
Quantitative Comparison of Hardware Transactional
Memory for Blue Gene/Q, zEnterprise EC12,

Intel Core, and POWER8
Takuya Nakaike
IBM Research - Tokyo
nakaike@jp.ibm.com

Rei Odaira
IBM Research - Austin
rodaira@us.ibm.com

Matthew Gaudet
IBM Canada

mgaudet@ca.ibm.com

Maged M. Michael
IBM Watson Research Center

magedm@us.ibm.com

Hisanobu Tomari
University of Tokyo

tomari@is.s.u-tokyo.ac.jp

Abstract

Transactional Memory (TM) is a new programming para-
digm for both simple concurrent programming and high
concurrent performance. Hardware Transactional Memory
(HTM) is hardware support for TM-based programming. It
has lower overhead than software transactional memory
(STM), which is a software-based implementation of TM.
There are now four commercial systems, IBM Blue Gene/Q,
IBM zEnterprise EC12, Intel Core, and IBM POWER8,
offering HTM. Our work is the first to compare the perfor-
mance of these four HTM systems. We measured the
STAMP benchmarks, the most widely used TM benchmarks.
We also evaluated the specific features of each HTM system.
Our experimental results show that: (1) there is no single
HTM system that is more scalable than the others in all of
the benchmarks, (2) there are measurable performance
differences among the HTM systems in some benchmarks,
and (3) each HTM system has its own implementation
characteristics that limit its scalability.

1. Introduction

Transactional memory (TM) [19] is a programming para-
digm to enable both simple concurrent programming and
high concurrent performance. In the TM programming en-
vironment, programmers simply define as transactions those
program regions that access shared variables. TM runtime
systems achieve high concurrent performance by optimisti-

cally executing the transactions in parallel. The runtime
systems keep track of the accesses to the shared variables,
buffer the stores to the shared variables during the transac-
tions, and roll back some of the transactions when they de-
tect conflicts among the accesses.

Hardware transactional memory (HTM) is becoming
standard in modern processors because it provides lower
overhead than software-based implementations of TM [25].
IBM Blue Gene/Q was the first to provide an accessible
HTM implementation [1]. Although the Azul [4] and Rock
[9] processors implemented HTM before Blue Gene/Q,
their HTM systems were not usable because the Azul pro-
gramming interface was not disclosed, so the HTM was
hidden, and the Rock processor was canceled before reach-
ing the market. After Blue Gene/Q, HTM was implemented
on IBM zEnterprise EC12 (zEC12) [40], in the 4th genera-
tion of Intel Core [13], and in IBM POWER8 [27] proces-
sors.

These HTM systems have been individually evaluated
with various applications [1, 5, 7, 21, 23, 30, 31, 35, 36, 38,
39]. However, there is no single paper comparing the per-
formance of all of the HTM systems using a common
benchmark set. Because Blue Gene/Q, zEC12, Intel Core,
and POWER8 are the first processors that implement HTM,
clarifying their advantages and disadvantages is important
to enhance the HTM implementations and improve the per-
formance of the next generation of processors.

Our work is the first to quantitatively compare all of the
existing HTM systems. For all four systems, we measured
the STAMP benchmarks [3], the most widely used transac-
tional memory benchmarks. To fairly compare the intrinsic
performance of the HTM systems, we fixed the TM-
unfriendly code that excessively increased nonessential
transaction aborts in some of the STAMP benchmark pro-
grams. Also, we tuned the number of transaction retries so

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ISCA '15, June 13 - 17, 2015, Portland, OR, USA
© 2015 ACM. ISBN 978-1-4503-3402-0/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2749469.2750403

that the performance was maximized for each combination
of an HTM system with the benchmarks.

Our major findings are: (1) there is no HTM system that
is more scalable than the others for all of the benchmarks,
(2) there are measurable performance differences among
the HTM systems in some benchmarks, and (3) each HTM
system has its own implementation limitations that degrade
its scalability. These findings show that each HTM system
still has room to improve its performance. A TM program
may obtain performance benefits from future HTM systems
even if it does not run well with the current systems.

Further, we evaluated the features specific to each HTM
system: constrained transactions of zEC12, hardware lock
elision (HLE) of Intel Core, and suspend/resume instruc-
tions and rollback-only transactions of POWER8. Our ex-
perimentations showed that each feature is beneficial to
widen the applications of HTM.

Here are our contributions:
• We evaluated the HTM implementations of the Blue

Gene/Q, zEC12, Intel Core, and POWER8 proces-
sors quantitatively on the STAMP benchmarks and
clarified the advantages and disadvantages of each
HTM implementation.

• We compared the maximum speed-up ratios of these
HTM systems by repairing the TM-unfriendly code
of the STAMP benchmarks and by exploring optimal
transaction-retry counts for each HTM system.

• We analyzed in detail the causes of the transaction
aborts and found the implementation-specific causes
that degrade the scalability.

• We evaluated the features specific to each HTM sys-
tem and showed the benefit of each feature.

Section 2 describes the differences in the HTM imple-
mentations of the Blue Gene/Q, zEC12, Intel Core, and
POWER8 processors. Section 3 is about our transaction-
retry mechanism. Section 4 describes our modifications for
the STAMP benchmarks to reduce nonessential transaction
aborts. Section 5 compares the performance of the four
HTM systems and discusses the causes of the differences.
Section 6 evaluates the specific features of each HTM sys-
tem. Section 7 discusses the next generation of HTM sys-
tems. Section 8 reviews the related work. Section 9
concludes this paper.

2.���� Hardware Transactional Memory
Implementations

In this section, we characterize the HTM implementations
of the Blue Gene/Q, zEC12, Intel Core, and POWER8 pro-
cessors and describe their differences.

These processors (except for Blue Gene/Q) provide ma-
chine instructions to begin, end, and abort transactions. A
programmer uses the begin and end instructions to define
transactions and uses the abort instruction to force the roll-

back of the transactions. When a transaction aborts, for
example due to a memory access conflict, the execution is
rolled back to immediately after the beginning of the trans-
action with a condition code set (zEC12 and POWER8) or
jumps directly to an abort handler (Intel Core). These pro-
cessors do not guarantee that a transaction will eventually
succeed (best-effort HTM). Thus, a typical abort handler
will determine whether the execution retries the transaction
or reverts to a fallback mechanism such as locking.

In Blue Gene/Q, programmers use compiler-provided
pragmas and C-language block constructs to specify the
transactions. Blue Gene/Q does not disclose the underlying
control mechanisms for the HTM. Programmers cannot
write their own abort handling logic, but they can tune the
system-provided code with environmental variables.

All four of the processors we experimented with imple-
ment the HTM facilities on top of their cache mechanisms.
They keep track of the memory loads and stores during
transactions in the caches or cache-like structures and detect
conflicts using the cache coherence protocols. If two con-
current transactions access the same memory location and if
at least one of the accesses is a store, then these transactions
cause a conflict, and one of the transactions is aborted. The
HTM implementations also buffer the stores during a trans-
action in the caches or buffers next to the caches, so that the
stores are invisible from the other concurrent transactions.
This buffering supports the rollbacks of transactions when a
transaction aborts.

Although the four processors share implementation ap-
proaches, there are three major differences: (1) conflict-
detection granularity, (2) transaction capacity, and (3)
abort-reason codes. Table 1 is a summary of the differ-
ences. There are multiple versions of the 4th generation
Intel Core processor, but Table 1 shows only the Core i7-
4770 that we tested.

