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Abstract

Transactional Memory (TM) is a new programming para-
digm for both simple concurrent programming and high
concurrent performance. Hardware Transactional Memory
(HTM) is hardware support for TM-based programming. It
has lower overhead than software transactional memory
(STM), which is a software-based implementation of TM.
There are now four commercial systems, IBM Blue Gene/Q,
IBM zEnterprise EC12, Intel Core, and IBM POWERS,
offering HTM. Our work is the first to compare the perfor-
mance of these four HTM systems. We measured the
STAMP benchmarks, the most widely used TM benchmarks.
We also evaluated the specific features of each HTM system.
Our experimental results show that: (1) there is no single
HTM system that is more scalable than the othersin all of
the benchmarks, (2) there are measurable performance
differences among the HTM systems in some benchmarks,
and (3) each HTM system has its own implementation
characterigtics that limit its scalability.

1. Introduction
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cally executing the transactions in parallel. Thatime
systems keep track of the accesses to the sharidbles,
buffer the stores to the shared variables duriegtthnsac-
tions, and roll back some of the transactions wthey de-
tect conflicts among the accesses.

Hardware transactional memory (HTM) is becoming
standard in modern processors because it provimesr |
overhead than software-based implementations off 25}l
IBM Blue Gene/Q was the first to provide an accessible
HTM implementation [1]. Although thézul [4] and Rock

[9] processors implemented HTM before Blue Gene/Q,

their HTM systems were not usable because the pm
gramming interface was not disclosed, so the HTM wa
hidden, and the Rock processor was canceled befaoh-

ing the market. After Blue Gene/Q, HTM was impleteeh
on IBM zEnterprise EC12 (zEC12) [40], in the 4th genera-
tion of Intel Core [13], and inIBM POWERS [27] proces-

Sors.

These HTM systems have been individually evaluated

with various applications [1, 5, 7, 21, 23, 30, 3%, 36, 38,
39]. However, there is no single paper comparirgygar-

formance of all of the HTM systems using a common
benchmark set. Because Blue Gene/Q, zEC12, Inted,Co
and POWERS are the first processors that implerd@id,

Transactional memory (TM) [19] is a programming para-
digm to enable both simple concurrent programming a

high concurrent performance. In the TM programmimg
vironment, programmers simply define as transasttbnse
program regions that access shared variables. Tiinre
systems achieve high concurrent performance bynigit
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clarifying their advantages and disadvantages jsonant
to enhance the HTM implementations and improveptre
formance of the next generation of processors.

Our work is the first to quantitatively compare aflthe
existing HTM systems. For all four systems, we mead
the STAMP benchmarks [3], the most widely useddaan
tional memory benchmarks. To fairly compare theirisic
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performance of the HTM systems, we fixed the TM-
unfriendly code that excessively increased nondisden
transaction aborts in some of the STAMP benchmadk p
grams. Also, we tuned the number of transactioneeo



that the performance was maximized for each contibima
of an HTM system with the benchmarks.

Our major findings are: (1) there is no HTM systirat
is more scalable than the others for all of thecherarks,
(2) there are measurable performance differencesngm
the HTM systems in some benchmarks, and (3) eadd HT
system has its own implementation limitations tthegrade
its scalability. These findings show that each H¥tem
still has room to improve its performance. A TM gram
may obtain performance benefits from future HTMteyss
even if it does not run well with the current sysse

Further, we evaluated the features specific to ¢kl
system:constrained transactions of zEC12 hardware lock
elison (HLE) of Intel Core, andsuspend/resume instruc-
tions androllback-only transactions of POWERS8. Our ex-
perimentations showed that each feature is benéftoi
widen the applications of HTM.

Here are our contributions:

back of the transactions. When a transaction apéots
example due to a memory access conflict, the execig
rolled back to immediately after the beginning lé trans-
action with a condition code set (zEC12 and POWE®8)
jumps directly to an abort handler (Intel Core)esé pro-
cessors do not guarantee that a transaction wélhtemally
succeed lfest-effort HTM). Thus, a typical abort handler
will determine whether the execution retries tlasaction
or reverts to a fallback mechanism such as locking.

In Blue Gene/Q, programmers use compiler-provided
pragmas and C-language block constructs to spebdy
transactions. Blue Gene/Q does not disclose therlymag
control mechanisms for the HTM. Programmers cannot
write their own abort handling logic, but they dame the
system-provided code with environmental variables.

All four of the processors we experimented with lieap
ment the HTM facilities on top of their cache maubkans.
They keep track of the memory loads and storesngduri

* We evaluated the HTM implementations of the Blue transactions in the caches or cache-like structamdsdetect
Gene/Q, zEC12, Intel Core, and POWERS proces- conflicts using the cache coherence protocolswif ton-
sors quantitatively on the STAMP benchmarks and current transactions access the same memory lacatia if
clarified the advantages and disadvantages of eachat least one of the accesses is a store, then tilaesactions
HTM implementation. cause a conflict, and one of the transactions éstadd. The

* We compared the maximum speed-up ratios of theseHTM implementations also buffer the stores durirngaas-
HTM systems by repairing the TM-unfriendly code action in the caches or buffers next to the cache¢hat the
of the STAMP benchmarks and by exploring optimal stores are invisible from the other concurrent deations.

transaction-retry counts for each HTM system.

This buffering supports the rollbacks of transawiovhen a

* We analyzed in detail the causes of the transactiontransaction aborts.

aborts and found the implementation-specific causes

that degrade the scalability.

Although the four processors share implementation a
proaches, there are three major differences:céhflict-

* We evaluated the features specific to each HTM sys- detection granularity, (2) transaction capacity, and (3)

tem and showed the benefit of each feature.

