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Abstract  

Transactional Memory (TM) is a new programming para-
digm for both simple concurrent programming and high 
concurrent performance. Hardware Transactional Memory 
(HTM) is hardware support for TM-based programming. It 
has lower overhead than software transactional memory 
(STM), which is a software-based implementation of TM. 
There are now four commercial systems, IBM Blue Gene/Q, 
IBM zEnterprise EC12, Intel Core, and IBM POWER8, 
offering HTM. Our work is the first to compare the perfor-
mance of these four HTM systems. We measured the 
STAMP benchmarks, the most widely used TM benchmarks. 
We also evaluated the specific features of each HTM system. 
Our experimental results show that: (1) there is no single 
HTM system that is more scalable than the others in all of 
the benchmarks, (2) there are measurable performance 
differences among the HTM systems in some benchmarks, 
and (3) each HTM system has its own implementation 
characteristics that limit its scalability. 

1. Introduction 

Transactional memory (TM) [19] is a programming para-
digm to enable both simple concurrent programming and 
high concurrent performance. In the TM programming en-
vironment, programmers simply define as transactions those 
program regions that access shared variables. TM runtime 
systems achieve high concurrent performance by optimisti-

cally executing the transactions in parallel. The runtime 
systems keep track of the accesses to the shared variables, 
buffer the stores to the shared variables during the transac-
tions, and roll back some of the transactions when they de-
tect conflicts among the accesses. 

Hardware transactional memory (HTM) is becoming 
standard in modern processors because it provides lower 
overhead than software-based implementations of TM [25]. 
IBM Blue Gene/Q was the first to provide an accessible 
HTM implementation [1]. Although the Azul [4] and Rock 
[9] processors implemented HTM before Blue Gene/Q, 
their HTM systems were not usable because the Azul pro-
gramming interface was not disclosed, so the HTM was 
hidden, and the Rock processor was canceled before reach-
ing the market. After Blue Gene/Q, HTM was implemented 
on IBM zEnterprise EC12 (zEC12) [40], in the 4th genera-
tion of Intel Core [13], and in IBM POWER8 [27] proces-
sors. 

These HTM systems have been individually evaluated 
with various applications [1, 5, 7, 21, 23, 30, 31, 35, 36, 38, 
39]. However, there is no single paper comparing the per-
formance of all of the HTM systems using a common 
benchmark set. Because Blue Gene/Q, zEC12, Intel Core, 
and POWER8 are the first processors that implement HTM, 
clarifying their advantages and disadvantages is important 
to enhance the HTM implementations and improve the per-
formance of the next generation of processors. 

Our work is the first to quantitatively compare all of the 
existing HTM systems. For all four systems, we measured 
the STAMP benchmarks [3], the most widely used transac-
tional memory benchmarks. To fairly compare the intrinsic 
performance of the HTM systems, we fixed the TM-
unfriendly code that excessively increased nonessential 
transaction aborts in some of the STAMP benchmark pro-
grams. Also, we tuned the number of transaction retries so 
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that the performance was maximized for each combination 
of an HTM system with the benchmarks. 

Our major findings are: (1) there is no HTM system that 
is more scalable than the others for all of the benchmarks, 
(2) there are measurable performance differences among 
the HTM systems in some benchmarks, and (3) each HTM 
system has its own implementation limitations that degrade 
its scalability. These findings show that each HTM system 
still has room to improve its performance. A TM program 
may obtain performance benefits from future HTM systems 
even if it does not run well with the current systems. 

Further, we evaluated the features specific to each HTM 
system: constrained transactions of zEC12, hardware lock 
elision (HLE) of Intel Core, and suspend/resume instruc-
tions and rollback-only transactions of POWER8. Our ex-
perimentations showed that each feature is beneficial to 
widen the applications of HTM. 

Here are our contributions: 
• We evaluated the HTM implementations of the Blue 

Gene/Q, zEC12, Intel Core, and POWER8 proces-
sors quantitatively on the STAMP benchmarks and 
clarified the advantages and disadvantages of each 
HTM implementation. 

• We compared the maximum speed-up ratios of these 
HTM systems by repairing the TM-unfriendly code 
of the STAMP benchmarks and by exploring optimal 
transaction-retry counts for each HTM system. 

• We analyzed in detail the causes of the transaction 
aborts and found the implementation-specific causes 
that degrade the scalability. 

• We evaluated the features specific to each HTM sys-
tem and showed the benefit of each feature. 

Section 2 describes the differences in the HTM imple-
mentations of the Blue Gene/Q, zEC12, Intel Core, and 
POWER8 processors. Section 3 is about our transaction-
retry mechanism. Section 4 describes our modifications for 
the STAMP benchmarks to reduce nonessential transaction 
aborts. Section 5 compares the performance of the four 
HTM systems and discusses the causes of the differences. 
Section 6 evaluates the specific features of each HTM sys-
tem. Section 7 discusses the next generation of HTM sys-
tems. Section 8 reviews the related work. Section 9 
concludes this paper. 

2.���� Hardware Transactional Memory 
Implementations 

In this section, we characterize the HTM implementations 
of the Blue Gene/Q, zEC12, Intel Core, and POWER8 pro-
cessors and describe their differences. 

These processors (except for Blue Gene/Q) provide ma-
chine instructions to begin, end, and abort transactions. A 
programmer uses the begin and end instructions to define 
transactions and uses the abort instruction to force the roll-

back of the transactions. When a transaction aborts, for 
example due to a memory access conflict, the execution is 
rolled back to immediately after the beginning of the trans-
action with a condition code set (zEC12 and POWER8) or 
jumps directly to an abort handler (Intel Core). These pro-
cessors do not guarantee that a transaction will eventually 
succeed (best-effort HTM). Thus, a typical abort handler 
will determine whether the execution retries the transaction 
or reverts to a fallback mechanism such as locking. 

In Blue Gene/Q, programmers use compiler-provided 
pragmas and C-language block constructs to specify the 
transactions. Blue Gene/Q does not disclose the underlying 
control mechanisms for the HTM. Programmers cannot 
write their own abort handling logic, but they can tune the 
system-provided code with environmental variables. 