Conflict-detection granularity. The zEC12, Intel Core, and
POWER8 use their cache-line size as the conflict-detection
granularity. Due to the cache-line granularity, a conflict is
detected even when distinct bytes in a cache line are ac-
cessed concurrently by distinct transactions. We call this
conflict a false conflict. The conflict-detection granularity
of Blue Gene/Q is the L2 cache-line size (128 bytes) in the
worst case. It can be reduced to 8 or 64 bytes based on cer-
tain conditions, such as the running mode described in Sec-
tion 2.1.

As shown in Table 1, zEC12 has the largest conflict-
detection granularity. A larger cache line helps exploit more
spatial locality by allowing more variables to exist in the
cache line, but from the viewpoint of HTM, it can increase
the false conflicts.

Transaction capacity. The transaction capacity is the max-
imum amount of memory data that can be accessed in a

transaction. It is limited by the amount of the hardware re-
sources needed to keep track of memory accesses for con-
flict detection and to buffer transactional stores. When a
transaction tries to access a cache line that will exceed the
capacity, it is aborted. We call this a capacity-overflow
abort. In general, the load capacity is larger than the store
capacity because the conflict detection has to record only
the accessed memory addresses, while the store buffering
needs to keep the stored data.

The second and third rows of Table 1 summarize the
transaction capacities of the four processors. The load ca-
pacities are 1 MB or larger in these processors except for
POWER8.

Note that there are two other factors that can cause the
capacity-overflow aborts: cache-way conflicts and resource
sharing among simultaneous-multithreading (SMT) threads.
When a cache line accessed by a transaction is evicted from
a cache because of a cache-way conflict, a capacity-
overflow abort occurs even if the total amount of the trans-
actional data does not exceed the capacity. Blue Gene/Q,
Intel Core, and POWER8 support SMT, which allows mul-
tiple threads to run concurrently in a core. Since those SMT
threads share the hardware resources for conflict detection
and store buffering in each core, a transaction can encoun-
ter a capacity-overflow abort before it uses up the transac-
tion capacity of the core.

Abort-reason code. The abort-reason code tells the users
why a transaction aborted, such as a conflict or a capacity
overflow. Each system has its own method to pass the code
to the users. For example, Intel Core uses the EAX register.
The abort-reason code is helpful not only for debugging but
also as a hint about whether to retry the transaction.

As shown in Table 1, these four processors differ in the
granularity of their abort reasons. For example, POWER8
reports a conflict due to a transactional access as different
from one due to a non-transactional access, but the zEC12
and Intel Core do not distinguish between them. In addition
to the codes for the specific abort reasons, zEC12, Intel
Core, and POWER8 have a code that reports the proces-
sors’ own decision about whether each transaction abort is
persistent or transient.

In the next sections, we describe in detail the HTM im-

plementation of each processor.

2.1 Blue Gene/Q

Blue Gene/Q uses the L2 cache for conflict detection and
store buffering [1]. It assigns a unique speculation ID to
each transaction and records the transactional accesses in
the L2 directory with the speculation ID. The number of the
speculation IDs is limited to 128. Although the IDs are pe-
riodically reclaimed for their reuse, the start of a new trans-
action is blocked if there is no available speculation ID.

Blue Gene/Q buffers the transactional stored data in its
L2 cache. When a transactional store to a cache line occurs,
the processor allocates a new way, which is different from
the way that is storing the original cache-line data. Since six
ways among the sixteen ways are reserved to store non-
transactional data, the total transaction capacity combined
for loads and stores is 20 MB (= 32 MB * 10/16).

Blue Gene/Q has two transactional execution modes: a
short-running mode and a long-running mode. In the short-
running mode, only the L2 cache buffers the transactional
data, and thus every load of the transactional data requires
access to the L2 cache. The long-running mode allows the
L1 cache to buffer some of the transactional data though it
invalidates all of the L1 cache lines at the start of each
transaction.

2.2 zEC12

The zEC12 uses the L1 cache for conflict detection [6].
Each cache line has tx-read and tx-dirty bits, which are set
by a transactional load and store, respectively. The zEC12
expands the transaction capacity for loads to 1 MB over the
size of the L1 cache by recording the evicted cache lines in
a special LRU-extension vector. The transactional stores
are buffered in an 8-KB gathering store cache, which is
private for each processor and is located between the L1
cache and the L2/L3 caches.

The zEC12 provides constrained transactions which are
guaranteed to eventually commit. Our experiments on the
STAMP benchmarks use normal transactions because the
constrained transactions restrict the number of instructions
to 32 and the transaction capacity to 256 bytes. We evaluat-
ed the performance of the constrained transactions by using
the ConcurrentLinkedQueue data structure in the

Processor type Blue Gene/Q zEC12 Intel Core i7-4770 POWER8
Conflict-detection guranularity 8 - 128 bytes 256 bytes 64 bytes 128 bytes
Transactional-load capacity 20 MB (1.25 MB per core) 1 MB 4 MB 8 KB

Transactional-store capacity 20 MB (1.25 MB per core) 8 KB 22 KB 8 KB
L1 data cache 16 KB, 8-way 96 KB, 6-way 32 KB, 8-way 64 KB
L2 data cache 32 MB, 16-way, (shared by 16 cores) 1 MB, 8-way 256 KB 512 KB, 8-way

SMT level 4 None 2 8
Kinds of abort reasons - 14 6 11

Table 1. HTM implementations of Blue Gene/Q, zEC12, Intel Core i7-4770, and POWER8

Java concurrent package because the enqueuing and
dequeuing operations satisfy the restriction.

2.3 Intel Core

Intel Core uses the L1 cache for conflict detection and store
buffering [28]. The details about the conflict detection and
transaction capacities have not been disclosed. We meas-
ured the capacities by using a single-thread microbench-
mark to execute transactions many times, gradually
increasing the transactional loads or stores, and then meas-
ured the frequency changes in the capacity-overflow aborts.
As a result of this experimentation, we concluded that the
load and store capacities are 4 MB and 22 KB, respectively,
on Core i7-4770. It has a larger transaction capacity for
loads than the size of the L1 cache because it uses other
resources to track the cache lines that were evicted from the
L1 cache. The transaction capacity for the stores is within
the size of the L1 cache.

Intel Core provides two programming interfaces to use
HTM. Hardware Lock Elision (HLE) is an instruction-
prefix-based interface to support the compatibility with
processors that have no HTM. Restricted Transactional
Memory (RTM) is a new instruction-set interface. Our ex-
periments on the STAMP benchmarks used RTM, but we
also evaluated HLE.

2.4 POWER8

POWER8 uses content addressable memory (CAM) linked
with the L2 cache for conflict detection [10]. This CAM is
called the L2 TMCAM. The L2 TMCAM records the cache-
line addresses that are accessed in the transactions with bits
to represent read and write. Although the transactional
stored data is buffered in the L2 cache, the transaction ca-
pacity is bounded by the size of the L2 TMCAM. Since the
number of the entries for the L2 TMCAM is 64, the total
transaction capacity combined for loads and stores is 8 KB
(=64*128 bytes).

