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Abstract— People program in many different programming 

languages in the multi-core era, but how does each programming 

language affect application scalability with transactional 

memory? As commercial implementations of Hardware 

Transactional Memory (HTM) enter the market, the HTM 

support in two major programming languages, C and Java, is of 

critical importance to the industry. We studied the scalability of 

the same transactional memory applications written in C and 

Java, using the STAMP benchmarks. We performed our HTM 

experiments on an IBM mainframe zEnterprise EC12. We found 

that in 4 of the 10 STAMP benchmarks Java was more scalable 

than C. The biggest factor in this higher scalability was the 

efficient thread-local memory allocator in our Java VM. In two 

of the STAMP benchmarks C was more scalable because in C 

padding can be inserted efficiently among frequently updated 

fields to avoid false sharing. We also found Java VM services 

could cause severe aborts. By fixing or avoiding these problems, 

we confirmed that C and Java had similar HTM scalability for 

the STAMP benchmarks. 

Keywords—transactional memory; programming language; C; 

Java 

I. INTRODUCTION 

Transactional memory is a promising technology in the 
multi-core era for better scalability with less programming 
effort. A programmer can simply enclose the critical sections 
with begin and end directives to define transactions. Each 
transaction is executed atomically so that its memory 
operations appear to be performed in a single step. 
Transactions can be executed concurrently as long as their 
memory operations do not conflict, which allows transactional 
memory to outperform global locking. Although transactional 
memory is attractive for its potential concurrency, pure 
software implementations, called Software Transactional 
Memory (STM), incur high overhead. 

Recently, chipmakers began designing and producing 
special hardware for transactional memory, called Hardware 
Transactional Memory (HTM). Programmers want to write 
applications that take advantage of transactional memory 
hardware. Sun announced the Rock processor with an HTM 
facility [2], though the processor was cancelled before reaching 
the market. Intel documented an instruction set architecture 
called Transactional Synchronization Extensions [11] and 
implemented it in their Haswell processors. IBM has released 
Blue Gene/Q and the mainframe processor zEnterprise EC12 
(zEC12) with HTM support [7,18]. IBM also created HTM 
extensions for the Power ISA [9]. 

As transactional memory becomes widely available, more 
and more programming languages support transactional 
memory. One technical report proposes transactional language 
constructs for C++ [1]. The GNU C/C++ compiler already 
supports transactional memory intrinsics for x86 and the IBM 
XL C/C++ compiler offers them for a mainframe architecture 
[15]. Intrinsics are special API calls that are replaced with the 
corresponding hardware instructions in the compiled code. 
Many Software Transactional Memory (STM) systems have 
been developed for various programming languages, such as 
DSTM2 [8] for Java, TinySTM [21] for C/C++, the STM 
package for Haskell [19], and Clojure’s STM support [4].  

In spite of the broad support for transactional memory in 
these programming languages, it is still unclear how each 
programming language and its implementations affect the 
performance of the applications that use transactional memory. 
Of particular importance are the HTM scalability 
characteristics of C and Java, two major imperative 
programming languages. With the recent releases of 
commercial HTM implementations, more and more 
applications will be written in these leading programming 
languages [22] using HTM. 

In this paper, we compare the HTM scalabilities of the 
same transactional memory applications implemented in both 
C and Java. We measured the STAMP benchmarks [14], which 
were originally written in C, and later ported to Java [13]. To 
run the Java programs using transactional memory on HTM, 
we developed platform-independent Java APIs for the HTM 
intrinsics so that the transaction begin, end, and other 
operations supported by the underlying hardware can be 
invoked from Java. The calls to the HTM intrinsics are 
recognized by our just-in-time (JIT) compiler and are 
converted to HTM instructions embedded in the JIT-compiled 
code. Using the HTM intrinsics for Java and inline assembly 
for C, we implemented the same transaction retry logic in both 
C and Java for fair comparison. 

Our experimental platform was IBM’s HTM 
implementation in zEC12 and this paper is also the first to 
report the results of the full set of STAMP benchmarks on 
zEC12. 

Here are our contributions: 

• We compared the scalability characteristics of two 
major programming languages, C and Java, on a 
commercial HTM implementation using the de facto 
standard STAMP benchmarks. 



• We developed platform-independent HTM intrinsics for 
Java and corresponding JIT-compiler optimizations in 
the IBM J9/TR Java VM [6]. 

• We performed the first full measurements of the 
STAMP benchmarks on the HTM implementation of 
the IBM mainframe zEnterprise EC12 (zEC12). 

Section II describes the HTM implementation used in our 
studies. Section III presents our HTM intrinsics for Java and 
Section IV explains the original STAMP benchmarks and how 
they were ported to Java. Section V shows the experimental 
results and Section VI covers related work. Section VII 
concludes this paper. 

II. HTM IMPLEMENTATION 

We used HTM in an IBM mainframe zEC12 [18] for our 
studies. This section briefly describes the instruction set 
architecture that supports the HTM and its micro-architecture 
implementation. A complete overview of the zEC12 HTM 
implementation was described by Jacobi et al. [12] and the full 
instruction set architecture is defined in the manual  [10]. 

A. Instruction Set Architecture 

Each transaction begins with a TBEGIN instruction and is 
ended by a TEND instruction. The TBEGIN instruction saves 
the general purpose registers but not the floating point registers. 
Therefore, the programmer is responsible for saving and 
restoring the floating point registers as needed. 

