
 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org.  
PPoPP '14, February 15 - 19 2014, Orlando, FL, USA 
Copyright © 2014 ACM 978-1-4503-2656-8/14/02…$15.00. 
http://dx.doi.org/10.1145/2555243.2555247 

Eliminating Global Interpreter Locks in Ruby 

through Hardware Transactional Memory 

Rei Odaira 

IBM Research – Tokyo 

odaira@jp.ibm.com 

Jose G. Castanos 

IBM Research – T.J. Watson 
Research Center 

castanos@us.ibm.com 

Hisanobu Tomari 

University of Tokyo 

tomari@is.s.u-tokyo.ac.jp 

Abstract  

Many scripting languages use a Global Interpreter Lock 

(GIL) to simplify the internal designs of their interpreters, 

but this kind of lock severely lowers the multi-thread per-

formance on multi-core machines. This paper presents our 

first results eliminating the GIL in Ruby using Hardware 

Transactional Memory (HTM) in the IBM zEnterprise 

EC12 and Intel 4th Generation Core processors. Though 

prior prototypes replaced a GIL with HTM, we tested real-

istic programs, the Ruby NAS Parallel Benchmarks (NPB), 

the WEBrick HTTP server, and Ruby on Rails. We devised 

a new technique to dynamically adjust the transaction 

lengths on a per-bytecode basis, so that we can optimize the 

likelihood of transaction aborts against the relative over-

head of the instructions to begin and end the transactions. 

Our results show that HTM achieved 1.9- to 4.4-fold speed-

ups in the NPB programs over the GIL with 12 threads, and 

1.6- and 1.2-fold speedups in WEBrick and Ruby on Rails, 

respectively.  The dynamic transaction-length adjustment 

chose the best transaction lengths for any number of threads 

and applications with sufficiently long running times. 

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming – Parallel 

programming 

Keywords Global interpreter lock; hardware transactional 

memory; scripting language; lock elision 

1. Introduction 

Scripting languages such as Ruby [26] and Python [21] 

offer high productivity, but at the cost of slow performance. 

The single-thread performance is limited because of inter-

preted execution, dynamic typing, and the support for meta-

programming. Many projects [10,24,30] have attempted to 

overcome these limitations through Just-in-Time (JIT) 

compilation with type specialization. 

Meanwhile, the multi-thread performance of the script-

ing languages is constrained by the Global Interpreter Lock 

(GIL), or the Giant VM Lock (GVL) in Ruby’s terminology. 

Although each application thread is mapped to a native 

thread, only the one thread that acquires the GIL can actu-

ally run. At pre-defined yield points, each thread releases 

the GIL, yields the CPU to another runnable thread if any 

exists, and then reacquires the GIL. The GIL eases the pro-

gramming of the interpreters’ logic and the extension librar-

ies because they do not need to worry about concurrency. In 

return, the GIL significantly limits the performance on 

multi-core systems. Some new implementations of the Ruby 

and Python languages [9,10,12,13] use complex fine-

grained locking to remove the GIL. However, their class 

libraries still need to be globally protected to remain com-

patible with the original implementations of the languages. 

 Transactional memory has been proposed as an alterna-

tive to eliminate global locking without requiring the com-

plex semantics of fine-grained locking. In transactional 

memory, a programmer encloses critical sections with 

transaction begin and end directives. A transaction is exe-

cuted atomically so that its memory operations appear to be 

performed in a single step. Transactions can be executed 

concurrently as long as their memory operations do not 

conflict, so that transactional memory can outperform 

global locking. Although transactional memory is attractive 

for its potential concurrency, pure software implementa-

tions are slow [2]. 

Chipmakers in the industry regard transactional memory 

as a promising technology for parallel programming in the 

multi-core era and are designing or producing hardware for 

transactional memory, called Hardware Transactional 

Memory (HTM). Intel published documentation for an in-

struction set called Transactional Synchronization Exten-



sions [8] and implemented it in the 4th Generation Core 

processor. IBM has released Blue Gene/Q and the main-

frame zEnterprise EC12 (zEC12) with HTM support [5,27]. 

IBM also defined HTM extensions for POWER ISA [6] to 

be implemented in POWER8 [28]. These HTM implemen-

tations will offer effective concurrency with low overhead. 

There have been previous studies [1,23,29] of replacing 

the GIL of a scripting language with HTM, but they meas-

ured only micro-benchmarks on simulators or on the limited 

HTM of Sun’s Rock processor [3]. Therefore, these studies 

did not propose solutions to or even reveal many transac-

tion aborts encountered when realistic programs are exe-

cuted on less-restrictive HTM hardware. 

This paper shows the empirical results of removing the 

GIL from Ruby and proposes dynamic transaction length 

adjustment to reduce transaction aborts and overhead. We 

used IBM’s HTM implementation in zEC12 and Intel’s 

implementation in the 4th Generation Core processor (Xeon 

E3-1275 v3). In addition to micro-benchmarks, we meas-

ured the NAS Parallel Benchmarks ported to Ruby [17], the 

WEBrick HTTP server attached in the Ruby distribution, 

and Ruby on Rails [25]. Our results are also applicable to 

other HTM implementations. Unlike the results [29] on 

Sun’s Rock processor, the HTM implementations on which 

we experimented are similar to the generic ones proposed in 

the literature, e.g. [22]. 

Running these programs on the real HTM hardware re-

vealed a tradeoff between transaction aborts and overhead. 

On the one hand, we desire long transactions as we amor-

tize the overhead to begin and end each transaction. On the 

other hand, no HTM implementation allows for transactions 

of unlimited lengths, and longer transactions increase the 

amount of discarded work when a transaction aborts. 

To balance the transaction aborts against the overhead, 

we propose a new technique to dynamically adjust the 

transaction lengths on a per-yield-point basis. As in the GIL, 

a transaction ends and begins at pre-defined transaction 

yield points, but it need not do so at every transaction yield 

point. We dynamically adjust the transaction lengths, i.e. 

how many yield points to skip, based on the abort statistics 

of the transactions started at each yield point. 

Here are our contributions: 

• We propose an algorithm for the GIL elimination 

that adjusts the transaction lengths at each yield point. 

• We implemented and evaluated the GIL elimination 

on real machines that support HTM, using real-world 

applications in addition to micro-benchmarks. 

• We eliminated the GIL from Ruby, going beyond 

prior work focusing on Python. We also removed 

transaction conflict points in the Ruby interpreter. 