Section 2 describes the differences in the HTM é@npl
mentations of the Blue Gene/Q, zEC12, Intel Core] a
POWERS processors. Section 3 is about our tramsacti
retry mechanism. Section 4 describes our modificatifor
the STAMP benchmarks to reduce nonessential tréosac
aborts. Section 5 compares the performance of doe f
HTM systems and discusses the causes of the ditfese
Section 6 evaluates the specific features of eath ldys-
tem. Section 7 discusses the next generation of HY#4

tems. Section 8 reviews the related work. Section 9

concludes this paper.

2. Hardware Transactional Memory
Implementations

In this section, we characterize the HTM implemgois
of the Blue Gene/Q, zEC12, Intel Core, and POWERRS p
cessors and describe their differences.

abort-reason codes. Table 1 is a summary of the differ-
ences. There are multiple versions of the 4th geiver
Intel Core processor, bitable 1 shows only the Core i7-
4770 that we tested.

Conflict-detection granularity. The zEC12, Intel Core, and
POWERS use their cache-line size as the conflitalion
granularity. Due to the cache-line granularity,caftict is
detected even when distinct bytes in a cache lieeaa-
cessed concurrently by distinct transactions. \We thés
conflict afalse conflict. The conflict-detection granularity
of Blue Gene/Q is the L2 cache-line size (128 hyiteshe
worst case. It can be reduced to 8 or 64 bytesdbaiseer-
tain conditions, such as the running mode describheélkc-
tion 2.1.

As shown inTable 1, zEC12 has the largest conflict-
detection granularity. A larger cache line helpplex more
spatial locality by allowing more variables to exis the
cache line, but from the viewpoint of HTM, it carciease

These processors (except for Blue Gene/Q) provide m the false conflicts.

chine instructions to begin, end, and abort trainsas. A
programmer uses the begin and end instructionetoel
transactions and uses the abort instruction tceftine roll-

Transaction capacity. The transaction capacity is the max-
imum amount of memory data that can be accessed in



transaction. It is limited by the amount of thedwaare re-
sources needed to keep track of memory accessesifior
flict detection and to buffer transactional storéghen a
transaction tries to access a cache line thatexiteed the
capacity, it is aborted. We call this capacity-overflow

abort. In general, the load capacity is larger thanstoee

capacity because the conflict detection has torceooly

the accessed memory addresses, while the storeribgff
needs to keep the stored data.

plementation of each processor.

2.1 BlueGene/Q

Blue Gene/Q uses the L2 cache for conflict detectind
store buffering [1]. It assigns a unique specutatib to
each transaction and records the transactionaksesedn
the L2 directory with the speculation ID. The numbéthe
speculation IDs is limited to 128. Although the 1B pe-
riodically reclaimed for their reuse, the startaofiew trans-

The second and third rows of Table 1 summarize the action is blocked if there is no available specatatD.

transaction capacities of the four processors. [bhd ca-
pacities are 1 MB or larger in these processoremxtor

POWERS.

Note that there are two other factors that canedls
capacity-overflow aborts: cache-way conflicts aadource
sharing amongi multaneous-multithreading (SMT) threads.
When a cache line accessed by a transaction isedviom
a cache because of a cache-way conflict, a capacity
overflow abort occurs even if the total amountio# trans-
actional data does not exceed the capacity. Bluee(®e
Intel Core, and POWERS8 support SMT, which allowd-mu
tiple threads to run concurrently in a core. Sitlmese SMT
threads share the hardware resources for congitction
and store buffering in each core, a transactioneraroun-
ter a capacity-overflow abort before it uses uptthasac-
tion capacity of the core.

Abort-reason code. The abort-reason code tells the users
why a transaction aborted, such as a conflict oagacity
overflow. Each system has its own method to passdde
to the users. For example, Intel Core uses the Esjister.
The abort-reason code is helpful not only for defaug but

also as a hint about whether to retry the transacti

As shown inTable 1, these four processors differ in the
granularity of their abort reasons. For example\ARXIR8
reports a conflict due to a transactional accesdiféerent
from one due to a non-transactional access, burH@12
and Intel Core do not distinguish between themaddition
to the codes for the specific abort reasons, zEQit2|
Core, and POWERS8 have a code that reports the groce
sors’ own decision about whether each transactimntas
persistent or transient.

In the next sections, we describe in detail the Hifi

Blue Gene/Q buffers the transactional stored datisi
L2 cache. When a transactional store to a cackeokicurs,
the processor allocates a new way, which is diffefeom
the way that is storing the original cache-linead&ince six
ways among the sixteen ways are reserved to stmme n
transactional data, the total transaction capamiybined
for loads and stores is 20 MB (= 32 MB * 10/16).

Blue Gene/Q has two transactional execution modes:
short-running mode and a long-running mode. Insthert-
running mode, only the L2 cache buffers the tratsaal
data, and thus every load of the transactional dedaires
access to the L2 cache. The long-running mode allin
L1 cache to buffer some of the transactional dadagh it
invalidates all of the L1 cache lines at the st#rteach
transaction.

22 ZzEC12

The zEC12 uses the L1 cache for conflict detecf@]n
Each cache line has-read andtx-dirty bits, which are set
by a transactional load and store, respectively ZBC12
expands the transaction capacity for loads to 1dué& the
size of the L1 cache by recording the evicted cdictes in
a special LRU-extension vector. The transactionaies
are buffered in an 8-KRjathering store cache, which is
private for each processor and is located betwkenLf
cache and the L2/L3 caches.

The zEC12 providesonstrained transactions which are
guaranteed to eventually commit. Our experimentdhen
STAMP benchmarks use normal transactions becawse th
constrained transactions restrict the number dfunsons
to 32 and the transaction capacity to 256 bytes eWauat-
ed the performance of the constrained transachgnssing
the Concurrent Li nkedQueue data structure in the

Table 1. HTM implementations of Blue Gene/Q, zEC12, Intel Corei7-4770, and POWERS

Processor type Blue Gene/Q ZEC12 Intel Core i7-4770 PR3V
Conflict-detection guranularity 8-128 bytes 256dw/t 64 bytes 128 bytes
Transactional-load capacity 20 MB (1.25 MB per core) 1MB 4 MB 8 KB
Transactional-store capacity 20 MB (1.25 MB per gore 8 KB 22 KB 8 KB

L1 data cache 16 KB, 8-way 96 KB, 6-way 32 KB, 8-way| K@

L2 data cache 32 MB, 16-way, (shared by 16 corep Bl&dvay 256 KB 512 KB, 8-wayf
SMT level 4 None 2 8

Kinds of abort reasons - 14 6 11




Java concurrent package because the enqueuing
dequeuing operations satisfy the restriction.