All four of the processors we experimented with imple-
ment the HTM facilities on top of their cache mechanisms. 
They keep track of the memory loads and stores during 
transactions in the caches or cache-like structures and detect 
conflicts using the cache coherence protocols. If two con-
current transactions access the same memory location and if 
at least one of the accesses is a store, then these transactions 
cause a conflict, and one of the transactions is aborted. The 
HTM implementations also buffer the stores during a trans-
action in the caches or buffers next to the caches, so that the 
stores are invisible from the other concurrent transactions. 
This buffering supports the rollbacks of transactions when a 
transaction aborts. 

Although the four processors share implementation ap-
proaches, there are three major differences: (1) conflict-
detection granularity, (2) transaction capacity, and (3) 
abort-reason codes. Table 1 is a summary of the differ-
ences. There are multiple versions of the 4th generation 
Intel Core processor, but Table 1 shows only the Core i7-
4770 that we tested. 

Conflict-detection granularity. The zEC12, Intel Core, and 
POWER8 use their cache-line size as the conflict-detection 
granularity. Due to the cache-line granularity, a conflict is 
detected even when distinct bytes in a cache line are ac-
cessed concurrently by distinct transactions. We call this 
conflict a false conflict. The conflict-detection granularity 
of Blue Gene/Q is the L2 cache-line size (128 bytes) in the 
worst case. It can be reduced to 8 or 64 bytes based on cer-
tain conditions, such as the running mode described in Sec-
tion 2.1. 

As shown in Table 1, zEC12 has the largest conflict-
detection granularity. A larger cache line helps exploit more 
spatial locality by allowing more variables to exist in the 
cache line, but from the viewpoint of HTM, it can increase 
the false conflicts.  

Transaction capacity. The transaction capacity is the max-
imum amount of memory data that can be accessed in a 



transaction. It is limited by the amount of the hardware re-
sources needed to keep track of memory accesses for con-
flict detection and to buffer transactional stores. When a 
transaction tries to access a cache line that will exceed the 
capacity, it is aborted. We call this a capacity-overflow 
abort. In general, the load capacity is larger than the store 
capacity because the conflict detection has to record only 
the accessed memory addresses, while the store buffering 
needs to keep the stored data. 

The second and third rows of Table 1 summarize the 
transaction capacities of the four processors. The load ca-
pacities are 1 MB or larger in these processors except for 
POWER8. 

Note that there are two other factors that can cause the 
capacity-overflow aborts: cache-way conflicts and resource 
sharing among simultaneous-multithreading (SMT) threads. 
When a cache line accessed by a transaction is evicted from 
a cache because of a cache-way conflict, a capacity-
overflow abort occurs even if the total amount of the trans-
actional data does not exceed the capacity. Blue Gene/Q, 
Intel Core, and POWER8 support SMT, which allows mul-
tiple threads to run concurrently in a core. Since those SMT 
threads share the hardware resources for conflict detection 
and store buffering in each core, a transaction can encoun-
ter a capacity-overflow abort before it uses up the transac-
tion capacity of the core. 

Abort-reason code. The abort-reason code tells the users 
why a transaction aborted, such as a conflict or a capacity 
overflow. Each system has its own method to pass the code 
to the users. For example, Intel Core uses the EAX register. 
The abort-reason code is helpful not only for debugging but 
also as a hint about whether to retry the transaction.  

As shown in Table 1, these four processors differ in the 
granularity of their abort reasons. For example, POWER8 
reports a conflict due to a transactional access as different 
from one due to a non-transactional access, but the zEC12 
and Intel Core do not distinguish between them. In addition 
to the codes for the specific abort reasons, zEC12, Intel 
Core, and POWER8 have a code that reports the proces-
sors’ own decision about whether each transaction abort is 
persistent or transient. 

In the next sections, we describe in detail the HTM im-

plementation of each processor. 

2.1 Blue Gene/Q 

Blue Gene/Q uses the L2 cache for conflict detection and 
store buffering [1]. It assigns a unique speculation ID to 
each transaction and records the transactional accesses in 
the L2 directory with the speculation ID. The number of the 
speculation IDs is limited to 128. Although the IDs are pe-
riodically reclaimed for their reuse, the start of a new trans-
action is blocked if there is no available speculation ID. 

Blue Gene/Q buffers the transactional stored data in its 
L2 cache. When a transactional store to a cache line occurs, 
the processor allocates a new way, which is different from 
the way that is storing the original cache-line data. Since six 
ways among the sixteen ways are reserved to store non-
transactional data, the total transaction capacity combined 
for loads and stores is 20 MB (= 32 MB * 10/16).  

Blue Gene/Q has two transactional execution modes: a 
short-running mode and a long-running mode. In the short-
running mode, only the L2 cache buffers the transactional 
data, and thus every load of the transactional data requires 
access to the L2 cache. The long-running mode allows the 
L1 cache to buffer some of the transactional data though it 
invalidates all of the L1 cache lines at the start of each 
transaction. 

2.2 zEC12 

The zEC12 uses the L1 cache for conflict detection [6]. 
Each cache line has tx-read and tx-dirty bits, which are set 
by a transactional load and store, respectively. The zEC12 
expands the transaction capacity for loads to 1 MB over the 
size of the L1 cache by recording the evicted cache lines in 
a special LRU-extension vector. The transactional stores 
are buffered in an 8-KB gathering store cache, which is 
private for each processor and is located between the L1 
cache and the L2/L3 caches.  

The zEC12 provides constrained transactions which are 
guaranteed to eventually commit. Our experiments on the 
STAMP benchmarks use normal transactions because the 
constrained transactions restrict the number of instructions 
to 32 and the transaction capacity to 256 bytes. We evaluat-
ed the performance of the constrained transactions by using 
the ConcurrentLinkedQueue data structure in the 

Processor type Blue Gene/Q zEC12 Intel Core i7-4770 POWER8
Conflict-detection guranularity 8 - 128 bytes 256 bytes 64 bytes 128 bytes
Transactional-load capacity 20 MB (1.25 MB per core) 1 MB 4 MB 8 KB

Transactional-store capacity 20 MB (1.25 MB per core) 8 KB 22 KB 8 KB
L1 data cache 16 KB, 8-way 96 KB, 6-way 32 KB, 8-way 64 KB
L2 data cache 32 MB, 16-way, (shared by 16 cores) 1 MB, 8-way 256 KB 512 KB, 8-way

SMT level 4 None 2 8
Kinds of abort reasons - 14 6 11

Table 1. HTM implementations of Blue Gene/Q, zEC12, Intel Core i7-4770, and POWER8 



Java concurrent package because the enqueuing and 
dequeuing operations satisfy the restriction.  