Section 2 describes the HTM implementations used in 

our studies and Section 3 explains Ruby’s GIL implementa-

tion. Section 4 shows how we replaced the GIL with the 

HTM and then balanced the aborts against the overhead, 

leading to the experimental results in Section 5. Section 6 

covers related work. Section 7 concludes the paper. 

2. HTM Implementations 

We used the HTM implementations in the IBM mainframe 

zEC12 and the Intel 4th Generation Core processor (Xeon 

E3-1275 v3) for our studies. This section briefly describes 

the instruction set architectures supporting the HTM and 

their micro-architectures. A complete description of the 

HTM in zEC12 appeared in a paper [11]. The instruction 

set architectures of zEC12 and the 4th Generation Core 

processor are also available [7,8]. 

2.1 Instruction set architectures 

In zEC12, each transaction begins with a TBEGIN instruc-

tion and is ended by a TEND instruction. In the 4th Genera-

tion Core processor, XBEGIN and XEND correspond to 

TBEGIN and TEND, respectively. If a transaction aborts, 

then the execution returns back to the instruction immedi-

ately after the TBEGIN in zEC12, while the argument of 

the XBEGIN specifies a relative offset to a fallback path. 

A transaction can abort for various reasons. The most 

frequent causes include footprint overflows and conflicts. 

When the abort is transient, e.g. because of a conflict, sim-

ply retrying the transaction is likely to succeed. On persis-

tent aborts, e.g. due to transaction footprint overflow, the 

program should cancel the execution of the transaction. The 

condition code in zEC12 and the EAX register in the 4th 

Generation Core processor report whether the abort is tran-

sient or persistent. A transaction can also be aborted by 

software with a TABORT (in zEC12) or an XABORT (in 

the 4th Generation Core processor) instruction. 

2.2 Micro-architectures 

The zEC12 Central Processor (CP) chip has 6 cores, and 6 

CP chips are packaged in a multi-chip module (MCM). Up 

to 4 MCMs can be connected in a single cache-coherent 

system. Each core has 96-KB L1 and 1-MB L2 data caches. 

The 6 cores on a CP chip share a 64-MB L3 cache and the 

6 CP chips share an off-chip 384-MB L4 cache included in 

the same MCM. Each core supports a single hardware 

thread. The cache line size is 256 bytes. 

The Xeon E3-1275 v3 processor contains 4 cores and 

each core supports 2 simultaneous multi-threading (SMT) 

threads. Each core has 32-KB L1 data and 256-KB L2 uni-

fied caches. The 4 cores share an 8-MB L3 cache. The 

cache line size is 64 bytes. 

The zEC12 HTM facilities are built on top of its cache 

structure. Each L1 data cache line is augmented with its 

own tx-read and tx-dirty bits. An abort is triggered if a 

cache-coherency request from another CPU conflicts with a 

transactionally read or written line. A special LRU-

extension vector records the lines that are transactionally 



read but evicted from the L1. Thus the maximum read-set 

size is roughly the size of the L2. The transactionally writ-

ten data is buffered in the Gathering Store Cache between 

the L1 and the L2/L3. The maximum write-set size is lim-

ited to this cache size, which is 8 KB. 

The detailed design of the Xeon E3-1275 v3 processor’s 

HTM has not been revealed, but it takes advantage of the 

cache structure, like zEC12. Our preliminary experiments 

showed that the maximum read-set size is 6 MB, and the 

maximum write-set size is about 19 KB. 

3. Ruby Implementation 

This section introduces the Ruby language and its original 

implementation, often called CRuby, and describes how the 

GIL works in CRuby. Our description is based on CRuby 

1.9.3-p194. 

3.1 The Ruby language and CRuby 

Ruby is a modern object-oriented scripting language that is 

widely known as part of the Ruby on Rails Web application 

framework. Nevertheless, Ruby is a general-purpose lan-

guage that has many features in common with other script-

ing languages such as JavaScript, Python, or Perl: a flexible, 

dynamic type system; meta-programming; closures; and an 

extensive standard runtime library. 

The reference Ruby implementation [26] is called 

CRuby, which is written in the C language. The recent re-

leases of CRuby use a stack-based virtual machine. Ruby 

code is compiled into an internal bytecode representation at 

runtime and is executed by an interpreter. CRuby does not 

have a JIT compiler. 

3.2 The GIL in CRuby 

The Ruby language supports multi-threaded programming 

through objects of the standard Thread class that synchro-

nize through standard concurrency constructs like Mutex or 

ConditionVariable objects. Since CRuby 1.9, the interpreter 

supports native threads, where each Ruby application 

thread maps to a kernel thread. In our environments, each 

application thread corresponds to a Pthread. 

Unfortunately, the concurrency is limited. The inter-

preter has a GIL, guaranteeing that only one application 

thread is executing in the interpreter at any given time. The 

GIL eliminates the need for concurrency programming in 

the interpreter and libraries. Unlike normal locking, which 

holds a lock only during part of the execution, the GIL is 

almost always held by one of the application threads during 

execution and is released only when necessary. An applica-

tion thread acquires and releases the GIL when it starts and 

ends, respectively. It also releases the GIL when it is about 

to perform a blocking operation, such as I/O, and it acquires 

the GIL again after the operation is finished. 

However, if the GIL were released only at the blocking 

operations, compute-intensive application threads could not 

be switched with one another at all. Therefore, at certain 

pre-defined points, the application thread yields the GIL by 

releasing the GIL, calling the sched_yield() system call to 

yield the CPU, and then acquiring the GIL again. To insure 

reaching a yield point within a finite time, CRuby sets yield 

points at loop back-edges and each exit of a method and 

block. Note that the yield points have nothing to do with the 

“yield” expression in the Ruby language. 

As an optimization, each application thread does need 

not yield the GIL at every yield point, because the yield 

operation is heavy. To allow for occasional yields, CRuby 

runs a timer thread in background. It wakes up every 250 

msec and sets a flag in the per-thread data structure of the 

running application thread. Each thread checks the flag at 

each yield point and yields the GIL only when it is set. In 

addition, if there is only one application thread, then no 

yield operations will be performed at all. 

