
Do C and Java Programs Scale Differently

on Hardware Transactional Memory?

Rei Odaira
*
, Jose G. Castanos

+
, Takuya Nakaike

*

* IBM Research – Tokyo
Toyosu, Tokyo, Japan

{odaira, nakaike}@jp.ibm.com

+ IBM Research – T. J. Watson Research Center
Yorktown Heights, NY, USA

castanos@us.ibm.com

Abstract— People program in many different programming

languages in the multi-core era, but how does each programming

language affect application scalability with transactional

memory? As commercial implementations of Hardware

Transactional Memory (HTM) enter the market, the HTM

support in two major programming languages, C and Java, is of

critical importance to the industry. We studied the scalability of

the same transactional memory applications written in C and

Java, using the STAMP benchmarks. We performed our HTM

experiments on an IBM mainframe zEnterprise EC12. We found

that in 4 of the 10 STAMP benchmarks Java was more scalable

than C. The biggest factor in this higher scalability was the

efficient thread-local memory allocator in our Java VM. In two

of the STAMP benchmarks C was more scalable because in C

padding can be inserted efficiently among frequently updated

fields to avoid false sharing. We also found Java VM services

could cause severe aborts. By fixing or avoiding these problems,

we confirmed that C and Java had similar HTM scalability for

the STAMP benchmarks.

Keywords—transactional memory; programming language; C;

Java

I. INTRODUCTION

Transactional memory is a promising technology in the
multi-core era for better scalability with less programming
effort. A programmer can simply enclose the critical sections
with begin and end directives to define transactions. Each
transaction is executed atomically so that its memory
operations appear to be performed in a single step.
Transactions can be executed concurrently as long as their
memory operations do not conflict, which allows transactional
memory to outperform global locking. Although transactional
memory is attractive for its potential concurrency, pure
software implementations, called Software Transactional
Memory (STM), incur high overhead.

Recently, chipmakers began designing and producing
special hardware for transactional memory, called Hardware
Transactional Memory (HTM). Programmers want to write
applications that take advantage of transactional memory
hardware. Sun announced the Rock processor with an HTM
facility [2], though the processor was cancelled before reaching
the market. Intel documented an instruction set architecture
called Transactional Synchronization Extensions [11] and
implemented it in their Haswell processors. IBM has released
Blue Gene/Q and the mainframe processor zEnterprise EC12
(zEC12) with HTM support [7,18]. IBM also created HTM
extensions for the Power ISA [9].

As transactional memory becomes widely available, more
and more programming languages support transactional
memory. One technical report proposes transactional language
constructs for C++ [1]. The GNU C/C++ compiler already
supports transactional memory intrinsics for x86 and the IBM
XL C/C++ compiler offers them for a mainframe architecture
[15]. Intrinsics are special API calls that are replaced with the
corresponding hardware instructions in the compiled code.
Many Software Transactional Memory (STM) systems have
been developed for various programming languages, such as
DSTM2 [8] for Java, TinySTM [21] for C/C++, the STM
package for Haskell [19], and Clojure’s STM support [4].

In spite of the broad support for transactional memory in
these programming languages, it is still unclear how each
programming language and its implementations affect the
performance of the applications that use transactional memory.
Of particular importance are the HTM scalability
characteristics of C and Java, two major imperative
programming languages. With the recent releases of
commercial HTM implementations, more and more
applications will be written in these leading programming
languages [22] using HTM.

In this paper, we compare the HTM scalabilities of the
same transactional memory applications implemented in both
C and Java. We measured the STAMP benchmarks [14], which
were originally written in C, and later ported to Java [13]. To
run the Java programs using transactional memory on HTM,
we developed platform-independent Java APIs for the HTM
intrinsics so that the transaction begin, end, and other
operations supported by the underlying hardware can be
invoked from Java. The calls to the HTM intrinsics are
recognized by our just-in-time (JIT) compiler and are
converted to HTM instructions embedded in the JIT-compiled
code. Using the HTM intrinsics for Java and inline assembly
for C, we implemented the same transaction retry logic in both
C and Java for fair comparison.

