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Abstract—Thread-level speculation can speed up a single-

thread application by splitting its execution into multiple tasks 

and speculatively executing those tasks in multiple threads. 

Efficient thread-level speculation requires hardware support for 

memory conflict detection, store buffering, and execution 

rollback, and in addition, previous research has also proposed 

advanced optimization facilities, such as ordered transactions 

and data forwarding. Recently, implementations of hardware 

transactional memory (HTM) are coming into the market with 

minimal hardware support for thread-level speculation. However, 

few implementations offer advanced optimization facilities. Thus, 

it is important to determine how well thread-level speculation 

can be realized on the current HTM implementations, and what 

optimization facilities should be implemented in the future. 

In our research, we studied thread-level speculation on the 

off-the-shelf HTM implementation in Intel TSX. We manually 

modified potentially parallel benchmarks in SPEC CPU2006 for 

thread-level speculation. Our experimental results showed that 

thread-level speculation resulted in up to an 11% speed-up even 

without the advanced optimization facilities, but actually 

degraded the performance in most cases. In contrast to our 

expectations, the main reason for the performance loss was not 

the lack of hardware support for ordered transactions but the 

transaction aborts due to memory conflicts. Our investigation 

suggests that future hardware should support not only ordered 

transactions but also memory data forwarding, data 

synchronization, multi-version cache, and word-level conflict 

detection for thread-level speculation. 
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I. INTRODUCTION 

As CPU frequency scaling slowed down in the 2000s, chip 
makers began implementing more and more cores and 
hardware threads on each chip to continue increasing the total 
processing capability while retaining power efficiency. Multi-
threaded applications can exploit these increases in processing 
capability. To facilitate such exploitation, the chip makers are 
providing new hardware support such as Hardware 
Transactional Memory (HTM). 

Unfortunately, single-threaded applications cannot benefit 
from the increasing number of cores and hardware threads. 
Although parallelizing compilers have been studied for many 
years, they have shown benefits only in simple computation 
kernels. To find parallelism in a single-threaded program, the 

compilers must find provably data-independent tasks in the 
code, which is often impossible in complex applications. 

Thread-Level Speculation (TLS), or Speculative 
Multithreading (SpMT), has been proposed 
  [2] [4] [12] [20] [21] [22] to overcome this limitation of the 
parallelizing compilers. Most of the proposed systems for the 
thread-level speculation incorporate at least three kinds of 
hardware support: (1) detection of address conflicts among 
loads and stores from multiple threads, (2) store buffering 
during the execution of specified code regions, and (3) 
execution rollback to the beginning of a region when a conflict 
is detected. With such hardware support, compilers no longer 
need to prove the data independence among the tasks. The 
compilers only need to find probably data-independent tasks in 
the code, and such tasks can be speculatively executed in 
parallel. It can be left to the hardware and runtime to preserve 
the correct sequential semantics of the program by detecting 
data-dependence violations and by re-executing the rolled-back 
tasks until the data dependence is resolved. 

While thread-level speculation has only been proposed in 
research papers, recent releases of publicly available CPUs 
implement HTM  [5] [6] [7] [8] , which supports the basic 
hardware features required for thread-level speculation. 
Specifically, HTM offers hardware support for memory 
conflict detection, store buffering, and execution rollback. 
Although researchers have noticed that thread-level speculation 
can be implemented on top of HTM   [18], no one has ever 
evaluated thread-level speculation on real HTM hardware. 
Therefore, it is important to determine how well thread-level 
speculation can improve single-thread performance on current 
HTM implementations. 

Beyond the raw performance data, what is more interesting 
is why thread-level speculation often fails to show good 
performance on the current HTM implementations. This is 
because typical proposals    [2] [4] [12] [20] [21] [22] for thread-
level speculation include advanced hardware facilities such as 
ordered transactions, data forwarding, data synchronization, or 
word-level conflict detection for optimization, but most of the 
current HTM implementations do not provide such hardware. 
For example, each task in thread-level speculation must 
commit in the same order as the sequential execution order, 
and the hardware support for ordered transactions allows a task 
to wait for the previous tasks to finish. Without this hardware 
support, if a task is about to finish before its previous tasks, 



then that task will have to be rolled back. Only Blue Gene/Q 
  [5] supports even one of those advanced facilities, ordered 
transactions. Thus, we want to know if the thread-level 
speculation can show speed-ups even without the advanced 
hardware facilities, and if not, what are the obstacles to 
achieving performance improvement. 

In this paper, we studied the thread-level speculation on an 
off-the-shelf implementation of HTM, the Intel TSX   [8], part 
of the 4th generation of the Intel Core processor. As target 
benchmarks, we selected the 6 programs in SPEC CPU2006 
that can potentially be sped up by thread-level speculation, 
based on previous studies   [16] [17]. Instead of implementing a 
compiler for thread-level speculation, we manually modified 
the source code of the selected benchmarks, focusing on their 
frequently executed loops. We assigned each iteration (or 
consecutive multiple iterations) of the loops as a task to a 
different thread. We executed each task as a transaction on the 
HTM. Because the Intel TSX does not support ordered 
transactions as hardware, we needed to roll back a task when 
its previous task had not yet finished. 