2.3 Intel Core 

Intel Core uses the L1 cache for conflict detection and store 
buffering [28]. The details about the conflict detection and 
transaction capacities have not been disclosed. We meas-
ured the capacities by using a single-thread microbench-
mark to execute transactions many times, gradually 
increasing the transactional loads or stores, and then meas-
ured the frequency changes in the capacity-overflow aborts. 
As a result of this experimentation, we concluded that the 
load and store capacities are 4 MB and 22 KB, respectively, 
on Core i7-4770. It has a larger transaction capacity for 
loads than the size of the L1 cache because it uses other 
resources to track the cache lines that were evicted from the 
L1 cache. The transaction capacity for the stores is within 
the size of the L1 cache. 

Intel Core provides two programming interfaces to use 
HTM. Hardware Lock Elision (HLE) is an instruction-
prefix-based interface to support the compatibility with 
processors that have no HTM. Restricted Transactional 
Memory (RTM) is a new instruction-set interface. Our ex-
periments on the STAMP benchmarks used RTM, but we 
also evaluated HLE. 

2.4 POWER8 

POWER8 uses content addressable memory (CAM) linked 
with the L2 cache for conflict detection [10]. This CAM is 
called the L2 TMCAM. The L2 TMCAM records the cache-
line addresses that are accessed in the transactions with bits 
to represent read and write. Although the transactional 
stored data is buffered in the L2 cache, the transaction ca-
pacity is bounded by the size of the L2 TMCAM. Since the 
number of the entries for the L2 TMCAM is 64, the total 
transaction capacity combined for loads and stores is 8 KB 
(=64*128 bytes). 

POWER8 has rollback-only transactions which only 
support store buffering without the detection of data con-
flicts. The rollback-only transactions are useful for the sin-
gle-thread speculative optimizations that do not need the 
detection of data conflicts [14, 24]. POWER8 also has in-
structions to suspend and resume transactions. A typical use 
case of these instructions in the user space is to output de-
bug information. Another use case is Thread-Level Specu-
lation (TLS) [18]. As described in [29], TLS can take 
advantage of HTM for conflict detection, but it also re-
quires that transactions commit in the same order as the 
original sequential execution. Software implementation of 
order transactions involves accesses to a shared variable to 
control the commit order, but these accesses cause data 
conflicts among the transactions. The suspend/resume in-

structions can be used to escape from a transaction and to 
access the shared variable without data conflicts. 

3.���� Transaction-Retry Mechanism 

When a transaction aborts, the program can simply retry the 
transaction. However, since none of the HTM systems we 
evaluated guarantee that a transaction eventually commits 
(unless the transaction is a constrained transaction on the 
zEC12), these aborts can repeat indefinitely. Therefore a 
software fallback mechanism is required to guarantee for-
ward progress. When TM is used to execute critical sec-
tions, as in the STAMP benchmarks, the standard fallback 
mechanism is to use a global lock to make transactions ir-
revocable.  

Figure 1 shows the pseudocode for our transaction retry 
mechanism as used with zEC12, Intel Core, and POWER8. 
As described in Section 2, Blue Gene/Q can only use the 
system-provided retry mechanism, which we will describe 
later in this section. Each thread waits for the global lock to 
be released if it was acquired before the transaction began 
(Line 9) to avoid the lemming effect [8]. We implemented 
the global lock with a single memory word and spin waiting. 
Each transaction begins at Line 10, and when the transac-
tion aborts, this pseudocode assumes that the program exe-
cution returns to immediately after the instruction that 
began the transaction (Line 11). After a transaction begins, 
the global lock is first checked, so that the HTM system can 
keep track of the lock word and abort the transaction if an-
other thread acquires the global lock. If the global lock has 

Figure 1. Pseudocode for our transaction-retry mecha-
nism 

1:  lockRetryCount = MAX_LOCK_RETRY_COUNT; 
2:  persistentRetryCount =  
3:    MAX_PERSISTENT_RETRY_COUNT; 
4:  transientRetryCount =  
5:    MAX_TRANSIENT_RETRY_COUNT; 
6:   
7:  retry: // Label for retrying transactions 
8: 
9:  waitForLockToBeReleased(); 
10: tbegin(); // Begin a transaction 
11: if (isTransactionAborted()) {  
12:   // Return here on a transaction abort 
13:   if (isLockAcquired()) {  
14:     // Aborted due to a conflict on  
15:     // the lock word 
16:     if (--lockRetryCount > 0) goto retry; 
17:   } else if (isAbortPersistent()) { 
18:     // The abort code is persistent. 
19:�    if (--persistentRetryCount > 0) 
20:       goto retry; 
21:   } else if (--transientRetryCount > 0) { 
22:     // The abort code is transient. 
23:     goto retry; 
24   } 
25:   acquireLock(); 
26: } else if (isLockAcquired()) 
27:   tabort(); 
28: // Transaction body 
29: if (isLockAcquired()) releaseLock(); 
30: else tend(); // End a transaction 



already been acquired, then this new transaction must abort 
(Line 27), because otherwise it could read inconsistent data. 

When a transaction aborts, the thread determines wheth-
er or not it continues with transactional execution (Lines 
11-25). There are three thread-local counters to control the 
number of retries before reverting to the global lock: (1) 
lock-retry counter, (2) persistent-retry counter, and (3) 
transient-retry counter. 

The lock-retry counter controls the number of retries for 
those transaction aborts that are caused by conflicts on the 
global lock. We call these aborts lock-conflict aborts, which 
can be recognized by checking the global lock after the 
transactions aborted (Line 13). The persistent-retry counter 
controls the number of retries for the persistent transaction 
aborts (Line 17). On Intel Core and POWER8, we can rec-
ognize the persistent aborts based on the abort-reason code 
that reports the processors’ own decisions about the persis-
tence of the aborts. On zEC12, we treat capacity-overflow 
aborts as persistent. The transient-retry counter controls the 
number of retries for the other aborts. The maximum values 
for the three counters (Lines 1-5) are tuning parameters. 