Our experimental platform was IBM’s HTM
implementation in zEC12 and this paper is also the first to
report the results of the full set of STAMP benchmarks on
zEC12.

Here are our contributions:

• We compared the scalability characteristics of two
major programming languages, C and Java, on a
commercial HTM implementation using the de facto
standard STAMP benchmarks.

• We developed platform-independent HTM intrinsics for
Java and corresponding JIT-compiler optimizations in
the IBM J9/TR Java VM [6].

• We performed the first full measurements of the
STAMP benchmarks on the HTM implementation of
the IBM mainframe zEnterprise EC12 (zEC12).

Section II describes the HTM implementation used in our
studies. Section III presents our HTM intrinsics for Java and
Section IV explains the original STAMP benchmarks and how
they were ported to Java. Section V shows the experimental
results and Section VI covers related work. Section VII
concludes this paper.

II. HTM IMPLEMENTATION

We used HTM in an IBM mainframe zEC12 [18] for our
studies. This section briefly describes the instruction set
architecture that supports the HTM and its micro-architecture
implementation. A complete overview of the zEC12 HTM
implementation was described by Jacobi et al. [12] and the full
instruction set architecture is defined in the manual [10].

A. Instruction Set Architecture

Each transaction begins with a TBEGIN instruction and is
ended by a TEND instruction. The TBEGIN instruction saves
the general purpose registers but not the floating point registers.
Therefore, the programmer is responsible for saving and
restoring the floating point registers as needed.

The TBEGIN instruction initially sets the condition code to
0. If a transaction aborts, then the execution returns back to the
instruction immediately after the outermost TBEGIN. All of
the transactionally written data is discarded and the saved
general purpose registers are restored. The hardware
transaction facilities also set the condition code to 2 or 3,
depending on whether the cause of the abort is transient or
persistent, respectively. Therefore, a program typically checks
the condition code immediately after TBEGIN and jumps to a
fallback path if it is not 0.

A transaction can abort for various reasons. The most
frequent causes include external interrupts, overflows, conflicts,
and restricted instructions. Aborts are classified as either
transient or persistent by the CPU and the condition code is set
accordingly. When the abort is transient, e.g. because of a
conflict, simply retrying the transaction is likely to succeed. On
persistent aborts, e.g. due to attempted execution of a restricted
instruction, the program should cancel the execution of the
transaction. Restricted instructions include system calls and
access-register manipulation, but most of the non-privileged
instructions are allowed. A transaction can also be aborted by
software with a TABORT instruction.

The programmer can specify the address of a 256-byte
memory in the operand of the TBEGIN instruction. This
memory area is called a Transaction Diagnostic Block (TDB)
and is used for storing debug information when a transaction
aborts. A TDB contains the abort reason code and the
instruction virtual address where the abort was detected.

B. Micro-Architecture

The Central Processor (CP) chip has 6 cores, and 6 CP
chips are packaged in a multi-chip module (MCM). Up to 4
MCMs can be connected in a single cache-coherent SMP
system. Each core has a 96-KB L1 data cache and a 1-MB L2
data cache. Both the L1 and L2 caches are store-through with
256-byte cache lines. The 6 cores on a CP chip share a 64-MB
L3 cache and the 6 CP chips share an off-chip 384-MB L4
cache included in the same MCM. All four levels of the caches
are inclusive. Each core supports a single hardware thread. The
TBEGIN instruction saves the general purpose registers to a
special transaction-backup register file. The maximum
supported nesting depth is 16.

The HTM facilities of zEC12 are built on top of its cache
structure. Each L1 data cache line is augmented with its own
tx-read and tx-dirty bits. A load instruction during a transaction
sets a tx-read bit. Transactionally written data is stored into the
L1 with the tx-dirty bit set. An abort is triggered if a cache-
coherency request from another CPU conflicts with a
transactionally read or written line. This means zEC12 uses an
eager abort scheme and provides strong atomicity. On an abort,
all of the lines whose tx-dirty bits are set are invalidated. The
general purpose registers are restored from the transaction
backup register file.

