

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
PPoPP '14, February 15 - 19 2014, Orlando, FL, USA
Copyright © 2014 ACM 978-1-4503-2656-8/14/02…$15.00.
http://dx.doi.org/10.1145/2555243.2555247

Eliminating Global Interpreter Locks in Ruby

through Hardware Transactional Memory

Rei Odaira

IBM Research – Tokyo

odaira@jp.ibm.com

Jose G. Castanos

IBM Research – T.J. Watson
Research Center

castanos@us.ibm.com

Hisanobu Tomari

University of Tokyo

tomari@is.s.u-tokyo.ac.jp

Abstract

Many scripting languages use a Global Interpreter Lock

(GIL) to simplify the internal designs of their interpreters,

but this kind of lock severely lowers the multi-thread per-

formance on multi-core machines. This paper presents our

first results eliminating the GIL in Ruby using Hardware

Transactional Memory (HTM) in the IBM zEnterprise

EC12 and Intel 4th Generation Core processors. Though

prior prototypes replaced a GIL with HTM, we tested real-

istic programs, the Ruby NAS Parallel Benchmarks (NPB),

the WEBrick HTTP server, and Ruby on Rails. We devised

a new technique to dynamically adjust the transaction

lengths on a per-bytecode basis, so that we can optimize the

likelihood of transaction aborts against the relative over-

head of the instructions to begin and end the transactions.

Our results show that HTM achieved 1.9- to 4.4-fold speed-

ups in the NPB programs over the GIL with 12 threads, and

1.6- and 1.2-fold speedups in WEBrick and Ruby on Rails,

respectively. The dynamic transaction-length adjustment

chose the best transaction lengths for any number of threads

and applications with sufficiently long running times.

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming – Parallel

programming

Keywords Global interpreter lock; hardware transactional

memory; scripting language; lock elision

1. Introduction

Scripting languages such as Ruby [26] and Python [21]

offer high productivity, but at the cost of slow performance.

The single-thread performance is limited because of inter-

preted execution, dynamic typing, and the support for meta-

programming. Many projects [10,24,30] have attempted to

overcome these limitations through Just-in-Time (JIT)

compilation with type specialization.

Meanwhile, the multi-thread performance of the script-

ing languages is constrained by the Global Interpreter Lock

(GIL), or the Giant VM Lock (GVL) in Ruby’s terminology.

Although each application thread is mapped to a native

thread, only the one thread that acquires the GIL can actu-

ally run. At pre-defined yield points, each thread releases

the GIL, yields the CPU to another runnable thread if any

exists, and then reacquires the GIL. The GIL eases the pro-

gramming of the interpreters’ logic and the extension librar-

ies because they do not need to worry about concurrency. In

return, the GIL significantly limits the performance on

multi-core systems. Some new implementations of the Ruby

and Python languages [9,10,12,13] use complex fine-

grained locking to remove the GIL. However, their class

libraries still need to be globally protected to remain com-

patible with the original implementations of the languages.

 Transactional memory has been proposed as an alterna-

tive to eliminate global locking without requiring the com-

plex semantics of fine-grained locking. In transactional

memory, a programmer encloses critical sections with

transaction begin and end directives. A transaction is exe-

cuted atomically so that its memory operations appear to be

performed in a single step. Transactions can be executed

concurrently as long as their memory operations do not

conflict, so that transactional memory can outperform

global locking. Although transactional memory is attractive

for its potential concurrency, pure software implementa-

tions are slow [2].

Chipmakers in the industry regard transactional memory

as a promising technology for parallel programming in the

multi-core era and are designing or producing hardware for

transactional memory, called Hardware Transactional

Memory (HTM). Intel published documentation for an in-

struction set called Transactional Synchronization Exten-

sions [8] and implemented it in the 4th Generation Core

processor. IBM has released Blue Gene/Q and the main-

frame zEnterprise EC12 (zEC12) with HTM support [5,27].

IBM also defined HTM extensions for POWER ISA [6] to

be implemented in POWER8 [28]. These HTM implemen-

tations will offer effective concurrency with low overhead.

There have been previous studies [1,23,29] of replacing

the GIL of a scripting language with HTM, but they meas-

ured only micro-benchmarks on simulators or on the limited

HTM of Sun’s Rock processor [3]. Therefore, these studies

did not propose solutions to or even reveal many transac-

tion aborts encountered when realistic programs are exe-

cuted on less-restrictive HTM hardware.

This paper shows the empirical results of removing the

GIL from Ruby and proposes dynamic transaction length

adjustment to reduce transaction aborts and overhead. We

used IBM’s HTM implementation in zEC12 and Intel’s

implementation in the 4th Generation Core processor (Xeon

E3-1275 v3). In addition to micro-benchmarks, we meas-

ured the NAS Parallel Benchmarks ported to Ruby [17], the

WEBrick HTTP server attached in the Ruby distribution,

and Ruby on Rails [25]. Our results are also applicable to

other HTM implementations. Unlike the results [29] on

Sun’s Rock processor, the HTM implementations on which

we experimented are similar to the generic ones proposed in

the literature, e.g. [22].

Running these programs on the real HTM hardware re-

vealed a tradeoff between transaction aborts and overhead.

On the one hand, we desire long transactions as we amor-

tize the overhead to begin and end each transaction. On the

other hand, no HTM implementation allows for transactions

of unlimited lengths, and longer transactions increase the

amount of discarded work when a transaction aborts.

To balance the transaction aborts against the overhead,

we propose a new technique to dynamically adjust the

transaction lengths on a per-yield-point basis. As in the GIL,

a transaction ends and begins at pre-defined transaction

yield points, but it need not do so at every transaction yield

point. We dynamically adjust the transaction lengths, i.e.

how many yield points to skip, based on the abort statistics

of the transactions started at each yield point.

Here are our contributions:

• We propose an algorithm for the GIL elimination

that adjusts the transaction lengths at each yield point.

• We implemented and evaluated the GIL elimination

on real machines that support HTM, using real-world

applications in addition to micro-benchmarks.

• We eliminated the GIL from Ruby, going beyond

prior work focusing on Python. We also removed

transaction conflict points in the Ruby interpreter.

Section 2 describes the HTM implementations used in

our studies and Section 3 explains Ruby’s GIL implementa-

tion. Section 4 shows how we replaced the GIL with the

HTM and then balanced the aborts against the overhead,

leading to the experimental results in Section 5. Section 6

covers related work. Section 7 concludes the paper.

2. HTM Implementations

We used the HTM implementations in the IBM mainframe

zEC12 and the Intel 4th Generation Core processor (Xeon

E3-1275 v3) for our studies. This section briefly describes

the instruction set architectures supporting the HTM and

their micro-architectures. A complete description of the

HTM in zEC12 appeared in a paper [11]. The instruction

set architectures of zEC12 and the 4th Generation Core

processor are also available [7,8].

2.1 Instruction set architectures

In zEC12, each transaction begins with a TBEGIN instruc-

tion and is ended by a TEND instruction. In the 4th Genera-

tion Core processor, XBEGIN and XEND correspond to

TBEGIN and TEND, respectively. If a transaction aborts,

then the execution returns back to the instruction immedi-

ately after the TBEGIN in zEC12, while the argument of

the XBEGIN specifies a relative offset to a fallback path.