POWER8 has rollback-only transactions which only
support store buffering without the detection of data con-
flicts. The rollback-only transactions are useful for the sin-
gle-thread speculative optimizations that do not need the
detection of data conflicts [14, 24]. POWER8 also has in-
structions to suspend and resume transactions. A typical use
case of these instructions in the user space is to output de-
bug information. Another use case is Thread-Level Specu-
lation (TLS) [18]. As described in [29], TLS can take
advantage of HTM for conflict detection, but it also re-
quires that transactions commit in the same order as the
original sequential execution. Software implementation of
order transactions involves accesses to a shared variable to
control the commit order, but these accesses cause data
conflicts among the transactions. The suspend/resume in-

structions can be used to escape from a transaction and to
access the shared variable without data conflicts.

3.���� Transaction-Retry Mechanism

When a transaction aborts, the program can simply retry the
transaction. However, since none of the HTM systems we
evaluated guarantee that a transaction eventually commits
(unless the transaction is a constrained transaction on the
zEC12), these aborts can repeat indefinitely. Therefore a
software fallback mechanism is required to guarantee for-
ward progress. When TM is used to execute critical sec-
tions, as in the STAMP benchmarks, the standard fallback
mechanism is to use a global lock to make transactions ir-
revocable.

Figure 1 shows the pseudocode for our transaction retry
mechanism as used with zEC12, Intel Core, and POWER8.
As described in Section 2, Blue Gene/Q can only use the
system-provided retry mechanism, which we will describe
later in this section. Each thread waits for the global lock to
be released if it was acquired before the transaction began
(Line 9) to avoid the lemming effect [8]. We implemented
the global lock with a single memory word and spin waiting.
Each transaction begins at Line 10, and when the transac-
tion aborts, this pseudocode assumes that the program exe-
cution returns to immediately after the instruction that
began the transaction (Line 11). After a transaction begins,
the global lock is first checked, so that the HTM system can
keep track of the lock word and abort the transaction if an-
other thread acquires the global lock. If the global lock has

Figure 1. Pseudocode for our transaction-retry mecha-
nism

1: lockRetryCount = MAX_LOCK_RETRY_COUNT;
2: persistentRetryCount =
3: MAX_PERSISTENT_RETRY_COUNT;
4: transientRetryCount =
5: MAX_TRANSIENT_RETRY_COUNT;
6:
7: retry: // Label for retrying transactions
8:
9: waitForLockToBeReleased();
10: tbegin(); // Begin a transaction
11: if (isTransactionAborted()) {
12: // Return here on a transaction abort
13: if (isLockAcquired()) {
14: // Aborted due to a conflict on
15: // the lock word
16: if (--lockRetryCount > 0) goto retry;
17: } else if (isAbortPersistent()) {
18: // The abort code is persistent.
19:� if (--persistentRetryCount > 0)
20: goto retry;
21: } else if (--transientRetryCount > 0) {
22: // The abort code is transient.
23: goto retry;
24 }
25: acquireLock();
26: } else if (isLockAcquired())
27: tabort();
28: // Transaction body
29: if (isLockAcquired()) releaseLock();
30: else tend(); // End a transaction

already been acquired, then this new transaction must abort
(Line 27), because otherwise it could read inconsistent data.

When a transaction aborts, the thread determines wheth-
er or not it continues with transactional execution (Lines
11-25). There are three thread-local counters to control the
number of retries before reverting to the global lock: (1)
lock-retry counter, (2) persistent-retry counter, and (3)
transient-retry counter.

The lock-retry counter controls the number of retries for
those transaction aborts that are caused by conflicts on the
global lock. We call these aborts lock-conflict aborts, which
can be recognized by checking the global lock after the
transactions aborted (Line 13). The persistent-retry counter
controls the number of retries for the persistent transaction
aborts (Line 17). On Intel Core and POWER8, we can rec-
ognize the persistent aborts based on the abort-reason code
that reports the processors’ own decisions about the persis-
tence of the aborts. On zEC12, we treat capacity-overflow
aborts as persistent. The transient-retry counter controls the
number of retries for the other aborts. The maximum values
for the three counters (Lines 1-5) are tuning parameters.

We separated the lock-retry counter from the transient-
retry counter, because the conflicts for the global lock have
different characteristics from the conflicts over normal
shared data. When a thread acquires the global lock for the
irrevocable execution of a transaction, all of the other con-
current transactions will be aborted. In contrast, a conflict
over program data will abort only some of the transactions
that happen to access the same data at the same time. There-
fore, the best retry counts can be different for the lock-
conflict aborts and the other transient aborts.

With the persistent-retry counter, we can allow transac-
tions to retry even in the case of persistent aborts. Most of
the persistent aborts are capacity-overflow aborts, but there
are some cases where capacity-overflow aborts are not ac-
tually persistent. As described in Section 2, capacity-
overflow aborts can be caused by cache-way conflicts or
resource sharing among multiple SMT threads, so they may
be transient.

An existing transaction retry mechanism [23] is the base
of our retry mechanism. It uses a single retry counter and
changes the degree of the decrement for the retry counter
based on the abort reasons. For example, the retry count is
halved in the case of a persistent transaction abort. Instead
of changing the degree of the decrement, our mechanism
uses different retry counters per abort reason.

In Blue Gene/Q, the system software offers a retry
mechanism. It does not distinguish among lock-conflict,
transient, or persistent aborts. It uses a single retry counter,
and the users can specify the maximum number of retries
with an environmental variable. The Blue Gene/Q also has
an adaptation mechanism, with which transactions that too
frequently fell back on the global lock will not be allowed
to retry on the next abort. Finally, our retry mechanism

checks the global lock at the beginning of a transaction
(Line 13), while Blue Gene/Q’s mechanism checks at the
end when run in long-running mode, which is called lazy
subscription [12].

4.���� STAMP Benchmarks

In this section, we describe the STAMP benchmarks and
the modifications we made to prevent the nonessential
transaction aborts. STAMP is the most widely used TM
benchmark suite [3]. It consists of eight programs using
both fine-grain and coarse-grain transactions. We used Ver-
sion 0.9.10 of the STAMP benchmarks and their default
runtime options for a non-simulator as specified in the RE-
ADME files.

In preliminary comparisons of the STAMP benchmarks
on the four processors, we found that four benchmarks were
not well programmed or tuned for best-effort HTM. This
unfriendly code caused excessive nonessential transaction
aborts, and thus we could not fairly compare the intrinsic
performances of the HTM systems. The nonessential trans-
action aborts were caused by false conflicts and capacity
overflows, which rarely occur in typical STM implementa-
tions. This explains why these problems have not been
fixed since the STAMP benchmarks were released. We
fixed these problems and used the modified versions for
most of our evaluations, but we also show the performance
comparison of the versions with and without our changes.
Our fix is available in a Web site [32] as a code patch to
Version 0.9.10 of the STAMP benchmarks. In the rest of
this section, we describe each change in detail.

genome. In one transaction section of the genome bench-
mark, the genome segments are inserted into a hash table.
There is a compile-time tuning parameter for how many
genome segments to insert in each transaction. A larger
number means a longer transaction and thus can alleviate
the performance overhead to begin and end the transactions,
but this also increases the probability of capacity-overflow
aborts. We tuned this compile-time parameter
(CHUNK_STEP_1) for each of the four platforms (9 for
Blue Gene/Q and 2 for the other three processors) to
achieve the best performance.

intruder. In the intruder benchmark, red-black trees are
used for unordered sets, and linked lists for ordered sets.
These data structures are not suitable for implementing their
respective sets. On HTM, these unsuitable data structures
result in excessive capacity-overflow aborts. We modified
the code to use hash tables for the unordered sets and red-
black trees for the ordered sets. Our hash table is similar to
the concurrent hash table in the Java standard class library.

kmeans. In the kmeans benchmark, each transaction ac-
cesses and modifies one cluster, which consists of an inte-

ger number and floating-point numbers. The original code
tries to avoid false conflicts by collocating a cluster in a
contiguous memory region and by inserting padding be-
tween the clusters. However, because each cluster is not
aligned to a cache line boundary, two clusters can coexist
within a cache line, causing false conflicts. We modified the
code to properly align the clusters to cache line boundaries.

vacation. In the vacation benchmark, red-black trees are
used for unordered sets. As in intruder, we instead used
hash tables for the unordered sets.

