
Thread-Level Speculation on Off-the-Shelf

Hardware Transactional Memory

Rei Odaira and Takuya Nakaike

IBM Research - Tokyo
Toyosu, Tokyo, Japan

{odaira, nakaike}@jp.ibm.com

Abstract—Thread-level speculation can speed up a single-

thread application by splitting its execution into multiple tasks

and speculatively executing those tasks in multiple threads.

Efficient thread-level speculation requires hardware support for

memory conflict detection, store buffering, and execution

rollback, and in addition, previous research has also proposed

advanced optimization facilities, such as ordered transactions

and data forwarding. Recently, implementations of hardware

transactional memory (HTM) are coming into the market with

minimal hardware support for thread-level speculation. However,

few implementations offer advanced optimization facilities. Thus,

it is important to determine how well thread-level speculation

can be realized on the current HTM implementations, and what

optimization facilities should be implemented in the future.

In our research, we studied thread-level speculation on the

off-the-shelf HTM implementation in Intel TSX. We manually

modified potentially parallel benchmarks in SPEC CPU2006 for

thread-level speculation. Our experimental results showed that

thread-level speculation resulted in up to an 11% speed-up even

without the advanced optimization facilities, but actually

degraded the performance in most cases. In contrast to our

expectations, the main reason for the performance loss was not

the lack of hardware support for ordered transactions but the

transaction aborts due to memory conflicts. Our investigation

suggests that future hardware should support not only ordered

transactions but also memory data forwarding, data

synchronization, multi-version cache, and word-level conflict

detection for thread-level speculation.

Keywords—thread-level speculation; transactional memory

I. INTRODUCTION

As CPU frequency scaling slowed down in the 2000s, chip
makers began implementing more and more cores and
hardware threads on each chip to continue increasing the total
processing capability while retaining power efficiency. Multi-
threaded applications can exploit these increases in processing
capability. To facilitate such exploitation, the chip makers are
providing new hardware support such as Hardware
Transactional Memory (HTM).

Unfortunately, single-threaded applications cannot benefit
from the increasing number of cores and hardware threads.
Although parallelizing compilers have been studied for many
years, they have shown benefits only in simple computation
kernels. To find parallelism in a single-threaded program, the

compilers must find provably data-independent tasks in the
code, which is often impossible in complex applications.

Thread-Level Speculation (TLS), or Speculative
Multithreading (SpMT), has been proposed
 [2] [4] [12] [20] [21] [22] to overcome this limitation of the
parallelizing compilers. Most of the proposed systems for the
thread-level speculation incorporate at least three kinds of
hardware support: (1) detection of address conflicts among
loads and stores from multiple threads, (2) store buffering
during the execution of specified code regions, and (3)
execution rollback to the beginning of a region when a conflict
is detected. With such hardware support, compilers no longer
need to prove the data independence among the tasks. The
compilers only need to find probably data-independent tasks in
the code, and such tasks can be speculatively executed in
parallel. It can be left to the hardware and runtime to preserve
the correct sequential semantics of the program by detecting
data-dependence violations and by re-executing the rolled-back
tasks until the data dependence is resolved.

While thread-level speculation has only been proposed in
research papers, recent releases of publicly available CPUs
implement HTM [5] [6] [7] [8] , which supports the basic
hardware features required for thread-level speculation.
Specifically, HTM offers hardware support for memory
conflict detection, store buffering, and execution rollback.
Although researchers have noticed that thread-level speculation
can be implemented on top of HTM [18], no one has ever
evaluated thread-level speculation on real HTM hardware.
Therefore, it is important to determine how well thread-level
speculation can improve single-thread performance on current
HTM implementations.

Beyond the raw performance data, what is more interesting
is why thread-level speculation often fails to show good
performance on the current HTM implementations. This is
because typical proposals [2] [4] [12] [20] [21] [22] for thread-
level speculation include advanced hardware facilities such as
ordered transactions, data forwarding, data synchronization, or
word-level conflict detection for optimization, but most of the
current HTM implementations do not provide such hardware.
For example, each task in thread-level speculation must
commit in the same order as the sequential execution order,
and the hardware support for ordered transactions allows a task
to wait for the previous tasks to finish. Without this hardware
support, if a task is about to finish before its previous tasks,

then that task will have to be rolled back. Only Blue Gene/Q
 [5] supports even one of those advanced facilities, ordered
transactions. Thus, we want to know if the thread-level
speculation can show speed-ups even without the advanced
hardware facilities, and if not, what are the obstacles to
achieving performance improvement.

In this paper, we studied the thread-level speculation on an
off-the-shelf implementation of HTM, the Intel TSX [8], part
of the 4th generation of the Intel Core processor. As target
benchmarks, we selected the 6 programs in SPEC CPU2006
that can potentially be sped up by thread-level speculation,
based on previous studies [16] [17]. Instead of implementing a
compiler for thread-level speculation, we manually modified
the source code of the selected benchmarks, focusing on their
frequently executed loops. We assigned each iteration (or
consecutive multiple iterations) of the loops as a task to a
different thread. We executed each task as a transaction on the
HTM. Because the Intel TSX does not support ordered
transactions as hardware, we needed to roll back a task when
its previous task had not yet finished.

Here are our contributions:

• We show the first experimental results of thread-level
speculation on a real HTM hardware that does not
support any advanced hardware facilities such as
ordered transactions, data forwarding, or word-level
conflict detection.

• For each of the executed benchmarks in SPEC
CPU2006, we present detailed reasons for the
performance improvement or degradation and suggest
what kinds of hardware extensions are necessary in the
future.

Section II describes the instruction set and
microarchitecture of the Intel TSX in the Intel 4th Generation
Core processor, as an example of an off-the-shelf HTM
implementation. Section III explains how to support thread-
level speculation on the off-the-shelf HTM. Section IV shows
our experimental results and Section V covers related work.
Section VI concludes this paper.