A transaction can abort for various reasons. The most

frequent causes include footprint overflows and conflicts.

When the abort is transient, e.g. because of a conflict, sim-

ply retrying the transaction is likely to succeed. On persis-

tent aborts, e.g. due to transaction footprint overflow, the

program should cancel the execution of the transaction. The

condition code in zEC12 and the EAX register in the 4th

Generation Core processor report whether the abort is tran-

sient or persistent. A transaction can also be aborted by

software with a TABORT (in zEC12) or an XABORT (in

the 4th Generation Core processor) instruction.

2.2 Micro-architectures

The zEC12 Central Processor (CP) chip has 6 cores, and 6

CP chips are packaged in a multi-chip module (MCM). Up

to 4 MCMs can be connected in a single cache-coherent

system. Each core has 96-KB L1 and 1-MB L2 data caches.

The 6 cores on a CP chip share a 64-MB L3 cache and the

6 CP chips share an off-chip 384-MB L4 cache included in

the same MCM. Each core supports a single hardware

thread. The cache line size is 256 bytes.

The Xeon E3-1275 v3 processor contains 4 cores and

each core supports 2 simultaneous multi-threading (SMT)

threads. Each core has 32-KB L1 data and 256-KB L2 uni-

fied caches. The 4 cores share an 8-MB L3 cache. The

cache line size is 64 bytes.

The zEC12 HTM facilities are built on top of its cache

structure. Each L1 data cache line is augmented with its

own tx-read and tx-dirty bits. An abort is triggered if a

cache-coherency request from another CPU conflicts with a

transactionally read or written line. A special LRU-

extension vector records the lines that are transactionally

read but evicted from the L1. Thus the maximum read-set

size is roughly the size of the L2. The transactionally writ-

ten data is buffered in the Gathering Store Cache between

the L1 and the L2/L3. The maximum write-set size is lim-

ited to this cache size, which is 8 KB.

The detailed design of the Xeon E3-1275 v3 processor’s

HTM has not been revealed, but it takes advantage of the

cache structure, like zEC12. Our preliminary experiments

showed that the maximum read-set size is 6 MB, and the

maximum write-set size is about 19 KB.

3. Ruby Implementation

This section introduces the Ruby language and its original

implementation, often called CRuby, and describes how the

GIL works in CRuby. Our description is based on CRuby

1.9.3-p194.

3.1 The Ruby language and CRuby

Ruby is a modern object-oriented scripting language that is

widely known as part of the Ruby on Rails Web application

framework. Nevertheless, Ruby is a general-purpose lan-

guage that has many features in common with other script-

ing languages such as JavaScript, Python, or Perl: a flexible,

dynamic type system; meta-programming; closures; and an

extensive standard runtime library.

The reference Ruby implementation [26] is called

CRuby, which is written in the C language. The recent re-

leases of CRuby use a stack-based virtual machine. Ruby

code is compiled into an internal bytecode representation at

runtime and is executed by an interpreter. CRuby does not

have a JIT compiler.

3.2 The GIL in CRuby

The Ruby language supports multi-threaded programming

through objects of the standard Thread class that synchro-

nize through standard concurrency constructs like Mutex or

ConditionVariable objects. Since CRuby 1.9, the interpreter

supports native threads, where each Ruby application

thread maps to a kernel thread. In our environments, each

application thread corresponds to a Pthread.

Unfortunately, the concurrency is limited. The inter-

preter has a GIL, guaranteeing that only one application

thread is executing in the interpreter at any given time. The

GIL eliminates the need for concurrency programming in

the interpreter and libraries. Unlike normal locking, which

holds a lock only during part of the execution, the GIL is

almost always held by one of the application threads during

execution and is released only when necessary. An applica-

tion thread acquires and releases the GIL when it starts and

ends, respectively. It also releases the GIL when it is about

to perform a blocking operation, such as I/O, and it acquires

the GIL again after the operation is finished.

However, if the GIL were released only at the blocking

operations, compute-intensive application threads could not

be switched with one another at all. Therefore, at certain

pre-defined points, the application thread yields the GIL by

releasing the GIL, calling the sched_yield() system call to

yield the CPU, and then acquiring the GIL again. To insure

reaching a yield point within a finite time, CRuby sets yield

points at loop back-edges and each exit of a method and

block. Note that the yield points have nothing to do with the

“yield” expression in the Ruby language.

As an optimization, each application thread does need

not yield the GIL at every yield point, because the yield

operation is heavy. To allow for occasional yields, CRuby

runs a timer thread in background. It wakes up every 250

msec and sets a flag in the per-thread data structure of the

running application thread. Each thread checks the flag at

each yield point and yields the GIL only when it is set. In

addition, if there is only one application thread, then no

yield operations will be performed at all.

4. GIL Elimination through HTM

This section presents our algorithm for eliminating the GIL

by using an HTM. Our algorithm is based on Transactional

Lock Elision (TLE) [3,22]. Like TLE, our algorithm retains

the GIL as a fallback mechanism. A thread first executes

Ruby code as a transaction. If the transaction aborts, the

thread can retry the transaction, depending on the abort

reason. If the transaction aborts after several retries, the

thread acquires the GIL to proceed.

Transactions should begin and end at the same points as

where the GIL is acquired, released, and yielded, because

those points are guaranteed as safe critical-section bounda-

ries. However, our preliminary experiments showed the

original yield points were too coarse-grained for the HTM,

which caused footprint overflows. Thus we added new yield

points as explained in Section 4.2.

4.1 Beginning and ending a transaction

Figure 1 shows the algorithm to begin a transaction. The

GIL status is tracked by the global variable GIL.acquired,

which is set to true when the GIL is acquired.

If there is no other live application thread in the inter-

preter, then the algorithm reverts to the GIL (Lines 2-3),

because concurrency is unnecessary in this case. Otherwise,

the algorithm first sets the length of the transaction to be

executed (Line 5). This will be explained in Section 4.3.

Before beginning a transaction, the algorithm checks the

GIL and if it has been acquired by some other thread, waits

until it is released (Lines 6-8 and 40-48). This is not manda-

tory but an optimization.

The TBEGIN() function (Line 13) is a wrapper for the

TBEGIN or XBEGIN instruction described in Section 2.1.

The TBEGIN() function initially returns 0. If the transac-

tion aborts, the execution returns back to within the TBE-

GIN() function and then it returns an abort reason code.

Lines 14-15 are within the transaction. As in the original

TLE, the transaction first reads the GIL (Line 15) into its

transaction read set, so that later the transaction can be

aborted if the GIL is acquired by another thread. The trans-

action must abort immediately if the GIL is already ac-

quired, because otherwise the transaction could read data

being modified.