4. GIL Elimination through HTM 

This section presents our algorithm for eliminating the GIL 

by using an HTM. Our algorithm is based on Transactional 

Lock Elision (TLE) [3,22]. Like TLE, our algorithm retains 

the GIL as a fallback mechanism. A thread first executes 

Ruby code as a transaction. If the transaction aborts, the 

thread can retry the transaction, depending on the abort 

reason. If the transaction aborts after several retries, the 

thread acquires the GIL to proceed. 

Transactions should begin and end at the same points as 

where the GIL is acquired, released, and yielded, because 

those points are guaranteed as safe critical-section bounda-

ries. However, our preliminary experiments showed the 

original yield points were too coarse-grained for the HTM, 

which caused footprint overflows. Thus we added new yield 

points as explained in Section 4.2.  

4.1 Beginning and ending a transaction 

Figure 1 shows the algorithm to begin a transaction. The 

GIL status is tracked by the global variable GIL.acquired, 

which is set to true when the GIL is acquired. 

If there is no other live application thread in the inter-

preter, then the algorithm reverts to the GIL (Lines 2-3), 

because concurrency is unnecessary in this case. Otherwise, 

the algorithm first sets the length of the transaction to be 

executed (Line 5). This will be explained in Section 4.3. 

Before beginning a transaction, the algorithm checks the 

GIL and if it has been acquired by some other thread, waits 

until it is released (Lines 6-8 and 40-48). This is not manda-

tory but an optimization. 

The TBEGIN() function (Line 13) is a wrapper for the 

TBEGIN or XBEGIN instruction described in Section 2.1. 

The TBEGIN() function initially returns 0. If the transac-



tion aborts, the execution returns back to within the TBE-

GIN() function and then it returns an abort reason code. 

Lines 14-15 are within the transaction. As in the original 

TLE, the transaction first reads the GIL (Line 15) into its 

transaction read set, so that later the transaction can be 

aborted if the GIL is acquired by another thread. The trans-

action must abort immediately if the GIL is already ac-

quired, because otherwise the transaction could read data 

being modified. 

Lines 16-37 are for abort handling. We describe Lines 

17-20 in Section 4.3. If the GIL is acquired (Line 21), there 

is a conflict at the GIL. In the same way as in Lines 6-8, 

Lines 22-27 waits until the GIL is released. The algorithm 

first tries to use spin locking, but after GIL_RETRY_MAX-

time aborts, it forcibly acquires the GIL (Line 27). If the 

abort is persistent, retrying the transaction will not succeed, 

so the execution immediately reverts to the GIL (Lines 28-

29). For the transient aborts, we retry the transaction 

TRANSIENT_RETRY_MAX times before falling back on 

the GIL (Lines 31-35). 

Ending a transaction is much simpler than beginning a 

transaction (Figure 2). The acquired GIL (Line 2) means 

this transaction has been executed not as a transaction but 

with the GIL being held. Thus the GIL must be released. 

Otherwise, the TEND or XEND instruction is issued. 

4.2 Yielding a transaction 

As described in Section 3.2, the original CRuby implemen-

tation has a timer thread to force yielding among the appli-

cation threads. We no longer need the timer thread because 

the application threads are running in parallel using the 

HTM, but we still need the yield points. Without them, 

some transactions would last so long that there would be 

many conflicts and footprint overflows. 

In our preliminary experiments, we found the original 

yield points were too coarse-grained for the HTM. As de-

scribed in Section 3.2, the original CRuby sets yield points 

at branches and method and block exits. With only these 

yield points, most of the transactions abort due to store 

overflows. Therefore, we defined the following bytecode 

types as additional yield points: getlocal, getinstancevari-

able, getclassvariable, send, opt_plus, opt_minus, opt_mult, 

and opt_aref. The first three bytecode types are to read 

variables. The send bytecode invokes a method or a block. 

The opt_ variants perform their corresponding operations 

(plus, minus, multiplication, and array reference) but are 

optimized for certain types such as integer numbers. We 

chose these bytecodes because they appear frequently in 

bytecode sequences or they access much data in memory. 

This means that in the NAS Parallel Benchmarks, more 

than half of the bytecode instructions are now yield points. 

We also need to guarantee that the new yield points are 

safe. In interpreters, the bytecode boundaries are natural 

yield points. Because the bytecode instructions can be gen-

erated in any order, it is unlikely that the interpreters inter-

nally have a critical section straddling a bytecode boundary. 

However, for applications that are incorrectly synchronized, 

such as those assuming the GIL can be yielded only at 

branches or method exits, the new yield points can change 

their behavior. Applications properly synchronized by using 

Mutex objects are not affected by our changes. 

At each yield point, we call the transaction_yield() func-

tion in Figure 2, which simply calls the functions to end and 

begin transactions (Lines 12-13), but with two optimiza-

tions. First, as described in Section 3.2, no yield operation 

is performed if there is only one application thread (Line 9). 

Note that the GIL is used in this case (Line 3 of Figure 1). 

Second, a transaction does not yield at every yield point but 

only after a set number of yield points (using 

yield_point_counter) have been passed (Lines 10-11). This 

optimization is described in Section 4.3. Unlike the original 

 1. transaction_begin(current_thread, pc) {
2. if (there is no other live thread) {
3. gil_acquire();
4. } else {
5. set_transaction_length(current_thread, pc);
6. if (GIL.acquired) {
7. if (spin_and_gil_acquire()) return;
8. }
9. transient_retry_counter = TRANSIENT_RETRY_MAX;
10. gil_retry_counter = GIL_RETRY_MAX;
11. first_retry = 1;
12. transaction_retry:
13. if ((tbegin_result = TBEGIN()) == 0) {
14. /* transactional path */
15. if (GIL.acquired) TABORT();
16. } else { /* abort path */
17. if (first_retry) {
18. first_retry = 0;
19. adjust_transaction_length(pc);
20. }
21. if (GIL.acquired) {
22. gil_retry_counter--;
23. if (gil_retry_counter > 0) {
24. if (spin_and_gil_acquire()) return;
25. else goto transaction_retry;
26. }
27. gil_acquire();
28. } else if (is_persistent(tbegin_result)) {
29. gil_acquire();
30. } else {
31. /* transient abort */
32. transient_retry_counter--;
33. if (transient_retry_counter > 0)
34. goto transaction_retry;
35. gil_acquire();
36. }
37. }
38. }
39. }

40. spin_and_gil_acquire() {
41. Spin for a while until the GIL is released;
42. if (! GIL.acquired) return false;
43. gil_acquire();
44. return true;
45. }

46. gil_acquire() {
47. /* Omitted. Original GIL-acquisition logic. */
48. }  

Figure 1. Algorithm to begin a transaction. 



