
© 2013 IBM Corporation

Do C and Java Programs
Scale Differently 
on Hardware Transactional Memory?

Rei Odaira (IBM Research - Tokyo)

Jose G. Castanos
(IBM Research – T. J. Watson Research Center)

Takuya Nakaike (IBM Research - Tokyo)



© 2013 IBM Corporation
2

IBM Research – Tokyo

Hardware Transactional Memory (HTM) 
Coming into the Market

Blue Gene/Q

2012

zEC12

2012

4th Generation 

Core Processor

2013

Intel

POWER8



© 2013 IBM Corporation
3

IBM Research – Tokyo

Many Programming Languages to Support TM

� Transactional langugage constructs

–Being discussed for C++

� TM intrinsic support

–GNU C/C++ compiler

– IBM XL C/C++ compiler

�Software TM (STM) support

–DSTM2 for Java

–TinySTM for C/C++

–Haskell, Closure, etc.



© 2013 IBM Corporation
4

IBM Research – Tokyo

Our Goal

�Which programming language to choose?

�More specifically,

–Focus on C and Java.

–Do they scale differently on HTM?

– If yes, what are the reasons?



© 2013 IBM Corporation
5

IBM Research – Tokyo

Our Methodology

�Measured C and Java STAMP benchmarks.

–Widely used TM benchmark suite.

�Experimented on IBM zEC12’s HTM.



© 2013 IBM Corporation
6

IBM Research – Tokyo

Transactional Memory

�At programming time

–Enclose critical sections with transaction begin 

and end directives.

lock();
a->count++;
unlock();

tbegin();
a->count++;
tend();



© 2013 IBM Corporation
7

IBM Research – Tokyo

Transactional Memory

�At execution time

–A transaction observed 

as one step by other 

threads.

–Multiple transactions 

executed in parallel as 

long as no memory 

conflict.

� Higher parallelism 

than locks.

tbegin();
a->count++;
tend();

tbegin();
b->count++;
tend();

tbegin();
a->count++;
tend(); tbegin();

a->count++;
tend();

Thread X Thread Y



© 2013 IBM Corporation
8

IBM Research – Tokyo

HTM in IBM zEC12

� Instruction set

– TBEGIN: Begin a transaction

– TEND: End a transaction

– TABORT, NTSTG, etc.

� Micro-architecture

– Hold read set in L1 and L2 caches (~1MB)

– Hold write set in L1 cache and store buffer (8KB)

– Conflict detection using cache coherence protocol

– 256-byte cache line

� Roll back to immediately after TBEGIN when:

– Conflict, footprint overflow, etc.

TBEGIN
if (cc!=0)

goto abort handler
...
...
TEND



© 2013 IBM Corporation
9

IBM Research – Tokyo

STAMP Benchmarks [Minh et al., 2008]

�Most widely used benchmark suite for TM

�Written in C

Refines a Delaunay meshyada

vacation-low

Emulates travel reservation systemvacation-high

Creates efficient graph representationssca2

Routes paths in mazelabyrinth

kmeans-low

Implements K-means clusteringkmeans-high

Detects network intrusionintruder

Performs gene sequencinggenome

Learns structure of a Bayesian networkbayes



© 2013 IBM Corporation
10

IBM Research – Tokyo

Java STAMP Benchmarks

�Ported from C STAMP by UC Irvine.

–Dialect of Java language used.

Our contributions:

� Ported to standard Java language.

� Modified to use HTM intrinsics for Java.

� com.ibm.htm.HTM.begin(), HTM.end(), etc.

� Intrinsics converted to HTM instructions by our 

just-in-time (JIT) compiler



© 2013 IBM Corporation
11

IBM Research – Tokyo

Comparing C and Java STAMP Benchmarks

TM_BEGIN();
status = 

TMTABLE_INSERT(startHashToConstructEntryTables[j],
(ulong_t)startHash,
(void*)constructEntryPtr );

TM_END();

AtomicRegion.begin();
try {
check = 
startHashToConstructEntryTables[newj]
.table_insert(startHash, constructEntryPtr);

} finally {
AtomicRegion.end();

}

C / sequencer_run() in genome

Java / Sequencer.run() in genome



© 2013 IBM Corporation
12

IBM Research – Tokyo

Experimental Settings and Environment

� Default runtime options used for STAMP

– Large data set

� C

– 64 bits, -O3, IBM XL C/C++ compiler for z/OS

� Java

– 64-bit IBM J9/TR

– 4-GB Java heap with mark-and-sweep GC

– Iterated for 2 minutes and measured the second half.

� Environment

– z/OS 1.13 with UNIX System Services

– 16-core 5.5-GHz zEC12 with 6 GB memory



© 2013 IBM Corporation
13

IBM Research – Tokyo

Overview of the Results

�Among 10 benchmarks in STAMP,

� Java scaled better than C in 4 benchmarks.

�C scaled better than Java in 2 benchmarks.

�C and Java scaled similarly in 4 benchmarks.

–Both scaled well in 1 benchmark.

–Both did not scale in 3 benchmarks.