We separated the lock-retry counter from the transient-
retry counter, because the conflicts for the global lock have 
different characteristics from the conflicts over normal 
shared data. When a thread acquires the global lock for the 
irrevocable execution of a transaction, all of the other con-
current transactions will be aborted. In contrast, a conflict 
over program data will abort only some of the transactions 
that happen to access the same data at the same time. There-
fore, the best retry counts can be different for the lock-
conflict aborts and the other transient aborts. 

With the persistent-retry counter, we can allow transac-
tions to retry even in the case of persistent aborts. Most of 
the persistent aborts are capacity-overflow aborts, but there 
are some cases where capacity-overflow aborts are not ac-
tually persistent. As described in Section 2, capacity-
overflow aborts can be caused by cache-way conflicts or 
resource sharing among multiple SMT threads, so they may 
be transient. 

An existing transaction retry mechanism [23] is the base 
of our retry mechanism. It uses a single retry counter and 
changes the degree of the decrement for the retry counter 
based on the abort reasons. For example, the retry count is 
halved in the case of a persistent transaction abort. Instead 
of changing the degree of the decrement, our mechanism 
uses different retry counters per abort reason. 

In Blue Gene/Q, the system software offers a retry 
mechanism. It does not distinguish among lock-conflict, 
transient, or persistent aborts. It uses a single retry counter, 
and the users can specify the maximum number of retries 
with an environmental variable. The Blue Gene/Q also has 
an adaptation mechanism, with which transactions that too 
frequently fell back on the global lock will not be allowed 
to retry on the next abort. Finally, our retry mechanism 

checks the global lock at the beginning of a transaction 
(Line 13), while Blue Gene/Q’s mechanism checks at the 
end when run in long-running mode, which is called lazy 
subscription [12]. 

4.���� STAMP Benchmarks 

In this section, we describe the STAMP benchmarks and 
the modifications we made to prevent the nonessential 
transaction aborts. STAMP is the most widely used TM 
benchmark suite [3]. It consists of eight programs using 
both fine-grain and coarse-grain transactions. We used Ver-
sion 0.9.10 of the STAMP benchmarks and their default 
runtime options for a non-simulator as specified in the RE-
ADME files. 

In preliminary comparisons of the STAMP benchmarks 
on the four processors, we found that four benchmarks were 
not well programmed or tuned for best-effort HTM. This 
unfriendly code caused excessive nonessential transaction 
aborts, and thus we could not fairly compare the intrinsic 
performances of the HTM systems. The nonessential trans-
action aborts were caused by false conflicts and capacity 
overflows, which rarely occur in typical STM implementa-
tions. This explains why these problems have not been 
fixed since the STAMP benchmarks were released. We 
fixed these problems and used the modified versions for 
most of our evaluations, but we also show the performance 
comparison of the versions with and without our changes. 
Our fix is available in a Web site [32] as a code patch to 
Version 0.9.10 of the STAMP benchmarks. In the rest of 
this section, we describe each change in detail. 

genome. In one transaction section of the genome bench-
mark, the genome segments are inserted into a hash table. 
There is a compile-time tuning parameter for how many 
genome segments to insert in each transaction. A larger 
number means a longer transaction and thus can alleviate 
the performance overhead to begin and end the transactions, 
but this also increases the probability of capacity-overflow 
aborts. We tuned this compile-time parameter 
(CHUNK_STEP_1) for each of the four platforms (9 for 
Blue Gene/Q and 2 for the other three processors) to 
achieve the best performance. 

intruder. In the intruder benchmark, red-black trees are 
used for unordered sets, and linked lists for ordered sets. 
These data structures are not suitable for implementing their 
respective sets. On HTM, these unsuitable data structures 
result in excessive capacity-overflow aborts. We modified 
the code to use hash tables for the unordered sets and red-
black trees for the ordered sets. Our hash table is similar to 
the concurrent hash table in the Java standard class library. 

kmeans. In the kmeans benchmark, each transaction ac-
cesses and modifies one cluster, which consists of an inte-



ger number and floating-point numbers. The original code 
tries to avoid false conflicts by collocating a cluster in a 
contiguous memory region and by inserting padding be-
tween the clusters. However, because each cluster is not 
aligned to a cache line boundary, two clusters can coexist 
within a cache line, causing false conflicts. We modified the 
code to properly align the clusters to cache line boundaries. 

vacation. In the vacation benchmark, red-black trees are 
used for unordered sets. As in intruder, we instead used 
hash tables for the unordered sets. 

5.���� Performance Comparison of HTM 
Systems 

We ran the STAMP benchmarks [3] on the following four 
platforms. 

• 16-core 1.6-GHz A2 with 4 SMT threads (Blue 
Gene/Q), V1R2M2, 16 GB of main memory 

• 16-core 5.5-GHz zEC12, z/OS V2.01, 64 GB of 
main memory 

• 4-core 3.4-GHz Core i7-4770 with 2 SMT threads, 
Linux 3.14.5, 4 GB of main memory 

• 6-core 4.1-GHz POWER8 with 8 SMT threads, AIX 
7.1.3.16, 28.5 GB of main memory 

The different numbers of cores indicate that the perfor-
mance comparisons among the processors are fair only up 
to four concurrent application threads, because up to four 
threads can be assigned dedicated cores on each of the plat-
forms. A processor cannot provide the maximum perfor-
mance for each thread when the number of concurrent 
threads is larger than the number of its cores because multi-
ple SMT threads share the hardware resources for the HTM, 
as described in Section 2. Our results for POWER8 are 
preliminary because we used a pre-release version of the 
processor. 

Our main performance metric is the speed-up ratios of 
transactional execution over sequential execution and the 
transaction-abort ratios. Our baseline to calculate the speed-
up ratios on each processor is the sequential non-HTM exe-
cution on that processor, because our purpose is to evaluate 
how each HTM system accelerates the multi-threaded per-
formance. Comparing absolute performance is beyond the 
scope of our paper. A transaction-abort ratio is the percent-
age of the aborted transactions to all of the transactions 
without irrevocable transactions. 