Here are our contributions: 

• We show the first experimental results of thread-level 
speculation on a real HTM hardware that does not 
support any advanced hardware facilities such as 
ordered transactions, data forwarding, or word-level 
conflict detection. 

• For each of the executed benchmarks in SPEC 
CPU2006, we present detailed reasons for the 
performance improvement or degradation and suggest 
what kinds of hardware extensions are necessary in the 
future. 

Section II describes the instruction set and 
microarchitecture of the Intel TSX in the Intel 4th Generation 
Core processor, as an example of an off-the-shelf HTM 
implementation. Section III explains how to support thread-
level speculation on the off-the-shelf HTM. Section IV shows 
our experimental results and Section V covers related work. 
Section VI concludes this paper. 

II. HTM IMPLEMENTATION 

We experimented on the Intel TSX   [8] implemented in the 
Intel 4th Generation Core processor (Core i7-4770). This 
section briefly describes its instruction set and micro 
architectures. Intel recently announced that the Intel TSX 
implemented in the 4th Generation Core processor had a 
functional problem  [10]. Intel will disable the Intel TSX in the 
processors to be shipped until a fix is implemented. Because 
the problem occurs only “under a complex set of internal 
timing conditions,”  [10] we believe our results are valid, but 
we will revalidate them once the fix becomes available. 

The Core i7-4770 processor contains 4 cores and each core 
supports 2 simultaneous multi-threading (SMT) threads. Each 
core has 32-KB L1 data and 256-KB L2 unified caches. The 4 
cores share an 8-MB L3 cache. The cache line size is 64 bytes. 

In the Intel TSX, each transaction begins with an XBEGIN 
instruction and is ended by an XEND instruction. The detailed 
design of the Core i7-4770 processor’s HTM has not been 
revealed, but it takes advantage of the CPU cache structure. 
The hardware keeps track of the read and write sets of each 
transaction, using the caches. Transactionally written data is 
not visible to the other threads until the transaction is 
committed by an XEND instruction. 

A transaction can abort for various reasons, and the 
execution jumps to a program point specified by the argument 
of the XBEGIN instruction. All of the transactionally written 
data is discarded, and the registers are rolled back to the image 
immediately before the XBEGIN instruction. The most 
frequent causes for aborts include conflicts and footprint 
overflows. The EAX register reports the abort reason. 
Transactions conflict with each other when the read or write set 
of a transaction overlaps with the write set of the other 
transaction. When a conflict occurs, one of the transactions is 
aborted by the hardware, but the software cannot control which 
one to abort. Conflicts are detected at the granularity of a 64-
byte cache line. Also, because the read and write sets are kept 
in caches, there are upper limits on their sizes. Our preliminary 
experiments showed that the maximum read-set size is 4 MB, 
and the maximum write-set sized is about 22 KB in the Core 
i7-4770. A transaction can also be aborted by software with an 
XABORT instruction. 

These hardware features, i.e. conflict detection, store 
buffering, and execution rollback, are minimal requirements 
for efficient thread-level speculation. The other available HTM 
implementations such as the ones in the IBM zEnterprise EC12 
  [7] and POWER8  [6] offer the same set of features. 

III. THREAD-LEVEL SPECULATION ON HTM 

This section describes the basics of thread-level speculation 
and how to implement it on the currently available HTM 
implementations. 

We call a unit of work for speculation a task. Since we use 
HTM for speculation, each task is executed as a transaction, 
except for the case described in Section III.B. 

A. Thread-Level Speculation for Loops 

Our research focuses on thread-level speculation for 
frequently executed loops. Another typical target of thread-
level speculation is function calls. Section III.D explains why 
we did not consider function calls as our initial target. 

Fig. 1(a) is a code excerpt from the 429.mcf benchmark in 
SPEC CPU2006. Lines 8-18 are a frequently executed loop. 
Parallelizing compilers cannot prove that the iterations of this 
loop are data-independent, because Lines 12-15 modify shared 
data, the basket_size variable and the objects pointed to by the 
perm array. However, because the conditional checks in Lines 
9 and 11 are only occasionally true, this loop can be executed 
in parallel for many of its iterations. This loop is a good 
example in which thread-level speculation can improve the 
single-thread performance but parallelizing compilers cannot. 



Fig. 1(b) is an example execution sequence of the loop in 
Fig. 1(a) using thread-level speculation. In this example, each 
iteration of the loop is executed as a single task. We assume 
that this system has 4 hardware threads and supports ordered 
transactions in hardware. In thread-level speculation, all of the 
tasks must commit in the same order as the original sequential 
order, because the system can insure that there is no data-

dependency violation in a task only after all of its preceding 
tasks have committed. The hardware support for ordered 
transactions allows a task to wait immediately before its 
commit point if its preceding tasks have not yet finished. In 
most of the proposed systems for thread-level speculation, the 
hardware support for ordered transactions also means that the 
hardware rolls back a more speculative task when a conflict is 
detected.  