© 2013 IBM Corporation
14

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

Java Scaled Better than C in 4/10 Benchmarks

genome

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l H

ig
h

e
r is

 b
e
tte

r



© 2013 IBM Corporation
15

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

Java Scaled Better than C in 4/10 Benchmarks

intruder

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l H

ig
h

e
r is

 b
e
tte

r



© 2013 IBM Corporation
16

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

Java Scaled Better than C in 4/10 Benchmarks

H
ig

h
e
r is

 b
e
tte

r

Similar in vacation-high

vacation-low

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l



© 2013 IBM Corporation
17

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

C Scaled Better than Java in 2/10 Benchmarks

H
ig

h
e
r is

 b
e
tte

r

Similar in kmeans-high

kmeans-low

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l



© 2013 IBM Corporation
18

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

C and Java Scaled Similarly in 4/10 Benchmarks

H
ig

h
e
r is

 b
e
tte

r

ssca2

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l



© 2013 IBM Corporation
19

IBM Research – Tokyo

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

C and Java Scaled Similarly in 4/10 Benchmarks

H
ig

h
e
r is

 b
e
tte

r

bayes

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

labyrinth

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l



© 2013 IBM Corporation
20

IBM Research – Tokyo

Why Did C Sometimes Scale Worse than Java?

�Because of the conflicts at malloc().

� Java

–Objects allocated from thread-local heaps.

�C

–Global data manipulated in z/OS malloc().

� Used a simple thread-local allocator attached 

with STAMP. (free() not supported).

� Should use efficient malloc(), like TCMalloc.



© 2013 IBM Corporation
21

IBM Research – Tokyo

Why Did Java Sometimes Scale Worse than C?

�Because of the lack of padding.

C version of kmeans

int floatfloat float Padding int floatfloat float PaddingPadding

int *new_centers_len[] float *new_centers[]

Cluster Cluster

Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

floatfloat floatfloatfloat float

len

len len



© 2013 IBM Corporation
22

IBM Research – Tokyo

Padding by Rewriting Java Source Code

�Not memory efficient

�CPU and JVM implementation dependent

Modified Java version of kmeans

len int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

Padding Padding Padding

Padding Paddinglen len



© 2013 IBM Corporation
23

IBM Research – Tokyo

Better Solutions

�Structs in Java

–Being proposed.

�Automatic mechanism in Java VM

–Collocate objects accessed in the same 

transaction.

–Separate objects updated in different 

transactions.



© 2013 IBM Corporation
24

IBM Research – Tokyo

Why Did Java Sometimes Scale Worse than C?

� Java VM service invoked during transactions.

� In the vacation benchmark, profiling code 
executed in transactions.

–Profiling needed for JIT-compiler optimizations.

–Global data updated by the profiling code.

� Profiling disabled for certain methods.

�Abort-prone JVM services:

–JIT compiler, code patching, etc.

� HTM-aware JVM services needed.



© 2013 IBM Corporation
25

IBM Research – Tokyo

genome

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/before

C/after

Java/before

Java/after

C vs. Java after Modifications

H
ig

h
e
r is

 b
e
tte

r

C: thread-local malloc()



© 2013 IBM Corporation
26

IBM Research – Tokyo

intruder

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/before

C/after

Java/before

Java/after

C vs. Java after Modifications

H
ig

h
e
r is

 b
e
tte

r

C: thread-local malloc()



© 2013 IBM Corporation
27

IBM Research – Tokyo

kmeans-low

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u

p
 o

v
e
r 

s
e
q
u
e
n
ti
a
l

C/before

C/after

Java/before

Java/after

C vs. Java after Modifications

H
ig

h
e
r is

 b
e
tte

r

C: thread-local malloc()

Java: padding



© 2013 IBM Corporation
28

IBM Research – Tokyo

vacation-low

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Number of threads

S
p

e
e

d
-u

p
 o

v
e

r 
s
e

q
u

e
n

ti
a

l

C/before

C/after

Java/before

Java/after

C vs. Java after Modifications This gap is 

our future 

work.

H
ig

h
e
r is

 b
e
tte

r

C: thread-local malloc()

Java: profiling disabled



© 2013 IBM Corporation
29

IBM Research – Tokyo

Conclusion

�Do C and Java scale differently on HTM?

� Yes

�But after appropriate optimizations A

� Scale similarly

�HTM-aware system software really needed.

–Thread-local malloc()/free()

–Automatic collocation and padding in Java VM

–Transaction-aware Java VM services



© 2013 IBM Corporation

backup



© 2013 IBM Corporation
31

IBM Research – Tokyo

Absolute Performance

0

50

100

150

200

250

300

ba
ye

s
ge

no
m

e
in

tru
de

r
km

ea
ns

-h
ig

h
km

ea
ns

-lo
w

la
by

rin
th

ss
ca

2
va

ca
tio

n-
hi

gh
va

ca
tio

n-
lo

w

ya
daT

h
ro

u
g

h
p

u
t 
%

 (
1
0

0
=

C
/s

e
q

u
e

n
ti
a

l)
C / sequential

Java / sequential