GIL-yield operation, we do not need to call the 

sched_yield() system call, because the multiple threads are 

already running in parallel and the OS is scheduling them. 

4.3 Dynamic transaction-length adjustment 

As shown in Figure 2, each transaction will skip a prede-

termined number of yield points before it ends. This means 

that the transaction lengths vary with the granularity of the 

yield points. The length of a transaction means the number 

of yield points the transaction passes through plus one. 

 

Tradeoff in transaction length 

In general, there are three reasons the total abort overhead 

decreases as the transaction lengths shorten. First, the 

amount of work that becomes useless and has to be rolled-

back at the time of an abort is smaller. Second, the prob-

abilities of footprint overflows are smaller, because they 

depend on the amount of data accessed in each transaction. 

Third, if the execution reverts to the GIL, the serialized 

sections are shorter. 

In contrast, the shorter the transactions are, the larger the 

relative overhead to begin and end the transactions. In par-

ticular, beginning a transaction suffers from the overhead of 

not only TBEGIN or XBEGIN but also the surrounding 

code in Figure 1. 

The best transaction length depends on each yield point. 

If the intervals (i.e. the number of instructions) between the 

subsequent yield points are small, then the lengths of the 

transactions starting at the current yield point should be 

long. As another example, suppose there are three consecu-

tive yield points, A, B, and C. If the code between B and C 

contains an instruction that is not allowed in transactions, 

e.g. a system call, then the length of any transaction starting 

at A should be one. If the length was two or more, the 

transactions would definitely abort. 

 

Adjustment algorithm 

We propose a mechanism to adjust the transaction lengths 

on a per-yield-point basis. The transaction length is initial-

ized to a certain large number at each yield point. The abort 

ratios of the transactions starting at each yield point are 

monitored. If the abort ratio is above a threshold at a par-

ticular yield point, then the transaction length is shortened. 

This process continues during a profiling period until the 

abort ratio falls below the threshold. 

The set_transaction_length() function in Figure 3 is in-

voked from Line 5 in Figure 1 before each transaction be-

gins. The parameter pc is the program counter of the yield-

point bytecode from which this transaction is about to start. 

If the Ruby interpreter is configured to use a constant trans-

action length, that constant value is assigned to the transac-

tion length (yield_point_counter) at Line 3. Otherwise, the 

yield-point-specific length is assigned at Line 7. If it has not 

yet been initialized, then a pre-defined long length is as-

signed (Lines 5-6). To calculate the abort ratio, this func-

tion also counts the number of the transactions started at 

each yield point (Line 9). To avoid the overhead of moni-

toring the abort ratio after the program reaches a steady 

state, there is an upper bound for the counter (Line 8). 

The adjust_transaction_length() function is called when 

a transaction aborts for the first time (Line 19 in Figure 1). 

If the transaction length has not yet reached the minimum 

value or 1 (Line 13), and if this is during a profiling period 

(Line 14), then the abort ratio is checked and updated 

(Lines 16-17). If the number of aborts in the transactions 

started from the current yield point exceeds a threshold 

(Line 16) before the PROFILING_PERIOD number of 

transactions began, then the transaction length is shortened 

(Line 19). The two counters to monitor the abort ratio are 

reset (Lines 20-21) to extend the profiling period. 

Note that even when the execution reverts to the GIL, 

the length of the transaction is unchanged. If the current 

 1. transaction_end() {
2. if (GIL.acquired) gil_release();

3. else TEND();
4. }

5. gil_release() {
6. /* Omitted.  Original GIL-release logic */
7. }

8. transaction_yield(current_thread, pc) {
9. if (there is other live thread) {

10. current_thread->yield_point_counter--;
11. if (current_thread->yield_point_counter == 0) {
12. transaction_end();
13. transaction_begin(current_thread, pc);

14. }
15. }
16. }  
Figure 2. Algorithm to end and yield a transaction. 

 

 1. set_transaction_length(current_thread, pc) {
2. if (transaction length is constant) {
3. current_thread->yield_point_counter = 

TRANSACTION_LENGTH;
4. } else {
5. if (transaction_length[pc] == 0)
6. transaction_length[pc] = 

INITIAL_TRANSACTION_LENGTH;
7. current_thread->yield_point_counter = 

transaction_length[pc];
8. if (transaction_counter[pc] < PROFILING_PERIOD)
9. transaction_counter[pc]++;
10. }

11. adjust_transaction_length(pc) {
12. if (transaction length is NOT constant &&
13. transaction_length[pc] > 1 &&
14. transaction_counter[pc] <= PROFILING_PERIOD) {
15. num_aborts = abort_counter[pc];
16. if (num_aborts <= ADJUSTMENT_THRESHOLD) {
17. abort_counter[pc] = num_aborts + 1;
18. } else {
19. transaction_length[pc] =

transaction_length[pc] * ATTENUATION_RATE;
20. transaction_counter[pc] = 0;
21. abort_counter[pc] = 0;
22. }
23. }
24. }  
Figure 3. Algorithm to set and adjust a transaction. 



length is 3, for example, the current thread passes through 2 

yield points and releases the GIL at the third one. 

4.4 Conflict removal 

To obtain better scalability with the HTM, any transaction 

conflicts must be removed. We fixed five major sources of 

conflicts in CRuby. 

The most severe conflicts occurred at global variables 

pointing to the Ruby-thread structure of the running thread. 

Immediately after the GIL is acquired, the global variables 

point to the running thread. If multiple threads write to 

these variables every time any transaction begins, they will 

cause many conflicts. Therefore we moved these variables 

from the global scope to the Pthread thread-local storage. 

The second source of severe conflicts is the head of the 

single global linked list of free objects. CRuby allocates 

each new object from the head of the list. This mechanism 

obviously causes conflicts in multi-threaded execution. We 

modified CRuby’s memory allocator, so that each thread 

maintains a short thread-local free list. A specified number 

(256, in our implementation) of objects are moved in bulk 

from the global free list to the thread-local free list, and 

each new object is allocated on a thread-local basis. 