5.���� Performance Comparison of HTM
Systems

We ran the STAMP benchmarks [3] on the following four
platforms.

• 16-core 1.6-GHz A2 with 4 SMT threads (Blue
Gene/Q), V1R2M2, 16 GB of main memory

• 16-core 5.5-GHz zEC12, z/OS V2.01, 64 GB of
main memory

• 4-core 3.4-GHz Core i7-4770 with 2 SMT threads,
Linux 3.14.5, 4 GB of main memory

• 6-core 4.1-GHz POWER8 with 8 SMT threads, AIX
7.1.3.16, 28.5 GB of main memory

The different numbers of cores indicate that the perfor-
mance comparisons among the processors are fair only up
to four concurrent application threads, because up to four
threads can be assigned dedicated cores on each of the plat-
forms. A processor cannot provide the maximum perfor-
mance for each thread when the number of concurrent
threads is larger than the number of its cores because multi-
ple SMT threads share the hardware resources for the HTM,
as described in Section 2. Our results for POWER8 are
preliminary because we used a pre-release version of the
processor.

Our main performance metric is the speed-up ratios of
transactional execution over sequential execution and the
transaction-abort ratios. Our baseline to calculate the speed-
up ratios on each processor is the sequential non-HTM exe-
cution on that processor, because our purpose is to evaluate
how each HTM system accelerates the multi-threaded per-
formance. Comparing absolute performance is beyond the
scope of our paper. A transaction-abort ratio is the percent-
age of the aborted transactions to all of the transactions
without irrevocable transactions.

For the zEC12, Intel Core, and POWER8, we break
down the cause of the transaction aborts into four catego-
ries: (1) capacity overflow, (2) data conflict, (3) other, and
(4) lock conflict. The first three types of aborts are identi-
fied by checking the abort-reason code. Lock-conflict
aborts are detected by the transaction-retry mechanism de-
scribed in Section 3. Note that we can miss a lock-conflict
abort if the global lock is released before the global lock is

checked in the transaction-retry mechanism. In that case,
the abort is categorized as a data conflict.

5.1 4-Thread Performance of Modified STAMP
Benchmarks

In this section, we compare the performance of the HTM
systems when we ran four threads for our modified version
of the STAMP benchmarks. Since each system has at least
four physical cores, each thread can have the exclusive use
of a physical core. For the three retry counters explained in
Section 3, we optimized the parameter values for each test
case which consists of an HTM system and a benchmark.
We also tuned the maximum retry count and the running
mode for each benchmark on Blue Gene/Q. This approach
allowed us to compare the best performance of each HTM
system for each benchmark. We ran each benchmark four
times and took the average of the runs.

Figure 2 shows the speed-up ratios of the transactional
execution over the serial non-HTM execution and Figure 3
shows the transaction-abort ratios. For the speed-up ratios,
the error bars show the 95%-confidence intervals. Each
abort ratio is divided into four categories, except for Blue
Gene/Q. In each figure, the bayes benchmark was excluded
from the calculation of the average numbers because of its
non-deterministic behavior, which significantly affects the
performance numbers [37]. We also dropped bayes from
the later analyses presented here.

Only Blue Gene/Q showed scalable performance for
yada because it has a larger transaction capacity than the
other processors. In Figure 3, capacity-overflow aborts do
not seem to be a major cause of aborts on zEC12, Intel
Core, or POWER8, but that is because the maximum persis-
tent-retry count was set to 1. Since capacity-overflow aborts
occur persistently in the transaction section of yada, reduc-
ing the maximum persistent-retry count improves the per-
formance. As a result, the number of capacity-overflow
aborts seems small, but many of the transactions reverted to
the global lock due to the capacity-overflow aborts. The
serialization ratio, which is the percentage of the irrevoca-
ble transactions to all of the committed transactions, was
about 10% on Blue Gene/Q, but about 20% on the other
systems.

 Blue Gene/Q has lower speed-up ratios than the other
processors in these benchmarks, except for genome and
yada, because of its relatively high single-thread overhead.
For example, compared to perfectly linear speedup, Blue
Gene/Q degraded the single-thread performance of kmeans-
high by 40% while the performance degradation in the other
processors was limited to 10%. Since Blue Gene/Q requires
software-based register checkpointing, system calls to begin
and end transactions, and L1-cache invalidation or bypass,
it has higher single-thread overhead than the other proces-
sors. In addition, Blue Gene/Q frequently exhausted its

supply of speculation IDs in ssca2, because this benchmark
executes many short transactions. Therefore, the start of a
new transaction was often blocked until a speculation ID
became available.

The zEC12 has the highest average speed-up ratio. Its
distinctive characteristic is that most of the transaction
aborts belong to the “other” category as shown in the grey
bars of Figure 3. More specifically, the abort-reason code of
the “other” aborts was cache-fetch-related aborts. Unfortu-
nately, the meaning of this abort-reason code is not fully
disclosed, even in the most detailed zEC12 documentation
[40]. These aborts are transient and are caused by an im-
plementation restriction when cache line fetches and stores
happen in the transactions.

The zEC12 shows superlinear speedup in kmeans-low.
This is caused by the non-deterministic threaded execution
in kmeans as indicated by the larger error bars compared to
the other benchmarks in Figure 2. POWER8 shows super-
linear speedup in kmeans-high and -low for the same reason.

In kmeans-low, Intel Core has more data-conflict aborts
than the other processors. We found that the hardware
prefetching of Intel Core increased the data conflicts be-
cause the memory addresses of the clusters, which are the
main shared data in kmeans, are successive. When a
memory address is accessed, the hardware prefetching pre-
loads the data at the adjacent address into the processor
cache. In kmeans, each transaction updates a single cluster,
which occupies cache lines because of the padding and
alignment described in Section 4. During this update, some
of the neighboring clusters can be prefetched into other
cache lines. If the HTM system regards the prefetched
cache line as transactional data, then it can detect a data
conflict when another transaction concurrently updates one
of the neighboring clusters. Note that this conflict is not
necessary for the transaction because the transaction never
accesses the neighboring cluster.

To assess the influence of hardware prefetching on data
conflicts, we ran a second experiment by disabling the

0

1

2

3

4

5

6

bayes genome intruder kmeans-
high

kmeans-low labyrinth ssca2 vacation-
high

vacation-
low

yada geomean

S
pe

ed
 u

p
ov

er
 s

eq
ue

nt
ia

l

Blue Gene /Q

zEC12

Intel Core

POWER8

Figure 2. Speed-up ratios of transactional execution over serial execution in Blue Gene/Q, zEC12, Intel Core, and POWER8
with 4 threads. Our modified STAMP benchmarks were used.