In Fig. 1(b), the hardware threads 1, 2, 3, and 4 execute 
iterations 1, 2, 3, and 4, respectively. Suppose the conditional 
checks in Lines 9 and 11 are both true in the iterations 5 and 6. 
These tasks cause a conflict on the updates to the basket_size 
variable, and the hardware rolls back the more speculative task, 

 

1. static long basket_size;
2. static BASKET *perm[B+K+1];
3. static long nr_group;

4. arc_t *primal_bea_mpp(..., arc_t *stop_arcs, ...) {
5. ...
6. cost_t red_cost;
7. arc_t *arc = ...;
8. for( ; arc < stop_arcs; arc += nr_group ) {
9. if( arc->ident > BASIC ) {
10. red_cost = arc->cost –

arc->tail->potential + 
arc->head->potential;

11. if( bea_is_dual_infeasible( arc, red_cost ) ) {
12. basket_size++;
13. perm[basket_size]->a = arc;
14. perm[basket_size]->cost = red_cost;
15. perm[basket_size]->abs_cost = ABS(red_cost);
16. }
17. }
18. }
19. ...
20.}

(a) Frequently executed loop in 429.mcf: pbeampp.c
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Fig. 1. (a) Frequently executed loop in 429.mcf of SPEC CPU 2006. (b) 

Example of execution by TLS on 4 threads, assuming that the system 
supports ordered transactions. Wasted CPU cycles are in grey. Iterations 

5 and 6 increment a variable basket_size in global memory, resulting in 

a conflict. Iterations 7, 8, and 9 wait for the previous iterations to finish. 

 1. static volatile long basket_size;
2. static BASKET *perm[B+K+1];
3. static long nr_group;

4. arc_t *primal_bea_mpp(..., arc_t *stop_arcs, ...) {
5. ...
6. arc_t *arc = ...;
7. arc_t *Next_Iter_To_Commit = arc;
8. TLS_arguments Args[Num_TLS_Threads];
9. for (Thr = 0; Thr < Num_TLS_Threads; Thr++) {
10. Args[Thr].arc = arc;
11. arc += nr_group * Loop_Distance;
12. Args[Thr].stop_arcs = stop_arcs;
13. }
14. Invoke_TLS(TLS_primal_bea_mpp, Args,

&Next_Itr_To_Commit);
15. ...
16.}

17.void TLS_primal_bea_mpp(TLS_Thread *Thread) {
18. cost_t red_cost;
19. arc_t *arc = Thread->Args->arc;
20. arc_t *stop_arcs = Thread->Args->stop_arcs;
21. arc_t * volatile *Ptr_Next_Itr_To_Commit =

Thread->Ptr_Next_Itr_To_Commit;

22. long Inc = nr_group * (Num_TLS_Threads – 1) *
Loop_Distance;

23. long Distance = nr_group * Loop_Distance;
24. for( ; arc < stop_arcs; arc += inc ) {
25. arc_t *Original_arc = arc;
26. bool Execute_in_HTM;
27. Retry:
28. if (*Ptr_Next_Itr_To_Commit != arc) {
29. Execute_in_HTM = true;
30. if (XBEGIN())
31. goto Retry:
32. } else {
33. Execute_in_HTM = false;
34. }
35. for ( ; arc – Original_arc < Distance &&

arc < stop_arcs;
arc += nr_group ) {

36. /* Omit. 
The same as Lines 9-17 in Fig.1(a). */

37. }
38. if (Execute_in_HTM) {
39. if (*Ptr_Next_Itr_To_Commit != Original_arc)
40. XABORT();
41. XEND();
42. }
43. *Ptr_Next_Itr_To_Commit = 

Original_arc + Distance;
44. }
45. }  

 

Fig. 2. TLS version of the loop in Fig. 1, using HTM. 



the iteration 6. In some proposed systems for thread-level 
speculation, the hardware supports data forwarding from a less 
speculative task to a more speculative one, so the iteration 6 
would not need to be rolled back, but we do not assume such 
hardware support exists in this example. 

The iterations 7, 8, and 9 do not encounter any conflicts, 
but their preceding tasks are delayed due to the conflict 
between the iterations 5 and 6. The hardware support for 
ordered transactions allows them to wait until their respective 
preceding tasks commit.  

B. Thread-Level Speculation using HTM 

Fig. 2 shows the same loop as the one in Fig. 1(a), but with 
thread-level speculation using HTM. Instead of implementing a 
compiler to perform this transformation automatically, we 
manually modified the source code in our experiments. In this 
example, memory fence instructions are omitted for clarity. 
The XBEGIN, XABORT, and XEND functions in Lines 30, 40, 
and 41 are wrapper functions for their corresponding 
instructions. The XBEGIN function returns false when a 

transaction begins, but when the transaction aborts, the 
execution jumps back to within the XBEGIN function, which 
then returns true. 