II. HTM IMPLEMENTATION

We experimented on the Intel TSX [8] implemented in the
Intel 4th Generation Core processor (Core i7-4770). This
section briefly describes its instruction set and micro
architectures. Intel recently announced that the Intel TSX
implemented in the 4th Generation Core processor had a
functional problem [10]. Intel will disable the Intel TSX in the
processors to be shipped until a fix is implemented. Because
the problem occurs only “under a complex set of internal
timing conditions,” [10] we believe our results are valid, but
we will revalidate them once the fix becomes available.

The Core i7-4770 processor contains 4 cores and each core
supports 2 simultaneous multi-threading (SMT) threads. Each
core has 32-KB L1 data and 256-KB L2 unified caches. The 4
cores share an 8-MB L3 cache. The cache line size is 64 bytes.

In the Intel TSX, each transaction begins with an XBEGIN
instruction and is ended by an XEND instruction. The detailed
design of the Core i7-4770 processor’s HTM has not been
revealed, but it takes advantage of the CPU cache structure.
The hardware keeps track of the read and write sets of each
transaction, using the caches. Transactionally written data is
not visible to the other threads until the transaction is
committed by an XEND instruction.

A transaction can abort for various reasons, and the
execution jumps to a program point specified by the argument
of the XBEGIN instruction. All of the transactionally written
data is discarded, and the registers are rolled back to the image
immediately before the XBEGIN instruction. The most
frequent causes for aborts include conflicts and footprint
overflows. The EAX register reports the abort reason.
Transactions conflict with each other when the read or write set
of a transaction overlaps with the write set of the other
transaction. When a conflict occurs, one of the transactions is
aborted by the hardware, but the software cannot control which
one to abort. Conflicts are detected at the granularity of a 64-
byte cache line. Also, because the read and write sets are kept
in caches, there are upper limits on their sizes. Our preliminary
experiments showed that the maximum read-set size is 4 MB,
and the maximum write-set sized is about 22 KB in the Core
i7-4770. A transaction can also be aborted by software with an
XABORT instruction.

These hardware features, i.e. conflict detection, store
buffering, and execution rollback, are minimal requirements
for efficient thread-level speculation. The other available HTM
implementations such as the ones in the IBM zEnterprise EC12
 [7] and POWER8 [6] offer the same set of features.

III. THREAD-LEVEL SPECULATION ON HTM

This section describes the basics of thread-level speculation
and how to implement it on the currently available HTM
implementations.

We call a unit of work for speculation a task. Since we use
HTM for speculation, each task is executed as a transaction,
except for the case described in Section III.B.

A. Thread-Level Speculation for Loops

Our research focuses on thread-level speculation for
frequently executed loops. Another typical target of thread-
level speculation is function calls. Section III.D explains why
we did not consider function calls as our initial target.

Fig. 1(a) is a code excerpt from the 429.mcf benchmark in
SPEC CPU2006. Lines 8-18 are a frequently executed loop.
Parallelizing compilers cannot prove that the iterations of this
loop are data-independent, because Lines 12-15 modify shared
data, the basket_size variable and the objects pointed to by the
perm array. However, because the conditional checks in Lines
9 and 11 are only occasionally true, this loop can be executed
in parallel for many of its iterations. This loop is a good
example in which thread-level speculation can improve the
single-thread performance but parallelizing compilers cannot.

Fig. 1(b) is an example execution sequence of the loop in
Fig. 1(a) using thread-level speculation. In this example, each
iteration of the loop is executed as a single task. We assume
that this system has 4 hardware threads and supports ordered
transactions in hardware. In thread-level speculation, all of the
tasks must commit in the same order as the original sequential
order, because the system can insure that there is no data-

dependency violation in a task only after all of its preceding
tasks have committed. The hardware support for ordered
transactions allows a task to wait immediately before its
commit point if its preceding tasks have not yet finished. In
most of the proposed systems for thread-level speculation, the
hardware support for ordered transactions also means that the
hardware rolls back a more speculative task when a conflict is
detected.

In Fig. 1(b), the hardware threads 1, 2, 3, and 4 execute
iterations 1, 2, 3, and 4, respectively. Suppose the conditional
checks in Lines 9 and 11 are both true in the iterations 5 and 6.
These tasks cause a conflict on the updates to the basket_size
variable, and the hardware rolls back the more speculative task,

1. static long basket_size;
2. static BASKET *perm[B+K+1];
3. static long nr_group;

4. arc_t *primal_bea_mpp(..., arc_t *stop_arcs, ...) {
5. ...
6. cost_t red_cost;
7. arc_t *arc = ...;
8. for(; arc < stop_arcs; arc += nr_group) {
9. if(arc->ident > BASIC) {
10. red_cost = arc->cost –

arc->tail->potential +
arc->head->potential;

11. if(bea_is_dual_infeasible(arc, red_cost)) {
12. basket_size++;
13. perm[basket_size]->a = arc;
14. perm[basket_size]->cost = red_cost;
15. perm[basket_size]->abs_cost = ABS(red_cost);
16. }
17. }
18. }
19. ...
20.}

(a) Frequently executed loop in 429.mcf: pbeampp.c

Code

before

loop

Iteration 1
Iteration 2

Iteration 3

Iteration 5

basket_size++ Iteration 7

Iteration 4

Iteration 6

basket_size++

Iteration 9

Iteration 10

Iteration 8

Iteration 11
Iteration 12

Hardware

thread 1

(b) Example of TLS execution

Retry

Iteration 6

basket_size++

Conflict

Wait
Wait

Wait

Hardware

thread 2

Hardware

thread 3

Hardware

thread 4

Fig. 1. (a) Frequently executed loop in 429.mcf of SPEC CPU 2006. (b)

Example of execution by TLS on 4 threads, assuming that the system
supports ordered transactions. Wasted CPU cycles are in grey. Iterations

5 and 6 increment a variable basket_size in global memory, resulting in

a conflict. Iterations 7, 8, and 9 wait for the previous iterations to finish.