For the zEC12, Intel Core, and POWER8, we break 
down the cause of the transaction aborts into four catego-
ries: (1) capacity overflow, (2) data conflict, (3) other, and 
(4) lock conflict. The first three types of aborts are identi-
fied by checking the abort-reason code. Lock-conflict 
aborts are detected by the transaction-retry mechanism de-
scribed in Section 3. Note that we can miss a lock-conflict 
abort if the global lock is released before the global lock is 

checked in the transaction-retry mechanism. In that case, 
the abort is categorized as a data conflict. 

5.1 4-Thread Performance of Modified STAMP 
Benchmarks 

In this section, we compare the performance of the HTM 
systems when we ran four threads for our modified version 
of the STAMP benchmarks. Since each system has at least 
four physical cores, each thread can have the exclusive use 
of a physical core. For the three retry counters explained in 
Section 3, we optimized the parameter values for each test 
case which consists of an HTM system and a benchmark. 
We also tuned the maximum retry count and the running 
mode for each benchmark on Blue Gene/Q. This approach 
allowed us to compare the best performance of each HTM 
system for each benchmark. We ran each benchmark four 
times and took the average of the runs. 

Figure 2 shows the speed-up ratios of the transactional 
execution over the serial non-HTM execution and Figure 3 
shows the transaction-abort ratios. For the speed-up ratios, 
the error bars show the 95%-confidence intervals. Each 
abort ratio is divided into four categories, except for Blue 
Gene/Q. In each figure, the bayes benchmark was excluded 
from the calculation of the average numbers because of its 
non-deterministic behavior, which significantly affects the 
performance numbers [37]. We also dropped bayes from 
the later analyses presented here. 

Only Blue Gene/Q showed scalable performance for 
yada because it has a larger transaction capacity than the 
other processors. In Figure 3, capacity-overflow aborts do 
not seem to be a major cause of aborts on zEC12, Intel 
Core, or POWER8, but that is because the maximum persis-
tent-retry count was set to 1. Since capacity-overflow aborts 
occur persistently in the transaction section of yada, reduc-
ing the maximum persistent-retry count improves the per-
formance. As a result, the number of capacity-overflow 
aborts seems small, but many of the transactions reverted to 
the global lock due to the capacity-overflow aborts. The 
serialization ratio, which is the percentage of the irrevoca-
ble transactions to all of the committed transactions, was 
about 10% on Blue Gene/Q, but about 20% on the other 
systems. 

 Blue Gene/Q has lower speed-up ratios than the other 
processors in these benchmarks, except for genome and 
yada, because of its relatively high single-thread overhead. 
For example, compared to perfectly linear speedup, Blue 
Gene/Q degraded the single-thread performance of kmeans-
high by 40% while the performance degradation in the other 
processors was limited to 10%. Since Blue Gene/Q requires 
software-based register checkpointing, system calls to begin 
and end transactions, and L1-cache invalidation or bypass, 
it has higher single-thread overhead than the other proces-
sors. In addition, Blue Gene/Q frequently exhausted its 



supply of speculation IDs in ssca2, because this benchmark 
executes many short transactions. Therefore, the start of a 
new transaction was often blocked until a speculation ID 
became available. 

The zEC12 has the highest average speed-up ratio. Its 
distinctive characteristic is that most of the transaction 
aborts belong to the “other” category as shown in the grey 
bars of Figure 3. More specifically, the abort-reason code of 
the “other” aborts was cache-fetch-related aborts. Unfortu-
nately, the meaning of this abort-reason code is not fully 
disclosed, even in the most detailed zEC12 documentation 
[40]. These aborts are transient and are caused by an im-
plementation restriction when cache line fetches and stores 
happen in the transactions. 

The zEC12 shows superlinear speedup in kmeans-low. 
This is caused by the non-deterministic threaded execution 
in kmeans as indicated by the larger error bars compared to 
the other benchmarks in Figure 2. POWER8 shows super-
linear speedup in kmeans-high and -low for the same reason. 

In kmeans-low, Intel Core has more data-conflict aborts 
than the other processors. We found that the hardware 
prefetching of Intel Core increased the data conflicts be-
cause the memory addresses of the clusters, which are the 
main shared data in kmeans, are successive. When a 
memory address is accessed, the hardware prefetching pre-
loads the data at the adjacent address into the processor 
cache. In kmeans, each transaction updates a single cluster, 
which occupies cache lines because of the padding and 
alignment described in Section 4. During this update, some 
of the neighboring clusters can be prefetched into other 
cache lines. If the HTM system regards the prefetched 
cache line as transactional data, then it can detect a data 
conflict when another transaction concurrently updates one 
of the neighboring clusters. Note that this conflict is not 
necessary for the transaction because the transaction never 
accesses the neighboring cluster. 

To assess the influence of hardware prefetching on data 
conflicts, we ran a second experiment by disabling the 
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hardware prefetching. Disabling the hardware prefetching 
reduced the abort ratios of kmeans-high and –low from 
16% and 24 to 10% and 10%, respectively, and improves 
the speed-up ratios from 3.5 and 3.7 to 3.9 and 4.0, respec-
tively. These results show that the hardware prefetching of 
Intel Core causes unnecessary data conflicts on the 
prefetched cache lines. Developers in Intel also validated 
our findings. Intel Core should be enhanced to avoid such 
false detection of data conflicts. Note that disabling the 
hardware prefetching is not a realistic solution because it 
can degrade the performance of other applications. Actually, 
we have seen performance degradation for the sequential 
execution of kmeans-high and –low. 

Intel Core scaled worse than zEC12 and POWER8 in 
ssca2. This was not due to the HTM system, as indicated by 
the only 1% transaction-abort ratio on Intel Core. The in-
ner-most loop of ssca2 causes many last-level cache misses, 
and the desktop Intel Core machine we used (Lenovo 
ThinkCentre M93p) had poorer performance of concurrent 
memory accesses than the other 3 systems. 

POWER8 was worse than zEC12 and Intel Core in in-
truder and vacation because it has more capacity-overflow 
aborts than the other processors. Increasing the transaction 
capacity is an obvious approach to enhance the POWER8 
HTM system. 