The TBEGIN instruction initially sets the condition code to 
0. If a transaction aborts, then the execution returns back to the 
instruction immediately after the outermost TBEGIN. All of 
the transactionally written data is discarded and the saved 
general purpose registers are restored. The hardware 
transaction facilities also set the condition code to 2 or 3, 
depending on whether the cause of the abort is transient or 
persistent, respectively. Therefore, a program typically checks 
the condition code immediately after TBEGIN and jumps to a 
fallback path if it is not 0. 

A transaction can abort for various reasons. The most 
frequent causes include external interrupts, overflows, conflicts, 
and restricted instructions. Aborts are classified as either 
transient or persistent by the CPU and the condition code is set 
accordingly. When the abort is transient, e.g. because of a 
conflict, simply retrying the transaction is likely to succeed. On 
persistent aborts, e.g. due to attempted execution of a restricted 
instruction, the program should cancel the execution of the 
transaction. Restricted instructions include system calls and 
access-register manipulation, but most of the non-privileged 
instructions are allowed. A transaction can also be aborted by 
software with a TABORT instruction. 

The programmer can specify the address of a 256-byte 
memory in the operand of the TBEGIN instruction. This 
memory area is called a Transaction Diagnostic Block (TDB) 
and is used for storing debug information when a transaction 
aborts. A TDB contains the abort reason code and the 
instruction virtual address where the abort was detected. 

B. Micro-Architecture 

The Central Processor (CP) chip has 6 cores, and 6 CP 
chips are packaged in a multi-chip module (MCM). Up to 4 
MCMs can be connected in a single cache-coherent SMP 
system. Each core has a 96-KB L1 data cache and a 1-MB L2 
data cache. Both the L1 and L2 caches are store-through with 
256-byte cache lines. The 6 cores on a CP chip share a 64-MB 
L3 cache and the 6 CP chips share an off-chip 384-MB L4 
cache included in the same MCM. All four levels of the caches 
are inclusive. Each core supports a single hardware thread. The 
TBEGIN instruction saves the general purpose registers to a 
special transaction-backup register file. The maximum 
supported nesting depth is 16. 

The HTM facilities of zEC12 are built on top of its cache 
structure. Each L1 data cache line is augmented with its own 
tx-read and tx-dirty bits. A load instruction during a transaction 
sets a tx-read bit. Transactionally written data is stored into the 
L1 with the tx-dirty bit set. An abort is triggered if a cache-
coherency request from another CPU conflicts with a 
transactionally read or written line. This means zEC12 uses an 
eager abort scheme and provides strong atomicity. On an abort, 
all of the lines whose tx-dirty bits are set are invalidated. The 
general purpose registers are restored from the transaction 
backup register file. 

A special LRU-extension vector records the lines that are 
transactionally read but evicted from the L1 cache. Thus the 
maximum read-set size is roughly the size of the L2 cache. The 
transactionally written data is buffered in the Gathering Store 
Cache between the L1 and the L2/L3. The maximum write-set 
size is limited to the cache size, which is 8 KB. An overflow 
abort happens if the read-set or write-set size exceeds their 
respective limitations. 

III. HTM INTRINSICS FOR JAVA 

This section describes our HTM intrinsics for Java. 
Intrinsics are special API calls that are replaced with the 
corresponding hardware instructions in the compiled code. 
Because the Java standard does not support HTM 
programming, we designed special methods to call the HTM 
operations. These methods can be implemented using the Java 
Native Interface (JNI). However, since JNI is heavyweight, 
we modified our JIT compiler to recognize these methods and 
to generate the HTM instructions directly in the JIT-compiled 
code. First, we present the Application Programming 
Interface (API) with examples for lock elision. Second, we 
explain how the intrinsics are handled by our JIT compiler. 

A. API 

Table I shows the Java API for the HTM intrinsics. The 
HTM class includes the basic operations, while the 
HTM.DiagnosticInfo class abstracts the diagnostic methods 
needed to investigate why a transaction aborted. The actual 
diagnostic methods are implemented in a platform-dependent 
subclass, HTM.DiagnosticInfoZ for our mainframe. The sub-
class also contains platform-dependent methods to directly 
access the diagnostic information. For instance, the getTDB() 
method is provided to read the contents of the Transaction 
Diagnostic Block (TDB). 



Fig. 1 shows a code example using the HTM intrinsics for 
lock elision. When executing the transactions in the STAMP 
benchmarks in our experiments, we used almost the same 
algorithm except for the optimizations described in the next 
section. A utility class AtomicRegion is defined in Lines 7-54. 
This is used to enclose the critical section in Lines 1-6. 
Because most of the HTM implementations use best-effort 
algorithms, a fallback mechanism is needed. In this example, a 
simple global spin lock is used (Line 9). Other than the 
difference in the concurrency control mechanism, the 
transactional path and the fallback path execute the same code 
in the critical section (Line 3). The simple spin lock does not 
support nesting, but it is easy to extend it to a reentrant lock. 

AtomicRegion.begin() first tries to execute a critical section 
as a transaction. After beginning the transaction, it reads the 
lock into the transaction read-set in Line 18, so that the 
transaction can be aborted later if the lock is acquired by 
another thread. The transaction must abort immediately if the 
lock is already acquired, because otherwise the transaction 
could read data that was modified. 