 1. static volatile long basket_size;
2. static BASKET *perm[B+K+1];
3. static long nr_group;

4. arc_t *primal_bea_mpp(..., arc_t *stop_arcs, ...) {
5. ...
6. arc_t *arc = ...;
7. arc_t *Next_Iter_To_Commit = arc;
8. TLS_arguments Args[Num_TLS_Threads];
9. for (Thr = 0; Thr < Num_TLS_Threads; Thr++) {
10. Args[Thr].arc = arc;
11. arc += nr_group * Loop_Distance;
12. Args[Thr].stop_arcs = stop_arcs;
13. }
14. Invoke_TLS(TLS_primal_bea_mpp, Args,

&Next_Itr_To_Commit);
15. ...
16.}

17.void TLS_primal_bea_mpp(TLS_Thread *Thread) {
18. cost_t red_cost;
19. arc_t *arc = Thread->Args->arc;
20. arc_t *stop_arcs = Thread->Args->stop_arcs;
21. arc_t * volatile *Ptr_Next_Itr_To_Commit =

Thread->Ptr_Next_Itr_To_Commit;

22. long Inc = nr_group * (Num_TLS_Threads – 1) *
Loop_Distance;

23. long Distance = nr_group * Loop_Distance;
24. for(; arc < stop_arcs; arc += inc) {
25. arc_t *Original_arc = arc;
26. bool Execute_in_HTM;
27. Retry:
28. if (*Ptr_Next_Itr_To_Commit != arc) {
29. Execute_in_HTM = true;
30. if (XBEGIN())
31. goto Retry:
32. } else {
33. Execute_in_HTM = false;
34. }
35. for (; arc – Original_arc < Distance &&

arc < stop_arcs;
arc += nr_group) {

36. /* Omit.
The same as Lines 9-17 in Fig.1(a). */

37. }
38. if (Execute_in_HTM) {
39. if (*Ptr_Next_Itr_To_Commit != Original_arc)
40. XABORT();
41. XEND();
42. }
43. *Ptr_Next_Itr_To_Commit =

Original_arc + Distance;
44. }
45. }

Fig. 2. TLS version of the loop in Fig. 1, using HTM.

the iteration 6. In some proposed systems for thread-level
speculation, the hardware supports data forwarding from a less
speculative task to a more speculative one, so the iteration 6
would not need to be rolled back, but we do not assume such
hardware support exists in this example.

The iterations 7, 8, and 9 do not encounter any conflicts,
but their preceding tasks are delayed due to the conflict
between the iterations 5 and 6. The hardware support for
ordered transactions allows them to wait until their respective
preceding tasks commit.

B. Thread-Level Speculation using HTM

Fig. 2 shows the same loop as the one in Fig. 1(a), but with
thread-level speculation using HTM. Instead of implementing a
compiler to perform this transformation automatically, we
manually modified the source code in our experiments. In this
example, memory fence instructions are omitted for clarity.
The XBEGIN, XABORT, and XEND functions in Lines 30, 40,
and 41 are wrapper functions for their corresponding
instructions. The XBEGIN function returns false when a

transaction begins, but when the transaction aborts, the
execution jumps back to within the XBEGIN function, which
then returns true.

The loop in Lines 8-18 in Fig. 1(a) is moved to a new
function in Lines 17-45. In this example, we assume that there
are 4 software threads 1-4, each bound to a corresponding
hardware thread. Each software thread executes multiple tasks
that are pre-assigned to that thread. For example, the software
thread 1 executes iterations 1, 5, 9, and so on. The original
function (Lines 4-16) sets up the arguments for each software
thread and starts thread-level speculation by calling a utility
function (Line 14). The utility function (not shown) passes the
arguments to the software threads and lets them execute the
loop body in the new function (Lines 17-45). Alternatively,
instead of pre-assigning multiple tasks to a software thread, we
can assign only one task to each software thread. In this style,
each task spawns a new thread, which executes the next task,
and when a task finishes, the corresponding thread is discarded.
This dynamic thread spawning allows more flexibility in
scheduling, but requires a low-overhead threading mechanism.

In the new function (Lines 17-45), the loop is transformed
into doubly-nested loops, and the inner loop (Lines 35-37) is
executed as a single task. This means the inner loop is executed
as a single transaction, enclosed with the XBEGIN and XEND
instructions (Lines 30 and 41). In this way, multiple iterations
can be executed in a transaction to mitigate the execution
overhead of the XBEGIN and XEND instructions. The trip
count of the inner loop can be adjusted by the Loop_Distance
variable. For example, when Loop_Distance is 2, the software
thread 1 executes iterations 1, 2, 9, 10, and so on, assuming 4
software threads. Since there are upper limits in the read and
write sets of a transaction, Loop_Distance cannot be freely
increased.

Another important reason for executing multiple iterations
in a transaction is to avoid false sharing, because the conflict
detection is at the granularity of a cache line, which is 64 bytes
long in Core i7-4770. For example, if each iteration of a loop
consecutively writes to a 4-byte element of an array, then
Loop_Distance should be 64 bytes / 4 bytes = 16, so that
multiple transactions do not write to different parts of the same
cache line. Therefore, this transformation into the doubly-
nested loops is specific not to the thread-level speculation
using HTM but to any thread-level speculation with cache-line-
level conflict detection.