A special LRU-extension vector records the lines that are
transactionally read but evicted from the L1 cache. Thus the
maximum read-set size is roughly the size of the L2 cache. The
transactionally written data is buffered in the Gathering Store
Cache between the L1 and the L2/L3. The maximum write-set
size is limited to the cache size, which is 8 KB. An overflow
abort happens if the read-set or write-set size exceeds their
respective limitations.

III. HTM INTRINSICS FOR JAVA

This section describes our HTM intrinsics for Java.
Intrinsics are special API calls that are replaced with the
corresponding hardware instructions in the compiled code.
Because the Java standard does not support HTM
programming, we designed special methods to call the HTM
operations. These methods can be implemented using the Java
Native Interface (JNI). However, since JNI is heavyweight,
we modified our JIT compiler to recognize these methods and
to generate the HTM instructions directly in the JIT-compiled
code. First, we present the Application Programming
Interface (API) with examples for lock elision. Second, we
explain how the intrinsics are handled by our JIT compiler.

A. API

Table I shows the Java API for the HTM intrinsics. The
HTM class includes the basic operations, while the
HTM.DiagnosticInfo class abstracts the diagnostic methods
needed to investigate why a transaction aborted. The actual
diagnostic methods are implemented in a platform-dependent
subclass, HTM.DiagnosticInfoZ for our mainframe. The sub-
class also contains platform-dependent methods to directly
access the diagnostic information. For instance, the getTDB()
method is provided to read the contents of the Transaction
Diagnostic Block (TDB).

Fig. 1 shows a code example using the HTM intrinsics for
lock elision. When executing the transactions in the STAMP
benchmarks in our experiments, we used almost the same
algorithm except for the optimizations described in the next
section. A utility class AtomicRegion is defined in Lines 7-54.
This is used to enclose the critical section in Lines 1-6.
Because most of the HTM implementations use best-effort
algorithms, a fallback mechanism is needed. In this example, a
simple global spin lock is used (Line 9). Other than the
difference in the concurrency control mechanism, the
transactional path and the fallback path execute the same code
in the critical section (Line 3). The simple spin lock does not
support nesting, but it is easy to extend it to a reentrant lock.

AtomicRegion.begin() first tries to execute a critical section
as a transaction. After beginning the transaction, it reads the
lock into the transaction read-set in Line 18, so that the
transaction can be aborted later if the lock is acquired by
another thread. The transaction must abort immediately if the
lock is already acquired, because otherwise the transaction
could read data that was modified.

If a transaction aborts, the abort’s cause is checked to
determine if it is persistent or transient. If it is persistent, the
execution reverts to the lock (Lines 30 and 42-47). If the abort
is transient, the transaction is retried some dozen times before
acquiring the lock (Lines 33-36). In zEC12, the TBEGIN
instruction can determine whether an abort’s cause is persistent

or transient from the condition code, but we instead use the
abort code reported by the TDB (Lines 26-28) so that we can
fine tune the retry logic based on the abort code. Our
implementation retries the transaction up to 16 times for
transient aborts. In our preliminary experiments, we confirmed
that it was unlikely that a transaction would ever succeed after
16-or-more consecutive transient aborts.

AtomicRegion.end() in Lines 48-53 releases the lock or
ends the transaction, depending on whether or not this critical
section has been executed with an acquired lock.

B. Implementation of the HTM Intrinsics

The default implementation of the HTM.begin() method in
the class library simply returns false, and the HTM.end() and
HTM.abort() methods do nothing. However, we modified the
JIT compiler in IBM J9/TR to recognize these methods and to
embed the corresponding HTM instructions directly into the
JIT-compiled code. Therefore the critical section is executed
correctly but never as a transaction during interpreted
execution. Enabling transactional execution for the interpreter
is future work.