Lines 16-37 are for abort handling. We describe Lines

17-20 in Section 4.3. If the GIL is acquired (Line 21), there

is a conflict at the GIL. In the same way as in Lines 6-8,

Lines 22-27 waits until the GIL is released. The algorithm

first tries to use spin locking, but after GIL_RETRY_MAX-

time aborts, it forcibly acquires the GIL (Line 27). If the

abort is persistent, retrying the transaction will not succeed,

so the execution immediately reverts to the GIL (Lines 28-

29). For the transient aborts, we retry the transaction

TRANSIENT_RETRY_MAX times before falling back on

the GIL (Lines 31-35).

Ending a transaction is much simpler than beginning a

transaction (Figure 2). The acquired GIL (Line 2) means

this transaction has been executed not as a transaction but

with the GIL being held. Thus the GIL must be released.

Otherwise, the TEND or XEND instruction is issued.

4.2 Yielding a transaction

As described in Section 3.2, the original CRuby implemen-

tation has a timer thread to force yielding among the appli-

cation threads. We no longer need the timer thread because

the application threads are running in parallel using the

HTM, but we still need the yield points. Without them,

some transactions would last so long that there would be

many conflicts and footprint overflows.

In our preliminary experiments, we found the original

yield points were too coarse-grained for the HTM. As de-

scribed in Section 3.2, the original CRuby sets yield points

at branches and method and block exits. With only these

yield points, most of the transactions abort due to store

overflows. Therefore, we defined the following bytecode

types as additional yield points: getlocal, getinstancevari-

able, getclassvariable, send, opt_plus, opt_minus, opt_mult,

and opt_aref. The first three bytecode types are to read

variables. The send bytecode invokes a method or a block.

The opt_ variants perform their corresponding operations

(plus, minus, multiplication, and array reference) but are

optimized for certain types such as integer numbers. We

chose these bytecodes because they appear frequently in

bytecode sequences or they access much data in memory.

This means that in the NAS Parallel Benchmarks, more

than half of the bytecode instructions are now yield points.

We also need to guarantee that the new yield points are

safe. In interpreters, the bytecode boundaries are natural

yield points. Because the bytecode instructions can be gen-

erated in any order, it is unlikely that the interpreters inter-

nally have a critical section straddling a bytecode boundary.

However, for applications that are incorrectly synchronized,

such as those assuming the GIL can be yielded only at

branches or method exits, the new yield points can change

their behavior. Applications properly synchronized by using

Mutex objects are not affected by our changes.

At each yield point, we call the transaction_yield() func-

tion in Figure 2, which simply calls the functions to end and

begin transactions (Lines 12-13), but with two optimiza-

tions. First, as described in Section 3.2, no yield operation

is performed if there is only one application thread (Line 9).

Note that the GIL is used in this case (Line 3 of Figure 1).

Second, a transaction does not yield at every yield point but

only after a set number of yield points (using

yield_point_counter) have been passed (Lines 10-11). This

optimization is described in Section 4.3. Unlike the original

 1. transaction_begin(current_thread, pc) {
2. if (there is no other live thread) {
3. gil_acquire();
4. } else {
5. set_transaction_length(current_thread, pc);
6. if (GIL.acquired) {
7. if (spin_and_gil_acquire()) return;
8. }
9. transient_retry_counter = TRANSIENT_RETRY_MAX;
10. gil_retry_counter = GIL_RETRY_MAX;
11. first_retry = 1;
12. transaction_retry:
13. if ((tbegin_result = TBEGIN()) == 0) {
14. /* transactional path */
15. if (GIL.acquired) TABORT();
16. } else { /* abort path */
17. if (first_retry) {
18. first_retry = 0;
19. adjust_transaction_length(pc);
20. }
21. if (GIL.acquired) {
22. gil_retry_counter--;
23. if (gil_retry_counter > 0) {
24. if (spin_and_gil_acquire()) return;
25. else goto transaction_retry;
26. }
27. gil_acquire();
28. } else if (is_persistent(tbegin_result)) {
29. gil_acquire();
30. } else {
31. /* transient abort */
32. transient_retry_counter--;
33. if (transient_retry_counter > 0)
34. goto transaction_retry;
35. gil_acquire();
36. }
37. }
38. }
39. }

40. spin_and_gil_acquire() {
41. Spin for a while until the GIL is released;
42. if (! GIL.acquired) return false;
43. gil_acquire();
44. return true;
45. }

46. gil_acquire() {
47. /* Omitted. Original GIL-acquisition logic. */
48. }

Figure 1. Algorithm to begin a transaction.

GIL-yield operation, we do not need to call the

sched_yield() system call, because the multiple threads are

already running in parallel and the OS is scheduling them.

4.3 Dynamic transaction-length adjustment

As shown in Figure 2, each transaction will skip a prede-

termined number of yield points before it ends. This means

that the transaction lengths vary with the granularity of the

yield points. The length of a transaction means the number

of yield points the transaction passes through plus one.

Tradeoff in transaction length

In general, there are three reasons the total abort overhead

decreases as the transaction lengths shorten. First, the

amount of work that becomes useless and has to be rolled-

back at the time of an abort is smaller. Second, the prob-

abilities of footprint overflows are smaller, because they

depend on the amount of data accessed in each transaction.

Third, if the execution reverts to the GIL, the serialized

sections are shorter.

In contrast, the shorter the transactions are, the larger the

relative overhead to begin and end the transactions. In par-

ticular, beginning a transaction suffers from the overhead of

not only TBEGIN or XBEGIN but also the surrounding

code in Figure 1.

The best transaction length depends on each yield point.

If the intervals (i.e. the number of instructions) between the

subsequent yield points are small, then the lengths of the

transactions starting at the current yield point should be

long. As another example, suppose there are three consecu-

tive yield points, A, B, and C. If the code between B and C

contains an instruction that is not allowed in transactions,

e.g. a system call, then the length of any transaction starting

at A should be one. If the length was two or more, the

transactions would definitely abort.

Adjustment algorithm

We propose a mechanism to adjust the transaction lengths

on a per-yield-point basis. The transaction length is initial-

ized to a certain large number at each yield point. The abort

ratios of the transactions starting at each yield point are

monitored. If the abort ratio is above a threshold at a par-

ticular yield point, then the transaction length is shortened.

This process continues during a profiling period until the

abort ratio falls below the threshold.

The set_transaction_length() function in Figure 3 is in-

voked from Line 5 in Figure 1 before each transaction be-

gins. The parameter pc is the program counter of the yield-

point bytecode from which this transaction is about to start.

If the Ruby interpreter is configured to use a constant trans-

action length, that constant value is assigned to the transac-

tion length (yield_point_counter) at Line 3. Otherwise, the

yield-point-specific length is assigned at Line 7. If it has not

yet been initialized, then a pre-defined long length is as-

signed (Lines 5-6). To calculate the abort ratio, this func-

tion also counts the number of the transactions started at

each yield point (Line 9). To avoid the overhead of moni-

toring the abort ratio after the program reaches a steady

state, there is an upper bound for the counter (Line 8).

The adjust_transaction_length() function is called when

a transaction aborts for the first time (Line 19 in Figure 1).