The loop in Lines 8-18 in Fig. 1(a) is moved to a new 
function in Lines 17-45. In this example, we assume that there 
are 4 software threads 1-4, each bound to a corresponding 
hardware thread. Each software thread executes multiple tasks 
that are pre-assigned to that thread. For example, the software 
thread 1 executes iterations 1, 5, 9, and so on. The original 
function (Lines 4-16) sets up the arguments for each software 
thread and starts thread-level speculation by calling a utility 
function (Line 14). The utility function (not shown) passes the 
arguments to the software threads and lets them execute the 
loop body in the new function (Lines 17-45). Alternatively, 
instead of pre-assigning multiple tasks to a software thread, we 
can assign only one task to each software thread. In this style, 
each task spawns a new thread, which executes the next task, 
and when a task finishes, the corresponding thread is discarded. 
This dynamic thread spawning allows more flexibility in 
scheduling, but requires a low-overhead threading mechanism.  

In the new function (Lines 17-45), the loop is transformed 
into doubly-nested loops, and the inner loop (Lines 35-37) is 
executed as a single task. This means the inner loop is executed 
as a single transaction, enclosed with the XBEGIN and XEND 
instructions (Lines 30 and 41). In this way, multiple iterations 
can be executed in a transaction to mitigate the execution 
overhead of the XBEGIN and XEND instructions. The trip 
count of the inner loop can be adjusted by the Loop_Distance 
variable. For example, when Loop_Distance is 2, the software 
thread 1 executes iterations 1, 2, 9, 10, and so on, assuming 4 
software threads. Since there are upper limits in the read and 
write sets of a transaction, Loop_Distance cannot be freely 
increased. 

Another important reason for executing multiple iterations 
in a transaction is to avoid false sharing, because the conflict 
detection is at the granularity of a cache line, which is 64 bytes 
long in Core i7-4770. For example, if each iteration of a loop 
consecutively writes to a 4-byte element of an array,  then 
Loop_Distance should be 64 bytes / 4 bytes = 16, so that 
multiple transactions do not write to different parts of the same 
cache line. Therefore, this transformation into the doubly-
nested loops is specific not to the thread-level speculation 
using HTM but to any thread-level speculation with cache-line-
level conflict detection. 

Ordered transactions are implemented by software, using a 
shared variable Next_Itr_To_Commit defined in Line 7. This 
variable holds the value of a loop induction variable for the 
iteration that can commit next. Each thread accesses this shared 
variable through a pointer (Line 21). If the induction variable 
of the first iteration of a task does not match 
Next_Itr_To_Commit (Line 39), then that task has to be rolled 
back by the XABORT instruction. Note that it is not a good 
idea to spin-wait on Next_Itr_To_Commit in the transaction, 
because once this variable is read in Line 39, it is kept in the 
read set of the transaction. When a previous task updates 
Next_Itr_To_Commit in Line 43, the spin-waiting transaction 
would be aborted due to the conflict and be rolled back anyway.  
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Fig. 3. Example of execution by TLS using HTM, in contrast to the 

execution by TLS with hardware-supported ordered transactions in Fig. 
1(b). Wasted CPU cycles are in grey. The conflict between the iterations 

5 and 6 aborted the less speculative iteration 5. The iterations 7-10 have 

to be retried because they cannot wait for the preceding iterations to 
finish 



At the beginning of each task in Line 28, if it turns out that 
the current task can commit next, then this task is non-
speculative, and therefore it is executed without using HTM. 
This is necessary because if all of the tasks were executed as 
transactions, even non-speculative tasks could be rolled back 
indefinitely, and forward progress could not be guaranteed. 

Finally, note that we privatize the red_cost variable, which 
was originally in Line 6 of Fig. 1(a) but moved to the new 
function in Line 18 of Fig. 2, assuming that it is not difficult 
for a compiler to prove this variable is iteration-local. 

C. Example of Execution by TLS using HTM 

Fig. 3 shows an example of the execution of the loop in Fig. 
2, in contrast to the execution on the system supporting ordered 
transactions in hardware in Fig. 1(b). The iterations 5 and 6 
caused a conflict in the same way as in Fig. 1(b), but this time 
the hardware rolls back the iteration 5, because the hardware is 
not aware of which transaction is more speculative. As a result, 
not only the iteration 5 but also the iteration 6 has to be rolled 
back, because when the iteration 6 is about to commit, the 
iteration 5 has not yet finished. 

For the same reason, the iterations 7-10 have to be retried. 
The retrial is less efficient than the wait in Fig 1(b), because a 
thread cannot start the next task as soon as the preceding task 
commits. 

D. Thread-Level Speculation for Function Calls 

We focus on thread-level speculation for loops, but another 
typical target of thread-level speculation is function calls. That 
is, the callee of a function call and its continuation are 
speculatively executed in parallel. However, it is difficult to 
efficiently implement this type of thread-level speculation on 
the current HTM. When a thread finishes the execution of the 
callee, it must notify the other thread executing the 
continuation, so that the other thread can commit the 
transaction. Unfortunately, the current HTM implementations 
do not provide such notification mechanisms without aborting 
the transactions. 

IV. EXPERIMENTS 

This section describes our benchmarks and implementation 
of the thread-level speculation using HTM and then presents 
the experimental results of a micro-benchmark and SPEC 
CPU2006. 