Ordered transactions are implemented by software, using a
shared variable Next_Itr_To_Commit defined in Line 7. This
variable holds the value of a loop induction variable for the
iteration that can commit next. Each thread accesses this shared
variable through a pointer (Line 21). If the induction variable
of the first iteration of a task does not match
Next_Itr_To_Commit (Line 39), then that task has to be rolled
back by the XABORT instruction. Note that it is not a good
idea to spin-wait on Next_Itr_To_Commit in the transaction,
because once this variable is read in Line 39, it is kept in the
read set of the transaction. When a previous task updates
Next_Itr_To_Commit in Line 43, the spin-waiting transaction
would be aborted due to the conflict and be rolled back anyway.

Code

before

loop

Iteration 1
Iteration 2

Iteration 3

Iteration 5

basket_size++

Iteration 4

Iteration 6

basket_size++

Iteration 9

Iteration 10

Iteration 11
Iteration 12

Iteration 7
Iteration 8

Retry

Iteration 5

basket_size++
Retry

Iteration 6

basket_size++

Retry

Iteration 7 Retry

Iteration 8

Retry

Iteration 7 Retry

Iteration 8

Retry

Iteration 7
Retry

Iteration 8Retry

Iteration 9

Retry

Iteration 10

Conflict

Hardware

thread 1

Hardware

thread 2

Hardware

thread 3

Hardware

thread 4

Fig. 3. Example of execution by TLS using HTM, in contrast to the

execution by TLS with hardware-supported ordered transactions in Fig.
1(b). Wasted CPU cycles are in grey. The conflict between the iterations

5 and 6 aborted the less speculative iteration 5. The iterations 7-10 have

to be retried because they cannot wait for the preceding iterations to
finish

At the beginning of each task in Line 28, if it turns out that
the current task can commit next, then this task is non-
speculative, and therefore it is executed without using HTM.
This is necessary because if all of the tasks were executed as
transactions, even non-speculative tasks could be rolled back
indefinitely, and forward progress could not be guaranteed.

Finally, note that we privatize the red_cost variable, which
was originally in Line 6 of Fig. 1(a) but moved to the new
function in Line 18 of Fig. 2, assuming that it is not difficult
for a compiler to prove this variable is iteration-local.

C. Example of Execution by TLS using HTM

Fig. 3 shows an example of the execution of the loop in Fig.
2, in contrast to the execution on the system supporting ordered
transactions in hardware in Fig. 1(b). The iterations 5 and 6
caused a conflict in the same way as in Fig. 1(b), but this time
the hardware rolls back the iteration 5, because the hardware is
not aware of which transaction is more speculative. As a result,
not only the iteration 5 but also the iteration 6 has to be rolled
back, because when the iteration 6 is about to commit, the
iteration 5 has not yet finished.

For the same reason, the iterations 7-10 have to be retried.
The retrial is less efficient than the wait in Fig 1(b), because a
thread cannot start the next task as soon as the preceding task
commits.

D. Thread-Level Speculation for Function Calls

We focus on thread-level speculation for loops, but another
typical target of thread-level speculation is function calls. That
is, the callee of a function call and its continuation are
speculatively executed in parallel. However, it is difficult to
efficiently implement this type of thread-level speculation on
the current HTM. When a thread finishes the execution of the
callee, it must notify the other thread executing the
continuation, so that the other thread can commit the
transaction. Unfortunately, the current HTM implementations
do not provide such notification mechanisms without aborting
the transactions.

IV. EXPERIMENTS

This section describes our benchmarks and implementation
of the thread-level speculation using HTM and then presents
the experimental results of a micro-benchmark and SPEC
CPU2006.

A. Benchmarks

We used a micro-benchmark and SPEC CPU2006 to
evaluate the thread-level speculation on HTM. The micro-
benchmark is an embarrassingly parallel program that contains
one loop. Each iteration increments an iteration-local variable
1,000 times, and the loop iterates 10,000,000 times. We created
this micro-benchmark to study the best speed-up we can obtain
from the thread-level speculation on HTM.

For SPEC CPU2006, we evaluated the benchmarks that can
potentially be sped up by thread-level speculation, according to
previous studies [16] [17]. Specifically, we selected 6 of the 7
programs that showed more than 1.5-fold speed-ups over the
sequential execution using 4 cores in the previous studies.
These studies evaluated 13 benchmarks in SPEC CPU2006,
using a simulator based on STAMPede [21] with hardware-
supported ordered transactions, data forwarding, data
synchronization, and word-level conflict detection. Therefore,
we do not need to consider those benchmarks that showed no
or marginal speed-ups even with these advanced hardware
facilities. We excluded 444.namd because it generates multiple
methods from a single C++ macro function, so it was difficult
to manually modify a particular frequently executed loop.

 Table I summarizes the selected 6 benchmarks. For each of
these benchmarks, we applied the thread-level speculation to
one frequently executed loop reported in Table 4 of the
previous study [17]. The third column of Table I shows the
locations of our target loops in the source code. The forth
column of Table I is the fractions of the total execution time
covered by our target loops, measured in our experimental
environment described in Section IV.C. We used the reference
data sets for our evaluations.

B. Implementation

We implemented the thread-level speculation on the Intel
TSX using Pthreads. Because creating a Pthread is
heavyweight on our experimental platform (Linux), we
spawned the same number of Pthreads as the number of
hardware threads at the start-up time of a program. Each
Pthread spin-waits on a flag for some task to be assigned to it.
This method obviously wastes CPU cycles. The system should
provide a lightweight mechanism to spawn or to wake up
threads, but that is beyond the scope of our current work.