Garbage collection (GC) is the third conflict point. The 

mark-and-sweep GC in CRuby is not parallelized. GC will 

cause conflicts if invoked from multiple transactions. Even 

if it is triggered from one transaction, the transaction size 

will overflow. This implies that GC is always executed with 

the GIL acquired. To mitigate this overhead, we reduced 

the frequency of GC by increasing the initial Ruby heap. 

We changed the initial number of free objects from 10,000 

to 10,000,000, which corresponded to about 400 MB. 

Fourth, inline caches cause aborts when they miss. 

CRuby searches a hash table to invoke a method or to ac-

cess an instance variable. To cache the search result, a one-

entry inline cache is collocated with each method-

invocation and instance-variable-access bytecode. Since the 

inline caches are shared among threads, an update to an 

inline cache at the time of a cache miss can result in a con-

flict. For method invocations, we changed the caching logic 

so that each cache is filled only at the first miss. For in-

stance-variable accesses, we reduced the cache misses by 

changing the inline cache guard. Originally, the cached con-

tent is used if the class of the object is the same as the class 

recorded in the cache when it is filled. However, the cached 

content is valid even when the classes are different, as long 

as the instance-variable table of the class of the object is the 

same as that of the recorded class. Therefore, we reduced 

the cache misses by using the instance-variable-table equal-

ity check instead of the class-equality check. 

Finally, as we added frequently updated fields, such as 

yield_point_counter (Line 10 in Figure 2), to CRuby’s 

thread structures, they began to cause false sharing. We 

avoided this by allocating the thread structures in dedicated 

cache lines. 

Each of these conflict removals was limited to a few 

dozen modified lines in the source code. 

5. Experimental Results 

This section describes our implementation for zEC12 and 

the 4th Generation Core processor. Then our experimental 

results are presented for the Ruby NAS Parallel Bench-

marks (NPB) [17], the WEBrick HTTP server, and Ruby 

on Rails [25]. 

5.1 Implementation 

We implemented the algorithms and optimizations ex-

plained in Section 4 in CRuby 1.9.3-p194. CRuby ran on 

Linux 3.10.5 and the 4th Generation Core processor with-

out any modifications. To run CRuby on zEC12, we ported 

it into the UNIX System Services (USS) of z/OS 1.13. 

For the conflict resolutions in Sections 4.4, we also im-

plemented the thread-local free lists in the original CRuby. 

We tested a back-port to the original CRuby of the global 

variable removal, and the changes in the inline caches, but 

found they degraded the performance. The new yield points 

(Section 4.2) were not added in the original CRuby because 

they would increase the overhead without any benefit. In all 

of the experiments, the initial Ruby heap size was set to 

10,000,000, using the RUBY_HEAP_MIN_SLOTS envi-

ronmental variable. 

The values of TRANSIENT_RETRY_MAX and 

GIL_RETRY_MAX in Figure 1 were set to 3 and 16, re-

spectively. In our preliminary experiments, it was unlikely 

that a transaction would ever succeed after 3-or-more con-

secutive transient aborts. In contrast, a thread should wait 

more patiently for the GIL release, because the GIL will 

eventually be released and the fallback to GIL is very slow. 

The INITIAL_TRANSACTION_LENGTH of Figure 3 was 

set to 255, and the PROFILING_PERIOD to 300. Unless 

set to extremely large values like 10,000, these constants 

did not affect the performance. The target abort ratio of the 

dynamic transaction-length adjustment was set to 1% on 

zEC12 and 6% on the 4th Generation Core processor, based 

on our preliminary experiments. The best target abort ratios 

are independent of the applications but depend on the HTM 

implementations, especially the abort costs. Accordingly, 

ADJUSTMENT_THRESHOLD (Line 16 in Figure 3) was 

set to 3 on zEC12 and 18 on the 4th Generation Core proc-

essor, which meant that the ADJUST-

MENT_THRESHOLD / PROFILING_PERIOD = 3 / 300 

= 1% on zEC12 and 18 / 300 = 6% on the 4th Generation 

Core processor. The ATTENUATION_RATE (Line 19 in 

Figure 3) was set to 0.75. 



5.2 Experimental environments 

The experimental zEC12 system was divided into multiple 

Logical PARtitions (LPARs), and each LPAR corresponds 

to a virtual machine. Our LPAR was assigned 12 cores, all 

running at 5.5 GHz. Our system for the 4th Generation Core 

processor has one Xeon E3-1275 v3 chip, running at 3.5 

GHz. Its microcode version was 0x8. Although the systems 

were not totally dedicated to our experiments, no other 

process was running during our measurements, and the per-

formance fluctuations were negligible. 

The malloc() function in z/OS can cause many conflicts 

because it is not a thread-local allocator by default. When 

running with the HTM, we specified the HEAPPOOLS 

runtime option to enable thread-local allocation in malloc(). 

5.3 Benchmarks 

We measured two micro-benchmarks, seven programs in 

the Ruby NPB, the WEBrick HTTP server, and Ruby on 

Rails. We ran them four times and took the averages. 

As preliminary experiments, we created the two micro-

benchmarks to assess how the HTM works for embarrass-

ingly parallel programs. Figure 4 shows the workloads for 

each thread. The results showed good scalability for the 

HTM, while the GIL did not scale at all. The best HTM 

configurations for each benchmark achieved an 11- to 10-

fold speedup over the GIL using 12 threads on zEC12 in 

the While and Iterator benchmarks, respectively. 

The Ruby NPB [17] was translated from the Java ver-

sion of the NPB version 3.0 [16]. It contains 7 programs, 

BT, CG, FT, IS, LU, MG, and SP. We chose the class size 

W for IS and MG and S for the other programs. With these 

sizes, the programs ran in 10 to 300 seconds. 

The NPB programs are composed of serialized sections 

and multi-threaded sections. To investigate their scalability 

characteristics, we ran the Ruby NPB on JRuby 1.7.3 [12] 

as well as the original Java NPB. JRuby is an alternative 

implementation of the Ruby language written in Java. 

JRuby is suitable as a comparison target for HTM because 

it minimizes its internal scalability bottlenecks by using 

fine-grained locking instead of the GIL. Note that this 

means JRuby sacrifices its compatibility with CRuby, as 

discussed in Section 6. JRuby does not run on zEC12 be-

cause it does not support the EBCDIC character encoding. 

To measure the scalability up to 12 threads, we ran JRuby 

on a 12-core 2.93-GHz Intel Xeon X5670 machine (with 

hyper-threading disabled) running Linux 2.6.32 and Hot-

Spot Server VM 1.7.0_06.  