0

20

40

60

80

100

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

bayes genome intruder kmeans-
high

kmeans-
low

labyrinth ssca2 vacation-
high

vacation-
low

yada avg.

Tr
a

n
sa

ct
io

n
-a

b
o

rt
ra

tio
 (%

)

Unclassified

Lock conflict

Other

Data conflict

Capacity overflow

Figure 3. Transaction-abort ratios in Blue Gene/Q (BG), zEC12 (z12), Intel Core (IC), and POWER8 (P8) with 4 threads. Our
modified STAMP benchmarks were used.

hardware prefetching. Disabling the hardware prefetching
reduced the abort ratios of kmeans-high and –low from
16% and 24 to 10% and 10%, respectively, and improves
the speed-up ratios from 3.5 and 3.7 to 3.9 and 4.0, respec-
tively. These results show that the hardware prefetching of
Intel Core causes unnecessary data conflicts on the
prefetched cache lines. Developers in Intel also validated
our findings. Intel Core should be enhanced to avoid such
false detection of data conflicts. Note that disabling the
hardware prefetching is not a realistic solution because it
can degrade the performance of other applications. Actually,
we have seen performance degradation for the sequential
execution of kmeans-high and –low.

Intel Core scaled worse than zEC12 and POWER8 in
ssca2. This was not due to the HTM system, as indicated by
the only 1% transaction-abort ratio on Intel Core. The in-
ner-most loop of ssca2 causes many last-level cache misses,
and the desktop Intel Core machine we used (Lenovo
ThinkCentre M93p) had poorer performance of concurrent
memory accesses than the other 3 systems.

POWER8 was worse than zEC12 and Intel Core in in-
truder and vacation because it has more capacity-overflow
aborts than the other processors. Increasing the transaction
capacity is an obvious approach to enhance the POWER8
HTM system.

5.2 4-Thread Performance of Original and Modified
STAMP Benchmarks

In this section, we compare the performance of the original
and modified versions of the STAMP benchmarks with four
threads. We measured the maximum performance for each
test case consisting of an HTM system and a benchmark by
tuning the values for the maximum retry counts in the same
manner as for the experiments in Section 5.1. Figure 4
shows the speed-up ratios. This figure includes only the
data for the modified benchmarks: genome, intruder,
kmeans, and vacation. The geometric means are for all of
the programs in the STAMP benchmarks.

Our modified version of genome shows 3.7 times per-
formance gain for POWER8 over the original version. This
large performance gain is due to the reduction in capacity-
overflow aborts though we omitted the graph for the abort
ratios because of the limited space for this paper. Our modi-
fications also increased the performance more than 1.4
times for POWER8 in the intruder and vacation bench-
marks due to the significant reduction in capacity-overflow
aborts. However, POWER8 still suffered from more capaci-
ty-overflow aborts than the other processors.

In kmeans-high, our changes improved the performance
of zEC12 and Intel Core by 20% and 28%, respectively.
The major source of the performance improvement is the
reduction in false conflicts that were caused by the misa-
lignments of the shared data, as described in Section 4.

We saw some cases (intruder, kmeans-high, and vacation
in Blue Gene/Q, and intruder in Intel Core) where our
changes degraded the speed-up ratios even though they im-
proved the absolute performance. This was caused by the
significant improvement in the single-thread performance
compared to the improvement in the multi-thread perfor-
mance.

5.3 Scalability of Modified STAMP Benchmarks

Finally, we studied the scalabilities of the four HTM sys-
tems when we ran 1, 2, 4, 8, and 16 threads for our modi-
fied version. The values for the three maximum retry counts
were optimized for each number of threads for each HTM
system running the benchmarks. The mode and maximum
retry count were also tuned on Blue Gene/Q in the same
manner. Note that Intel Core and POWER8 cannot exclu-
sively use a physical core for each thread with eight and
sixteen threads. Therefore, a fair comparison of the eight-
and sixteen-thread performance is possible only for Blue
Gene/Q and zEC12. Figure 5 shows the speed-up ratios. For
Intel Core, we do not plot the sixteen-thread performance
because sixteen is larger than the total number of possible
SMT threads.

Figure 4. Speed-up ratios of transactional execution over sequential execution in Blue Gene/Q (BG), zEC12 (z12), Intel
Core (IC), and POWER8 (P8) with 4 threads. The two bars are the speed-up ratios of the original and modified versions of
the STAMP benchmarks, respectively.

0

1

2

3

4

5

6

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

B
G

z1
2 IC P
8

genome intruder kmeans-high kmeans-low vacation-high vacation-low geomean

S
pe

ed
 u

p
ov

er
 s

eq
ue

nt
ia

l Orginal

Modified

In yada, Blue Gene/Q had a higher speed-up ratio than
zEC12 because it has a larger transaction capacity than
zEC12. However, with sixteen threads, data-conflict aborts
limited the scalability. In intruder, ssca2, and vacation, the
zEC12 had higher speed-up ratios than Blue Gene/Q. In
ssca2, the speculation ID reclamation was the bottleneck for
Blue Gene/Q. For intruder and vacation, there are two rea-
sons. One is that zEC12 has less single-thread overhead
than Blue Gene/Q. The second reason is that zEC12 had
lower serialization ratios than Blue Gene/Q. For example,
in intruder, Blue Gene/Q had a 56% serialization ratio with
sixteen threads while zEC12 had only a 2% serialization
ratio. This indicates that the adaptation mechanism in Blue
Gene/Q acted too early in making the transactions fall back
on the global lock.

In these benchmarks (except for kmeans), the zEC12 had
higher speed-up ratios than Intel Core and POWER8 with
eight and sixteen threads because it can assign an exclusive
physical core to each thread. Meanwhile, the zEC12 had
lower speed-up ratios than POWER8 for kmeans because it
had excessive cache-fetch-related aborts. Basically, POW-
ER8 showed higher speed-up ratios than Intel Core with
eight threads because it has more physical cores than Intel
Core. However, Intel Core had higher speed-up ratios than
POWER8 in intruder and vacation because the transaction
capacity of POWER8 is too small for those benchmarks.

6.���� Evaluation of Processor-Specific Features

In this section, we show the performance results of the three
features specific to each HTM system: the constrained

Figure 5. Speed-up ratios of transactional execution over serial execution in Blue Gene/Q, zEC12, Intel Core, and POWER8.
Our modified version of the STAMP benchmarks was used with 1, 2, 4, 8, and 16 threads. Dotted lines are the speed-up ratios
when the number of physical cores is smaller than the number of threads.

Blue Gene/Q – 16 physical cores with 4 SMT threads

zEC12 – 16 physical cores

Intel Core – 4 physical cores with 2 SMT threads

POWER8 – 6 physical cores with 8 SMT threads

0

2

4

6

8

10

12

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

genome

0

1

2

3

4

5

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

intruder

0

2

4

6

8

10

12

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

kmeans-low

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

labyrinth

0
1
2
3
4
5
6
7

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

ssca2

0
2
4
6
8

10
12
14

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

vacation-high

0

5

10

15

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

vacation-low

0

0.5

1

1.5

2

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

yada

0

2

4

6

8

10

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

kmeans-high

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16

S
pe

ed
 u

p
ov

er
 s

eq

Number of threads

bayes

transactions in zEC12, the hardware lock elision in Intel
Core, and the suspend/resume instructions in POWER8.
Our purpose is to investigate whether these features are
worth implementing in the future systems, from the perfor-
mance perspective.