2.3 Intel Core

Intel Core uses the L1 cache for conflict detectiod store
buffering [28]. The details about the conflict ddten and
transaction capacities have not been disclosed.nm&as-
ured the capacities by using a single-thread mamob-

andtructions can be used to escape from a transaatidrto

access the shared variable without data conflicts.

3. Transaction-Retry Mechanism

When a transaction aborts, the program can singtty the
transaction. However, since none of the HTM systeras
evaluated guarantee that a transaction eventuatynits
(unless the transaction is a constrained transaaio the

mark to execute transactions many times, graduallyzEC12), these aborts can repeat indefinitely. Thesea

increasing the transactional loads or stores, hed meas-
ured the frequency changes in the capacity-overéiborts.
As a result of this experimentation, we concludeat the
load and store capacities are 4 MB and 22 KB, sy,

on Core i7-4770. It has a larger transaction capdor

loads than the size of the L1 cache because it otbes
resources to track the cache lines that were elicten the
L1 cache. The transaction capacity for the stosesithin

the size of the L1 cache.

Intel Core provides two programming interfaces s& u
HTM. Hardware Lock Elison (HLE) is an instruction-
prefix-based interface to support the compatibilitith
processors that have no HTNRestricted Transactional

software fallback mechanism is required to guaearite-
ward progress. When TM is used to execute critsead-
tions, as in the STAMP benchmarks, the standattafek
mechanism is to use a global lock to make trarsastir-
revocable.

Figure 1 shows the pseudocode for our transaction retry
mechanism as used with zEC12, Intel Core, and POSVER

As described in Section 2, Blue Gene/Q can onlythse
system-provided retry mechanism, which we will dise
later in this section. Each thread waits for thabgl lock to
be released if it was acquired before the transadiegan
(Line 9) to avoid the lemming effect [8]. We implented
the global lock with a single memory word and spaiting.

Memory (RTM) iS a new instruction-set interface. Our ex- Each transaction begins at Line 10, and when teséc-
periments on the STAMP benchmarks used RTM, but we tion aborts, this pseudocode assumes that themgxe-

also evaluated HLE.

24 POWERS8

cution returns to immediately after the instructitmat
began the transaction (Line 11). After a transackiegins,
the global lock is first checked, so that the HTydtem can

POWERS uses content addressable memory (CAM) linkedkeep track of the lock word and abort the transacii an-

with the L2 cache for conflict detection [10]. THZAM is

called theL2 TMCAM. The L2 TMCAM records the cache-

line addresses that are accessed in the transsetitnbits
to represent read and write. Although the transaati
stored data is buffered in the L2 cache, the tictitsa ca-
pacity is bounded by the size of the L2 TMCAM. Sirthe
number of the entries for the L2 TMCAM is 64, tlual
transaction capacity combined for loads and stizr&sKB
(=64*128 bytes).

POWERS hasrollback-only transactions which only
support store buffering without the detection ofadeon-
flicts. The rollback-only transactions are useful the sin-
gle-thread speculative optimizations that do natdnéhe
detection of data conflicts [14, 24]. POWERS alss In-
structions to suspend and resume transactioniéatyuse
case of these instructions in the user space @atjput de-
bug information. Another use case is Thread-Leyeca-
lation (TLS) [18]. As described in [29], TLS cankéa
advantage of HTM for conflict detection, but it @lse-
quires that transactions commit in the same ordetha
original sequential execution. Software implemeataiof
order transactions involves accesses to a sharébleato
control the commit order, but these accesses cdate
conflicts among the transactions. The suspend/resam

other thread acquires the global lock. If the gldbek has

| ockRet ryCount = MAX_LOCK_RETRY_COUNT;
persi stent RetryCount =

MAX_PERSI STENT_RETRY_COUNT;
transi ent RetryCount =

MAX_TRANSI ENT_RETRY_COUNT;
/1 Label

retry: for retrying transactions

eoNoahwNR

wai t For LockToBeRel eased() ;
tbegin(); // Begin a transaction
if (isTransactionAborted()) {
// Return here on a transaction abort
if (isLockAcquired()) {
/1 Aborted due to a conflict on
/1 the lock word
if (--lockRetryCount > 0) goto retry
} else if (isAbortPersistent()) {
/] The abort code is persistent.
if (--persistentRetryCount > 0)
goto retry;
} else if (--transientRetryCount > 0) {
// The abort code is transient.
goto retry;

acqui reLock();
} else if (isLockAcquired())
tabort();
/1 Transaction body
i f (isLockAcquired()) releaseLock();
el se tend(); // End a transaction

WRNNRNRNNNRONRNRNE R R R R R
QULINQPURAWNROOINDTRWNEO

Figure 1. Pseudocode for our transaction-retry mecha-
nism



already been acquired, then this new transactiost atwort
(Line 27), because otherwise it could read incoestgdata.

When a transaction aborts, the thread determineshwh
er or not it continues with transactional execut{@ines
11-25). There are three thread-local counters tarobthe
number of retries before reverting to the globalklo(1)
lock-retry counter, (2) persistent-retry counter, and (3)
transient-retry counter.

The lock-retry counter controls the number of estrior
those transaction aborts that are caused by ctindic the
global lock. We call these abottsk-conflict aborts, which
can be recognized by checking the global lock affter
transactions aborted (Line 13). The persistent-redunter
controls the number of retries for the persistesuigaction
aborts (Line 17). On Intel Core and POWERS, we rean
ognize the persistent aborts based on the abmtbmnesode
that reports the processors’ own decisions abaup#rsis-
tence of the aborts. On zEC12, we treat capacigyftmw
aborts as persistent. The transient-retry courgstrals the
number of retries for the other aborts. The maxinvatnes
for the three counters (Lines 1-5) are tuning patens.