5.2 4-Thread Performance of Original and Modified 
STAMP Benchmarks 

In this section, we compare the performance of the original 
and modified versions of the STAMP benchmarks with four 
threads. We measured the maximum performance for each 
test case consisting of an HTM system and a benchmark by 
tuning the values for the maximum retry counts in the same 
manner as for the experiments in Section 5.1. Figure 4 
shows the speed-up ratios. This figure includes only the 
data for the modified benchmarks: genome, intruder, 
kmeans, and vacation. The geometric means are for all of 
the programs in the STAMP benchmarks. 

Our modified version of genome shows 3.7 times per-
formance gain for POWER8 over the original version. This 
large performance gain is due to the reduction in capacity-
overflow aborts though we omitted the graph for the abort 
ratios because of the limited space for this paper. Our modi-
fications also increased the performance more than 1.4 
times for POWER8 in the intruder and vacation bench-
marks due to the significant reduction in capacity-overflow 
aborts. However, POWER8 still suffered from more capaci-
ty-overflow aborts than the other processors. 

In kmeans-high, our changes improved the performance 
of zEC12 and Intel Core by 20% and 28%, respectively. 
The major source of the performance improvement is the 
reduction in false conflicts that were caused by the misa-
lignments of the shared data, as described in Section 4. 

We saw some cases (intruder, kmeans-high, and vacation 
in Blue Gene/Q, and intruder in Intel Core) where our 
changes degraded the speed-up ratios even though they im-
proved the absolute performance. This was caused by the 
significant improvement in the single-thread performance 
compared to the improvement in the multi-thread perfor-
mance. 

5.3 Scalability of Modified STAMP Benchmarks 

Finally, we studied the scalabilities of the four HTM sys-
tems when we ran 1, 2, 4, 8, and 16 threads for our modi-
fied version. The values for the three maximum retry counts 
were optimized for each number of threads for each HTM 
system running the benchmarks. The mode and maximum 
retry count were also tuned on Blue Gene/Q in the same 
manner. Note that Intel Core and POWER8 cannot exclu-
sively use a physical core for each thread with eight and 
sixteen threads. Therefore, a fair comparison of the eight- 
and sixteen-thread performance is possible only for Blue 
Gene/Q and zEC12. Figure 5 shows the speed-up ratios. For 
Intel Core, we do not plot the sixteen-thread performance 
because sixteen is larger than the total number of possible 
SMT threads.  

Figure 4. Speed-up ratios of transactional execution over sequential execution in Blue Gene/Q (BG), zEC12 (z12), Intel 
Core (IC), and POWER8 (P8) with 4 threads. The two bars are the speed-up ratios of the original and modified versions of 
the STAMP benchmarks, respectively. 
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In yada, Blue Gene/Q had a higher speed-up ratio than 
zEC12 because it has a larger transaction capacity than 
zEC12. However, with sixteen threads, data-conflict aborts 
limited the scalability. In intruder, ssca2, and vacation, the 
zEC12 had higher speed-up ratios than Blue Gene/Q. In 
ssca2, the speculation ID reclamation was the bottleneck for 
Blue Gene/Q. For intruder and vacation, there are two rea-
sons. One is that zEC12 has less single-thread overhead 
than Blue Gene/Q. The second reason is that zEC12 had 
lower serialization ratios than Blue Gene/Q. For example, 
in intruder, Blue Gene/Q had a 56% serialization ratio with 
sixteen threads while zEC12 had only a 2% serialization 
ratio. This indicates that the adaptation mechanism in Blue 
Gene/Q acted too early in making the transactions fall back 
on the global lock. 

In these benchmarks (except for kmeans), the zEC12 had 
higher speed-up ratios than Intel Core and POWER8 with 
eight and sixteen threads because it can assign an exclusive 
physical core to each thread. Meanwhile, the zEC12 had 
lower speed-up ratios than POWER8 for kmeans because it 
had excessive cache-fetch-related aborts. Basically, POW-
ER8 showed higher speed-up ratios than Intel Core with 
eight threads because it has more physical cores than Intel 
Core. However, Intel Core had higher speed-up ratios than 
POWER8 in intruder and vacation because the transaction 
capacity of POWER8 is too small for those benchmarks. 

6.���� Evaluation of Processor-Specific Features 

In this section, we show the performance results of the three 
features specific to each HTM system: the constrained 

Figure 5. Speed-up ratios of transactional execution over serial execution in Blue Gene/Q, zEC12, Intel Core, and POWER8. 
Our modified version of the STAMP benchmarks was used with 1, 2, 4, 8, and 16 threads. Dotted lines are the speed-up ratios 
when the number of physical cores is smaller than the number of threads. 

Blue Gene/Q – 16 physical cores with 4 SMT threads

zEC12 – 16 physical cores

Intel Core – 4 physical cores with 2 SMT threads

POWER8 – 6 physical cores with 8 SMT threads
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transactions in zEC12, the hardware lock elision in Intel 
Core, and the suspend/resume instructions in POWER8. 
Our purpose is to investigate whether these features are 
worth implementing in the future systems, from the perfor-
mance perspective. 

6.1 Performance of constrained transactions on zEC12 

In this section, we compare the performance of the con-
strained and normal transactions on the zEC12 processor. 
As described in Section 2.2, constrained transactions are 
guaranteed to eventually commit, and thus they do not need 
abort handlers. We applied the constrained transactions to 
the enqueuing and dequeuing operations for the Concur-
rentLinkedQueue data structure in the standard Java 
concurrent package because these operations satisfy the 
restriction for the constrained transactions. The enqueuing 
operation in a transaction adds a new element to the last 
element (tail) if the next pointer of the last element is null. 
Otherwise, it falls back to the original lock-free code which 
uses atomic operations. The dequeuing operation returns an 
object stored in the first element (head) if the object is not 
null. Otherwise, it falls back to the original code. We used a 
single retry counter for normal transactions because the data 
accessed in a transaction are within 256 bytes and thus ca-
pacity-overflow aborts will never occur. We do not need the 
lock-retry counter because we do not falls back to the lock. 
We tuned the retry count to obtain the maximum perfor-
mance. 