6.1 Performance of constrained transactions on zEC12

In this section, we compare the performance of the con-
strained and normal transactions on the zEC12 processor.
As described in Section 2.2, constrained transactions are
guaranteed to eventually commit, and thus they do not need
abort handlers. We applied the constrained transactions to
the enqueuing and dequeuing operations for the Concur-
rentLinkedQueue data structure in the standard Java
concurrent package because these operations satisfy the
restriction for the constrained transactions. The enqueuing
operation in a transaction adds a new element to the last
element (tail) if the next pointer of the last element is null.
Otherwise, it falls back to the original lock-free code which
uses atomic operations. The dequeuing operation returns an
object stored in the first element (head) if the object is not
null. Otherwise, it falls back to the original code. We used a
single retry counter for normal transactions because the data
accessed in a transaction are within 256 bytes and thus ca-
pacity-overflow aborts will never occur. We do not need the
lock-retry counter because we do not falls back to the lock.
We tuned the retry count to obtain the maximum perfor-
mance.

Figure 6 shows the relative execution times when each
thread alternately enqueues to and dequeues from a single
queue. The base line is the execution time of the original
lock-free implementation of the Concurrent-
LinkedQueue data structure with each number of threads.
NoRetryTM used normal transactions without any retry,
while OptRetryTM did with optimal retry counts. As shown
in this figure, using transactions reduced the execution time
when the number of threads was less than four. These
speed-ups resulted from the reduction in the path length
because the complicated lock-free operations were simpli-
fied by using transactions. When the number of threads was
larger than two, NoRetryTM increased the execution time.
Constrained transactions (ConstrainedTM) were compara-
ble to OptRetryTM. We conclude that the constrained
transactions do not provide performance benefits but they
eliminate the work to implement the fallback paths and to
tune the retry count.

Our conclusion is different from the conclusion of Jacobi
et al. [6] who mention a performance benefit in constrained
transactions compared to normal transactions for a highly
contended microbenchmark. This is because we used a
more realistic benchmark, which has lower contention, than
their highly contended microbenchmark. Jacobi et al. them-

selves mentions that the high contention case is not com-
mon in real-world applications.

6.2 Performance of hardware lock elision (HLE) on
Intel Core

 In this section, we compare the performance of RTM and
HLE on the Intel Core processor. Figure 7 shows the speed-
up ratios of the RTM and HLE execution over the serial
execution with four threads in the STAMP benchmarks.
The numbers of the RTM execution are same as the ones in
Figure 2 (i.e. the retry counts are tuned). On average, the
speed-up ratio of the HLE execution reached 80% of that of
the RTM execution. The performance gap remained, be-
cause the retry counts cannot be tuned for the HLE, which
has no software-based retry mechanism. These results indi-
cate that the HLE will provide modest speed-ups in many
existing programs with little modification and no tuning
effort.

0

0.5

1

1.5

2

2.5

3

3.5

4

ba
ye

s

ge
no

m
e

int
ru

de
r

km
ea

ns
-h

igh

km
ea

ns
-lo

w

lab
yr

int
h

ss
ca

2

va
ca

tio
n-

hig
h

va
ca

tio
n-

low ya
da

ge
om

ea
n

S
pe

e
d

 u
p

 o
ve

r
se

q
ue

n
tia

l RTM

HLE

Figure 7.�
��

� Speed-up ratios of RTM and HLE executions
over serial execution in Intel Core. Our modified version
of the STAMP benchmarks was used with 4 threads.

Figure 6. Relative execution times for normal and con-
strained transactions. The baseline is the execution time for
the original lock-free implementation of the Java Concur-
rentLinkedQueue data structure.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 8 16
Number of threads

R
e

la
tiv

e
 e

xe
cu

tio
n

 ti
m

e
(l

o
w

e
r

is
 b

e
tte

r)

NoRetryTM OptRetryTM ConstrainedTM

6.3 Performance of thread-level speculation (TLS) on
POWER8

As described in Section 2.4, the suspend and resume in-
structions in POWER8 can be exploited to implement effi-
cient TLS. Following the experimental scheme in a
previous study [29], we manually modified two benchmarks
(433.milc and 482.sphinx3) in SPEC CPU2006 that can
benefit from TLS. We applied TLS to frequently executed
loops in each benchmark. Figure 8(a) shows an example
loop and (b) is the loop after TLS is applied. Each thread
executes this modified loop. Either the code in the dark
gray or in the light gray is executed, depending on the
availability of the suspend and resume instructions. Without
these instructions, if a previous iteration has not yet finished,
the current thread must abort (dark gray code). The suspend
and resume instructions allow spin-waiting outside the
transaction, without causing data conflicts (light gray code).

Figure 9 shows the throughput results normalized to the
sequential execution of each benchmark. TLS provided
speed-ups of up to 15% in 433.milc and 25% in
482.sphinx3 with 6 threads. In 482.sphinx3, TLS with the
suspend and resume instructions was faster than TLS with-
out them by 12%. By using these instructions, the abort
ratio was reduced from 69% to 0.1%. In 433.milc, the im-
provement by using the suspend and resume instructions
was only 2%. These instructions reduced the abort ratio
from 83% to 10%, but false conflicts still remained. Overall,
the suspend and resume instructions are effective extensions
to HTM to implement efficient TLS.

7.���� Next Generation of HTM Systems

In this section, we discuss the next generation of HTM sys-
tems based on the experimental results shown in Section 5
and 6. The following are our recommendations for next
generation HTM designs.

Precise Conflict Detection. The underlying implementation
of the cache-coherency traffic should not compromise the
conflict-detection mechanism of an HTM system. Intel Core
has unnecessary transaction aborts because of the conflicts
on the prefetched cache lines. The zEC12 detects false
transaction-abort conditions (cache-fetch-related aborts) on
the cache lines where in reality data conflicts do not occur.
Although the precise conflict detection may complicate the
hardware design, it is needed to maximize the performance.

Better Interaction with SMT. HTM should scale beyond
the number of physical cores, using SMT. As shown in Fig-
ure 5, POWER8 and Intel Core cannot scale with SMT in
the benchmarks of relatively large transactional sizes (the
benchmarks other than kmeans and ssca2). One way to
avoid capacity-overflow aborts due to the resource sharing
among the SMT threads is to somehow restrict concurrent
execution of transactions on the same core.

Non-transactional loads and stores. Non-transactional
loads and stores enable conflict-detection-free memory ac-
cesses in transactions, not only for debugging but also for
performance. For example, as shown in Section 6.3, the
non-transactional load allows the efficient implementation
of ordered transactions for TLS. Although such non-
transactional loads and stores are not enough to achieve
high TLS performance as mentioned in [29], they are basic
and essential functions to build TLS on top of HTM.