A. Benchmarks 

We used a micro-benchmark and SPEC CPU2006 to 
evaluate the thread-level speculation on HTM. The micro-
benchmark is an embarrassingly parallel program that contains 
one loop. Each iteration increments an iteration-local variable 
1,000 times, and the loop iterates 10,000,000 times. We created 
this micro-benchmark to study the best speed-up we can obtain 
from the thread-level speculation on HTM. 

For SPEC CPU2006, we evaluated the benchmarks that can 
potentially be sped up by thread-level speculation, according to 
previous studies   [16] [17]. Specifically, we selected 6 of the 7 
programs that showed more than 1.5-fold speed-ups over the 
sequential execution using 4 cores in the previous studies. 
These studies evaluated 13 benchmarks in SPEC CPU2006, 
using a simulator based on STAMPede   [21] with hardware-
supported ordered transactions, data forwarding, data 
synchronization, and word-level conflict detection. Therefore, 
we do not need to consider those benchmarks that showed no 
or marginal speed-ups even with these advanced hardware 
facilities. We excluded 444.namd because it generates multiple 
methods from a single C++ macro function, so it was difficult 
to manually modify a particular frequently executed loop. 

 Table I summarizes the selected 6 benchmarks. For each of 
these benchmarks, we applied the thread-level speculation to 
one frequently executed loop reported in Table 4 of the 
previous study   [17]. The third column of Table I shows the 
locations of our target loops in the source code. The forth 
column of Table I is the fractions of the total execution time 
covered by our target loops, measured in our experimental 
environment described in Section IV.C. We used the reference 
data sets for our evaluations. 

B. Implementation 

We implemented the thread-level speculation on the Intel 
TSX using Pthreads. Because creating a Pthread is 
heavyweight on our experimental platform (Linux), we 
spawned the same number of Pthreads as the number of 
hardware threads at the start-up time of a program. Each 
Pthread spin-waits on a flag for some task to be assigned to it. 
This method obviously wastes CPU cycles. The system should 
provide a lightweight mechanism to spawn or to wake up 
threads, but that is beyond the scope of our current work. 

We manually modified the source code of the frequently 
executed loops for the thread-level speculation. The loop 
bodies (for example, Line 36 in Fig. 2) are exactly the same as 
the original loops, but due to the transformation into the 

TABLE I. EVALUATED BENCHMARKS IN SPEC CPU2006 

Benchmark Description Loop location in source code Loop coverage Loop_Distance 

429.mcf Combinatorial optimization pbeampp.c, 165 41% 20 

433.milc Quantum Chromodynamics (QCD) quark_stuff.c, 1523 23% 4 

456.hmmer Gene sequence database search fast_algorithm.c, 133 95% 16 

464.h264ref Video compression mv-search.c, 394 29% 16 

470.lbm Computational fluid dynamics lbm.c, 186 98% 3 

482.sphinx3 Speech recognition vector.c, 513 35% 8 

 



doubly-nested loops, the entire source code looks different 
from the original code. Therefore, compiler optimizations can 
result in generated code that is different from the originally 
generated code. To assess this undesired effect, we measured 
not only the original sequential version but also the 1-thead 
execution of the thread-level speculation version. In the 1-
thread execution, our system spawned no Pthreads, and the 
parallelization overhead such as the argument setup is minimal. 
Therefore, we can distinguish the speed-ups or slow-downs by 
the thread-level speculation from the effects of the compiler 
optimizations.  

C. Experimental Environment and Settings 

We evaluated our implementation on one Intel Core i7-
4770 processor, running at 3.4 GHz. Our machine had 4 GB of 
memory and ran Linux 2.6.32-431. As described in Section II, 
the Core i7-4770 has 4 cores with 2-way SMT. We compiled 
our benchmarks with GCC 4.9.0. We did not change the 
compiler flags specified in the configuration file provided by 
SPEC CPU2006. 

In the following sections, we show the throughput results. 
Throughput is the reciprocal of the entire execution time of an 
application, not the execution time of the loop to which thread-
level speculation was applied. We ran each benchmark 4 times 
and took the averages. The performance fluctuations were 
negligible. 

We conducted preliminary experiments to find the best 
Loop_Distance as explained in Section III.B for each of the 
benchmarks. The results are shown in the 5th column of Table 
I. For the micro-benchmark, Loop_Distance was set to 100. In 
addition, when we executed more than 1 software thread on a 
core by enabling SMT, we halved the Loop_Distance for 
429.mcf, 433.milc, and 470.lbm, because the effective read and 
write set sizes decreased by half. 

D. Results of Micro-Benchmark 

Fig. 4(a) shows the throughput of the micro-benchmark, 
normalized to the throughput of the sequential execution. The 
number of software threads was set from 1 to 2, 4, 6, and 8. 
Note that the execution with 6 and 8 threads used the 2-way 
SMT. The thread-level speculation on HTM scaled up to 4 
threads, but the speed-up was only 1.6-fold. With 6 and 8 
threads, it did not show any speed-up. 