If a transaction aborts, the abort’s cause is checked to 
determine if it is persistent or transient. If it is persistent, the 
execution reverts to the lock (Lines 30 and 42-47). If the abort 
is transient, the transaction is retried some dozen times before 
acquiring the lock (Lines 33-36). In zEC12, the TBEGIN 
instruction can determine whether an abort’s cause is persistent 

or transient from the condition code, but we instead use the 
abort code reported by the TDB (Lines 26-28) so that we can 
fine tune the retry logic based on the abort code. Our 
implementation retries the transaction up to 16 times for 
transient aborts. In our preliminary experiments, we confirmed 
that it was unlikely that a transaction would ever succeed after 
16-or-more consecutive transient aborts. 

AtomicRegion.end() in Lines 48-53 releases the lock or 
ends the transaction, depending on whether or not this critical 
section has been executed with an acquired lock. 

B. Implementation of the HTM Intrinsics 

The default implementation of the HTM.begin() method in 
the class library simply returns false, and the HTM.end() and 
HTM.abort() methods do nothing. However, we modified the 
JIT compiler in IBM J9/TR to recognize these methods and to 
embed the corresponding HTM instructions directly into the 
JIT-compiled code. Therefore the critical section is executed 
correctly but never as a transaction during interpreted 
execution. Enabling transactional execution for the interpreter 
is future work. 

The front-end of the JIT compiler detects calls to these 
methods and converts them into special intermediate-language 
operators for TBEGIN, TEND, and TABORT. The back-end 
of the compiler generates the corresponding hardware 
instructions. The floating-point registers that must live across a 
TBEGIN instruction are saved to the stack before the TBEGIN 
instruction and are restored if the transaction aborts. The 
address of thread-local memory is passed to the TBEGIN 
instruction as a TDB area because the HTM.DiagnosticInfoZ 
class relies on the information recorded in the TDB. 

To reduce overhead, our JIT compiler also recognizes calls 
to HTM.DiagnosticInfo.read() because its default 
implementation calls the heavyweight JNI. On our mainframe, 
the JIT compiler generates code to copy the contents of the 
TDB into an instance field of the HTM.DiagnosticInfoZ object.  

IV. C AND JAVA STAMP BENCHMARKS 

This section describes how we measured the C and Java 
versions of the STAMP benchmarks. STAMP [14] is the most 
widely used transactional-memory benchmark suite. It was 
originally written in C and consists of 8 programs using both 
fine-grain and coarse-grain transactions. Table II shows the 
benchmarks and their default runtime options. 

A. C STAMP Benchmarks 

We used Version 0.9.10 of the C STAMP benchmarks. The 
C version encloses the critical sections with TM_BEGIN() and 
TM_END() macros. Users of the benchmarks must implement 
their own TM_BEGIN() and TM_END() for their specific 
measurement environments.  

We implemented three versions of TM_BEGIN() and 
TM_END(). The first one uses the HTM of zEC12, the second 
one uses global locking for reference, and the third one is a 
baseline sequential version, which emits no code for 
TM_BEGIN() or TM_END(). The algorithm of the HTM 
version  is similar to AtomicRegion.begin() and end() shown in 

TABLE I.        APIS OF HTM INTRINSICS FOR JAVA. 

Method Description 

public class HTM 

public static boolean begin() Begin a transaction and return true. If 

the transaction aborts, the execution 

returns back to this method and the 

return value is  false. 

public static void end() End a transaction. 

public static void abort() Abort a transaction. 

public static abstract class HTM.DiagnosticInfo 

public static DiagnosticInfo  

create() 

Create and return a platform-

dependent object to diagnose aborted 

transactions (on our mainframe, 

return an instance of the 

HTM.DiagnosticInfoZ class). 

public abstract void read() Read diagnostic information into 

instance fields. 

public abstract boolean  

isValid() 

Valid diagnostic infromation? 

public abstract boolean  

abortByConflict() 

Abort due to transaction conflict? 

public abstract boolean  

abortByRestrictedInstruction() 

Abort due to a restricted instruction? 

public abstract boolean  

abortByFootprintOverflow() 

Abort due to a transaction footprint 

overflow? 

public abstract boolean  

abortByNestingOverflow() 

Abort due to too many nested 

transactions? 

public abstract boolean  

abortByTABORT() 

Abort due to a TABORT instruction? 

public static class HTM.DiagnosticInfoZ  

extends HTM.DiagnosticInfo 

Implementations of  

the abstract methods in 

HTM.DiagnosticInfo 

 

public long[] getTDB() Return the contents of TDB. 

 



Fig. 1. It uses inline assembly to invoke the zEC12 instructions 
for TBEGIN, TEND, and TABORT. As an optimization, in 
Lines 15 and 24 of Fig. 1, we check whether the lock was 
acquired and if yes, spin-wait until it is released. After the spin 
wait, the transaction is retried up to 16 times. The global-
locking version uses a single global spin lock, which is the 
same as the fallback spin lock in Fig. 1. 

The barrier synchronization function included in the C 
STAMP benchmarks uses Pthread’s mutex locks, which are 
heavyweight calls on our mainframe platform. For this reason, 
we implemented the sense-reversing barrier synchronization 
using spin locks. 

