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Hardware Transactional Memory (HTM) 
Coming into the Market
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Many Programming Languages to Support TM

� Transactional langugage constructs

–Being discussed for C++

� TM intrinsic support

–GNU C/C++ compiler

– IBM XL C/C++ compiler

�Software TM (STM) support

–DSTM2 for Java

–TinySTM for C/C++

–Haskell, Closure, etc.
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Our Goal

�Which programming language to choose?

�More specifically,

–Focus on C and Java.

–Do they scale differently on HTM?

– If yes, what are the reasons?
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Our Methodology

�Measured C and Java STAMP benchmarks.

–Widely used TM benchmark suite.

�Experimented on IBM zEC12’s HTM.
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Transactional Memory

�At programming time

–Enclose critical sections with transaction begin 

and end directives.

lock();
a->count++;
unlock();

tbegin();
a->count++;
tend();
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Transactional Memory

�At execution time

–A transaction observed 

as one step by other 

threads.

–Multiple transactions 

executed in parallel as 

long as no memory 

conflict.

� Higher parallelism 

than locks.

tbegin();
a->count++;
tend();

tbegin();
b->count++;
tend();

tbegin();
a->count++;
tend(); tbegin();

a->count++;
tend();

Thread X Thread Y
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HTM in IBM zEC12

� Instruction set

– TBEGIN: Begin a transaction

– TEND: End a transaction

– TABORT, NTSTG, etc.

� Micro-architecture

– Hold read set in L1 and L2 caches (~1MB)

– Hold write set in L1 cache and store buffer (8KB)

– Conflict detection using cache coherence protocol

– 256-byte cache line

� Roll back to immediately after TBEGIN when:

– Conflict, footprint overflow, etc.

TBEGIN
if (cc!=0)

goto abort handler
...
...
TEND
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STAMP Benchmarks [Minh et al., 2008]

�Most widely used benchmark suite for TM

�Written in C

Refines a Delaunay meshyada

vacation-low

Emulates travel reservation systemvacation-high

Creates efficient graph representationssca2

Routes paths in mazelabyrinth

kmeans-low

Implements K-means clusteringkmeans-high

Detects network intrusionintruder

Performs gene sequencinggenome

Learns structure of a Bayesian networkbayes
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Java STAMP Benchmarks

�Ported from C STAMP by UC Irvine.

–Dialect of Java language used.

Our contributions:

� Ported to standard Java language.

� Modified to use HTM intrinsics for Java.

� com.ibm.htm.HTM.begin(), HTM.end(), etc.

� Intrinsics converted to HTM instructions by our 

just-in-time (JIT) compiler
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Comparing C and Java STAMP Benchmarks

TM_BEGIN();
status = 

TMTABLE_INSERT(startHashToConstructEntryTables[j],
(ulong_t)startHash,
(void*)constructEntryPtr );

TM_END();

AtomicRegion.begin();
try {
check = 
startHashToConstructEntryTables[newj]
.table_insert(startHash, constructEntryPtr);

} finally {
AtomicRegion.end();

}

C / sequencer_run() in genome

Java / Sequencer.run() in genome



© 2013 IBM Corporation
12

IBM Research – Tokyo

Experimental Settings and Environment

� Default runtime options used for STAMP

– Large data set

� C

– 64 bits, -O3, IBM XL C/C++ compiler for z/OS

� Java

– 64-bit IBM J9/TR

– 4-GB Java heap with mark-and-sweep GC

– Iterated for 2 minutes and measured the second half.

� Environment

– z/OS 1.13 with UNIX System Services

– 16-core 5.5-GHz zEC12 with 6 GB memory
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Overview of the Results

�Among 10 benchmarks in STAMP,

� Java scaled better than C in 4 benchmarks.

�C scaled better than Java in 2 benchmarks.

�C and Java scaled similarly in 4 benchmarks.

–Both scaled well in 1 benchmark.

–Both did not scale in 3 benchmarks.
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Why Did C Sometimes Scale Worse than Java?

�Because of the conflicts at malloc().

� Java

–Objects allocated from thread-local heaps.

�C

–Global data manipulated in z/OS malloc().

� Used a simple thread-local allocator attached 

with STAMP. (free() not supported).

� Should use efficient malloc(), like TCMalloc.
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Why Did Java Sometimes Scale Worse than C?

�Because of the lack of padding.

C version of kmeans

int floatfloat float Padding int floatfloat float PaddingPadding

int *new_centers_len[] float *new_centers[]

Cluster Cluster

Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

floatfloat floatfloatfloat float

len

len len
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Padding by Rewriting Java Source Code

�Not memory efficient

�CPU and JVM implementation dependent

Modified Java version of kmeans

len int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

Padding Padding Padding

Padding Paddinglen len
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Better Solutions

�Structs in Java

–Being proposed.

�Automatic mechanism in Java VM

–Collocate objects accessed in the same 

transaction.

–Separate objects updated in different 

transactions.
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Why Did Java Sometimes Scale Worse than C?

� Java VM service invoked during transactions.

� In the vacation benchmark, profiling code 
executed in transactions.

–Profiling needed for JIT-compiler optimizations.

–Global data updated by the profiling code.

� Profiling disabled for certain methods.

�Abort-prone JVM services:

–JIT compiler, code patching, etc.

� HTM-aware JVM services needed.
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Conclusion

�Do C and Java scale differently on HTM?

� Yes

�But after appropriate optimizations A

� Scale similarly

�HTM-aware system software really needed.

–Thread-local malloc()/free()

–Automatic collocation and padding in Java VM

–Transaction-aware Java VM services
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Absolute Performance

0

50

100

150

200

250

300

ba
ye

s
ge

no
m

e
in

tru
de

r
km

ea
ns

-h
ig

h
km

ea
ns

-lo
w

la
by

rin
th

ss
ca

2
va

ca
tio

n-
hi

gh
va

ca
tio

n-
lo

w

ya
daT

h
ro

u
g

h
p

u
t 
%

 (
1
0

0
=

C
/s

e
q

u
e

n
ti
a

l)
C / sequential

Java / sequential