If the transaction length has not yet reached the minimum

value or 1 (Line 13), and if this is during a profiling period

(Line 14), then the abort ratio is checked and updated

(Lines 16-17). If the number of aborts in the transactions

started from the current yield point exceeds a threshold

(Line 16) before the PROFILING_PERIOD number of

transactions began, then the transaction length is shortened

(Line 19). The two counters to monitor the abort ratio are

reset (Lines 20-21) to extend the profiling period.

Note that even when the execution reverts to the GIL,

the length of the transaction is unchanged. If the current

 1. transaction_end() {
2. if (GIL.acquired) gil_release();

3. else TEND();
4. }

5. gil_release() {
6. /* Omitted. Original GIL-release logic */
7. }

8. transaction_yield(current_thread, pc) {
9. if (there is other live thread) {

10. current_thread->yield_point_counter--;
11. if (current_thread->yield_point_counter == 0) {
12. transaction_end();
13. transaction_begin(current_thread, pc);

14. }
15. }
16. }
Figure 2. Algorithm to end and yield a transaction.

 1. set_transaction_length(current_thread, pc) {
2. if (transaction length is constant) {
3. current_thread->yield_point_counter =

TRANSACTION_LENGTH;
4. } else {
5. if (transaction_length[pc] == 0)
6. transaction_length[pc] =

INITIAL_TRANSACTION_LENGTH;
7. current_thread->yield_point_counter =

transaction_length[pc];
8. if (transaction_counter[pc] < PROFILING_PERIOD)
9. transaction_counter[pc]++;
10. }

11. adjust_transaction_length(pc) {
12. if (transaction length is NOT constant &&
13. transaction_length[pc] > 1 &&
14. transaction_counter[pc] <= PROFILING_PERIOD) {
15. num_aborts = abort_counter[pc];
16. if (num_aborts <= ADJUSTMENT_THRESHOLD) {
17. abort_counter[pc] = num_aborts + 1;
18. } else {
19. transaction_length[pc] =

transaction_length[pc] * ATTENUATION_RATE;
20. transaction_counter[pc] = 0;
21. abort_counter[pc] = 0;
22. }
23. }
24. }
Figure 3. Algorithm to set and adjust a transaction.

length is 3, for example, the current thread passes through 2

yield points and releases the GIL at the third one.

4.4 Conflict removal

To obtain better scalability with the HTM, any transaction

conflicts must be removed. We fixed five major sources of

conflicts in CRuby.

The most severe conflicts occurred at global variables

pointing to the Ruby-thread structure of the running thread.

Immediately after the GIL is acquired, the global variables

point to the running thread. If multiple threads write to

these variables every time any transaction begins, they will

cause many conflicts. Therefore we moved these variables

from the global scope to the Pthread thread-local storage.

The second source of severe conflicts is the head of the

single global linked list of free objects. CRuby allocates

each new object from the head of the list. This mechanism

obviously causes conflicts in multi-threaded execution. We

modified CRuby’s memory allocator, so that each thread

maintains a short thread-local free list. A specified number

(256, in our implementation) of objects are moved in bulk

from the global free list to the thread-local free list, and

each new object is allocated on a thread-local basis.

Garbage collection (GC) is the third conflict point. The

mark-and-sweep GC in CRuby is not parallelized. GC will

cause conflicts if invoked from multiple transactions. Even

if it is triggered from one transaction, the transaction size

will overflow. This implies that GC is always executed with

the GIL acquired. To mitigate this overhead, we reduced

the frequency of GC by increasing the initial Ruby heap.

We changed the initial number of free objects from 10,000

to 10,000,000, which corresponded to about 400 MB.

Fourth, inline caches cause aborts when they miss.

CRuby searches a hash table to invoke a method or to ac-

cess an instance variable. To cache the search result, a one-

entry inline cache is collocated with each method-

invocation and instance-variable-access bytecode. Since the

inline caches are shared among threads, an update to an

inline cache at the time of a cache miss can result in a con-

flict. For method invocations, we changed the caching logic

so that each cache is filled only at the first miss. For in-

stance-variable accesses, we reduced the cache misses by

changing the inline cache guard. Originally, the cached con-

tent is used if the class of the object is the same as the class

recorded in the cache when it is filled. However, the cached

content is valid even when the classes are different, as long

as the instance-variable table of the class of the object is the

same as that of the recorded class. Therefore, we reduced

the cache misses by using the instance-variable-table equal-

ity check instead of the class-equality check.

Finally, as we added frequently updated fields, such as

yield_point_counter (Line 10 in Figure 2), to CRuby’s

thread structures, they began to cause false sharing. We

avoided this by allocating the thread structures in dedicated

cache lines.

Each of these conflict removals was limited to a few

dozen modified lines in the source code.

5. Experimental Results

This section describes our implementation for zEC12 and

the 4th Generation Core processor. Then our experimental

results are presented for the Ruby NAS Parallel Bench-

marks (NPB) [17], the WEBrick HTTP server, and Ruby

on Rails [25].

5.1 Implementation

We implemented the algorithms and optimizations ex-

plained in Section 4 in CRuby 1.9.3-p194. CRuby ran on

Linux 3.10.5 and the 4th Generation Core processor with-

out any modifications. To run CRuby on zEC12, we ported

it into the UNIX System Services (USS) of z/OS 1.13.

For the conflict resolutions in Sections 4.4, we also im-

plemented the thread-local free lists in the original CRuby.

We tested a back-port to the original CRuby of the global

variable removal, and the changes in the inline caches, but

found they degraded the performance. The new yield points

(Section 4.2) were not added in the original CRuby because

they would increase the overhead without any benefit. In all

of the experiments, the initial Ruby heap size was set to

10,000,000, using the RUBY_HEAP_MIN_SLOTS envi-

ronmental variable.

The values of TRANSIENT_RETRY_MAX and

GIL_RETRY_MAX in Figure 1 were set to 3 and 16, re-

spectively. In our preliminary experiments, it was unlikely

that a transaction would ever succeed after 3-or-more con-

secutive transient aborts. In contrast, a thread should wait

more patiently for the GIL release, because the GIL will

eventually be released and the fallback to GIL is very slow.

The INITIAL_TRANSACTION_LENGTH of Figure 3 was

set to 255, and the PROFILING_PERIOD to 300. Unless

set to extremely large values like 10,000, these constants

did not affect the performance. The target abort ratio of the

dynamic transaction-length adjustment was set to 1% on

zEC12 and 6% on the 4th Generation Core processor, based

on our preliminary experiments. The best target abort ratios

are independent of the applications but depend on the HTM

implementations, especially the abort costs. Accordingly,

ADJUSTMENT_THRESHOLD (Line 16 in Figure 3) was

set to 3 on zEC12 and 18 on the 4th Generation Core proc-

essor, which meant that the ADJUST-

MENT_THRESHOLD / PROFILING_PERIOD = 3 / 300

= 1% on zEC12 and 18 / 300 = 6% on the 4th Generation

Core processor. The ATTENUATION_RATE (Line 19 in

Figure 3) was set to 0.75.