B. Java STAMP Benchmarks 

The Java version of the STAMP benchmarks [13] was 
ported from the C version by the Programming Languages 
Research Group at the University of California, Irvine. It was 
written specifically for their own Java-to-C translator that 
accepts a dialect of the Java language. This Java version does 
not compile and run as-is on a standard Java environment.  

We rewrote the Java STAMP benchmarks using the HTM 
intrinsics, allowing us to build and run them using our J9/TR 
Java VM.  Other than the HTM intrinsics, the rewritten version 
relies only on the standard Java features. The critical sections 
are enclosed with AtomicRegion.begin() and end() as shown in 
Fig. 1. AtomicRegion.begin() uses the optimizations described 
in Section IV.A at Lines 15 and 24. We implemented the same 
barrier synchronization algorithm as used in the C version. We 
also found and fixed several bugs in the Java version. In 
addition, we modified the random number generator and the 
hash code calculator so that they generated the same values as 
the corresponding C routines. For reference, we developed a 
global-locking version using a spin lock and a baseline 
sequential version. We are planning to publicly release the 
rewritten Java STAMP benchmarks.  

Fig. 2 compares code excerpts from the C and Java 
versions. Fig. 2 part (a) shows the C and Java code to insert an 
element into a hash table. The C function takes a pointer to a 
table as the first argument, whereas in Java the method is an 
instance method of the Table class. The Java STAMP 
benchmarks rarely use the collection classes in the standard 
Java class libraries. Instead, they include their own basic 
collection classes that are translated from the corresponding 
data structures in the C STAMP benchmarks. As shown in Fig. 
2 part (b), each access to a field of a structure in C is directly 
translated to an access to a corresponding instance field of an 
object in Java. In the C STAMP benchmarks, the reads and 
writes to shared data are annotated with the 
TM_SHARED_READ() and TM_SHARED_WRITE() macros, 

 1. AtomicRegion.begin();
2. try {
3. // Critical section
4. } finally {
5. AtomicRegion.end();
6. }

7. import java.util.concurrent.atomic.AtomicBoolean;
8. class AtomicRegion {
9. private static final AtomicBoolean lock 

= new AtomicBoolean(false);
10. private static final HTM.DiagnosticInfo diag

= HTM.DiagnosticInfo.create();
11. private static final int RETRY_COUNT_MAX = 16;

12. public static void begin() {
13. int retryCount = RETRY_COUNT_MAX;
14. while (true) {
15. // (A) See Section IV.
16. if (HTM.begin()) {
17. // Transaction
18. if (lock.get())
19. HTM.abort();
20. return;
21. } else {
22. // Abort
23. diag.read();
24. // (B) See Sectin IV.
25. if (! diag.isValid() ||
26. diag.abortByFootprintOverflow() ||
27. diag.abortByRestrictedInstruction() ||
28. diag.abortByNestingOverflow()) {
29. // Persistent abort
30. fallBackGlobalLock();
31. return;
32. } else {
33. // Transient abort
34. if (--retryCount > 0)
35. continue;
36. fallBackGlobalLock();
37. return true;
38. }
39. }
40. }
41. }

42. private static void fallBackGlobalLock() {
43. do {
44. while (lock.get())
45. ;
46. } while (! lock.compareAndSet(false, true));
47. }

48. public static void end() {
49. if (lock.get())
50. lock.set(false);
51. else
52. HTM.end();
53. }
54. }  

Fig. 1. Code example of lock elision using the HTM intrinsics for Java. 

TABLE II.            STAMP BENCHMARK SUITE 

Benchmark Description Default Runtime Options 

bayes Learns structure of a 

Bayesian network 

-v32 -r4096 -n10 -p40 -i2 -

e8 -s1 

genome Performs gene 

sequencing 

-g16384 -s64 -n16777216 

intruder Detects network 

intrusion 

-a10 -l128 -n262144 -s1 

kmeans-high -m15 -n15 -t0.05 -i 

inputs/random2048-d16-

c16.txt 

kmeans-low 

Implement K-means 

clustering 

-m40 -n40 -t0.05 -i 

inputs/random2048-d16-

c16.txt 

labyrinth Routes paths in maze -i inputs/random-x512-

y512-z7-n512.txt 

ssca2 Creates efficient graph 

representation 

-s20 -i1.0 -u1.0 -l3 -p3 

vacation-high -n4 -q60 -u90 -r1048576 -

t4194304 

vacation-low 

Emulates travel 

reservation system 

-n2 -q90 -u98 -r1048576 -

t4194304 

yada Refines a Delaunay 

mesh 

-a15 -i 

inputs/ttimeu1000000.2 

 



so that the STM can instrument these accesses. With the HTM, 
these macros do not perform any instrumentation and simply 
read and write the data. 

In many Java VMs, frequently executed methods are 
compiled by a JIT compiler. However, because the STAMP 
benchmarks run for only 3 to 30 seconds with the default 
parameters, they finish before a sufficient number of methods 
have been JIT-compiled. Therefore, we added a harness class 
to the Java STAMP benchmarks to invoke the main() method 
of a specified benchmark multiple times during a single run. 
We tried different parameters to run the benchmarks longer and 
found the scalability tendencies did not change, but we decided 
to keep using the default parameters to insure our results are 
comparable with other work using the STAMP benchmarks. 