The Java NPB is useful for estimating the scalability of 

the application programs themselves, because the Java VM 

has even fewer VM-internal scalability bottlenecks than 

JRuby. We ran the Java NPB on the same Xeon X5670 

machine, using the interpreter of IBM J9 VM 1.7.0 SR3. 

We disabled the JIT compiler because the class sizes of S 

and W were small. With the JIT compiler, the execution 

time was too short to outweigh the parallelization overhead. 

WEBrick is the default HTTP server for Ruby on Rails. 

It is implemented in Ruby and is included in the CRuby 

distribution. It creates one Ruby thread for each incoming 

request and discards the thread after returning a response. 

We ran WEBrick version 1.3.1. To measure its scalability, 

we changed the number of HTTP clients simultaneously 

accessing WEBrick. Each run sent 30,000 requests for a 46-

byte page from the same machine as the one running WE-

Brick. We took the peak throughput (requests per second) 

as the result of each run. The HTTP clients consumed less 

than 5% of the CPU cycles. 

Ruby on Rails is a popular Web application framework 

in Ruby. Using Ruby on Rails version 4.0.0, we created an 

application to fetch a list of books from a database. We 

used SQLite3 as the database manager and WEBrick as the 

HTTP server. Ruby on Rails is thread-safe, but for back-

ward compatibility it has a global lock to serialize the re-

quest processing. In our experiments, we disabled the 

global lock. The measurement method was the same as in 

WEBrick. We ran Ruby on Rails only on Xeon E3-1275 v3 

because we encountered problems installing it in z/OS. 

5.4 Results of the NAS Parallel Benchmarks 

Figure 5 shows the throughput of the Ruby NAS Parallel 

Benchmarks on zEC12 and Xeon E3-1275 v3, normalized 

to GIL with 1 thread. The number of threads was set from 1 

to 2, 4, 6, and 8 on Xeon E3-1275 v3, and to 12 on zEC12. 

HTM-1, -16, and -256 denote the fixed transaction lengths 

of 1, 16, and 256. These configurations correspond to Lines 

2-3 in Figure 3. HTM-dynamic uses the dynamic transac-

tion-length adjustment described in Section 4.3. 

In zEC12, HTM-dynamic showed up to a 4.4-fold 

speedup in FT with 12 threads and at the minimum 1.9-fold 

speedups in CG, IS, and LU. From the four HTM configu-

rations, HTM-dynamic was almost always the best or close 

to the best. HTM-dynamic was 18% faster than HTM-16 in 

FT with 12 threads. HTM-1 was worse than HTM-dynamic 

because of its larger overhead, although its abort ratios 

were lower. HTM-256 showed almost no scalability. Due to 

its long transaction lengths, its abort ratios were above 90%, 

and the execution almost always fell back on the GIL. 

HTM-16 was the best among the fixed-transaction-length 

 

1. def workload(numIter)

2. x = 0

3. i = 1

4. while i <= numIter

5. x += i

6. i += 1

7. end

8. end

1. def workload(numIter)

2. x = 0

3. (1..numIter).each do |i|

4. x += i

5. end

6. end

While benchmark Iterator benchmark

  
Figure 4. Each thread’s workloads in the two embarrass-

ingly parallel micro-benchmarks.  



configurations, but it incurred more conflict aborts as the 

number of threads increased.  

In the 4-core Xeon E3-1275 v3 machine, HTM-16 

showed the best throughput. Its speedups for up to 4 threads 

were almost the same as the corresponding speedups of 

HTM-dynamic on zEC12. Beyond 4 threads, HTM-16 did 

not scale using SMT, while HTM-1 did scale in some 

benchmarks. With SMT, HTM-16 suffered from many 

transaction footprint overflows because a pair of threads on 

the same core share the same caches, thus halving the maxi-

mum read- and write-set sizes. 

HTM-dynamic did not scale better than HTM-16 in 

Xeon E3-1275 v3. This was due to the learning algorithm 

of Xeon E3-1275 v3’s HTM. We found that the HTM in 

Xeon E3-1275 v3 changed its abort criteria for each trans-

action, based on the abort statistics. We created a test pro-

gram to simulate our dynamic transaction-length adjustment. 

In each iteration, it sequentially wrote a specified amount of 

data to memory during a transaction. In one process, it first 

wrote 24 KB 10,000 times, and then 20 KB 10,000 times, 

and so on. We measured the transaction success ratios for 

each 100 iterations. Figure 6(a) shows the results. When the 

write-set size was shrunk from 20 KB to 16 KB and then to 

12 KB, the success ratios did not jump sharply but instead 

increased gradually. It took about 5,000 iterations to reach a 

steady state. This implies that the HTM in Xeon E3-1275 

v3 eagerly aborts a transaction that has suffered from many 

footprint overflows and thus cannot quickly adapt to change 

in the data set size.   

This learning algorithm of Xeon E3-1275 v3’s HTM can 

conflict with our dynamic transaction-length adjustment. 

The running times of the Ruby NPB were too short for both 
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Figure 5. Throughput of the Ruby NAS Parallel Benchmarks on 12-core zEC12 (top) and 4-core 2-SMT Xeon E3-1275 v3 

(bottom), normalized to the 1-thread GIL. HTM-1, -16, and -256 ran transactions of fixed lengths 1, 16, and 256. HTM-

dynamic uses our proposed dynamic transaction-length adjustment. 



the underlying HTM and our algorithm to reach a steady 

state. We ran the benchmarks longer by increasing the class 

sizes and confirmed HTM-dynamic was equal to or better 

than HTM-16. Figure 6(b) presents the results of BT with 

the class size W.  
Without the new yield points described in Section 4.2, 

all of the benchmarks except for CG in the Ruby NPB suf-

fered from more than 20% slowdowns compared with the 

GIL. Without the conflict removals in Section 4.4, the 

HTM provided no acceleration in any of the benchmarks. 