5.2 Experimental environments

The experimental zEC12 system was divided into multiple

Logical PARtitions (LPARs), and each LPAR corresponds

to a virtual machine. Our LPAR was assigned 12 cores, all

running at 5.5 GHz. Our system for the 4th Generation Core

processor has one Xeon E3-1275 v3 chip, running at 3.5

GHz. Its microcode version was 0x8. Although the systems

were not totally dedicated to our experiments, no other

process was running during our measurements, and the per-

formance fluctuations were negligible.

The malloc() function in z/OS can cause many conflicts

because it is not a thread-local allocator by default. When

running with the HTM, we specified the HEAPPOOLS

runtime option to enable thread-local allocation in malloc().

5.3 Benchmarks

We measured two micro-benchmarks, seven programs in

the Ruby NPB, the WEBrick HTTP server, and Ruby on

Rails. We ran them four times and took the averages.

As preliminary experiments, we created the two micro-

benchmarks to assess how the HTM works for embarrass-

ingly parallel programs. Figure 4 shows the workloads for

each thread. The results showed good scalability for the

HTM, while the GIL did not scale at all. The best HTM

configurations for each benchmark achieved an 11- to 10-

fold speedup over the GIL using 12 threads on zEC12 in

the While and Iterator benchmarks, respectively.

The Ruby NPB [17] was translated from the Java ver-

sion of the NPB version 3.0 [16]. It contains 7 programs,

BT, CG, FT, IS, LU, MG, and SP. We chose the class size

W for IS and MG and S for the other programs. With these

sizes, the programs ran in 10 to 300 seconds.

The NPB programs are composed of serialized sections

and multi-threaded sections. To investigate their scalability

characteristics, we ran the Ruby NPB on JRuby 1.7.3 [12]

as well as the original Java NPB. JRuby is an alternative

implementation of the Ruby language written in Java.

JRuby is suitable as a comparison target for HTM because

it minimizes its internal scalability bottlenecks by using

fine-grained locking instead of the GIL. Note that this

means JRuby sacrifices its compatibility with CRuby, as

discussed in Section 6. JRuby does not run on zEC12 be-

cause it does not support the EBCDIC character encoding.

To measure the scalability up to 12 threads, we ran JRuby

on a 12-core 2.93-GHz Intel Xeon X5670 machine (with

hyper-threading disabled) running Linux 2.6.32 and Hot-

Spot Server VM 1.7.0_06.

The Java NPB is useful for estimating the scalability of

the application programs themselves, because the Java VM

has even fewer VM-internal scalability bottlenecks than

JRuby. We ran the Java NPB on the same Xeon X5670

machine, using the interpreter of IBM J9 VM 1.7.0 SR3.

We disabled the JIT compiler because the class sizes of S

and W were small. With the JIT compiler, the execution

time was too short to outweigh the parallelization overhead.

WEBrick is the default HTTP server for Ruby on Rails.

It is implemented in Ruby and is included in the CRuby

distribution. It creates one Ruby thread for each incoming

request and discards the thread after returning a response.

We ran WEBrick version 1.3.1. To measure its scalability,

we changed the number of HTTP clients simultaneously

accessing WEBrick. Each run sent 30,000 requests for a 46-

byte page from the same machine as the one running WE-

Brick. We took the peak throughput (requests per second)

as the result of each run. The HTTP clients consumed less

than 5% of the CPU cycles.

Ruby on Rails is a popular Web application framework

in Ruby. Using Ruby on Rails version 4.0.0, we created an

application to fetch a list of books from a database. We

used SQLite3 as the database manager and WEBrick as the

HTTP server. Ruby on Rails is thread-safe, but for back-

ward compatibility it has a global lock to serialize the re-

quest processing. In our experiments, we disabled the

global lock. The measurement method was the same as in

WEBrick. We ran Ruby on Rails only on Xeon E3-1275 v3

because we encountered problems installing it in z/OS.

5.4 Results of the NAS Parallel Benchmarks

Figure 5 shows the throughput of the Ruby NAS Parallel

Benchmarks on zEC12 and Xeon E3-1275 v3, normalized

to GIL with 1 thread. The number of threads was set from 1

to 2, 4, 6, and 8 on Xeon E3-1275 v3, and to 12 on zEC12.

HTM-1, -16, and -256 denote the fixed transaction lengths

of 1, 16, and 256. These configurations correspond to Lines

2-3 in Figure 3. HTM-dynamic uses the dynamic transac-

tion-length adjustment described in Section 4.3.

In zEC12, HTM-dynamic showed up to a 4.4-fold

speedup in FT with 12 threads and at the minimum 1.9-fold

speedups in CG, IS, and LU. From the four HTM configu-

rations, HTM-dynamic was almost always the best or close

to the best. HTM-dynamic was 18% faster than HTM-16 in

FT with 12 threads. HTM-1 was worse than HTM-dynamic

because of its larger overhead, although its abort ratios

were lower. HTM-256 showed almost no scalability. Due to

its long transaction lengths, its abort ratios were above 90%,

and the execution almost always fell back on the GIL.

HTM-16 was the best among the fixed-transaction-length

1. def workload(numIter)

2. x = 0

3. i = 1

4. while i <= numIter

5. x += i

6. i += 1

7. end

8. end

1. def workload(numIter)

2. x = 0

3. (1..numIter).each do |i|

4. x += i

5. end

6. end

While benchmark Iterator benchmark

Figure 4. Each thread’s workloads in the two embarrass-

ingly parallel micro-benchmarks.

configurations, but it incurred more conflict aborts as the

number of threads increased.

In the 4-core Xeon E3-1275 v3 machine, HTM-16

showed the best throughput. Its speedups for up to 4 threads

were almost the same as the corresponding speedups of

HTM-dynamic on zEC12. Beyond 4 threads, HTM-16 did

not scale using SMT, while HTM-1 did scale in some

benchmarks. With SMT, HTM-16 suffered from many

transaction footprint overflows because a pair of threads on

the same core share the same caches, thus halving the maxi-

mum read- and write-set sizes.

HTM-dynamic did not scale better than HTM-16 in

Xeon E3-1275 v3. This was due to the learning algorithm

of Xeon E3-1275 v3’s HTM. We found that the HTM in

Xeon E3-1275 v3 changed its abort criteria for each trans-

action, based on the abort statistics. We created a test pro-

gram to simulate our dynamic transaction-length adjustment.

In each iteration, it sequentially wrote a specified amount of

data to memory during a transaction. In one process, it first

wrote 24 KB 10,000 times, and then 20 KB 10,000 times,

and so on. We measured the transaction success ratios for

each 100 iterations. Figure 6(a) shows the results. When the

write-set size was shrunk from 20 KB to 16 KB and then to

12 KB, the success ratios did not jump sharply but instead

increased gradually. It took about 5,000 iterations to reach a

steady state. This implies that the HTM in Xeon E3-1275

v3 eagerly aborts a transaction that has suffered from many

footprint overflows and thus cannot quickly adapt to change

in the data set size.

This learning algorithm of Xeon E3-1275 v3’s HTM can

conflict with our dynamic transaction-length adjustment.