V. EXPERIMENTAL RESULTS 

This section describes our experimental environment and 
then compares the results of the C and Java versions of the 
STAMP benchmarks.  

A. Experimental Environment and Settings 

We evaluated the STAMP benchmarks on zEC12 running 
the mainframe z/OS 1.13 with UNIX System Services (USS). 
The experimental system was divided into multiple Logical 
PARtitions (LPARs), and each LPAR corresponded to a virtual 
machine. Our LPAR was assigned 16 cores, each running at 
5.5 GHz, and with 6 GB of main memory. Although the system 

was not totally dedicated to our experiments, no other 
processes were running when we collected our data.  

The C versions were compiled as 64-bit programs with the 
IBM XL C/C++ compiler for z/OS. The O3 optimization 
option was specified. The Java version was run on 64-bit IBM 
J9/TR 1.7.0 SR1 with 4 GB of Java heap and mark-and-sweep 
GC. The GC time accounted for less than 5% of the execution 
time for all of the benchmarks. 

We ran each benchmark 4 times and took the average of 
the runs. For Java, we made each run iterate a benchmark for 
at least 2 minutes and averaged the execution times of the 
second half of the iterations as the result for that run. This 
measurement method masked the effect of the JIT compiler, 
since most of the JIT compilation was done during the first 
half of the iterations.  

B. Comparison between C and Java 

Fig. 3 compares the throughput of each sequential version 
of C and Java using the default parameters shown in Table II. 
The results are normalized against the C results. The purpose 
of this paper is not to analyze the absolute performance of C 
and Java but to compare their scalabilities. However, if their 
absolute performance differed greatly, for example by an order 
of magnitude, then it would be meaningless to do any detailed 
scalability comparison. In Fig. 3, the performance of Java was 
within 67% to 267% of that of C. This means that the absolute 
performance results of C and Java were close enough for 
meaningful comparisons. 

Fig. 4 shows the throughput of the C and Java STAMP 
benchmarks using the lock and HTM. We changed the number 
of threads from 1 to 2, 4, 8, and then 16. We also show the 
95% confidence intervals. The C and Java results are 
normalized to their respective sequential version results, so that 
we can compare the scalability of C and Java. We compare 
these results with the previous report on Blue Gene/Q in 
Section V.D.  

The HTM versions of C and Java scaled similarly for 
labyrinth, ssca2, and yada. In bayes, the C and Java versions 
showed different average characteristics, but the fluctuations 
were so large that we could not draw any conclusions. This 
was because the running time of the multi-threaded bayes tends 

 

1. TM_BEGIN();
2. status = TMTABLE_INSERT(startHashToConstructEntryTables[j],

(ulong_t)startHash,
(void*)constructEntryPtr );

3. TM_END();

1. AtomicRegion.begin();
2. try {
3. check = startHashToConstructEntryTables[newj]

.table_insert(startHash, constructEntryPtr);
4. } finally {
5. AtomicRegion.end();
6. }

(a-1) C / sequencer_run() in genome

(a-2) Java / Sequencer.run() in genome

1. TM_BEGIN();
2. float globalBaseLogLikelihood =

TM_SHARED_READ_F(learnerPtr->baseLogLikelihood);
3. TM_SHARED_WRITE_F(learnerPtr->baseLogLikelihood,

(baseLogLikelihood + globalBaseLogLikelihood));
4. TM_END();

1. AtomicRegion.begin();
2. try {
3. float globalBaseLogLikelihood =

learnerPtr.baseLogLikelihood;
4. learnerPtr.baseLogLikelihood = 

(baseLogLikelihood + globalBaseLogLikelihood);
5. } finally {
6. AtomicRegion.end();
7. }

(b-1) C / checkTaskList() in bayes

(b-2) Java / Learner.checkTastList() in bayes

 

Fig. 2. Comparison of code excerpts from the C and Java versions of the 

STAMP benchmarks. 
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Fig. 3. Comparison of the throughput of sequential execution in C and 

Java. The 95% confidence intervals are also shown. 



to vary depending on the insertion order of the edges into the 
Bayesian network. In genome, intruder, vacation-high, and 
vacation-low, Java was more scalable than C, while in kmeans-
high and kmeans-low C outperformed Java. In the remainder of 
this section, we explain the causes of these scalability 
differences and suggest ways to address them.  

1) Thread-local memory allocator 
The lower scalability of C in genome, intruder, vacation-

high, and vacation-low was caused by excessive transaction 
conflicts in the malloc() memory allocator. These benchmarks 
allocate many objects within the transactions. A naïve 
implementation of a memory allocator allocates an object from 
global free lists. This mechanism obviously causes conflicts in 

multi-threaded execution. In contrast, the J9/TR Java VM and 
most of the other high-performance Java VMs allocate objects 
on a thread-local basis to avoid conflicts. The HotSpot Java 
VM uses Thread-Local Allocation Buffers (TLABs) [16]. Each 
application thread allocates objects from its own TLAB. If the 
TLAB becomes empty, another TLAB is allocated from the 
global Java heap and assigned to the thread. The J9/TR Java 
VM also uses a similar mechanism.  