5.5 Results of WEBrick and Ruby on Rails 

Figure 7 shows the throughput and abort ratios of WEBrick 

and Ruby on Rails on zEC12 and Xeon E3-1275 v3. As 

described in Section 5.3, we ran Ruby on Rails only on 

Xeon E3-1275 v3. The throughput was normalized to GIL 

with 1 thread. We changed the number of concurrent clients 

from 1 to 6. In WEBrick, HTM-1 and HTM-dynamic 

achieved a 33% speedup on zEC12 and a 97% speedup on 

Xeon E3-1275 v3 (over 1-thread GIL). GIL also showed 

speedups of 17% and 26% on zEC12 and Xeon E3-1275 v3, 

respectively, because the GIL is released during I/O. As a 

result, HTM-1 and HTM-dynamic were faster than GIL by 

14% and 57% on zEC12 and Xeon E3-1275 v3, respec-

tively. Similarly, in Ruby on Rails, HTM-1 and HTM-

dynamic improved the throughput by 24% over GIL. The 

throughput degraded when the number of clients was in-

creased from 4 to 6, due to the rise in the abort ratio, as we 

explain in Section 5.6. 

The HTM scaled worse on zEC12 than on Xeon E3-

1275 v3, because many conflicts occurred in malloc(). As 

described in Section 5.2, we used a thread-local allocator, 

but there still remained conflict points. Due to these exces-

sive conflicts, HTM-1 and HTM-dynamic did not show 

better throughput than HTM-16 and HTM-256 on zEC12. 

Unlike the Ruby NPB, HTM-1 was the best or one of the 

best among the fixed transaction-length configurations in 

WEBrick and Ruby on Rails. HTM-dynamic also chose the 

best transaction lengths in these programs. In summary, 

with HTM-dynamic, the users do not need to specify differ-

ent transaction lengths for different programs and numbers 

of threads to obtain near optimal performance, as long as 

the programs run long enough on the Xeon E3-1275 v3. 

With 12 threads on zEC12, 40% of the frequently executed 

yield points had the transaction length of 1 in the Ruby 

NPB. That means HTM-dynamic effectively chose better 

lengths for the other points.  

5.6 Further optimization opportunities 

We present the abort ratios of HTM-dynamic in the right-

most part of Figure 7 and in Figure 8. In the Ruby NPB, the 

abort ratios were mostly below 2% on zEC12 and 7% on 

Xeon E3-1275 v3, indicating that HTM-dynamic adjusted 

the transaction lengths properly with the respective 1% and 

6% target abort ratios (of Section 5.1). In WEBrick and 

Ruby on Rails, HTM-dynamic could not control the abort 

ratios because most of the transaction lengths reached 1 and 

could not be shortened further.  

The cycle breakdowns of 12-thread HTM-dynamic on 

zEC12 in Figure 8 show that the time spent waiting for the 

GIL release was longer than the time for cycles wasted on 

aborted transactions. The cycle breakdown of IS does not 

represent the actual execution, because 79% of the time was 

spent in data initialization, which was outside of the meas-

urement period.  
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Figure 7. Throughput and abort ratios of the WEBrick HTTP server on 12-core zEC12, on 4-core 2-SMT Xeon E3-1275 v3, 

and Ruby on Rails on Xeon E3-1275 v3. The throughput results are normalized to the 1-thread GIL. HTM-1, -16, and -256 

ran transactions of fixed lengths, and HTM-dynamic uses our proposed dynamic transaction-length adjustment. 
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Figure 6. (a) Results of a test program shrinking the write-

set size on Xeon E3-1275 v3. The transaction success ratio 

increased gradually when the size shrank. (b) Throughput of 

BT with a bigger class size (W) on Xeon E3-1275 v3. 

HTM-dynamic showed the best throughput. 



Investigation of the abort reasons that caused the GIL to 

be acquired revealed that read-set conflicts accounted for 

more than 80% for all of the Ruby NPB with 12 threads. 

Except for IS, more than 50% of those read-set conflicts 

occurred at the time of object allocation. Even with the 

thread-local free lists described in Section 4.4, the global 

free list still needed occasional manipulation. Also, when 

the global free list became empty, lazy sweeping of the 

heap was triggered and thus caused more conflicts. To 

overcome the conflicts in the object allocations, the global 

free list must be eliminated. When a thread-local free list 

becomes empty, the lazy sweeping should be done on a 

thread-local basis. GC should also be parallelized or thread-

localized.  

For WEBrick on zEC12, malloc() caused many conflicts, 

as described in Section 5.5. In WEBrick on Xeon E3-1275 

v3 with 4-clients HTM-dynamic, footprint overflows and 

conflicts accounted for 34% and 29%, respectively, of the 

aborts that resulted in the GIL acquisition, but the CPU did 

not report the abort reasons for the others. In Ruby on Rails 

on Xeon E3-1275 v3 with 4-client HTM-dynamic, 87% of 

the aborts were due to transaction footprint overflows. Most 

of these aborts in WEBrick and Ruby on Rails occurred in 

the regular-expression library and method invocations. The 

regular expression library is written in C, so there is no 

yield point in it. A method invocation is a complex opera-

tion in CRuby, and since it is a single byecode, it does not 

have a yield point in it either. To reduce the aborts in the 

library and method invocations, these operations should be 

split into multiple transactions. 

The single-thread overhead of HTM-dynamic against the 

GIL was 18% to 35% in Figures 5 and 7. Aborts due to 

overflows and external interrupts occurred even with one 

thread, but there were three more overhead sources. First, 

the checking operation in Line 9 of Figure 2 and the new 

yield points described in Section 4.2 caused 5%-14% over-

head. Second, as described in Section 4.4, we changed the 

logic of the method-invocation inline caches to reduce con-

flicts. This change degraded the single-thread performance 

by up to 5%. To avoid this degradation, HTM-friendly 

inline caches, such as thread-local caches, are required. 

Third, on zEC12, access to Pthread’s thread-local storage 

accounted for 9% of the execution cycles on average. As 

explained in Section 4.4, we moved several global variables 

to the thread-local storage. Unfortunately, the access func-

tion, pthread_getspecific(), is not optimized in z/OS, but it 

is highly tuned in some environments, including Linux. 

5.7 Scalability characterization 

The abort ratios and cycle breakdowns of the Ruby NPB in 

Figure 8 had little correlation with the speedups in Figure 5. 

These facts suggest that although the speedups achieved by 

HTM-dynamic were limited by the conflicts at the time of 

object allocation, the differences among the programs were 

due to their inherent scalability characteristics. 