The running times of the Ruby NPB were too short for both

 FT

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h
ro

u
g
h
p

u
t
(1

 =
 1

 t
h

re
a
d

 G
IL

)

GIL

HTM-1

HTM-16

HTM-256

HTM-dynamic

SP

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t
(1

 =
 1

 t
h

re
a

d
 G

IL
)

CG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
) H

ig
h

e
r is

 b
e
tte

r

BT

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

MG

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t
(1

 =
 1

 t
h

re
a

d
 G

IL
)

LU

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t
(1

 =
 1

 t
h

re
a

d
 G

IL
)

IS

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t
(1

 =
 1

 t
h

re
a

d
 G

IL
)

z
E
C
1
2

 FT

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u

t
(1

 =
 1

 t
h
re

a
d
 G

IL
)

GIL

HTM-1

HTM-16

HTM-256

HTM-dynamic

CG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h

ro
u

g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

SP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

MG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

LU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

BT

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

IS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

H
ig

h
e
r is

 b
e
tte

r

X
e

o
n

 E
3

-1
2

7
5

 v
3

Figure 5. Throughput of the Ruby NAS Parallel Benchmarks on 12-core zEC12 (top) and 4-core 2-SMT Xeon E3-1275 v3

(bottom), normalized to the 1-thread GIL. HTM-1, -16, and -256 ran transactions of fixed lengths 1, 16, and 256. HTM-

dynamic uses our proposed dynamic transaction-length adjustment.

the underlying HTM and our algorithm to reach a steady

state. We ran the benchmarks longer by increasing the class

sizes and confirmed HTM-dynamic was equal to or better

than HTM-16. Figure 6(b) presents the results of BT with

the class size W.
Without the new yield points described in Section 4.2,

all of the benchmarks except for CG in the Ruby NPB suf-

fered from more than 20% slowdowns compared with the

GIL. Without the conflict removals in Section 4.4, the

HTM provided no acceleration in any of the benchmarks.

5.5 Results of WEBrick and Ruby on Rails

Figure 7 shows the throughput and abort ratios of WEBrick

and Ruby on Rails on zEC12 and Xeon E3-1275 v3. As

described in Section 5.3, we ran Ruby on Rails only on

Xeon E3-1275 v3. The throughput was normalized to GIL

with 1 thread. We changed the number of concurrent clients

from 1 to 6. In WEBrick, HTM-1 and HTM-dynamic

achieved a 33% speedup on zEC12 and a 97% speedup on

Xeon E3-1275 v3 (over 1-thread GIL). GIL also showed

speedups of 17% and 26% on zEC12 and Xeon E3-1275 v3,

respectively, because the GIL is released during I/O. As a

result, HTM-1 and HTM-dynamic were faster than GIL by

14% and 57% on zEC12 and Xeon E3-1275 v3, respec-

tively. Similarly, in Ruby on Rails, HTM-1 and HTM-

dynamic improved the throughput by 24% over GIL. The

throughput degraded when the number of clients was in-

creased from 4 to 6, due to the rise in the abort ratio, as we

explain in Section 5.6.

The HTM scaled worse on zEC12 than on Xeon E3-

1275 v3, because many conflicts occurred in malloc(). As

described in Section 5.2, we used a thread-local allocator,

but there still remained conflict points. Due to these exces-

sive conflicts, HTM-1 and HTM-dynamic did not show

better throughput than HTM-16 and HTM-256 on zEC12.

Unlike the Ruby NPB, HTM-1 was the best or one of the

best among the fixed transaction-length configurations in

WEBrick and Ruby on Rails. HTM-dynamic also chose the

best transaction lengths in these programs. In summary,

with HTM-dynamic, the users do not need to specify differ-

ent transaction lengths for different programs and numbers

of threads to obtain near optimal performance, as long as

the programs run long enough on the Xeon E3-1275 v3.

With 12 threads on zEC12, 40% of the frequently executed

yield points had the transaction length of 1 in the Ruby

NPB. That means HTM-dynamic effectively chose better

lengths for the other points.

5.6 Further optimization opportunities

We present the abort ratios of HTM-dynamic in the right-

most part of Figure 7 and in Figure 8. In the Ruby NPB, the

abort ratios were mostly below 2% on zEC12 and 7% on

Xeon E3-1275 v3, indicating that HTM-dynamic adjusted

the transaction lengths properly with the respective 1% and

6% target abort ratios (of Section 5.1). In WEBrick and

Ruby on Rails, HTM-dynamic could not control the abort

ratios because most of the transaction lengths reached 1 and

could not be shortened further.

The cycle breakdowns of 12-thread HTM-dynamic on

zEC12 in Figure 8 show that the time spent waiting for the

GIL release was longer than the time for cycles wasted on

aborted transactions. The cycle breakdown of IS does not

represent the actual execution, because 79% of the time was

spent in data initialization, which was outside of the meas-

urement period.

 Abort ratios of HTM-dynamic

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7

Number of clients

A
b

o
rt

 r
a

ti
o

 (
%

)

WEBrick / zEC12

WEBrick / Xeon

Rails / Xeon

L
o

w
e
r is

 b
e
tte

r

Ruby on Rails / Xeon E3-1275 v3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

Number of clients

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

WEBrick / Xeon E3-1275 v3

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

Number of clients
T

h
ro

u
g
h
p

u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
) H

ig
h

e
r is

 b
e

tte
r

WEBrick / zEC12

0

0.5

1

1.5

0 1 2 3 4 5 6 7

Number of clients

T
h
ro

u
g
h
p

u
t

(1
 =

 1
 t

h
re

a
d
 G

IL
)

GIL HTM-1
HTM-16 HTM-256
HTM-dynamic

Figure 7. Throughput and abort ratios of the WEBrick HTTP server on 12-core zEC12, on 4-core 2-SMT Xeon E3-1275 v3,

and Ruby on Rails on Xeon E3-1275 v3. The throughput results are normalized to the 1-thread GIL. HTM-1, -16, and -256

ran transactions of fixed lengths, and HTM-dynamic uses our proposed dynamic transaction-length adjustment.

BT

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Number of threads

T
h
ro

u
g
h
p
u
t
(1

 =
 1

 t
h
re

a
d
 G

IL
)

GIL HTM-1
HTM-16 HTM-256
HTM-dynamic

0

4096

8192

12288

16384

20480

24576

28672

0 10000 20000 30000 40000

Iteration
S

iz
e

 (
b

y
te

)

0

20

40

60

80

100

S
u
c
c
e
s
s
 r

a
ti
o

 (
%

)

Written size (left axis)
Success ratio (right axis)

(a) (b)

Figure 6. (a) Results of a test program shrinking the write-

set size on Xeon E3-1275 v3. The transaction success ratio

increased gradually when the size shrank. (b) Throughput of

BT with a bigger class size (W) on Xeon E3-1275 v3.

HTM-dynamic showed the best throughput.

Investigation of the abort reasons that caused the GIL to

be acquired revealed that read-set conflicts accounted for

more than 80% for all of the Ruby NPB with 12 threads.