We separated the lock-retry counter from the teanisi
retry counter, because the conflicts for the gldbek have
different characteristics from the conflicts oveormal
shared data. When a thread acquires the globalftodke
irrevocable execution of a transaction, all of dtker con-
current transactions will be aborted. In contrastonflict
over program data will abort only some of the teantions
that happen to access the same data at the saméTtiere-
fore, the best retry counts can be different fax tbck-
conflict aborts and the other transient aborts.

With the persistent-retry counter, we can allowsic-
tions to retry even in the case of persistent abdfiost of
the persistent aborts are capacity-overflow abbus there
are some cases where capacity-overflow aborts @raa
tually persistent. As described in Section 2, cépac
overflow aborts can be caused by cache-way cosflict
resource sharing among multiple SMT threads, sp tiney
be transient.

An existing transaction retry mechanism [23] is base
of our retry mechanism. It uses a single retry tewuand
changes the degree of the decrement for the reumter
based on the abort reasons. For example, the cetmt is
halved in the case of a persistent transactiontabwtead
of changing the degree of the decrement, our mésmman
uses different retry counters per abort reason.

In Blue Gene/Q, the system software offers a retry
mechanism. It does not distinguish among lock-domnfl
transient, or persistent aborts. It uses a sirgfly counter,
and the users can specify the maximum number oEset
with an environmental variable. The Blue Gene/(® &las
an adaptation mechanism, with which transactioas tio
frequently fell back on the global lock will not ladlowed
to retry on the next abort. Finally, our retry macism

checks the global lock at the beginning of a tratisa
(Line 13), while Blue Gene/Q’s mechanism checkshat
end when run in long-running mode, which is callagy
subscription [12].

4. STAMP Benchmarks

In this section, we describe the STAMP benchmard a
the modifications we made to prevent the nonessenti
transaction aborts. STAMP is the most widely uséd T
benchmark suite [3]. It consists of eight progransing
both fine-grain and coarse-grain transactions. &/ er-
sion 0.9.10 of the STAMP benchmarks and their defau
runtime options for a non-simulator as specifiedha RE-
ADME files.

In preliminary comparisons of the STAMP benchmarks
on the four processors, we found that four benchsnaere
not well programmed or tuned for best-effort HTMhi§
unfriendly code caused excessive nonessentialdcing
aborts, and thus we could not fairly compare therisic
performances of the HTM systems. The nonessemntintt
action aborts were caused by false conflicts anghaty
overflows, which rarely occur in typical STM implemta-
tions. This explains why these problems have nanbe
fixed since the STAMP benchmarks were released. We
fixed these problems and used the modified versfons
most of our evaluations, but we also show the perdmce
comparison of the versions with and without ournges.
Our fix is available in a Web site [32] as a codsch to
Version 0.9.10 of the STAMP benchmarks. In the odst
this section, we describe each change in detail.

genome. In one transaction section of the genome bench-
mark, the genome segments are inserted into athhh
There is a compile-time tuning parameter for hownyna
genome segments to insert in each transaction.rdera
number means a longer transaction and thus caviséfe
the performance overhead to begin and end thesttdoss,
but this also increases the probability of capasitgrflow
aborts. We tuned this compile-time parameter
(CHUNK_STEP_1) for each of the four platforms (9 fo
Blue Gene/Q and 2 for the other three processars) t
achieve the best performance.

intruder. In the intruder benchmark, red-black trees are
used for unordered sets, and linked lists for ardesets.
These data structures are not suitable for impléngetheir
respective sets. On HTM, these unsuitable datatstes
result in excessive capacity-overflow aborts. Wedified

the code to use hash tables for the unorderedasdtsed-
black trees for the ordered sets. Our hash tatderar to
the concurrent hash table in the Java standard limary.

kmeans. In the kmeans benchmark, each transaction
cesses and modifies one cluster, which consisenahte-



ger number and floating-point numbers. The origicade
tries to avoid false conflicts by collocating a stler in a
contiguous memory region and by inserting paddieg b
tween the clusters. However, because each clustapti
aligned to a cache line boundary, two clusters aaaxist
within a cache line, causing false conflicts. Wedified the
code to properly align the clusters to cache lioerdlaries.

vacation. In the vacation benchmark, red-black trees are
used for unordered sets. As in intruder, we instesed
hash tables for the unordered sets.

5. Performance Comparison of HTM
Systems

We ran the STAMP benchmarks [3] on the followingrfo
platforms.
e 16-core 1.6-GHz A2 with 4 SMT threads (Blue
Gene/Q), V1IR2M2, 16 GB of main memory
» 16-core 5.5-GHz zEC12, z/OS V2.01, 64 GB of
main memory
* 4-core 3.4-GHz Core i7-4770 with 2 SMT threads,
Linux 3.14.5, 4 GB of main memory
* 6-core 4.1-GHz POWERS with 8 SMT threads, AlX
7.1.3.16, 28.5 GB of main memory
The different numbers of cores indicate that thefgpe
mance comparisons among the processors are fairupnl
to four concurrent application threads, becauséoufour
threads can be assigned dedicated cores on edoh pifat-
forms. A processor cannot provide the maximum perfo

checked in the transaction-retry mechanism. In taeste,
the abort is categorized as a data conflict.

5.1 4-Thread Performance of M odified STAMP
Benchmarks

In this section, we compare the performance ofHRé/
systems when we ran four threads for our modifiesion

of the STAMP benchmarks. Since each system hasaat |
four physical cores, each thread can have the sixelwse

of a physical core. For the three retry countepdaired in
Section 3, we optimized the parameter values foh ¢ast
case which consists of an HTM system and a bend¢hmar
We also tuned the maximum retry count and the ngni
mode for each benchmark on Blue Gene/Q. This approa
allowed us to compare the best performance of eHd\
system for each benchmark. We ran each benchmark fo
times and took the average of the runs.