In Figure 9, we compare the scalability of HTM-

dynamic on zEC12, JRuby, and the Java NPB, from which 
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Figure 8. Abort ratios and cycle breakdowns (when running with 12 threads on zEC12) of HTM-dynamic in the Ruby NPB. 
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Figure 9. Scalability comparison of the Ruby NAS Parallel Benchmarks on HTM-dynamic/CRuby on 12-core zEC12, fine-

grained locking/JRuby, and the Java NAS Parallel Benchmarks. JRuby and the Java version ran on 12-core Intel Xeon 

X5670 (no hyper-threading). 



the Ruby NPB was translated. Figure 9 shows that even the 

Java NPB hit scalability bottlenecks and HTM-dynamic 

resembled the Java NPB in terms of the scalability. These 

results confirmed that the differences in the speedups by 

HTM-dynamic among the benchmarks originated from each 

program’s own scalability characteristics. When compared 

with JRuby, HTM-dynamic achieved the same scalability 

on average: 3.6-fold with HTM-dynamic and 3.5-fold with 

JRuby, running 12 threads (not shown in Figure 9). We 

believe the characteristics of each benchmark were different 

between HTM-dynamic and JRuby because of JRuby’s in-

ternal scalability bottlenecks. 

6. Related Work 

Riley et al. [23] used HTM to eliminate the GIL in PyPy, 

one of the implementations of the Python language. How-

ever, because they experimented with only two micro-

benchmarks on a non-cycle-accurate simulator, it is hard to 

assess how their implementation would behave on a real 

HTM. Tabba [29] used the HTM of an early-access version 

of Sun’s Rock processor to remove the GIL in the original 

Python interpreter. Although their measurements were on 

real hardware, they ran only three synthetic micro-

benchmarks. Also, the HTM on Rock had a severe limita-

tion in that transactions could not contain function returns 

or tolerate TLB misses. These prototype results cannot be 

extended to real-world applications. The GIL in Ruby was 

eliminated through HTM in our prior report [18]. This pa-

per is the first to evaluate larger benchmarks including 

WEBrick and Ruby on Rails on two implementations of 

less-restrictive HTM, zEC12 and Xeon E3-1275 v3. 

RETCON [1] applied speculative lock elision to the GIL 

in Python. The focus of the work was on reducing conflicts 

due to reference-counting GC by symbolic re-execution. 

However, because it was evaluated on a simulator support-

ing an unlimited transaction size, the aborts in the experi-

ment were mostly due to conflicts. In our experience with a 

real HTM implementation, the effectiveness of GIL elimi-

nation is limited by overflows and other types of aborts, 

which calls for the dynamic transaction-length adjustment. 

Dice et al. [3] evaluated a variety of programs using 

HTM on the Sun Rock processor. Wang et al. [31] meas-

ured the STAMP benchmarks [15] on the HTM in Blue 

Gene/Q. Neither of these evaluations covered GIL elimina-

tion for scripting languages. 

Some alternative implementations of the Ruby and Py-

thon languages [9,10,12,13,24] use or are going to use fine-

grained locking instead of the GIL. JRuby [12] maps Ruby 

threads to Java threads and then uses concurrent libraries 

and synchronized blocks and methods in Java to protect the 

internal data structures. However, JRuby has two types of 

incompatibility with CRuby. First, while some of the stan-

dard-library classes in CRuby are written in C and are im-

plicitly protected by the GIL, JRuby rewrites them in Java 

and leaves them unsynchronized for performance reasons. 

Thus any multi-threaded programs that depend on the im-

plicitly protected standard-library classes in CRuby may 

behave differently in JRuby. Second, because JRuby does 

not support CRuby-compatible extension libraries, it does 

not need the GIL to protect the thread-unsafe extension 

libraries. The current version 2.2.1 of Rubinius [24] uses 

fine-grained locking. However, the Rubinius support for the 

CRuby-compatible extension libraries conflicts with further 

removing the locks. In contrast, replacing the GIL with 

HTM creates no compatibility problems in the libraries and 

can yet increase scalability. PyPy is planning to eliminate 

the GIL through software transactional memory (STM) [20], 

but it is unclear whether the scalability improvement can 

offset the overhead of the STM.  

Scripting languages other than Ruby and Python mostly 

do not have a GIL, but that is because they do not support 

shared-memory multi-thread programming, and thus their 

programming capabilities are limited on multi-core systems. 

Perl’s ithreads clone the entire interpreter and its data when 

a thread is created, and any data sharing among threads 

must be explicitly declared as such [19]. The cloning makes 

a GIL unnecessary, but it is as heavy as fork() and restricts 

shared-memory programming.  Lua [14] does not support 

multi-threading but uses coroutines. The coroutines switch 

among themselves by explicitly calling a yield function. 

This means they never run simultaneously and do not re-

quire a GIL. JavaScript (AKA ECMAScript) [4] does not 

support multi-threading, so the programs must be written in 

an asynchronous event-handling style. 

7. Conclusion and Future Work 

This paper shows the first empirical results of eliminating 

the Global Interpreter Lock (GIL) in a scripting language 

through Hardware Transactional Memory (HTM) to im-

prove the multi-thread performance of realistic programs. 

We proposed a new automatic mechanism to dynamically 

adjust the transaction lengths on a per-yield-point basis. 

Our mechanism chooses a near optimal tradeoff point be-

tween the relative overhead of the instructions to begin and 

end the transactions and the likelihood of transaction con-

flicts and footprint overflows. We experimented on the 

HTM facilities in the mainframe processor IBM zEC12 and 

the Intel 4th Generation Core processor (Xeon E3-1275 v3). 

We evaluated the Ruby NAS Parallel Benchmarks (NPB), 

the WEBrick HTPP server, and Ruby on Rails. Our results 

show that HTM achieved up to a 4.4-fold speedup in the 

Ruby NPB, and 1.6-fold and 1.2-fold speedups in WEBrick 

and Ruby on Rails, respectively. The dynamic transaction-

length adjustment chose the best transaction lengths. On 

Xeon E3-1275 v3, programs need to run long enough to 

benefit from the dynamic transaction-length adjustment. 



From all of these results, we concluded that HTM is an ef-

fective approach to achieve higher multi-thread perform-

ance compared to the GIL. 

Our techniques will be effective also in Python, because 

our GIL elimination and dynamic transaction-length ad-

justment do not depend on Ruby. Conflict removal can be 

specific to each implementation. For example, the original 

Python implementation (CPython) uses reference counting 

GC, which will cause many conflicts, while PyPy uses 

copying GC and thus is more suitable for the GIL elimina-

tion through HTM. 
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