To avoid the conflicts at the memory allocator, the C 
version of the STAMP benchmarks includes a simple but 
incomplete thread-local memory allocator. This resembles the 
TLAB in the HotSpot Java VM, but it does not support the 
release of objects. Since this incomplete allocator can run the C 
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Fig. 4. Throughput of the C and Java STAMP benchmarks when  running with the default benchmark parameters, using a single global lock and HTM. The C 

and Java results are normalized to their respective sequential versions’ results. The 95% confidence intervals are also shown. 



STAMP benchmarks without any errors, we replaced the 
invocations of malloc() with calls to the thread-local memory 
allocator. These measurement results appear in the next section. 
We could instead use an efficient multi-threaded memory 
allocator, such as TCMalloc [20], but its performance on the 
HTM is still unknown and studying it is future work. 

2) Padding to avoid false sharing 
C was more scalable than Java in kmeans-high and 

kmeans-low, because the C version inserts padding between 
frequently updated fields to avoid false sharing. If each of the 
fields that is frequently updated by different threads were 
placed into the same cache line, they would cause excessive 
conflicts due to false sharing. Inserting padding among such 
fields to place them in different cache lines is a widely used 
programming technique. In kmeans, the data structures of a 
cluster consist of an integer and an array of floating-point 
numbers, as shown in Fig. 5(a). Because each transaction 
updates one cluster at a time, the data structures of a cluster are 
all located in a contiguous memory region. In contrast, the data 
structures of different clusters are separated by padding, so that 
different transactions updating different clusters do not conflict 
with one another. 

In the Java version, since it is not possible to allocate the 
integer and the array of floating-point numbers in a contiguous 
area, they are represented as different arrays, as shown in Fig. 
5(b). This representation obviously causes conflicts due to false 
sharing because the data belonging to different clusters can be 
placed into the same cache line. We modified the original Java 
version by inserting padding around each integer and each 
array of floating-point numbers, as shown in Fig. 5(c). We 
show the results later. This implementation is less memory-
efficient than the C version. In particular, on the mainframe 
platform, each integer occupies a 256-byte cache line. Note 
that each array in Java has a hidden field at the head to hold the 
length of the array, and padding is necessary between the 

length field and the first element. Because the length field is 
read in every transaction for array bound checking, without the 
padding, conflicts happen when transactions modify the first 
element. Depending on the Java VM, the length field is not 
necessarily at the head of its array, so this padding method is 
Java VM-dependent. 

The difference in padding between C and Java is not 
specific to kmeans. For example, the C version of bayes uses 
the data structure shown in Fig. 5(d), which has padding 
among the frequently-updated fields. This type of padding 
cannot be implemented in the Java language because arrays 
cannot be embedded into an object and the field order within 
an object is not necessarily the same as the order written in the 
source code. Therefore the corresponding data structure in the 
Java version of bayes does not include any padding. 

In general, the Java language has difficulties in handling 
data structures with padding, as shown in these examples.  
More sophisticated VM support is desired in Java, such as a 
feedback-directed mechanism to automatically co-locate the 
data structures accessed within the same transaction and to 
separate frequently updated fields.  

3) Java VM services 
In vacation-high and vacation-low, although Java was more 

scalable than C, we found that Java VM services invoked 
during the transactions reduced the scalability. Specifically, 
JIT-compiled code with profiling instrumentation was executed 
during the transactions, and the profiling code caused severe 
conflicts. Our J9/TR Java VM performs multi-level JIT 
compilation, where methods are first executed by the 
interpreter, and then frequently executed methods are JIT-
compiled at a lower optimization level. If a JIT-compiled 
method is more frequently executed, then it is JIT-compiled 
again with profiling instrumentation. The instrumented JIT-
compiled code is executed for a short period and finally the 

 (a) C version of kmeans

int float float float Padding int float float float PaddingPadding

int *new_centers_len[] float *new_centers[]

Cluster Cluster

(b) Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

(c) Modified Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

Padding Padding Padding

Padding Padding

(d) Code excerpt from the C version of bayes
typedef struct learner {
adtree_t* adtreePtr;
net_t* netPtr;
float* localBaseLogLikelihoods;
char pad1[CACHE_LINE_SIZE - sizeof(float*)];
float baseLogLikelihood;
char pad2[CACHE_LINE_SIZE - sizeof(float)];
learner_task_t* tasks;
char pad3[CACHE_LINE_SIZE - sizeof(learner_task_t*)];
list_t* taskListPtr;
char pad4[CACHE_LINE_SIZE - sizeof(list_t*)];
long numTotalParent;
char pad5[CACHE_LINE_SIZE - sizeof(long)];

} learner_t;

len

len len len len

Paddinglen

 
 

Fig. 5. Data structures used in the C and Java versions of kmeans and bayes. (a) The C version of kmeans inserts padding within the sets of an integer and 

floating-point numbers representing clusters. (b) The original Java version of kmeans does not insert any padding. The “len” fields contain the lengths of the 

arrays for array bound checking. (c) The modified Java version separates the data belonging to different clusters with padding, but this uses more memory than 

in the C version. (d) The C version of bayes also inserts padding. 



method is JIT-compiled again at a higher optimization level 
with the collected profile. A similar mechanism is also 
implemented in other Java VMs. The profiling is controlled by 
global data structures, which are where the contentions 
occurred. In most of the benchmarks, the profiling was done 
before the measurement period (the last minute of the 2-minute 
execution period), but in vacation-high and vacation-low, the 
profiling code for a method was executed during the 
measurement period. We avoided these contentions by 
disabling the profiling for the specific method that caused the 
contentions in vacation-high and vacation-low. A more 
fundamental solution would be to implement a profiling 
mechanism that accesses fewer global data structures. 