Fig. 4(b) presents the total abort ratio of the micro-
benchmark and the abort ratios for each abort reason reported 
by the CPU. An abort ratio is the number of aborted 
transactions divided by the total number of transactions 
attempted. Note that with 1 thread, all of the tasks were 
executed without using HTM, so there were no aborts. The 
Intel TSX has 5 abort reasons, but we did not include “Hit 
Break Point” or “During Nested Transaction” because they 
never occurred in our experiments. The “Other” reason in Fig. 
4 (b) means the CPU set no flag in the EAX register. The 
“Order inversion” was caused by the XABORT instruction in 
Line 40 of Fig. 2. These results indicate that the scalability of 
the micro-benchmark was limited by the lack of hardware-
supported ordered transactions. Although each task only 
increments its local variable the same amount of times in this 

micro-benchmark, the execution time of each task fluctuates, 
which can result in inversions of the committing order. The 
fluctuation can be exacerbated when multiple tasks are 
executed on the SMT. 

This micro-benchmark results show the upper limit of the 
speed-up we can achieve with the thread-level speculation on 
HTM without any additional hardware facilities. 

E. Results of SPEC CPU2006 

Fig. 5(a) shows the throughput of the 6 selected 
benchmarks in SPEC CPU2006, normalized to the throughput 
of the sequential execution. The thread-level speculation on 
HTM improved the performance by 11% in 482.sphinx3, 8% 
in 429.mcf and by 5% in 433.milc using 2 or 4 threads, but 
degraded the performance in most of the cases. The results of 
the 1-thread execution were within 3% of those of the 
sequential execution in 433.milc, 464.h264ref, 470.lbm, and 
482.sphinx3. In 429.mcf and 456.hmmer, the 1-thread 
executions were slower by 7% and 15%, respectively. As 
described in Section IV.B, these differences were caused by the 
effects of the compiler optimizations. If the thread-level 
speculation versions were as optimized by the compiler as the 
sequential versions, these benchmarks could show better 
performance. 

Fig. 5(b) presents the abort ratios of the SPEC CPU2006 
benchmarks. The transactions in 456.hammer, 464.h264ref, 
and 470.lbm almost always aborted, which resulted in the 
performance losses in Fig. 5(a). 456.hammer and 470.lbm 
scaled worse than 464.h264ref simply because their loop 
coverage was more than 95%, as shown in Table I. The other 3 
benchmarks, 429.mcf, 433.milc, and 482.sphinx3 showed 
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Fig. 4. (a) Throughput of the micro-benchmark on Intel Core i7-4770, 

normalized to the throughput of the sequential execution. (b) Abort 

ratios of each abort reason of the micro-benchmark. 



speed-ups to some extent with 2 or 4 threads, because of their 
relatively lower abort ratios. 

F. Detailed Analysis of SPEC CPU2006 

Fig. 6 shows the abort ratios for each abort reason in SPEC 
CPU2006. In this section, we analyze the results of each 
benchmark by referring to the abort statistics and source code. 

1) 429.mcf 
We have already presented the source code of the 

frequently executed loop of 429.mcf in Fig. 1(a). This loop 
causes occasional conflicts due to the update to the basket_size 
variable. According to Fig. 6, the main reason for the aborts 
was these conflicts, not committing order inversion, even with 
2 threads. We can lower the probability of the conflicts by 
simply making Loop_Distance smaller. However, our 
preliminary experiments show performance degradation with a 
smaller Loop_Distance, not only because of the higher relative 
overhead of the XBEGIN and XEND instructions, but also 
because of more aborts by committing order inversion. We 
believe that too small tasks are subject to execution time 
fluctuations. Hardware-supported ordered transactions could 
help handle the fluctuations, but the commit-time wait is 
inefficient in any case. A better solution would be to support 
data forwarding from a less speculative task to a more 
speculative task.  

 

2) 433.milc 
433.milc is the most parallel among the 6 benchmarks, 

from the viewpoint of thread-level speculation. The speed-up 
was worse than that of 482.sphinx3, because of the lower loop 
coverage of 23%. The main abort reason was committing order 
inversion, which means hardware support for ordered 
transactions could provide better speed-ups. Because we 
halved Loop_Distance when using the SMT with 6 or 8 
software threads, buffer overflows were not a severe problem. 
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Fig. 5. (a) Throughput of SPEC CPU2006 benchmarks by TLS 

execution on Intel Core i7-4770, normalized to the throughput of the 

sequential execution of each benchmark. (b) Abort ratios of the SPEC 

CPU2006 benchmarks 

 

1. for (k = 1; k <= M; k++) {
2. mc[k] = mpp[k-1]   + tpmm[k-1];
3. if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
4. if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
5. if ((sc = xmb + bp[k])         > mc[k])  mc[k] = sc; 
6. mc[k] += ms[k];
7. if (mc[k] < -INFTY) mc[k] = -INFTY;  
8. dc[k] = dc[k-1] + tpdd[k-1];
9. if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
10. if (dc[k] < -INFTY) dc[k] = -INFTY;  
11. if (k < M) {
12. ic[k] = mpp[k] + tpmi[k];
13. if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc; 
14. ic[k] += is[k];
15. if (ic[k] < -INFTY) ic[k] = -INFTY; 
16. }
17.}