We manually modified the source code of the frequently
executed loops for the thread-level speculation. The loop
bodies (for example, Line 36 in Fig. 2) are exactly the same as
the original loops, but due to the transformation into the

TABLE I. EVALUATED BENCHMARKS IN SPEC CPU2006

Benchmark Description Loop location in source code Loop coverage Loop_Distance

429.mcf Combinatorial optimization pbeampp.c, 165 41% 20

433.milc Quantum Chromodynamics (QCD) quark_stuff.c, 1523 23% 4

456.hmmer Gene sequence database search fast_algorithm.c, 133 95% 16

464.h264ref Video compression mv-search.c, 394 29% 16

470.lbm Computational fluid dynamics lbm.c, 186 98% 3

482.sphinx3 Speech recognition vector.c, 513 35% 8

doubly-nested loops, the entire source code looks different
from the original code. Therefore, compiler optimizations can
result in generated code that is different from the originally
generated code. To assess this undesired effect, we measured
not only the original sequential version but also the 1-thead
execution of the thread-level speculation version. In the 1-
thread execution, our system spawned no Pthreads, and the
parallelization overhead such as the argument setup is minimal.
Therefore, we can distinguish the speed-ups or slow-downs by
the thread-level speculation from the effects of the compiler
optimizations.

C. Experimental Environment and Settings

We evaluated our implementation on one Intel Core i7-
4770 processor, running at 3.4 GHz. Our machine had 4 GB of
memory and ran Linux 2.6.32-431. As described in Section II,
the Core i7-4770 has 4 cores with 2-way SMT. We compiled
our benchmarks with GCC 4.9.0. We did not change the
compiler flags specified in the configuration file provided by
SPEC CPU2006.

In the following sections, we show the throughput results.
Throughput is the reciprocal of the entire execution time of an
application, not the execution time of the loop to which thread-
level speculation was applied. We ran each benchmark 4 times
and took the averages. The performance fluctuations were
negligible.

We conducted preliminary experiments to find the best
Loop_Distance as explained in Section III.B for each of the
benchmarks. The results are shown in the 5th column of Table
I. For the micro-benchmark, Loop_Distance was set to 100. In
addition, when we executed more than 1 software thread on a
core by enabling SMT, we halved the Loop_Distance for
429.mcf, 433.milc, and 470.lbm, because the effective read and
write set sizes decreased by half.

D. Results of Micro-Benchmark

Fig. 4(a) shows the throughput of the micro-benchmark,
normalized to the throughput of the sequential execution. The
number of software threads was set from 1 to 2, 4, 6, and 8.
Note that the execution with 6 and 8 threads used the 2-way
SMT. The thread-level speculation on HTM scaled up to 4
threads, but the speed-up was only 1.6-fold. With 6 and 8
threads, it did not show any speed-up.

Fig. 4(b) presents the total abort ratio of the micro-
benchmark and the abort ratios for each abort reason reported
by the CPU. An abort ratio is the number of aborted
transactions divided by the total number of transactions
attempted. Note that with 1 thread, all of the tasks were
executed without using HTM, so there were no aborts. The
Intel TSX has 5 abort reasons, but we did not include “Hit
Break Point” or “During Nested Transaction” because they
never occurred in our experiments. The “Other” reason in Fig.
4 (b) means the CPU set no flag in the EAX register. The
“Order inversion” was caused by the XABORT instruction in
Line 40 of Fig. 2. These results indicate that the scalability of
the micro-benchmark was limited by the lack of hardware-
supported ordered transactions. Although each task only
increments its local variable the same amount of times in this

micro-benchmark, the execution time of each task fluctuates,
which can result in inversions of the committing order. The
fluctuation can be exacerbated when multiple tasks are
executed on the SMT.

This micro-benchmark results show the upper limit of the
speed-up we can achieve with the thread-level speculation on
HTM without any additional hardware facilities.

E. Results of SPEC CPU2006

Fig. 5(a) shows the throughput of the 6 selected
benchmarks in SPEC CPU2006, normalized to the throughput
of the sequential execution. The thread-level speculation on
HTM improved the performance by 11% in 482.sphinx3, 8%
in 429.mcf and by 5% in 433.milc using 2 or 4 threads, but
degraded the performance in most of the cases. The results of
the 1-thread execution were within 3% of those of the
sequential execution in 433.milc, 464.h264ref, 470.lbm, and
482.sphinx3. In 429.mcf and 456.hmmer, the 1-thread
executions were slower by 7% and 15%, respectively. As
described in Section IV.B, these differences were caused by the
effects of the compiler optimizations. If the thread-level
speculation versions were as optimized by the compiler as the
sequential versions, these benchmarks could show better
performance.

Fig. 5(b) presents the abort ratios of the SPEC CPU2006
benchmarks. The transactions in 456.hammer, 464.h264ref,
and 470.lbm almost always aborted, which resulted in the
performance losses in Fig. 5(a). 456.hammer and 470.lbm
scaled worse than 464.h264ref simply because their loop
coverage was more than 95%, as shown in Table I. The other 3
benchmarks, 429.mcf, 433.milc, and 482.sphinx3 showed

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

) Total

Order inversion

Buffer overflow

Conflict

Other

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

Number of software threads

T
h

ro
u

g
h

p
u

t

(1
 =

 s
e

q
u

e
n

ti
a

l
e

x
e

c
u
ti
o

n
)

(a)

(b)

H
ig

h
e

r is
 b

e
tte

rSMT

Fig. 4. (a) Throughput of the micro-benchmark on Intel Core i7-4770,

normalized to the throughput of the sequential execution. (b) Abort

ratios of each abort reason of the micro-benchmark.

speed-ups to some extent with 2 or 4 threads, because of their
relatively lower abort ratios.

F. Detailed Analysis of SPEC CPU2006

Fig. 6 shows the abort ratios for each abort reason in SPEC
CPU2006. In this section, we analyze the results of each
benchmark by referring to the abort statistics and source code.