Figure 2 shows the speed-up ratios of the transactional
execution over the serial non-HTM execution &nglre 3
shows the transaction-abort ratios. For the spgerhtios,
the error bars show the 95%-confidence intervalschE
abort ratio is divided into four categories, excépt Blue
Gene/Q. In each figure, the bayes benchmark wdsdea
from the calculation of the average numbers becatiss
non-deterministic behavior, which significantly edts the
performance numbers [37]. We also dropped bayes fro
the later analyses presented here.

Only Blue Gene/Q showed scalable performance for
yada because it has a larger transaction capdmity the

mance for each thread when the number of concurrentother processors. IRigure 3, capacity-overflow aborts do

threads is larger than the number of its coresuseaulti-
ple SMT threads share the hardware resourcesédar i,
as described in Section 2. Our results for POWERS a
preliminary because we used a pre-release verdigheo
processor.

Our main performance metric is the speed-up raifos
transactional execution over sequential executioth the
transaction-abort ratios. Our baseline to calculagespeed-
up ratios on each processor is the sequential ridvi-kixe-
cution on that processor, because our purposedsainate
how each HTM system accelerates the multi-threaubed
formance. Comparing absolute performance is beybad
scope of our paper. A transaction-abort ratio ésphkrcent-
age of the aborted transactions to all of the aetisns
without irrevocable transactions.

not seem to be a major cause of aborts on zEC1&| In
Core, or POWERS, but that is because the maximusigpe
tent-retry count was set to 1. Since capacity-doarfiborts
occur persistently in the transaction section afayaeduc-
ing the maximum persistent-retry count improves plee-
formance. As a result, the number of capacity-dverf
aborts seems small, but many of the transactiorestes to
the global lock due to the capacity-overflow aboitse
serialization ratio, which is the percentage of ithevoca-
ble transactions to all of the committed transaxtjovas
about 10% on Blue Gene/Q, but about 20% on therothe
systems.

Blue Gene/Q has lower speed-up ratios than ther oth
processors in these benchmarks, except for genome a
yada, because of its relatively high single-threadrhead.

For the zEC12, Intel Core, and POWERS, we break For example, compared to perfectly linear speedipe

down the cause of the transaction aborts into t@miego-
ries: (1) capacity overflow, (2) data conflict, @her, and
(4) lock conflict. The first three types of abodre identi-
fied by checking the abort-reason code. Lock-confli
aborts are detected by the transaction-retry méstmade-
scribed in Section 3. Note that we can miss a tmwhfict
abort if the global lock is released before thebgldock is

Gene/Q degraded the single-thread performance etks1
high by 40% while the performance degradation endther
processors was limited to 10%. Since Blue Geneffires
software-based register checkpointing, system talbegin
and end transactions, and L1-cache invalidatiobypass,
it has higher single-thread overhead than the gtheces-
sors. In addition, Blue Gene/Q frequently exhaustsed
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Figure 3. Transaction-abort ratiosin Blue Gene/Q (BG), zEC12 (z12), Intel Core (IC), and POWERS (P8) with 4 threads. Our
modified STAM P benchmarks wer e used.

supply of speculation IDs in ssca2, because thishmark In kmeans-low, Intel Core has more data-conflicbréb
executes many short transactions. Therefore, tir¢ ot a than the other processors. We found that the hasdwa
new transaction was often blocked until a speautatD prefetching of Intel Core increased the data cotsflbe-

became available.

cause the memory addresses of the clusters, whictha

The zEC12 has the highest average speed-up radio. | main shared data in kmeans, are successive. When a
distinctive characteristic is that most of the #action memory address is accessed, the hardware prefgtphén

aborts belong to the “other” category as showrhandgrey loads the data at the adjacent address into theegsor
bars ofFigure 3. More specifically, the abort-reason code of cache. In kmeans, each transaction updates a silugter,
the “other” aborts wasache-fetch-related aborts. Unfortu- which occupies cache lines because of the paddimly a
nately, the meaning of this abort-reason code tsfulty alignment described in Section 4. During this updabme
disclosed, even in the most detailed zEC12 docuatient of the neighboring clusters can be prefetched wittoer
[40]. These aborts are transient and are causeahhiyn- cache lines. If the HTM system regards the preéaich

plementation restriction when cache line fetched stores cache line as transactional data, then it can Hetetata
happen in the transactions.

The zEC12 shows superlinear speedup in kmeans-low.of the neighboring clusters. Note that this confl& not

conflict when another transaction concurrently upsane

This is caused by the non-deterministic threadestgtion necessary for the transaction because the traosactiver
in kmeans as indicated by the larger error barspeved to accesses the neighboring cluster.
the other benchmarks Figure 2. POWERS8 shows super- To assess the influence of hardware prefetchingaia

linear speedup in kmeans-high and -low for the serason.  conflicts, we ran a second experiment by disabling



hardware prefetching. Disabling the hardware pchiat
reduced the abort ratios of kmeans-high and —laymfr
16% and 24 to 10% and 10%, respectively, and imggov
the speed-up ratios from 3.5 and 3.7 to 3.9 andré<pec-
tively. These results show that the hardware pebiet) of
Intel Core causes unnecessary data conflicts on
prefetched cache lines. Developers in Intel alsolaged
our findings. Intel Core should be enhanced to éweich
false detection of data conflicts. Note that disaplthe
hardware prefetching is not a realistic solutioceaese it
can degrade the performance of other applicatidosially,
we have seen performance degradation for the sglen
execution of kmeans-high and —low.

Intel Core scaled worse than zEC12 and POWERS in
ssca2. This was not due to the HTM system, asantelicby
the only 1% transaction-abort ratio on Intel Cofee in-
ner-most loop of ssca2 causes many last-level caidees,
and the desktop Intel Core machine we used (Lenovo
ThinkCentre M93p) had poorer performance of coremirr
memory accesses than the other 3 systems.