Except for IS, more than 50% of those read-set conflicts

occurred at the time of object allocation. Even with the

thread-local free lists described in Section 4.4, the global

free list still needed occasional manipulation. Also, when

the global free list became empty, lazy sweeping of the

heap was triggered and thus caused more conflicts. To

overcome the conflicts in the object allocations, the global

free list must be eliminated. When a thread-local free list

becomes empty, the lazy sweeping should be done on a

thread-local basis. GC should also be parallelized or thread-

localized.

For WEBrick on zEC12, malloc() caused many conflicts,

as described in Section 5.5. In WEBrick on Xeon E3-1275

v3 with 4-clients HTM-dynamic, footprint overflows and

conflicts accounted for 34% and 29%, respectively, of the

aborts that resulted in the GIL acquisition, but the CPU did

not report the abort reasons for the others. In Ruby on Rails

on Xeon E3-1275 v3 with 4-client HTM-dynamic, 87% of

the aborts were due to transaction footprint overflows. Most

of these aborts in WEBrick and Ruby on Rails occurred in

the regular-expression library and method invocations. The

regular expression library is written in C, so there is no

yield point in it. A method invocation is a complex opera-

tion in CRuby, and since it is a single byecode, it does not

have a yield point in it either. To reduce the aborts in the

library and method invocations, these operations should be

split into multiple transactions.

The single-thread overhead of HTM-dynamic against the

GIL was 18% to 35% in Figures 5 and 7. Aborts due to

overflows and external interrupts occurred even with one

thread, but there were three more overhead sources. First,

the checking operation in Line 9 of Figure 2 and the new

yield points described in Section 4.2 caused 5%-14% over-

head. Second, as described in Section 4.4, we changed the

logic of the method-invocation inline caches to reduce con-

flicts. This change degraded the single-thread performance

by up to 5%. To avoid this degradation, HTM-friendly

inline caches, such as thread-local caches, are required.

Third, on zEC12, access to Pthread’s thread-local storage

accounted for 9% of the execution cycles on average. As

explained in Section 4.4, we moved several global variables

to the thread-local storage. Unfortunately, the access func-

tion, pthread_getspecific(), is not optimized in z/OS, but it

is highly tuned in some environments, including Linux.

5.7 Scalability characterization

The abort ratios and cycle breakdowns of the Ruby NPB in

Figure 8 had little correlation with the speedups in Figure 5.

These facts suggest that although the speedups achieved by

HTM-dynamic were limited by the conflicts at the time of

object allocation, the differences among the programs were

due to their inherent scalability characteristics.

In Figure 9, we compare the scalability of HTM-

dynamic on zEC12, JRuby, and the Java NPB, from which

 Abort ratios of Ruby NPB / zEC12

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

A
b

o
rt

 r
a

ti
o

 (
%

)
Cycle breakdowns of Ruby NPB

0%

20%

40%

60%

80%

100%

BT CG FT IS LU MG SP

Transaction begin/end Successful transactions

GIL acuired Aborted transactions
Waiting for GIL release

Abort ratios of Ruby NPB / Xeon E3-1275 v3

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9

Number of threads

A
b

o
rt

 r
a
ti
o

 (
%

)

BT

CG

FT

IS

LU

MG

SP

L
o
w

e
r is

 b
e
tte

r

Figure 8. Abort ratios and cycle breakdowns (when running with 12 threads on zEC12) of HTM-dynamic in the Ruby NPB.

 Scalability of Java NPB (12x Xeon)

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h
ro

u
g

h
p
u

t
(1

 =
 1

 t
h
re

a
d

)

BT

CG

FT

IS

LU

MG

SP

Scalability of JRuby (12x Xeon)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

T
h

ro
u

g
h

p
u

t
(1

 =
 1

 t
h

re
a

d
)

Scalability of HTM-dynamic (zEC12)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Num ber of threads

T
h
ro

u
g
h
p
u
t

(1
 =

 1
 t

h
re

a
d
)

Figure 9. Scalability comparison of the Ruby NAS Parallel Benchmarks on HTM-dynamic/CRuby on 12-core zEC12, fine-

grained locking/JRuby, and the Java NAS Parallel Benchmarks. JRuby and the Java version ran on 12-core Intel Xeon

X5670 (no hyper-threading).

the Ruby NPB was translated. Figure 9 shows that even the

Java NPB hit scalability bottlenecks and HTM-dynamic

resembled the Java NPB in terms of the scalability. These

results confirmed that the differences in the speedups by

HTM-dynamic among the benchmarks originated from each

program’s own scalability characteristics. When compared

with JRuby, HTM-dynamic achieved the same scalability

on average: 3.6-fold with HTM-dynamic and 3.5-fold with

JRuby, running 12 threads (not shown in Figure 9). We

believe the characteristics of each benchmark were different

between HTM-dynamic and JRuby because of JRuby’s in-

ternal scalability bottlenecks.

6. Related Work

Riley et al. [23] used HTM to eliminate the GIL in PyPy,

one of the implementations of the Python language. How-

ever, because they experimented with only two micro-

benchmarks on a non-cycle-accurate simulator, it is hard to

assess how their implementation would behave on a real

HTM. Tabba [29] used the HTM of an early-access version

of Sun’s Rock processor to remove the GIL in the original

Python interpreter. Although their measurements were on

real hardware, they ran only three synthetic micro-

benchmarks. Also, the HTM on Rock had a severe limita-

tion in that transactions could not contain function returns

or tolerate TLB misses. These prototype results cannot be

extended to real-world applications. The GIL in Ruby was

eliminated through HTM in our prior report [18]. This pa-

per is the first to evaluate larger benchmarks including

WEBrick and Ruby on Rails on two implementations of

less-restrictive HTM, zEC12 and Xeon E3-1275 v3.

RETCON [1] applied speculative lock elision to the GIL

in Python. The focus of the work was on reducing conflicts

due to reference-counting GC by symbolic re-execution.

However, because it was evaluated on a simulator support-

ing an unlimited transaction size, the aborts in the experi-

ment were mostly due to conflicts. In our experience with a

real HTM implementation, the effectiveness of GIL elimi-

nation is limited by overflows and other types of aborts,

which calls for the dynamic transaction-length adjustment.

Dice et al. [3] evaluated a variety of programs using

HTM on the Sun Rock processor. Wang et al. [31] meas-

ured the STAMP benchmarks [15] on the HTM in Blue

Gene/Q. Neither of these evaluations covered GIL elimina-

tion for scripting languages.

Some alternative implementations of the Ruby and Py-

thon languages [9,10,12,13,24] use or are going to use fine-

grained locking instead of the GIL. JRuby [12] maps Ruby

threads to Java threads and then uses concurrent libraries

and synchronized blocks and methods in Java to protect the

internal data structures. However, JRuby has two types of

incompatibility with CRuby. First, while some of the stan-

dard-library classes in CRuby are written in C and are im-

plicitly protected by the GIL, JRuby rewrites them in Java

and leaves them unsynchronized for performance reasons.