The profiling mechanism for the JIT compilation is not the 
only Java VM service that can cause many aborts. For example, 
a JIT compiler can cause transaction overflows if it is invoked 
during a transaction. Another example is code patching, which 
is not allowed in most of the HTM implementations. Therefore, 
to get better scalability in Java, Java VMs must be aware of 
HTM and make their services HTM-friendly.  

C. Comparison between C and Java after Modification 

Fig 6 shows the scalabilities of the C and Java versions of 
the STAMP benchmarks with the modifications described in 
the previous section. Compared with Fig. 4, the thread-local 
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Fig. 6. Throughput of the C and Java STAMP benchmarks after modifing the three points described in Section V.B. Overall, C/HTM and Java/HTM scaled 

similarly. When compared with Fig. 4, the throughput of the C version was improved by the thread-local memory allocator, especially in intruder, vacation-

high, and vacation-low. The Java version scaled better in kmeans-high and kmeans-low because of the inserted padding and in vacation-high and vacation-low  

by avoiding profiling code exection during the transactions. 



memory allocator in the C/HTM improved the scalability of 
intruder, vacation-high, and vacation-low. The C version of 
bayes was improved too, but the fluctuations were still large. 
The Java versions scaled better in kmeans-high and kmeans-
low when the appropriate padding was inserted. The Java 
versions of vacation-high and vacation-low were improved by 
avoiding the execution of profiling code during the transactions. 

Table III shows the serialization ratios and abort ratios. A 
serialization ratio is the percentage of committed transactions 
that were executed with the global lock being acquired. An 
abort ratio is the percentage of executed transactions that were 
aborted. In ssca2, the C version suffered from more aborts than 
the Java version, but they did not affect the scalability because 
the transaction coverage is small. Although not shown in the 
table, persistent aborts accounted for less than 20% of all of the 
aborts with 2 to 16 threads. Genome, vacation-high, and 
labyrinth suffered from relatively high persistent abort ratios, 
due to read-set overflows (for genome and vacation-high) and 
write-set overflows (for labyrinth). Most of the transient aborts 
were caused by conflicts. Table III also presents the average 
number of retries. The numbers can be more than 16, which is 
the maximum number of retries specified in Line 11 of Fig. 1, 
because the transactions can retry not only for transient aborts 
but also for the acquired global lock (Line 24 of Fig. 1). 

Overall, after the modifications described in Section V.B 
were applied, the scalability differences between C and Java 
became smaller than before. There are still gaps in vacation-
high and vacation-low with 16 threads. This investigation is 
also for future research. 

D. Comparison against Blue Gene/Q 

We compared the results of the C STAMP benchmarks on 
zEC12 (Fig. 6) with those on another HTM implementation in 
Blue Gene/Q (BG/Q) [23]. In bayes, although the fluctuations 
were large, BG/Q scaled slightly better than zEC12. BG/Q 
achieved a 3-fold speed-up with 16 threads. Our zEC12 

suffered from many conflicts. In genome, the scalability gap 
between BG/Q and zEC12 was even larger. The abort ratio on 
BG/Q was 13% with 16 threads, while that on zEC12 was 68%, 
as shown in Table III. Intruder and labyrinth showed similar 
scalability characteristics on BG/Q and zEC12. The zEC12 was 
more scalable than BG/Q for kmeans-high, kmeans-low, and 
ssca2, while vacation-high, vacation-low, and yada were less 
scalable on the zEC12. These benchmarks suffered from 
frequent conflicts on the zEC12. 

In summary, the zEC12 was more scalable than BG/Q in 3 
and less scalable in 5 of the 10 C STAMP benchmarks. Except 
for kmeans-high and kmeans-low, the abort ratios of zEC12 in 
Table III were higher than the corresponding results in Table 3 
of the BG/Q paper [23]. Most of the aborts on the zEC12 were 
caused by transaction conflicts. We believe that the zEC12’s 
256-byte cache line size, which is longer than BG/Q’s 64-byte 
L1 and 128-byte L2 cache line sizes, adversely affected the 
scalability, due to false sharing. 

VI. RELATED WORK 

Rolett evaluated the C++ and Java versions of micro-
benchmarks on the Rochester Software Transactional Memory 
system [17]. Experimental results showed that the C++ version 
outperformed the Java version. The lower performance of the 
Java version was caused by indirect accesses to objects. Since 
the Java version wrapped all of the shared objects so that the 
objects were accessed only through getter and setter methods, 
it always went through the wrapper objects to access the shared 
objects. The indirect object accesses were also necessary for 
atomic operations such as compare-and-swap, because the 
implementation of atomic operations was boxed in the 
java.util.concurrent package classes. These types of overhead 
do not occur in an HTM because they are caused by the 
operations to implement the STM.  