1. int**   block_sad = ...;
2. ...
3. for (pos = 0; pos < max_pos; pos++)
4. {
5. ...
6. block_sad[...][pos] = LineSadBlk0;
7. ...
8. }

(a) Frequently executed loop in 456.hmmer

(b) Frequently executed loop in 464.h264ref

1. int32 *score;
2. ...
3. for (r = offset; r < end-1; r += 2) {
4. m1 = gautbl->mean[r];
5. m2 = gautbl->mean[r+1];
6. v1 = gautbl->var[r];
7. v2 = gautbl->var[r+1];
8. dval1 = gautbl->lrd[r];
9. dval2 = gautbl->lrd[r+1];

10. for (i = 0; i < veclen; i++) {
11. diff1 = x[i] - m1[i];
12. dval1 -= diff1 * diff1 * v1[i];
13. diff2 = x[i] - m2[i];
14. dval2 -= diff2 * diff2 * v2[i];
15. }
16.
17. if (dval1 < gautbl->distfloor)
18. dval1 = gautbl->distfloor;
19. if (dval2 < gautbl->distfloor)
20. dval2 = gautbl->distfloor;

21. score[r] = (int32)(f * dval1);
22. score[r+1] = (int32)(f * dval2);
23.}

(c) Frequently executed loop in 482.sphinx3

 
 

Fig. 7. (a) Frequently executed loop in 456.hmmer. (b) Frequently 

executed loop in 464.h264ref. (c) Frequently executed loop in 

482.sphinx3. 



3) 456.hmmer 
Fig. 7(a) shows the frequently executed loop to which we 

applied the thread-level speculation with HTM. This loop has a 
great deal of loop-carried dependence, such as at the dc array in 
Line 8. This is why we encountered almost 100% conflict 
aborts, as shown in Fig. 6. The previous studies   [16] [17] were 
able to achieve good speed-ups in 456.hmmer, by taking 
advantage of advanced hardware facilities, such as data 
forwarding and synchronization.  

4) 464.h264ref 
The benchmark 464.h264ref is another one that suffered 

from severe conflicts. There are two sources of the conflicts in 
this benchmark. One is a write-after-read (WAR) dependence, 
and the other is false sharing due to multiple writers.  

In 456.hmmer, the data dependence is in the loop body of 
the frequently executed loop, but in 464.h264ref, the data 
dependence is in another function called from its frequently 
executed loop. This function (UMVLine16Y_11) uses a static 
variable, so it is not reentrant. In fact, because the reads and 
writes to this static variable are private to each iteration, it does 

not have a read-after-write (RAW) dependence, but a WAR 
dependence. It is difficult for a compiler to analyze this data 
dependence, because it is in a different function of a different 
source file from the frequently executed loop. We need a 
hardware solution for this problem such as the multiple-version 
caches with ordered transactions proposed in some previous 
studies (e.g.   [18]).  

The other source of the conflicts is false sharing due to 
multiple writers. Fig. 7(b) shows a simplified version of the 
frequently executed loop. Each iteration of this loop 
consecutively writes a 4-byte integer to an array. If one 
iteration is assigned to one transaction, multiple transactions 
will write to the same cache line, causing conflicts. As 
described in Section III.B, we avoided this false sharing by 
setting Loop_Distance to 16 and by aligning the array to a 
cache line boundary.  

To estimate a possible speed-up, we eliminated the first 
WAR dependence by manually modifying the 
UMVLine16Y_11 function. Interestingly, the abort ratio of the 

 429.mcf

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)
Total

XABORT

Buffer overflow

Conflict

Other

456.hmmer

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

464.h264ref

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

470.lbm

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

482.sphinx3

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

XABORT

Buffer overflow

Conflict

Other

433.milc

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of software threads

A
b

o
rt

 r
a

ti
o

 (
%

)

Total

Order inversion

Buffer overflow

Conflict

Other

 

Fig. 6. Abort ratios of each abort reason in SPEC CPU2006. 



conflicts was still as high as 93%. We found this was due to the 
same cause described in the section for 482.sphinx3. 

5) 470.lbm 
The benchmark 470.lbm also suffers from false sharing by 

multiple writers. Unfortunately, increasing Loop_Distance 
does not help, because the consecutive iterations of the 
frequently executed loop write to non-consecutive elements of 
an array. To solve this problem, word-level conflict detection is 
necessary. 

6) 482.sphinx3 
The frequently executed loop of sphinx3 shown in Fig. 7(c) 

contains the same pattern as in Fig. 7(b). The writes to the 
score array in Lines 21 and 22 cause false sharing by multiple 
writers. Therefore, we set Loop_Distance to 8 and inserted 
ramp-up code before the loop to align the accesses to a cache 
line boundary.  