POWERS8 was worse than zEC12 and Intel Core in in-
truder and vacation because it has more capacéyfiow
aborts than the other processors. Increasing #msdction
capacity is an obvious approach to enhance the PRBVE
HTM system.

5.2 4-Thread Performance of Original and Modified
STAMP Benchmarks

In this section, we compare the performance ofotfiginal
and modified versions of the STAMP benchmarks fatir
threads. We measured the maximum performance fir ea
test case consisting of an HTM system and a benéghiya
tuning the values for the maximum retry countshia $ame
manner as for the experiments in Section Fifure 4
shows the speed-up ratios. This figure includes ahé
data for the modified benchmarks: genome, intruder,
kmeans, and vacation. The geometric means arellfof a
the programs in the STAMP benchmarks.

6

Our modified version of genome shows 3.7 times per-
formance gain for POWERS over the original versibhis
large performance gain is due to the reductionaipacity-
overflow aborts though we omitted the graph for dfert
ratios because of the limited space for this papar.modi-

thefications also increased the performance more than

times for POWERS in the intruder and vacation bench
marks due to the significant reduction in capaoirgsflow
aborts. However, POWERS still suffered from morpaza-
ty-overflow aborts than the other processors.

In kmeans-high, our changes improved the performanc
of zEC12 and Intel Core by 20% and 28%, respedgtivel
The major source of the performance improvemenhés
reduction in false conflicts that were caused by hisa-
lignments of the shared data, as described in@edti

We saw some cases (intruder, kmeans-high, andieacat
in Blue Gene/Q, and intruder in Intel Core) whena o
changes degraded the speed-up ratios even thoeglinth
proved the absolute performance. This was causetthéy
significant improvement in the single-thread perfance
compared to the improvement in the multi-threadfquer
mance.

5.3 Scalability of M odified STAM P Benchmarks

Finally, we studied the scalabilities of the fouTM sys-
tems when we ran 1, 2, 4, 8, and 16 threads fommdi-
fied version. The values for the three maximumyretrunts
were optimized for each number of threads for ¢dtM
system running the benchmarks. The mode and maximum
retry count were also tuned on Blue Gene/Q in tmaes
manner. Note that Intel Core and POWERS8 cannotuexcl
sively use a physical core for each thread withhteand
sixteen threads. Therefore, a fair comparison efelght-
and sixteen-thread performance is possible onlyBine
Gene/Q and zEC1Eigure 5 shows the speed-up ratios. For
Intel Core, we do not plot the sixteen-thread penénce
because sixteen is larger than the total numbegros$ible
SMT threads.
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Figure 4. Speed-up ratios of transactional execution over sequen
Core(IC), and POWERS (P8) with 4 threads. Thetwo barsaret
the STAM P benchmarks, respectively.

tial execution in Blue Gene/Q (BG), zEC12 (z12), Intel
he speed-up ratios of the original and modified versions of



In yada, Blue Gene/Q had a higher speed-up ra#io th
ZEC12 because it has a larger transaction capéuay
ZEC12. However, with sixteen threads, data-conéllobrts
limited the scalability. In intruder, ssca2, andtation, the
ZEC12 had higher speed-up ratios than Blue Genk/Q.
ssca2, the speculation ID reclamation was thedyadtk for
Blue Gene/Q. For intruder and vacation, there awerea-
sons. One is that zEC12 has less single-threacheadr
than Blue Gene/Q. The second reason is that zE@d2 h
lower serialization ratios than Blue Gene/Q. Foaragle,
in intruder, Blue Gene/Q had a 56% serializatidioraith
sixteen threads while zEC12 had only a 2% seridtina
ratio. This indicates that the adaptation mecharisiBlue
Gene/Q acted too early in making the transactiabdfck
on the global lock.

In these benchmarks (except for kmeans), the zE@2
higher speed-up ratios than Intel Core and POWER w
eight and sixteen threads because it can assigncnsive
physical core to each thread. Meanwhile, the zEG4@
lower speed-up ratios than POWERS for kmeans becihus
had excessive cache-fetch-related aborts. BasidalW-
ER8 showed higher speed-up ratios than Intel Cdte w
eight threads because it has more physical coees ltitel
Core. However, Intel Core had higher speed-up sétian
POWERS in intruder and vacation because the tréinsac
capacity of POWERS is too small for those benchmark

6. Evaluation of Processor-Specific Features

In this section, we show the performance resulthethree
features specific to each HTM system: the constdin
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transactions in zEC12, the hardware lock elisiorniel
Core, and the suspend/resume instructions in POWERS
Our purpose is to investigate whether these festare
worth implementing in the future systems, from pesfor-
mance perspective.

6.1 Performance of constrained transactions on zEC12

In this section, we compare the performance of dte-
strained and normal transactions on the zEC12 psoce
As described in Section 2.2, constrained transastare
guaranteed to eventually commit, and thus theyataneed
abort handlers. We applied the constrained traimsecto
the enqueuing and dequeuing operations forCvecur -
rent Li nkedQueue data structure in the standard Java
concurrent package because these operations s#tisfy
restriction for the constrained transactions. Thqueuing
operation in a transaction adds a new element golakt
element (tail) if the next pointer of the last etrhis null.
Otherwise, it falls back to the original lock-freede which
uses atomic operations. The dequeuing operatiomnsean
object stored in the first element (head) if thg¢eobis not
null. Otherwise, it falls back to the original cod#e used a
single retry counter for normal transactions beedhs data
accessed in a transaction are within 256 bytestlaunl ca-
pacity-overflow aborts will never occur. We do imeied the
lock-retry counter because we do not falls bacthélock.
We tuned the retry count to obtain the maximum querf
mance.