1) 429.mcf
We have already presented the source code of the

frequently executed loop of 429.mcf in Fig. 1(a). This loop
causes occasional conflicts due to the update to the basket_size
variable. According to Fig. 6, the main reason for the aborts
was these conflicts, not committing order inversion, even with
2 threads. We can lower the probability of the conflicts by
simply making Loop_Distance smaller. However, our
preliminary experiments show performance degradation with a
smaller Loop_Distance, not only because of the higher relative
overhead of the XBEGIN and XEND instructions, but also
because of more aborts by committing order inversion. We
believe that too small tasks are subject to execution time
fluctuations. Hardware-supported ordered transactions could
help handle the fluctuations, but the commit-time wait is
inefficient in any case. A better solution would be to support
data forwarding from a less speculative task to a more
speculative task.

2) 433.milc
433.milc is the most parallel among the 6 benchmarks,

from the viewpoint of thread-level speculation. The speed-up
was worse than that of 482.sphinx3, because of the lower loop
coverage of 23%. The main abort reason was committing order
inversion, which means hardware support for ordered
transactions could provide better speed-ups. Because we
halved Loop_Distance when using the SMT with 6 or 8
software threads, buffer overflows were not a severe problem.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

Number of software threads

T
h
ro

u
g
h
p
u
t

(1
 =

 s
e
q
u
e
n
ti
a
l
e
x
e
c
u
ti
o
n
)
)

429.mcf 433.milc
456.hmmer 464.h264ref
470.lbm 482.sphinx3

H
ig

h
e

r is
 b

e
tte

r

SMT

(a)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

(%

)

429.mcf 433.milc
456.hmmer 464.h264ref
470.lbm 482.sphinx3

(b)

Fig. 5. (a) Throughput of SPEC CPU2006 benchmarks by TLS

execution on Intel Core i7-4770, normalized to the throughput of the

sequential execution of each benchmark. (b) Abort ratios of the SPEC

CPU2006 benchmarks

1. for (k = 1; k <= M; k++) {
2. mc[k] = mpp[k-1] + tpmm[k-1];
3. if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
4. if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
5. if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
6. mc[k] += ms[k];
7. if (mc[k] < -INFTY) mc[k] = -INFTY;
8. dc[k] = dc[k-1] + tpdd[k-1];
9. if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
10. if (dc[k] < -INFTY) dc[k] = -INFTY;
11. if (k < M) {
12. ic[k] = mpp[k] + tpmi[k];
13. if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
14. ic[k] += is[k];
15. if (ic[k] < -INFTY) ic[k] = -INFTY;
16. }
17.}

1. int** block_sad = ...;
2. ...
3. for (pos = 0; pos < max_pos; pos++)
4. {
5. ...
6. block_sad[...][pos] = LineSadBlk0;
7. ...
8. }

(a) Frequently executed loop in 456.hmmer

(b) Frequently executed loop in 464.h264ref

1. int32 *score;
2. ...
3. for (r = offset; r < end-1; r += 2) {
4. m1 = gautbl->mean[r];
5. m2 = gautbl->mean[r+1];
6. v1 = gautbl->var[r];
7. v2 = gautbl->var[r+1];
8. dval1 = gautbl->lrd[r];
9. dval2 = gautbl->lrd[r+1];

10. for (i = 0; i < veclen; i++) {
11. diff1 = x[i] - m1[i];
12. dval1 -= diff1 * diff1 * v1[i];
13. diff2 = x[i] - m2[i];
14. dval2 -= diff2 * diff2 * v2[i];
15. }
16.
17. if (dval1 < gautbl->distfloor)
18. dval1 = gautbl->distfloor;
19. if (dval2 < gautbl->distfloor)
20. dval2 = gautbl->distfloor;

21. score[r] = (int32)(f * dval1);
22. score[r+1] = (int32)(f * dval2);
23.}

(c) Frequently executed loop in 482.sphinx3

Fig. 7. (a) Frequently executed loop in 456.hmmer. (b) Frequently

executed loop in 464.h264ref. (c) Frequently executed loop in

482.sphinx3.

3) 456.hmmer
Fig. 7(a) shows the frequently executed loop to which we

applied the thread-level speculation with HTM. This loop has a
great deal of loop-carried dependence, such as at the dc array in
Line 8. This is why we encountered almost 100% conflict
aborts, as shown in Fig. 6. The previous studies [16] [17] were
able to achieve good speed-ups in 456.hmmer, by taking
advantage of advanced hardware facilities, such as data
forwarding and synchronization.

4) 464.h264ref
The benchmark 464.h264ref is another one that suffered

from severe conflicts. There are two sources of the conflicts in
this benchmark. One is a write-after-read (WAR) dependence,
and the other is false sharing due to multiple writers.

In 456.hmmer, the data dependence is in the loop body of
the frequently executed loop, but in 464.h264ref, the data
dependence is in another function called from its frequently
executed loop. This function (UMVLine16Y_11) uses a static
variable, so it is not reentrant. In fact, because the reads and
writes to this static variable are private to each iteration, it does

not have a read-after-write (RAW) dependence, but a WAR
dependence. It is difficult for a compiler to analyze this data
dependence, because it is in a different function of a different
source file from the frequently executed loop. We need a
hardware solution for this problem such as the multiple-version
caches with ordered transactions proposed in some previous
studies (e.g. [18]).

The other source of the conflicts is false sharing due to
multiple writers. Fig. 7(b) shows a simplified version of the
frequently executed loop. Each iteration of this loop
consecutively writes a 4-byte integer to an array. If one
iteration is assigned to one transaction, multiple transactions
will write to the same cache line, causing conflicts. As
described in Section III.B, we avoided this false sharing by
setting Loop_Distance to 16 and by aligning the array to a
cache line boundary.

To estimate a possible speed-up, we eliminated the first
WAR dependence by manually modifying the
UMVLine16Y_11 function. Interestingly, the abort ratio of the

 429.mcf

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)
Total

XABORT

Buffer overflow

Conflict

Other

456.hmmer

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

464.h264ref

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

470.lbm

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

482.sphinx3

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

433.milc

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

Order inversion

Buffer overflow

Conflict

Other

Fig. 6. Abort ratios of each abort reason in SPEC CPU2006.

conflicts was still as high as 93%. We found this was due to the
same cause described in the section for 482.sphinx3.