Wu et al. measured C/C++ and Java applications on an 
STM runtime system which was implemented in C [24]. The 

TABLE III.             PERCENTAGE OF SERIALIZED TRANSACTIONS AND ABORTED TRANSACTIONS, AND AVERAGE NUMBER OF RETRIES 

Serialization ratio (# threads) Abort ratio (# threads) Average # of retries (# threads) Benchmark 

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 

C 32% 48% 52% 59% 68% 39% 94% 96% 97% 98% 0.1 7.6 10.2 13.7 18.7 bayes 

Java 30% 38% 45% 56% 58% 35% 89% 94% 97% 97% 0.1 4.4 8.1 12.6 15.0 

C 13% 13% 12% 11% 10% 16% 41% 52% 59% 68% 0.0 0.5 0.9 1.2 1.8 genome 

Java 11% 9% 9% 10% 10% 14% 30% 41% 54% 69% 0.0 0.3 0.5 1.0 1.9 

C 1% 2% 2% 4% 4% 2% 26% 42% 59% 69% 0.0 0.3 0.7 1.3 2.1 intruder 

Java 1% 2% 6% 10% 12% 1% 31% 69% 80% 81% 0.0 0.4 2.1 3.6 3.6 

C 0% 0% 1% 7% 0% 0% 15% 39% 76% 27% 0.0 0.2 0.6 2.9 0.4 kmeans-

high Java 0% 0% 2% 0% 1% 0% 9% 52% 31% 40% 0.0 0.1 1.0 0.4 0.7 

C 0% 0% 1% 0% 0% 0% 5% 14% 6% 19% 0.0 0.1 0.2 0.1 0.2 kmeans-

low Java 0% 0% 0% 0% 0% 0% 3% 4% 20% 18% 0.0 0.0 0.0 0.2 0.2 

C 50% 50% 50% 55% 50% 51% 74% 86% 95% 94% 0.0 0.9 2.6 8.8 7.0 labyrinth 

Java 50% 51% 51% 55% 84% 53% 75% 86% 96% 99% 0.1 0.9 2.5 9.9 19.2 

C 0% 0% 0% 0% 0% 0% 11% 29% 32% 29% 0.0 0.1 0.4 0.5 0.4 ssca2 

Java 0% 0% 0% 0% 0% 1% 1% 1% 2% 4% 0.0 0.0 0.0 0.0 0.0 

C 15% 13% 13% 12% 12% 20% 46% 56% 69% 79% 0.1 0.6 1.0 1.8 3.3 vacation-

high Java 15% 15% 15% 17% 13% 19% 56% 67% 80% 80% 0.0 1.0 1.5 3.0 3.4 

C 7% 5% 5% 6% 5% 12% 24% 36% 49% 60% 0.1 0.2 0.5 0.8 1.4 vacation-
low Java 6% 6% 6% 5% 6% 9% 39% 44% 55% 68% 0.0 0.5 0.7 1.1 2.0 

C 17% 18% 18% 18% 19% 23% 76% 79% 83% 87% 0.1 2.4 3.1 4.0 5.5 yada 

Java 19% 19% 19% 25% 25% 21% 68% 74% 89% 90% 0.0 1.5 2.1 4.8 6.5 

 



compilers for C/C++ and Java generated the instrumentation 
code that called the same STM runtime library functions to 
manage transactions. The C/C++ applications had higher 
instrumentation overhead than the Java applications. This was 
because stack variables can be shared among multiple threads 
through pointers, and thus they needed to be instrumented in 
C/C++. The instrumentation for stack variables was not needed 
in Java because local variables were guaranteed to be isolated. 
This difference is not observed in an HTM system because all 
of the accesses to the variables in memory during the 
transactions are tracked in  the same way by the hardware for 
both C/C++ and Java.  

There are few reports that evaluate Java applications on a 
real HTM implementation. Only some micro-benchmarks were 
evaluated on the HTM of a pre-release Rock processor [5]. 
Since the Rock processor implemented much simpler HTM, 
the results might not apply to more recent HTM 
implementations. Although a large Java application was 
evaluated on the Azul HTM system, no detailed analysis was 
presented [3]. Therefore our paper is the first to evaluate the 
Java version of the STAMP benchmarks on a real HTM system 
and to provide a detailed performance analysis. 

Wang et al. [23] evaluated the C version of the STAMP 
benchmarks on the HTM implementation of Blue Gene/Q and 
clarified the advantages and disadvantages of the HTM by 
comparing it with TinySTM [21]. We evaluated the same 
benchmarks on the HTM implementation of zEC12 and 
provided additional data that may help in designing future 
HTM systems. 

VII. CONCLUSION 

This paper investigates how programming language choice 
affects application performance on Hardware Transactional 
Memory (HTM). We compared the C and Java versions of the 
STAMP benchmarks. We developed new HTM intrinsics for 
Java, so that  Java programs can call the HTM operations and 
the JIT compiler can embed the corresponding HTM 
instructions in the JIT-compiled code. We ran our test on a 
commercial HTM implementation on an IBM mainframe 
zEnterprise EC12. We found that in 4 of the 10 STAMP 
benchmarks Java was more scalable than C. The biggest factor 
in this higher scalability was the efficient thread-local memory 
allocator in a Java VM. In two of the STAMP benchmarks C 
was more scalable because in C padding can be inserted 
efficiently among frequently updated fields to avoid false 
sharing. We also found that Java VM services could cause 
many aborts. By using a thread-local memory allocator, 
inserting padding, and avoiding invoking the Java VM services 
during the transactions, we confirmed that C and Java had 
similar scalability on HTM in the STAMP benchmarks. 
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