Although this benchmark showed a speed-up of 11% with 2 
threads, an interesting point was that the main reason for the 
aborts was not committing order inversion but conflicts, as 
shown in Fig. 6. Since the only writes to shared memory in this 
loop are the ones at Lines 21 and 22, why does this benchmark 
still cause conflicts? We believe it was caused by the adjacent 
cache line prefetcher in the Core i7-4770   [9]. Fig. 8 illustrates 
this situation. Suppose there are 4 threads, each writing to a 64-
byte cache line in a task. While a transaction running on 
Thread 1 is writing to a cache line, the CPU triggers the 
prefetching of the adjacent memory location. Because the 
prefetched cache line is part of the read or write set of the 
transaction, it will cause a conflict with another transaction 
running on Thread 2, which is writing to the same memory 
location. Because the BIOS of the machine we used (Lenovo 
ThinkCentre M93p) does not provide a menu to disable the 
adjacent cache line prefetcher, we have not yet confirmed this 
hypothesis. 

7) Summary 
Overall, 5 of the 6 benchmarks in SPEC CPU2006 suffered 

from various kinds of conflicts. Therefore, to extend the HTM 
implementations for more efficient thread-level speculation, 
hardware support for ordered transactions does not appear to be 
the best general approach. We discovered that data forwarding, 
data synchronization, multiple-version caches, and word-level 
conflict detection are necessary to speed up these benchmarks. 

This observation contradicts the execution examples in Fig. 
1(b) and Fig. 2, which show the benefits of hardware support 
for ordered transactions. This is because the actual execution of 
the realistic programs incurred many memory conflicts, and the 
execution of most of the transactions did not reach the 
committing point, where the transaction order mattered. 

V. RELATED WORK 

Porter et al.   [18] studied possible ways to extend a baseline 
HTM architecture for the efficient thread-level speculation. 
They added ordered line invalidation, data forwarding, word-
level conflict detection, and a write-update protocol to the 
baseline architecture, and evaluated the benefits of each change. 
The biggest difference between their work and our research is 
that their baseline HTM architecture supported ordered 
transactions. In contrast, we based our research on the currently 
available HTM implementations, which do not support ordered 
transactions. Our results show that even without hardware 
support for ordered transactions, the thread-level speculation 
can achieve speed-ups of up to 11%, and more importantly, 
aborts due to not having the hardware-supported ordered 
transactions are not the main reason for the performance loss in 
many benchmarks. 

Blue Gene/Q   [5] supports ordered transactions in hardware. 
Also, the HTM of the upcoming POWER8 processor   [6] will 
support transaction suspend and resume, which can be used to 
efficiently implement ordered transactions. However, our 
research revealed that to obtain good speed-ups in SPEC 
CPU2006, data forwarding, data synchronization, and other 
advanced facilities will be required, too. 

Packirisamy et al.  [16] [17] applied thread-level speculation 
to SPEC CPU2006. They first analyzed inter-thread register- 
and memory-oriented data dependences in the frequently 
executed loops in SPEC CPU2006. They then evaluated 
thread-level speculation in SPEC CPU2006 on a trace-driven 
simulator modeling STAMPede  [21]. The 6 SPEC CPU2006 
benchmarks we chose were the 6 most scalable programs in 
their simulation results. They only briefly described why each 
benchmark was or was not scalable, while we provide detailed 
analyses for each of the 6 programs. In addition, their results 
assumed thread-level speculation hardware with advanced 
optimization facilities. In contrast, we show whether or not 
those 6 potentially scalable programs are actually scalable on 
off-the-shelf HTM. 

There have been many research papers published using off-
the-shelf HTM systems. They either evaluated the performance 
of the HTM systems by measuring transactional memory 
benchmarks   [3] [14] [23] [25] or used HTM to speed up 
applications such as database systems  [11] [13] [24], memory 
managers  [1] [19], and programming language interpreters  [15]. 
However, none of them evaluated thread-level speculation on 
an off-the-shelf HTM system. 

VI. CONCLUSION 

Thread-level speculation has been studied for many years, 
but only recently can we investigate its performance on real 
hardware by taking advantage of the hardware transactional 
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Fig. 8. Writes to a cache line triggers prefetching of the next cache line, but 

the prefetched cache line causes a conflict with writes by another thread. 



memory available in the latest processors. In our research, we 
studied thread-level speculation on the off-the-shelf HTM 
implementation in Intel TSX. We manually modified 
potentially parallel benchmarks in SPEC CPU2006 for thread-
level speculation. Our experimental results showed that thread-
level speculation resulted in up to an 11% speed-up even 
without advanced optimization facilities, but actually degraded 
the performance in most cases. These are the first experimental 
results of thread-level speculation on real HTM hardware that 
does not support any advanced hardware facilities such as 
ordered transactions, data forwarding, or word-level conflict 
detection. Conflicting with our expectations, the main reason 
for the performance loss was not the lack of hardware support 
for ordered transactions, but rather the transaction aborts due to 
memory conflicts. Our investigation suggests that future 
hardware should support not only ordered transactions but also 
data forwarding, data synchronization, multi-version cache, 
and word-level conflict detection for thread-level speculation. 
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