5) 470.lbm
The benchmark 470.lbm also suffers from false sharing by

multiple writers. Unfortunately, increasing Loop_Distance
does not help, because the consecutive iterations of the
frequently executed loop write to non-consecutive elements of
an array. To solve this problem, word-level conflict detection is
necessary.

6) 482.sphinx3
The frequently executed loop of sphinx3 shown in Fig. 7(c)

contains the same pattern as in Fig. 7(b). The writes to the
score array in Lines 21 and 22 cause false sharing by multiple
writers. Therefore, we set Loop_Distance to 8 and inserted
ramp-up code before the loop to align the accesses to a cache
line boundary.

Although this benchmark showed a speed-up of 11% with 2
threads, an interesting point was that the main reason for the
aborts was not committing order inversion but conflicts, as
shown in Fig. 6. Since the only writes to shared memory in this
loop are the ones at Lines 21 and 22, why does this benchmark
still cause conflicts? We believe it was caused by the adjacent
cache line prefetcher in the Core i7-4770 [9]. Fig. 8 illustrates
this situation. Suppose there are 4 threads, each writing to a 64-
byte cache line in a task. While a transaction running on
Thread 1 is writing to a cache line, the CPU triggers the
prefetching of the adjacent memory location. Because the
prefetched cache line is part of the read or write set of the
transaction, it will cause a conflict with another transaction
running on Thread 2, which is writing to the same memory
location. Because the BIOS of the machine we used (Lenovo
ThinkCentre M93p) does not provide a menu to disable the
adjacent cache line prefetcher, we have not yet confirmed this
hypothesis.

7) Summary
Overall, 5 of the 6 benchmarks in SPEC CPU2006 suffered

from various kinds of conflicts. Therefore, to extend the HTM
implementations for more efficient thread-level speculation,
hardware support for ordered transactions does not appear to be
the best general approach. We discovered that data forwarding,
data synchronization, multiple-version caches, and word-level
conflict detection are necessary to speed up these benchmarks.

This observation contradicts the execution examples in Fig.
1(b) and Fig. 2, which show the benefits of hardware support
for ordered transactions. This is because the actual execution of
the realistic programs incurred many memory conflicts, and the
execution of most of the transactions did not reach the
committing point, where the transaction order mattered.

V. RELATED WORK

Porter et al. [18] studied possible ways to extend a baseline
HTM architecture for the efficient thread-level speculation.
They added ordered line invalidation, data forwarding, word-
level conflict detection, and a write-update protocol to the
baseline architecture, and evaluated the benefits of each change.
The biggest difference between their work and our research is
that their baseline HTM architecture supported ordered
transactions. In contrast, we based our research on the currently
available HTM implementations, which do not support ordered
transactions. Our results show that even without hardware
support for ordered transactions, the thread-level speculation
can achieve speed-ups of up to 11%, and more importantly,
aborts due to not having the hardware-supported ordered
transactions are not the main reason for the performance loss in
many benchmarks.

Blue Gene/Q [5] supports ordered transactions in hardware.
Also, the HTM of the upcoming POWER8 processor [6] will
support transaction suspend and resume, which can be used to
efficiently implement ordered transactions. However, our
research revealed that to obtain good speed-ups in SPEC
CPU2006, data forwarding, data synchronization, and other
advanced facilities will be required, too.

Packirisamy et al. [16] [17] applied thread-level speculation
to SPEC CPU2006. They first analyzed inter-thread register-
and memory-oriented data dependences in the frequently
executed loops in SPEC CPU2006. They then evaluated
thread-level speculation in SPEC CPU2006 on a trace-driven
simulator modeling STAMPede [21]. The 6 SPEC CPU2006
benchmarks we chose were the 6 most scalable programs in
their simulation results. They only briefly described why each
benchmark was or was not scalable, while we provide detailed
analyses for each of the 6 programs. In addition, their results
assumed thread-level speculation hardware with advanced
optimization facilities. In contrast, we show whether or not
those 6 potentially scalable programs are actually scalable on
off-the-shelf HTM.

There have been many research papers published using off-
the-shelf HTM systems. They either evaluated the performance
of the HTM systems by measuring transactional memory
benchmarks [3] [14] [23] [25] or used HTM to speed up
applications such as database systems [11] [13] [24], memory
managers [1] [19], and programming language interpreters [15].
However, none of them evaluated thread-level speculation on
an off-the-shelf HTM system.

VI. CONCLUSION

Thread-level speculation has been studied for many years,
but only recently can we investigate its performance on real
hardware by taking advantage of the hardware transactional

64 bytes 64 bytes 64 bytes 64 bytes

Writes by Thread 1

Writes by Thread 2

Prefetch

Prefetch

Conflict

Fig. 8. Writes to a cache line triggers prefetching of the next cache line, but

the prefetched cache line causes a conflict with writes by another thread.

memory available in the latest processors. In our research, we
studied thread-level speculation on the off-the-shelf HTM
implementation in Intel TSX. We manually modified
potentially parallel benchmarks in SPEC CPU2006 for thread-
level speculation. Our experimental results showed that thread-
level speculation resulted in up to an 11% speed-up even
without advanced optimization facilities, but actually degraded
the performance in most cases. These are the first experimental
results of thread-level speculation on real HTM hardware that
does not support any advanced hardware facilities such as
ordered transactions, data forwarding, or word-level conflict
detection. Conflicting with our expectations, the main reason
for the performance loss was not the lack of hardware support
for ordered transactions, but rather the transaction aborts due to
memory conflicts. Our investigation suggests that future
hardware should support not only ordered transactions but also
data forwarding, data synchronization, multi-version cache,
and word-level conflict detection for thread-level speculation.