Figure 6 shows the relative execution times when each 
thread alternately enqueues to and dequeues from a single 
queue. The base line is the execution time of the original 
lock-free implementation of the Concurrent-
LinkedQueue data structure with each number of threads. 
NoRetryTM used normal transactions without any retry, 
while OptRetryTM did with optimal retry counts. As shown 
in this figure, using transactions reduced the execution time 
when the number of threads was less than four. These 
speed-ups resulted from the reduction in the path length 
because the complicated lock-free operations were simpli-
fied by using transactions. When the number of threads was 
larger than two, NoRetryTM increased the execution time. 
Constrained transactions (ConstrainedTM) were compara-
ble to OptRetryTM. We conclude that the constrained 
transactions do not provide performance benefits but they 
eliminate the work to implement the fallback paths and to 
tune the retry count. 

Our conclusion is different from the conclusion of Jacobi 
et al. [6] who mention a performance benefit in constrained 
transactions compared to normal transactions for a highly 
contended microbenchmark. This is because we used a 
more realistic benchmark, which has lower contention, than 
their highly contended microbenchmark. Jacobi et al. them-

selves mentions that the high contention case is not com-
mon in real-world applications. 

6.2 Performance of hardware lock elision (HLE) on 
Intel Core 

 In this section, we compare the performance of RTM and 
HLE on the Intel Core processor. Figure 7 shows the speed-
up ratios of the RTM and HLE execution over the serial 
execution with four threads in the STAMP benchmarks. 
The numbers of the RTM execution are same as the ones in 
Figure 2 (i.e. the retry counts are tuned). On average, the 
speed-up ratio of the HLE execution reached 80% of that of 
the RTM execution. The performance gap remained, be-
cause the retry counts cannot be tuned for the HLE, which 
has no software-based retry mechanism. These results indi-
cate that the HLE will provide modest speed-ups in many 
existing programs with little modification and no tuning 
effort. 
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� Speed-up ratios of RTM and HLE executions 
over serial execution in Intel Core. Our modified version 
of the STAMP benchmarks was used with 4 threads. 

Figure 6. Relative execution times for normal and con-
strained transactions. The baseline is the execution time for 
the original lock-free implementation of the Java Concur-
rentLinkedQueue data structure.  
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6.3 Performance of thread-level speculation (TLS) on 
POWER8 

As described in Section 2.4, the suspend and resume in-
structions in POWER8 can be exploited to implement effi-
cient TLS. Following the experimental scheme in a 
previous study [29], we manually modified two benchmarks 
(433.milc and 482.sphinx3) in SPEC CPU2006 that can 
benefit from TLS. We applied TLS to frequently executed 
loops in each benchmark. Figure 8(a) shows an example 
loop and (b) is the loop after TLS is applied. Each thread 
executes this modified loop. Either the code in the dark 
gray or in the light gray is executed, depending on the 
availability of the suspend and resume instructions. Without 
these instructions, if a previous iteration has not yet finished, 
the current thread must abort (dark gray code). The suspend 
and resume instructions allow spin-waiting outside the 
transaction, without causing data conflicts (light gray code). 

Figure 9 shows the throughput results normalized to the 
sequential execution of each benchmark. TLS provided 
speed-ups of up to 15% in 433.milc and 25% in 
482.sphinx3 with 6 threads. In 482.sphinx3, TLS with the 
suspend and resume instructions was faster than TLS with-
out them by 12%. By using these instructions, the abort 
ratio was reduced from 69% to 0.1%. In 433.milc, the im-
provement by using the suspend and resume instructions 
was only 2%. These instructions reduced the abort ratio 
from 83% to 10%, but false conflicts still remained. Overall, 
the suspend and resume instructions are effective extensions 
to HTM to implement efficient TLS. 

7.���� Next Generation of HTM Systems 

In this section, we discuss the next generation of HTM sys-
tems based on the experimental results shown in Section 5 
and 6. The following are our recommendations for next 
generation HTM designs. 

Precise Conflict Detection. The underlying implementation 
of the cache-coherency traffic should not compromise the 
conflict-detection mechanism of an HTM system. Intel Core 
has unnecessary transaction aborts because of the conflicts 
on the prefetched cache lines. The zEC12 detects false 
transaction-abort conditions (cache-fetch-related aborts) on 
the cache lines where in reality data conflicts do not occur. 
Although the precise conflict detection may complicate the 
hardware design, it is needed to maximize the performance. 

Better Interaction with SMT. HTM should scale beyond 
the number of physical cores, using SMT. As shown in Fig-
ure 5, POWER8 and Intel Core cannot scale with SMT in 
the benchmarks of relatively large transactional sizes (the 
benchmarks other than kmeans and ssca2).  One way to 
avoid capacity-overflow aborts due to the resource sharing 
among the SMT threads is to somehow restrict concurrent 
execution of transactions on the same core. 

Non-transactional loads and stores. Non-transactional 
loads and stores enable conflict-detection-free memory ac-
cesses in transactions, not only for debugging but also for 
performance.  For example, as shown in Section 6.3, the 
non-transactional load allows the efficient implementation 
of ordered transactions for TLS. Although such non-
transactional loads and stores are not enough to achieve 
high TLS performance as mentioned in [29], they are basic 
and essential functions to build TLS on top of HTM. 

Larger Transactional-Store Capacity. Next generation of 
HTM systems should have larger capacity, especially for 
transactional stores. Figure 10 and Figure 11 plot the rela-
tionship between the transaction sizes and transaction-abort 
ratios for loads and stores, respectively. Using a trace tool 
[2], we collected the data addresses accessed in transactions 
by running the STAMP benchmarks with the simulator 
runtime options on our Intel Core machine. We then calcu-
lated the transaction sizes by mapping the collected ad-
dresses to the cache lines of each processor. We show the 
90-percentile transaction sizes. Even with the simulator 
runtime options, which specify smaller data sets than the 
non-simulator options, the transaction sizes of some 
benchmarks exceeds the supported transaction capacities, 
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� Speed-up ratios of TLS with and without the 
suspend/resume instructions on POWER8. Two SPEC 
CPU2006 benchmarks were measured. 

for (i = 0; i < N; i++) {
// Loop body

} 

for (i=0; i < N; i += NumThreads)) {
retry:

if (NextIterToCommit != i) {
tbegin();
if (isTransactionAborted()) goto retry;

}
// Loop body
if (NextIterToCommit != i) tabort();
suspend();
while (NextIterToCommit != i) ;
resume();
if (isInTM()) tend();
NextIterToCommit = i + 1;

} 

(a)

(b)

Figure 8. Example loop for TLS with suspend/resume in-
structions of POWER8 



especially for transactional stores. Discussing the tradeoff 
between the performance and the hardware resources is 
beyond the scope of this paper, but hardware should make 
its best efforts because it is not easy for software to avoid 
transaction capacity overflows. 

