability battks.

Overall, the GIL elimination through HTM is an effve
technique to deliver higher multi-thread performarican the
GIL with a small implementation cost. As discusge&ection
IV.C and IV.D, we needed to modify only a limitedmber of
source-code files to replace the GIL with the HTand each
conflict removal modified at most a few dozen lioégode.

VI. RELATED WORK

Riley et al. [27] used HTM to eliminate the GIL RyPy,
one of the implementations of the Python languétyavever,
because they experimented with only two micro-bemarks
on a non-cycle-accurate simulator, it is hard seas how their
implementation would behave on real HTM. Tabba [34¢d
the HTM of an early-access version of Sun’s Roacessor to
remove the GIL in the original Python interpretatthough
their measurements were on real hardware, thepmbnthree
synthetic micro-benchmarks. Also, the HTM on Rodd ha
severe limitation in that transactions could nohtatn any
function returns or tolerate TLB misses. These qiype
results cannot be extended to real-world applioatiolhis
paper is the first to evaluate larger benchmarks less-
restrictive HTM hardware.

RETCON [1] applied speculative lock elision to @H. in
Python. The focus of the work was on reducing éatsfidue to
reference-counting GC by symbolic re-execution.aBgiding
the conflicts, RETCON achieved a 25-fold speed-tifn \82
processors for a micro-benchmark. However, bec#usas
evaluated on a simulator supporting an unlimitethgaction
size, the aborts in the experiment were mostlytdusnflicts.
In our experience with a real HTM implementatiome t
effectiveness of GIL elimination is limited by oflews and
various other types of aborts. Thus the dynaminstation-
length adjustment is necessary.

Dice et al. [5] evaluated a variety of programsgsHTM
on an early-access version of the Sun Rock procéad&smng et
al. [33] measured the STAMP benchmarks [19] orHfi#$ in
Blue Gene/Q. Neither of these evaluations coverdd G
elimination for scripting languages.

Some alternative implementations of the Ruby anithd?y
languages [12,13,16,17,28] use or are going tdineegrained
locking instead of the GIL. JRuby [16] maps Rubse#ds to
Java threads and then uses concurrent
synchronized blocks and methods in Java to prtttednternal
data structures. However, JRuby has two
incompatibility with CRuby. First, while some ofefstandard-
library classes in CRuby are written in C and amplicitly
protected by the GIL, JRuby rewrites them in Javd lzaves
them unsynchronized for performance reasons. Thysnalti-
threaded programs that depend on the implicitlytgquted
standard-library classes in CRuby may behave difiity in

JRuby. Second, because JRuby does not support (—:Rub'y
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compatible extension libraries, it does not neeel @IL to
protect the thread-unsafe extension libraries. Terent
version 1.2.4 of Rubinius [28] has the GIL, butréhare plans
to remove it in a future version. However, the Rils support
for the CRuby-compatible extension libraries catéli with
removing the GIL completely. In contrast, replacihg GIL
with HTM creates no compatibility problems in thbréries.
PyPy is planning to eliminate the GIL by using weafte
transactional memory [24], but it is unclear whethbe
scalability improvement can offset the overhead tbé
software transactional memory.

Because of the GIL, programmers who need to exploit
multiple cores in Ruby or Python have been usindtimu
processing. Whether or not multi-threading is letian multi-
processing is beyond the scope of this paper, bet t
implementations of general-purpose languages showitl
inhibit a particular programming model because béirt
implementation-specific reasons.

Scripting languages other than Ruby and Python lyndet
not have a GIL, but that is because they do ngvatishared-
memory multi-thread programming, and thus their
programming capabilities are limited on multi-cagstems.
Perl’s ithreads clone the entire interpreter andddta when a
thread is created, and any data sharing amongdhmeast be
explicitly declared as such [22]. The cloning makessIL
unnecessary, but it is as heavy as fork() andicestshared-
memory programming. Lua [18] does not support multi
threading but uses coroutines. The coroutines bwattong
themselves by explicitly calling a yield functiohhis means
they never run simultaneously and do not requir&lha.
JavaScript (AKA ECMAScript) [6] does not support Itiru
threading, so the programs must be written in gnasonous
event-handling style.

VIl.  CONCLUSION ANDFUTURE WORK

This paper shows the first empirical results ométiating
the Global Interpreter Lock (GIL) in a scriptingnpuage
through a real Hardware Transactional Memory (HTid)
improve the multi-thread performance of realistrograms.
We eliminated the GIL in Ruby using the HTM faddi in the
mainframe processor zEC12 and evaluated the Rub$ NA
Parallel Benchmarks (NPB) and some micro-benchmakies
proposed a new automatic mechanism to dynamicaljysta
the transaction lengths on a per-yield-point basBur
mechanism chose a near optimal tradeoff point betwbe
relative overhead of the instructions to begin amtl the
transactions and the likelihood of transaction lctsf and
overflows. Our results show that HTM achieved afdld-
speed-up over the GIL with 12 threads in the micro-

libraries af¢nchmarks and up to a 4.4-fold speed-up in they RUPB

programs. The dynamic transaction-length adjustment

types ofmproved the throughput by up to 18%. From theselts, we

concluded that HTM is an effective approach to eahihigher
multi-thread performance than the GIL at a small
implementation cost. We also discussed further avgment
opportunities for HTM.

In addition to the performance improvement, the

interactions between just-in-time-compiled code dredHTM-



based GIL elimination must be studied further. Bnave plan
to measure Web-related workloads such as WEBridkRarby

on

Rails once we succeed in building CRuby's extens

libraries on z/OS USS.
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