Figure 6 shows the relative execution times when eac
thread alternately enqueues to and dequeues freimgie
queue. The base line is the execution time of thginal
lock-free  implementation of the Concurrent -

Li nkedQueue data structure with each number of threads.
NoRetryTM used normal transactions without anyyretr
while OptRetryTM did with optimal retry counts. ARown

in this figure, using transactions reduced the etien time
when the number of threads was less than four. érhes
speed-ups resulted from the reduction in the patiyth
because the complicated lock-free operations wienplis

fied by using transactions. When the number ofatisevas
larger than two, NoRetryTM increased the executiore.
Constrained transactions (ConstrainedTM) were coapa
ble to OptRetryTM. We conclude that the constrained
transactions do not provide performance benefitsthey
eliminate the work to implement the fallback patiml to
tune the retry count.

Our conclusion is different from the conclusionJatobi
et al. [6] who mention a performance benefit instoained
transactions compared to normal transactions fhighly

h

O NoRetryTM @ OptRetryTM @ ConstrainedTM
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Figure 6. Relative execution timesfor normal and con-
strained transactions. The baseline is the execution time for
the original lock-free implementation of the Java Concur -
rentLinkedQueue data structure.
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Figure7. Speed-up ratiosof RTM and HLE executions
over serial execution in Intel Core. Our modified version
of the STAM P benchmarks was used with 4 threads.

selves mentions that the high contention case tscom-
mon in real-world applications.

6.2 Performance of hardwarelock elision (HLE) on
Intel Core

In this section, we compare the performance of Rard
HLE on the Intel Core process@éiigure 7 shows the speed-
up ratios of the RTM and HLE execution over theiader
execution with four threads in the STAMP benchmarks
The numbers of the RTM execution are same as ths ion
Figure 2 (i.e. the retry counts are tuned). On average, the
speed-up ratio of the HLE execution reached 80%hatf of

the RTM execution. The performance gap remained, be
cause the retry counts cannot be tuned for the hiltich
has no software-based retry mechanism. These saadit
cate that the HLE will provide modest speed-upsnamy
existing programs with little modification and nantng
effort.

contended microbenchmark. This is because we used a

more realistic benchmark, which has lower contenttban
their highly contended microbenchmark. Jacobi eth@m-



6.3 Performance of thread-level speculation (TLS) on
POWERS

As described in Section 2.4, the suspend and resome
structions in POWERS8 can be exploited to implenedfit
cient TLS. Following the experimental scheme in a
previous study [29], we manually modified two bemetnks
(433.milc and 482.sphinx3) in SPEC CPU2006 that can
benefit from TLS. We applied TLS to frequently evtesd
loops in each benchmarkigure 8(a) shows an example
loop and (b) is the loop after TLS is applied. Edotead
executes this modified loop. Either the code in dtaek
gray or in the light gray is executed, dependingtioa
availability of the suspend and resume instructidghout
these instructions, if a previous iteration hasymttfinished,
the current thread must abort (dark gray code). Suspend
and resume instructions allow spin-waiting outsitie
transaction, without causing data conflicts (lighty code).
Figure 9 shows the throughput results normalized to the
sequential execution of each benchmark. TLS pravide
speed-ups of up to 15% in 433.milc and 25% in
482.sphinx3 with 6 threads. In 482.sphinx3, TLShvihe
suspend and resume instructions was faster thanwithS
out them by 12%. By using these instructions, therta
ratio was reduced from 69% to 0.1%. In 433.mile im-
provement by using the suspend and resume ingtnscti
was only 2%. These instructions reduced the aladio r
from 83% to 10%, but false conflicts still remain€derall,
the suspend and resume instructions are effectiemsions
to HTM to implement efficient TLS.

7. Next Generation of HTM Systems

In this section, we discuss the next generatioH ¥ sys-
tems based on the experimental results shown iticBes
and 6. The following are our recommendations foxtne
generation HTM designs.

Precise Conflict Detection. The underlying implementation
of the cache-coherency traffic should not comprenilse
conflict-detection mechanism of an HTM system. I@ere
has unnecessary transaction aborts because obtficts
on the prefetched cache lines. The zEC12 detetds fa
transaction-abort conditions (cache-fetch-relatedrts) on
the cache lines where in reality data conflictsndb occur.
Although the precise conflict detection may comgicthe
hardware design, it is needed to maximize the padace.

Better Interaction with SMT. HTM should scale beyond
the number of physical cores, using SMT. As shawrig-

ure 5, POWERS and Intel Core cannot scale with SMT in
the benchmarks of relatively large transactionaési(the

(@ |for (i =0; i <N i++) {
/'l Loop body
}
(b)
for (i=0; i < N i += NunThreads)) {
retry:
if (NextlterToCommit !=1i) {
tbegin();

if (isTransactionAborted()) goto retry;

}
/] Loop body

[f (NextlterToCommit I'= i) tabort();
suspend() ;

while (NextlterToCommit !=1i) ;
resune();

if (isInTM)) tend();
Next | t er ToCommi t

+ 1;
}

Figure 8. Exampleloop for TLSwith suspend/resumein-
structions of POWERS8
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Figure9. Speed-up ratiosof TLSwith and without the

suspend/resume instructions on POWERS. Two SPEC
CPU2006 benchmar ks wer e measured.

Non-transactional loads and stores. Non-transactional
loads and stores enable conflict-detection-free omgrac-
cesses in transactions, not only for debuggingatsda for
performance. For example, as shown in Section tGe3,
non-transactional load allows the efficient implenagion

of ordered transactions for TLS. Although such non-
transactional loads and stores are not enough haeac
high TLS performance as mentioned in [29], theylzasic
and essential functions to build TLS on top of HTM.