Larger Transactional-Store Capacity. Next generation of
HTM systems should have larger capacity, especially for
transactional stores. Figure 10 and Figure 11 plot the rela-
tionship between the transaction sizes and transaction-abort
ratios for loads and stores, respectively. Using a trace tool
[2], we collected the data addresses accessed in transactions
by running the STAMP benchmarks with the simulator
runtime options on our Intel Core machine. We then calcu-
lated the transaction sizes by mapping the collected ad-
dresses to the cache lines of each processor. We show the
90-percentile transaction sizes. Even with the simulator
runtime options, which specify smaller data sets than the
non-simulator options, the transaction sizes of some
benchmarks exceeds the supported transaction capacities,

482.sphinx3

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5 6 7

Number of threads

S
pe

ed
up

 o
ve

r s
eq

433.milc

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5 6 7

Number of threads

S
pe

ed
up

 o
ve

r s
eq

Without suspend/resume
With suspend/resume

Figure 9.�
��

� Speed-up ratios of TLS with and without the
suspend/resume instructions on POWER8. Two SPEC
CPU2006 benchmarks were measured.

for (i = 0; i < N; i++) {
// Loop body

}

for (i=0; i < N; i += NumThreads)) {
retry:

if (NextIterToCommit != i) {
tbegin();
if (isTransactionAborted()) goto retry;

}
// Loop body
if (NextIterToCommit != i) tabort();
suspend();
while (NextIterToCommit != i) ;
resume();
if (isInTM()) tend();
NextIterToCommit = i + 1;

}

(a)

(b)

Figure 8. Example loop for TLS with suspend/resume in-
structions of POWER8

especially for transactional stores. Discussing the tradeoff
between the performance and the hardware resources is
beyond the scope of this paper, but hardware should make
its best efforts because it is not easy for software to avoid
transaction capacity overflows.

8.���� Related Work

HTM has been studied for use in commercial processors
[11, 16, 34] since the idea appeared in 1993 [19]. Software
transactional memory (STM) [2, 15, 17, 25, 26] is an alter-
native to HTM. STM surpasses HTM in its portability and
transaction capacity. It supports transactional execution in
any processor and has practically no limits on its transac-
tion capacity because it can use the all of memory for track-
ing the loads and stores. However, STM’s high overhead is
an obstacle to its use in real-world software.

Currently there are four processors with HTM: Blue
Gene/Q [1], zEnterprise EC12 (zEC12) [6], the 4th genera-
tion of Intel Core [13], and POWER8 [27]. Although Azul
[4] and Rock [9] processors implemented HTM before
these four processors, their HTM implementations were not
fully available because Azul’s HTM programming interface

was never published and the Rock processor was canceled
before commercial production.

There is no prior research that directly compares the per-
formance of actual HTM systems, though individual HTM
systems have been evaluated with various applications [1, 5,
7, 21, 23, 30, 31, 35, 36, 38, 39]. Only Odaira et al. com-
pared two HTM systems, zEC12 and Intel Core, using an
HTM-enabled Ruby interpreter, but they did not evaluate
the other platforms [30]. Our work is the first to compare
all four of the HTM implementations, using a common
benchmark set, the STAMP benchmarks [3]. Although the
STAMP benchmarks have been independently measured on
Blue Gene/Q, zEC12, and Intel Core by many researchers,
it is important to compare the HTM systems using the same
code base, because the transaction-retry mechanism de-
scribed in Section 3 has a huge impact on the performance.

Wang el al. [1] provided a detailed performance analysis
of a Blue Gene/Q HTM system with the STAMP bench-
marks. Our speed-up ratio results mostly match theirs, alt-
hough they tuned not only the modes (long-running or
short-running) and maximum retry counts but also various
other parameters. The yada benchmark showed a more than
2-fold speed-up with four threads in their results but only a
1.4-fold speed-up in ours. Their speed-up was because

Figure 10. 90-percentile transactional-load sizes and transaction-abort ratios. Each plot corresponds to a pair of a benchmark
and a processor. gnm: genome, intrd: intruder, km: kmeans, lb: labyrinth, ssca: ssca2, vc: vacation

gnm BG gnm z12

gnm IC

gnm P8

intrd BG

intrd z12
intrd IC

intrd P8

km-high BG

km-high z12km-high IC

km-high P8

km-low BG

km-low z12

km-low IC

km-low P8

lb BG

lb z12

lb IC
lb P8

ssca BG
ssca z12

ssca IC
ssca P8

vc-high BG

vc-high z12

vc-high IC

vc-high P8

vc-low BG

vc-low z12

vc-low IC

vc-low P8

yada BG

yada z12

yada IC

yada P8

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

Tr
an

sa
ct

io
n-

ab
or

t r
at

io
 (

%
)

90-percentile transactional-load size (logarithmic scale of KB)

Blue Gene/Q (BG)

zEC12 (z12)

Intel Core (IC)

POWER8 (P8)

P8 capacity (8KB)

IC capacity (4MB),
BG capacity (1.25MB),
z12 capacity (1MB)

Figure 11. 90-percentile transactional-store sizes and transaction-abort ratios. Each plot corresponds to a pair of a benchmark
and a processor. gnm: genome, intrd: intruder, km: kmeans, lb: labyrinth, ssca: ssca2, vc: vacation

gnm BG

gnm z12
gnm IC gnm P8

intrd BG

intrd z12

intrd IC

intrd P8

km-high BG

km-high z12

km-high IC

km-high P8 km-low BG

km-low z12

km-low IC

km-low P8

lb BG

lb z12

lb IC
lb P8

ssca BG

ssca z12

ssca IC

ssca P8 vc-high BG

vc-high z12

vc-high IC

vc-high P8

vc-low BG

vc-low z12

vc-low IC

vc-low P8

yada BG

yada z12

yada IC

yada P8

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

Tr
an

sa
ct

io
n-

ab
or

t r
at

io
 (

%
)

90-percentile transactional-store size (logarithmic scale of KB)

Blue Gene/Q (BG)

zEC12 (z12)

Intel Core (IC)

POWER8 (P8)

BG capacity
(1.25MB)

IC capacity
(22KB)

z12 capacity (8KB)
P8 capacity (8KB)

function outlining by their compiler improved the single-
thread performance of the HTM version of yada, but we did
not observe this effect using our compiler.

Mitran et al. [20] evaluated three programs in the
STAMP benchmarks on zEC12. Odaira et al. [31] analyzed
all of the programs in the STAMP benchmarks on zEC12 to
compare the performance of the C and Java versions of the
STAMP benchmarks. In genome, intruder, and vacation,
our speed-up ratios on zEC12 were better than the results
by Odaira et al., even without our benchmark modifications,
because we tuned the maximum transaction-retry counts.

Yoo et al. evaluated the benefits of an Intel Core HTM
system on real HPC applications, but they also measured
the STAMP benchmarks [28]. Diegues et al. also measured
the STAMP benchmarks on Intel Core and found that the
optimal transaction-retry count differs for each application
[23]. Based on their findings, we used an optimal set of
values for the transaction-retry counts for each HTM sys-
tem with our benchmarks, allowing us to compare the max-
imum performance of each HTM system. The speed-up
ratios obtained by Diegues et al. were similar to our results,
although they used Xeon E3-1275, not Core i7-4770. Com-
pared with their results, our unmodified version showed
better speed-up ratios in kmeans-low (their 3 and our 3.8
with four threads) and worse ratios in genome (their 3.2 and
our 2.7). Investigating these differences is our future work.