Thus any multi-threaded programs that depend on the im-

plicitly protected standard-library classes in CRuby may

behave differently in JRuby. Second, because JRuby does

not support CRuby-compatible extension libraries, it does

not need the GIL to protect the thread-unsafe extension

libraries. The current version 2.2.1 of Rubinius [24] uses

fine-grained locking. However, the Rubinius support for the

CRuby-compatible extension libraries conflicts with further

removing the locks. In contrast, replacing the GIL with

HTM creates no compatibility problems in the libraries and

can yet increase scalability. PyPy is planning to eliminate

the GIL through software transactional memory (STM) [20],

but it is unclear whether the scalability improvement can

offset the overhead of the STM.

Scripting languages other than Ruby and Python mostly

do not have a GIL, but that is because they do not support

shared-memory multi-thread programming, and thus their

programming capabilities are limited on multi-core systems.

Perl’s ithreads clone the entire interpreter and its data when

a thread is created, and any data sharing among threads

must be explicitly declared as such [19]. The cloning makes

a GIL unnecessary, but it is as heavy as fork() and restricts

shared-memory programming. Lua [14] does not support

multi-threading but uses coroutines. The coroutines switch

among themselves by explicitly calling a yield function.

This means they never run simultaneously and do not re-

quire a GIL. JavaScript (AKA ECMAScript) [4] does not

support multi-threading, so the programs must be written in

an asynchronous event-handling style.

7. Conclusion and Future Work

This paper shows the first empirical results of eliminating

the Global Interpreter Lock (GIL) in a scripting language

through Hardware Transactional Memory (HTM) to im-

prove the multi-thread performance of realistic programs.

We proposed a new automatic mechanism to dynamically

adjust the transaction lengths on a per-yield-point basis.

Our mechanism chooses a near optimal tradeoff point be-

tween the relative overhead of the instructions to begin and

end the transactions and the likelihood of transaction con-

flicts and footprint overflows. We experimented on the

HTM facilities in the mainframe processor IBM zEC12 and

the Intel 4th Generation Core processor (Xeon E3-1275 v3).

We evaluated the Ruby NAS Parallel Benchmarks (NPB),

the WEBrick HTPP server, and Ruby on Rails. Our results

show that HTM achieved up to a 4.4-fold speedup in the

Ruby NPB, and 1.6-fold and 1.2-fold speedups in WEBrick

and Ruby on Rails, respectively. The dynamic transaction-

length adjustment chose the best transaction lengths. On

Xeon E3-1275 v3, programs need to run long enough to

benefit from the dynamic transaction-length adjustment.

From all of these results, we concluded that HTM is an ef-

fective approach to achieve higher multi-thread perform-

ance compared to the GIL.

Our techniques will be effective also in Python, because

our GIL elimination and dynamic transaction-length ad-

justment do not depend on Ruby. Conflict removal can be

specific to each implementation. For example, the original

Python implementation (CPython) uses reference counting

GC, which will cause many conflicts, while PyPy uses

copying GC and thus is more suitable for the GIL elimina-

tion through HTM.

Acknowledgments

We would like to thank our colleagues in IBM Research for

helpful discussions. We are also grateful to the anonymous

reviewers for valuable comments.

References

[1] Blundell, C., Raghavan, A., and Martin, M. M. K. RETCON:

transactional repair without replay. In ISCA, pp. 258-269,

2010.

[2] Cascaval, C., Blundell, C., Michael, M., Cain, H. W., Wu, P.,

Chiras, S., and Chatterjee, S. Software transactional memory:

why is it only a research toy? ACM Queue, 6(5), pp. 46-58,

2008.

[3] Dice, D., Lev, Y., Moir, M., and Nussbaum, D. Early experi-

ence with a commercial hardware transactional memory im-

plementation. In ASPLOS, pp. 157-168, 2009.

[4] ECMAScript. http://www.ecmascript.org/ .

[5] Haring, R. A., Ohmacht, M., Fox, T. W., Gschwind, M. K.,

Satterfield, D. L., Sugavanam, K., Coteus, P. W., Heidelber-

ger, P., Blumrich, M. A., Wisniewski, R.W., Gara, A., Chiu,

G. L.-T., Boyle, P.A., Chist, N.H., and Kim, C. The IBM

Blue Gene/Q compute chip. IEEE Micro, 32(2), pp. 48-60,

2012.

[6] IBM. Power ISA Transactional Memory. Power.org, 2012.

[7] IBM. z/Architecture Principles of Operation Tenth Edition

(September, 2012).

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf .

[8] Intel Corporation. Intel Architecture Instruction Set Exten-

sions Programming Reference. 319433-012a edition, 2012.

[9] IronPython, http://ironpython.codeplex.com/ .

[10] IronRuby, http://www.ironruby.net/ .

[11] Jacobi, C., Slegel, T., and Greinder, D. Transactional mem-

ory architecture and implementation for IBM System z. In

MICRO 45, 2012.

[12] JRuby, http://jruby.org/ .

[13] Jython, http://www.jython.org/ .

[14] Lua, http://www.lua.org/

[15] Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K.

STAMP: Stanford transactional applications for multi-

processing. In IISWC, pp. 35-46, 2008.

[16] NAS Parallel Benchmarks,

http://www.nas.nasa.gov/publications/npb.html .

[17] Nose, T. Ruby version of NAS Parallel Benchmarks 3.0.

http://www-hiraki.is.s.u-tokyo.ac.jp/members/tknose/ .

[18] Odaira, R. and Castanos, J. G. Eliminating global interpreter

locks in Ruby through hardware transactional memory. Re-

search Report RT0950, IBM Research – Tokyo, 2013.

[19] Perl threads, http://perldoc.perl.org/perlthrtut.html .

[20] PyPy Status Blog. We need Software Transactional Memory.

http://morepypy.blogspot.jp/2011/08/we-need-software-

transactional-memory.html .

[21] Python programming language. http://www.python.org/ .

[22] Rajwar, R. and Goodman, J. R. Speculative lock elision:

enabling highly concurrent multithreaded execution. In MI-

CRO, pp. 294-305, 2001.

[23] Riley, N. and Zilles, C. Hardware transactional memory sup-

port for lightweight dynamic language evolution. In Dynamic

Language Symposium (OOPSLA Companion), pp. 998-1008,

2006.

[24] Rubinius, http://rubini.us/ .

[25] Ruby on Rails. http://rubyonrails.org/ .

[26] Ruby programming language, http://www.ruby-lang.org/ .

[27] Shum, C.-L. IBM zNext: the 3rd generation high frequency

micro-processor chip. In HotChips 24, 2012.

[28] Stuecheli, J. Next Generation POWER microprocessor. In

HotChips 25, 2013.

[29] Tabba, F. Adding concurrency in python using a commercial

processor's hardware transactional memory support. ACM

SIGARCH Computer Architecture News, 38(5), pp. 12-19,

2010.

[30] Tatsubori, M., Tozawa, A., Suzumura, T., Trent, S., Onodera,

T. Evaluation of a just-in-time compiler retrofitted for PHP.

In VEE, pp. 121-132, 2010.

[31] Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J. N.,

Barton, C., Silvera, R., Michael, M. M. Evaluation of Blue

Gene/Q hardware support for transactional memories. In

PACT, pp. 127-136, 2012.