ACKNOWLEDGMENT

We would like to thank the members of the Commercial
Systems group in IBM Research – Tokyo for helpful
discussions. We are also grateful to anonymous reviewers for
providing us with helpful comments.

REFERENCES

[1] Alistarh, D., Eugster, P., Herlihy, M., Matveev, A., and Shavit, N.,
“StackTrack: an automated transactional approach to concurrent
memory reclamation,” in Proceedings of the Ninth European Conference
on Computer Systems, pp. 25:1-25-14, 2014.

[2] Franklin, M. and Sohi, G. S., “The expandable split window paradigm
for exploiting fine-grain parallelism,” in Proceedings of the 19th Annual
International Symposium on Computer Architecture, pp. 58-67, 1992.

[3] Goel, B., Titos-Gil, R., Negi, A., McKee, S. A., and Stenstrom, P.,
“Performance and energy analysis of the restricted transactional memory
implementation on Haswell,” in Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 615-
624, 2014.

[4] Gopal, S., Vijaykumar, T. N., Smith, J. E., and Sohi, G. S., “Speculative
versioning cache,” in Proceedings of the 4th International Symposium
on High-Performance Computer Architecture, pp. 195-205, 1998.

[5] Haring, R. A., Ohmacht, M., Fox, T. W., Gschwind, M. K., Satterfield,
D. L., Sugavanam, K., Coteus, P. W., Heidelberger, P., Blumrich, M. A.,
Wisniewski, R.W., Gara, A., Chiu, G. L.-T., Boyle, P.A., Chist, N.H.,
and Kim, C., "The IBM Blue Gene/Q compute chip," IEEE Micro, 32(2),
pp. 48-60, 2012.

[6] IBM, “Power ISA Transactional Memory,” Power.org, 2012.

[7] IBM, "z/Architecture Principles of Operation Tenth Edition (September,
2012)," http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf

[8] Intel Corporation, "Intel Architecture Instruction Set Extensions
Programming Reference," 319433-012a edition, 2012.

[9] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization
Reference Manual,” 248966-028 edition, 2013.

[10] Intel Corporation, “Intel Xeon Processor E3-1200 v3 Product Family
Specification Update August 2014 Revision 007,” 328908-007 edition,
2014.

[11] Karnagel, T., Dementiev, R., Rajwar, R., Lai, K., Legler, T., Schlegel,
B., and Lehner, W., “Improving in-memory database index performance
with Intel Transactional Synchronization Extensions,” in Proceedings of
the 2014 IEEE 20th International Symposium on High Performance
Computer Architecture, pp. 476-487, 2014.

[12] Krishnan, V., and Torrellas, J., “A chip-multiprocessor architecture with
speculative multithreading,” IEEE Transactions on Computers, pp. 866-
880, 1999.

[13] Leis, V., Kemper, A., and Neumann, T., “Exploiting hardware
transactional memory in main-memory databases,” in Proceedings of the
2014 IEEE 30th International Conference on Data Engineering, pp. 580-
591, 2014.

[14] Odaira, R., Castanos, J. G., and Nakaike, T., “Do C and Java programs
scale differently on hardware transactional memory?,” in Proceedings of
the 2013 IEEE International Symposium on Workload Characterization,
pp. 34-43, 2013.

[15] Odaira, R., Castanos, J. G., and Tomari, H., “Eliminating global
interpreter locks in Ruby through hardware transactional memory,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 131-142, 2014.

[16] Packirisamy, V., Zhai, A., Hsu, W., Yew, P., and Ngai, T., “Exploring
speculative parallelism in SPEC2006,” in Proceedings of the 2009 IEEE
International Symposium on Performance Analysis of Systems and
Software, pp. 77-88, 2009.

[17] Packirisamy, V., Zhai, A., and Yew, P., “Exploring speculative
parallelism in SPEC2006,” Technical report TR 08-036, Department of
Computer Science and Engineering, University of Minnesota, 2008.

[18] Porter, L., Choi, B., and Tullsen, D. M., “Mapping out a path from
hardware transactional memory to speculative multithreading,” in
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pp. 313-324, 2008.

[19] Ritson, C. G., Ugawa, T., and Jones, R. E., “Exploring garbage
collection with haswell hardware transactional memory,” in Proceedings
of the 2014 International Symposium on Memory Management, pp. 105-
115, 2014.

[20] Sohi, G. S., Breach, S. E., and Vijayukumar, T. N., “Multiscalar
processors,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pp. 414-425, 1995.

[21] Steffan, J. G., Colohan, C., Zhai, A., and Mowry, T. C., “The
STAMPede approach to thread-level speculation,” ACM Transactions
on Computer System, Vol. 23, No. 3, pp. 253-300, 2005.

[22] Tsai, J., Huang, J., Amlo, C., Lilja, D. J., and Yew, P., “The
superthreaded processor architecture,” IEEE Transactions on Computers,
Vol. 48, No. 9, pp. 881-902, 1998.

[23] Wang, A., Gaudet, M., Wu, P., Amaral, J. N., Ohmacht, M., Barton, C.,
Silvera, R., and Michael, M., “Evaluation of Blue Gene/Q hardware
support for transactional memories,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, pp. 127-136, 2012.

[24] Wang, Z., Qian, H., Li, J., and Chen, H., “Using restricted transactional
memory to build a scalable in-memory database,” in Proceedings of the
Ninth European Conference on Computer Systems, pp. 26:1-26:15, 2014.

[25] Yoo, R. M., Hughes, C. J., Lai, K., and Rajwar, R., “Performance
evaluation of Intel transactional synchronization extensions for high-
performance computing, “ in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 19:1-19:11, 2013.