9. Conclusion

In this paper, we quantitatively compared the HTM systems
that are implemented in four processors: Blue Gene/Q,
zEC12, Intel Core, and POWER8. In order to find the max-
imum performance of each HTM system on the STAMP
benchmarks, we modified the TM-unfriendly code of some
benchmarks and tuned the transaction-retry counts to pro-
vide the most ideal comparisons possible. Our experimental
results showed that there is no single HTM system that is
more scalable than the others in all of the benchmarks. Each
HTM system has its own implementation issues that limit
the scalability. In Blue Gene/Q, the high single-thread
overhead, which is caused by software-based register
checkpointing and the system calls to control transactions,
limits the performance. In addition, the cost of reclaiming
the speculation IDs limits the scalability. The zEC12 suffers
from mysterious transaction aborts that degrade its perfor-
mance. Intel Core has extra transaction aborts due to the
hardware prefetching. POWER8 has more capacity-
overflow aborts than the other processors because of its
overly small transaction capacity. Solving these implemen-
tation problems is important to improve the performance of
concurrent applications to support the wider adaption of
TM-based programming.

We also evaluated the features specific to each HTM
system: the constrained transactions of zEC12, hardware

lock elision (HLE) of Intel Core, and the suspend and re-
sume instructions of POWER8. The constrained transac-
tions, which do not need a software-based retry mechanism,
had performance comparable to the normal transactions that
require a software-based retry mechanism with tuned retry
counts. The HLE showed modest speed-ups in most of the
STAMP benchmarks without any tuning effort for the
transaction-retry counts. The suspend and resume instruc-
tions were beneficial for avoiding data conflicts on a shared
variable to implement ordered transactions, and thus im-
proved the performance of TLS. Overall, these features
specific to each HTM system will increase the adoption of
and widen the application of HTM.

References
[1] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,

R. Silvera, and M. Michael. Evaluation of Blue Gene/Q hardware
support for transactional memories. Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, 2012.

[2] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B.
Hertzberg. McRT-STM: A high performance software transactional
memory system for a multi-core runtime. In Principles and Practice
of Parallel Programming, Jan. 2006.

[3] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Interna-
tional Symposium on Workload Characterization (IISWC), Sep.
2008.

[4] C. Click. Azul's experiences with hardware transactional memory. In
HP Labs' Bay Area Workshop on Transactional Memory, 2009.

[5] C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring garbage collec-
tion with Haswell hardware transactional memory. Proceedings of
the 2014 International Symposium on Memory Management, 2014.

[6] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Archi-
tecture and Implementation for IBM System Z. Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Micro-
architecture, 2012.

[7] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit.
StackTrack: an automated transactional approach to concurrent
memory reclamation. Proceedings of the Ninth European Conference
on Computer Systems, 2014.

[8] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M.
Moir, K. Moore, and D. Nussbaun. Applications of the Adaptive
Transactional Memory Test Platform. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing (TRANSACT), 2008.

[9] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with
a commercial hardware transactional memory implementation. Pro-
ceedings of the 14th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2009.

[10] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey,
W. J. Starke, C. May, R. Odaira, and T. Nakaike. Transactional
memory support in the IBM POWER8 processor. IBM Journal of
Research and Development, Vol. 59, 2015.

[11] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H.
Le. Robust architectural support for transactional memory in the
power architecture. Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013.

[12] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved Single
Global Lock Fallback for Best-effort Hardware Transactional
Memory. In 9th ACM SIGPLAN Workshop on Transactional Com-
puting (TRANSACT), 2014.

[13] Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 1. Chapter 15: Programming with Intel® Transactional Syn-
chronization Extensions. June 2014.

[14] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A.
Klaiber, and J. Mattson. The Transmeta Code Morphing™ Software:
using speculation, recovery, and adaptive retranslation to address re-
al-life challenges. Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime
optimization, 2003.

[15] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In Principles and Practice of
Parallel Programming, Jan. 2010.

[16] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B.
Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional Memory Coherence and Consistency. Proceedings of
the 31st Annual International Symposium on Computer Architecture,
2004.

[17] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. In ACM Symp. on Par-
allelism in Algorithms and Architectures (SPAA), June 2008.

[18] M. Franklin and G. S. Sohi. The expandable split window paradigm
for exploiting fine-grain parallelism. In Proceedings of the 19th An-
nual International Symposium on Computer Architecture, 1992.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 1993 An-
nual International Symposium on Computer Architectures.

[20] M. Mitran and V. Vokhshori. Evaluating the zEC12 Transactional
Execution Facility. IBM Systems Magazine, 2012.

[21] M. Schindewolf, B. Bihari, J. Gyllenhaal, M. Schulz, A. Wang, and
W. Karl. What scientific applications can benefit from hardware
transactional memory? Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2012.

[22] macsim. Simulator for heterogeneous architecture.
https://code.google.com/p/macsim/

[23] N. Diegues and P. Romano. Self-Tuning Intel Transactional Syn-
chronization Extensions. Proceedings of the 1st International Con-
ference on Autonomic Computing (ICAC), 2014.

[24] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware atomicity for reliable software speculation. Proceedings of
the 34th Annual International Symposium on Computer Architecture,
2007.

[25] N. Shavit and D. Touitou. Software Transactional Memory. In Pro-
ceedings of the 14th Annual ACM Symposium on Principles of Dis-
tributed Computing, 1995.

[26] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed
Systems, Dec. 2010.

[27] Power ISATM Version 2.07,
https://www.power.org/documentation/power-isa-version-2-07/,
2013.

[28] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evalu-
ation of Intel® transactional synchronization extensions for high-
performance computing. Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2013.

[29] R. Odaira and T. Nakaike. Thread-Level Speculation on Off-the-
Shelf Hardware Transactional Memory. In Proceedings of the 2014
IEEE International Symposium on Workload Characterization, 2014.

[30] R. Odaira, J. G. Castanos, and H. Tomari. Eliminating global inter-
preter locks in Ruby through hardware transactional memory. Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2014.

[31] R. Odaira, J. G. Castanos, and T. Nakaike. Do C and Java programs
scale differently on Hardware Transactional Memory? Proceedings
of the 2013 IEEE International Symposium on Workload Characteri-
zation (IISWC), 2013.

[32] R. Odaira. Patching and Building HTM-enabled STAMP.
http://researcher.watson.ibm.com/researcher/view_person_subpage.p
hp?id=6045.

[33] S. Gong and S. Heisig. Experiences with Disjoint Data Structures in
a New Hardware Transactional Memory System. Proceedings of the
25th International Symposium on Computer Architecture and High
Performance Computing, 2013.

[34] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O.
Unsal, T. Harris, and M. Valero. EazyHTM: eager-lazy hardware
transactional memory. Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009.

[35] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner. Improving In-Memory Database Index Performance
with Intel® Transactional Synchronization Extensions. Proceedings
of the 2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2014.

[36] V. Leis, A. Kemper, and T. Neumann. Exploiting Hardware Transac-
tional Memory in Main-Memory Databases. Proceedings of the 2014
IEEE International Conference on Data Engineering (ICDE), 2014.

[37] W. Ruan, Y. Liu, and M. Spear. STAMP Need Not Be Considered
Harmful. In 9th ACM SIGPLAN Workshop on Transactional Com-
puting (TRANSACT), 2014.

[38] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. Algo-
rithmic improvements for fast concurrent Cuckoo hashing. Proceed-
ings of the Ninth European Conference on Computer Systems, 2014.

[39] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional
memory to build a scalable in-memory database. Proceedings of the
Ninth European Conference on Computer Systems, 2014.

[40] z/Architecture Principle of Operations. SA22-7832-09.