8.���� Related Work 

HTM has been studied for use in commercial processors 
[11, 16, 34] since the idea appeared in 1993 [19]. Software 
transactional memory (STM) [2, 15, 17, 25, 26] is an alter-
native to HTM. STM surpasses HTM in its portability and 
transaction capacity. It supports transactional execution in 
any processor and has practically no limits on its transac-
tion capacity because it can use the all of memory for track-
ing the loads and stores. However, STM’s high overhead is 
an obstacle to its use in real-world software. 

Currently there are four processors with HTM: Blue 
Gene/Q [1], zEnterprise EC12 (zEC12) [6], the 4th genera-
tion of Intel Core [13], and POWER8 [27]. Although Azul 
[4] and Rock [9] processors implemented HTM before 
these four processors, their HTM implementations were not 
fully available because Azul’s HTM programming interface 

was never published and the Rock processor was canceled 
before commercial production. 

There is no prior research that directly compares the per-
formance of actual HTM systems, though individual HTM 
systems have been evaluated with various applications [1, 5, 
7, 21, 23, 30, 31, 35, 36, 38, 39]. Only Odaira et al. com-
pared two HTM systems, zEC12 and Intel Core, using an 
HTM-enabled Ruby interpreter, but they did not evaluate 
the other platforms [30]. Our work is the first to compare 
all four of the HTM implementations, using a common 
benchmark set, the STAMP benchmarks [3]. Although the 
STAMP benchmarks have been independently measured on 
Blue Gene/Q, zEC12, and Intel Core by many researchers, 
it is important to compare the HTM systems using the same 
code base, because the transaction-retry mechanism de-
scribed in Section 3 has a huge impact on the performance. 

Wang el al. [1] provided a detailed performance analysis 
of a Blue Gene/Q HTM system with the STAMP bench-
marks. Our speed-up ratio results mostly match theirs, alt-
hough they tuned not only the modes (long-running or 
short-running) and maximum retry counts but also various 
other parameters. The yada benchmark showed a more than 
2-fold speed-up with four threads in their results but only a 
1.4-fold speed-up in ours. Their speed-up was because 

Figure 10. 90-percentile transactional-load sizes and transaction-abort ratios. Each plot corresponds to a pair of a benchmark 
and a processor. gnm: genome, intrd: intruder, km: kmeans, lb: labyrinth, ssca: ssca2, vc: vacation 
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function outlining by their compiler improved the single-
thread performance of the HTM version of yada, but we did 
not observe this effect using our compiler. 

Mitran et al. [20] evaluated three programs in the 
STAMP benchmarks on zEC12. Odaira et al. [31] analyzed 
all of the programs in the STAMP benchmarks on zEC12 to 
compare the performance of the C and Java versions of the 
STAMP benchmarks. In genome, intruder, and vacation, 
our speed-up ratios on zEC12 were better than the results 
by Odaira et al., even without our benchmark modifications, 
because we tuned the maximum transaction-retry counts.  

Yoo et al. evaluated the benefits of an Intel Core HTM 
system on real HPC applications, but they also measured 
the STAMP benchmarks [28]. Diegues et al. also measured 
the STAMP benchmarks on Intel Core and found that the 
optimal transaction-retry count differs for each application 
[23]. Based on their findings, we used an optimal set of 
values for the transaction-retry counts for each HTM sys-
tem with our benchmarks, allowing us to compare the max-
imum performance of each HTM system. The speed-up 
ratios obtained by Diegues et al. were similar to our results, 
although they used Xeon E3-1275, not Core i7-4770. Com-
pared with their results, our unmodified version showed 
better speed-up ratios in kmeans-low (their 3 and our 3.8 
with four threads) and worse ratios in genome (their 3.2 and 
our 2.7). Investigating these differences is our future work. 

9. Conclusion 

In this paper, we quantitatively compared the HTM systems 
that are implemented in four processors: Blue Gene/Q, 
zEC12, Intel Core, and POWER8. In order to find the max-
imum performance of each HTM system on the STAMP 
benchmarks, we modified the TM-unfriendly code of some 
benchmarks and tuned the transaction-retry counts to pro-
vide the most ideal comparisons possible. Our experimental 
results showed that there is no single HTM system that is 
more scalable than the others in all of the benchmarks. Each 
HTM system has its own implementation issues that limit 
the scalability. In Blue Gene/Q, the high single-thread 
overhead, which is caused by software-based register 
checkpointing and the system calls to control transactions, 
limits the performance. In addition, the cost of reclaiming 
the speculation IDs limits the scalability. The zEC12 suffers 
from mysterious transaction aborts that degrade its perfor-
mance. Intel Core has extra transaction aborts due to the 
hardware prefetching. POWER8 has more capacity-
overflow aborts than the other processors because of its 
overly small transaction capacity. Solving these implemen-
tation problems is important to improve the performance of 
concurrent applications to support the wider adaption of 
TM-based programming. 

We also evaluated the features specific to each HTM 
system: the constrained transactions of zEC12, hardware 

lock elision (HLE) of Intel Core, and the suspend and re-
sume instructions of POWER8. The constrained transac-
tions, which do not need a software-based retry mechanism, 
had performance comparable to the normal transactions that 
require a software-based retry mechanism with tuned retry 
counts. The HLE showed modest speed-ups in most of the 
STAMP benchmarks without any tuning effort for the 
transaction-retry counts. The suspend and resume instruc-
tions were beneficial for avoiding data conflicts on a shared 
variable to implement ordered transactions, and thus im-
proved the performance of TLS. Overall, these features 
specific to each HTM system will increase the adoption of 
and widen the application of HTM. 
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