Larger Transactional-Store Capacity. Next generation of
HTM systems should have larger capacity, especfally
transactional store&igure 10 andFigure 11 plot the rela-
tionship between the transaction sizes and traiosaabort
ratios for loads and stores, respectively. Usirtgpae tool
[2], we collected the data addresses accessedrnigattions
by running the STAMP benchmarks with the simulator
runtime options on our Intel Core machine. We tbalcu-
lated the transaction sizes by mapping the colibctd-
dresses to the cache lines of each processor. \Gie tsie
90-percentile transaction sizes. Even with the kitou

benchmarks other than kmeans and ssca2). One avay tryntime options, which specify smaller data setntthe

avoid capacity-overflow aborts due to the resowitaring
among the SMT threads is to somehow restrict coantr
execution of transactions on the same core.

non-simulator options, the transaction sizes of esom
benchmarks exceeds the supported transaction tiapaci
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especially for transactional stores. Discussing tthdeoff
between the performance and the hardware resoisces
beyond the scope of this paper, but hardware shmake
its best efforts because it is not easy for softwtar avoid
transaction capacity overflows.

8. Rdated Work

HTM has been studied for use in commercial proagesso
[11, 16, 34] since the idea appeared in 1993 [$&fware
transactional memory (STM) [2, 15, 17, 25, 26] is an alter-
native to HTM. STM surpasses HTM in its portabilégd
transaction capacity. It supports transactionakcetien in
any processor and has practically no limits ontrdsisac-
tion capacity because it can use the all of merfarjrack-
ing the loads and stores. However, STM'’s high osadhis
an obstacle to its use in real-world software.

Currently there are four processors with HTM: Blue
Gene/Q [1], zEnterprise EC12 (zEC12) [6], the 4heaya-
tion of Intel Core [13], and POWERS [27]. Althougtzul
[4] and Rock [9] processors implemented HTM before
these four processors, their HTM implementationsewet
fully available because Azul's HTM programming iritece

was never published and the Rock processor wasleghc
before commercial production.

There is no prior research that directly compahnesper-
formance of actual HTM systems, though individudiNH
systems have been evaluated with various applita{ib, 5,

7, 21, 23, 30, 31, 35, 36, 38, 39]. Only Odairaletcom-
pared two HTM systems, zEC12 and Intel Core, using
HTM-enabled Ruby interpreter, but they did not east
the other platforms [30]. Our work is the first tompare
all four of the HTM implementations, using a common
benchmark set, the STAMP benchmarks [3]. Although t
STAMP benchmarks have been independently measured o
Blue Gene/Q, zEC12, and Intel Core by many reseasch
it is important to compare the HTM systems usirg shme
code base, because the transaction-retry mechagésm
scribed in Section 3 has a huge impact on the paaice.

Wang el al. [1] provided a detailed performancelymis
of a Blue Gene/Q HTM system with the STAMP bench-
marks. Our speed-up ratio results mostly matchrghaeilt-
hough they tuned not only the modes (long-runnimg o
short-running) and maximum retry counts but alsdoves
other parameters. The yada benchmark showed atiraome
2-fold speed-up with four threads in their resbits only a
1.4-fold speed-up in ours. Their speed-up was lmxau



function outlining by their compiler improved thengle-
thread performance of the HTM version of yada,veeitdid
not observe this effect using our compiler.

Mitran et al. [20] evaluated three programs in the
STAMP benchmarks on zEC12. Odaira et al. [31] aely
all of the programs in the STAMP benchmarks on ZE@1
compare the performance of the C and Java versibtise
STAMP benchmarks. In genome, intruder, and vacation
our speed-up ratios on zEC12 were better thandbelts
by Odaira et al., even without our benchmark modtfons,
because we tuned the maximum transaction-retrytsoun

Yoo et al. evaluated the benefits of an Intel CdfieM
system on real HPC applications, but they also oveds
the STAMP benchmarks [28]. Diegues et al. also oreas
the STAMP benchmarks on Intel Core and found that t
optimal transaction-retry count differs for eactplégation
[23]. Based on their findings, we used an optimet! cf
values for the transaction-retry counts for eachvH3ys-
tem with our benchmarks, allowing us to comparenttas-

imum performance of each HTM system. The speed-up

ratios obtained by Diegues et al. were similaruo results,
although they used Xeon E3-1275, not Core i7-4T&n-
pared with their results, our unmodified versiorowhd
better speed-up ratios in kmeans-low (their 3 and 38
with four threads) and worse ratios in genome (tB&d and
our 2.7). Investigating these differences is oturie work.

9. Conclusion

In this paper, we quantitatively compared the HTydtems
that are implemented in four processors: Blue Ggne/
ZEC12, Intel Core, and POWERS. In order to find rinaex-
imum performance of each HTM system on the STAMP
benchmarks, we modified the TM-unfriendly code ofng
benchmarks and tuned the transaction-retry coun{zrd-
vide the most ideal comparisons possible. Our exertal
results showed that there is no single HTM systeat is
more scalable than the others in all of the bencksn&ach
HTM system has its own implementation issues timait |
the scalability. In Blue Gene/Q, the high singlestid

overhead, which is caused by software-based registe

checkpointing and the system calls to control tmatiens,
limits the performance. In addition, the cost oflagming
the speculation IDs limits the scalability. The ZBGuffers
from mysterious transaction aborts that degradgetsor-
mance. Intel Core has extra transaction abortstdube
hardware prefetching. POWER8 has more capacity-
overflow aborts than the other processors becaiisés o
overly small transaction capacity. Solving thesplemen-
tation problems is important to improve the perfance of
concurrent applications to support the wider adepiof
TM-based programming.

We also evaluated the features specific to each HTM
system: the constrained transactions of zEC12, waael

lock elision (HLE) of Intel Core, and the suspend ae-
sume instructions of POWERS8. The constrained t@nsa
tions, which do not need a software-based retryhangism,
had performance comparable to the normal transectimat
require a software-based retry mechanism with tuwesgy
counts. The HLE showed modest speed-ups in motteof
STAMP benchmarks without any tuning effort for the
transaction-retry counts. The suspend and resusteudn
tions were beneficial for avoiding data conflicts @ shared
variable to implement ordered transactions, and tim
proved the performance of TLS. Overall, these festu
specific to each HTM system will increase the agtopbf
and widen the application of HTM.
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