The front-end of the JIT compiler detects calls to these
methods and converts them into special intermediate-language
operators for TBEGIN, TEND, and TABORT. The back-end
of the compiler generates the corresponding hardware
instructions. The floating-point registers that must live across a
TBEGIN instruction are saved to the stack before the TBEGIN
instruction and are restored if the transaction aborts. The
address of thread-local memory is passed to the TBEGIN
instruction as a TDB area because the HTM.DiagnosticInfoZ
class relies on the information recorded in the TDB.

To reduce overhead, our JIT compiler also recognizes calls
to HTM.DiagnosticInfo.read() because its default
implementation calls the heavyweight JNI. On our mainframe,
the JIT compiler generates code to copy the contents of the
TDB into an instance field of the HTM.DiagnosticInfoZ object.

IV. C AND JAVA STAMP BENCHMARKS

This section describes how we measured the C and Java
versions of the STAMP benchmarks. STAMP [14] is the most
widely used transactional-memory benchmark suite. It was
originally written in C and consists of 8 programs using both
fine-grain and coarse-grain transactions. Table II shows the
benchmarks and their default runtime options.

A. C STAMP Benchmarks

We used Version 0.9.10 of the C STAMP benchmarks. The
C version encloses the critical sections with TM_BEGIN() and
TM_END() macros. Users of the benchmarks must implement
their own TM_BEGIN() and TM_END() for their specific
measurement environments.

We implemented three versions of TM_BEGIN() and
TM_END(). The first one uses the HTM of zEC12, the second
one uses global locking for reference, and the third one is a
baseline sequential version, which emits no code for
TM_BEGIN() or TM_END(). The algorithm of the HTM
version is similar to AtomicRegion.begin() and end() shown in

TABLE I. APIS OF HTM INTRINSICS FOR JAVA.

Method Description

public class HTM

public static boolean begin() Begin a transaction and return true. If

the transaction aborts, the execution

returns back to this method and the

return value is false.

public static void end() End a transaction.

public static void abort() Abort a transaction.

public static abstract class HTM.DiagnosticInfo

public static DiagnosticInfo

create()

Create and return a platform-

dependent object to diagnose aborted

transactions (on our mainframe,

return an instance of the

HTM.DiagnosticInfoZ class).

public abstract void read() Read diagnostic information into

instance fields.

public abstract boolean

isValid()

Valid diagnostic infromation?

public abstract boolean

abortByConflict()

Abort due to transaction conflict?

public abstract boolean

abortByRestrictedInstruction()

Abort due to a restricted instruction?

public abstract boolean

abortByFootprintOverflow()

Abort due to a transaction footprint

overflow?

public abstract boolean

abortByNestingOverflow()

Abort due to too many nested

transactions?

public abstract boolean

abortByTABORT()

Abort due to a TABORT instruction?

public static class HTM.DiagnosticInfoZ

extends HTM.DiagnosticInfo

Implementations of

the abstract methods in

HTM.DiagnosticInfo

public long[] getTDB() Return the contents of TDB.

Fig. 1. It uses inline assembly to invoke the zEC12 instructions
for TBEGIN, TEND, and TABORT. As an optimization, in
Lines 15 and 24 of Fig. 1, we check whether the lock was
acquired and if yes, spin-wait until it is released. After the spin
wait, the transaction is retried up to 16 times. The global-
locking version uses a single global spin lock, which is the
same as the fallback spin lock in Fig. 1.

The barrier synchronization function included in the C
STAMP benchmarks uses Pthread’s mutex locks, which are
heavyweight calls on our mainframe platform. For this reason,
we implemented the sense-reversing barrier synchronization
using spin locks.

B. Java STAMP Benchmarks

The Java version of the STAMP benchmarks [13] was
ported from the C version by the Programming Languages
Research Group at the University of California, Irvine. It was
written specifically for their own Java-to-C translator that
accepts a dialect of the Java language. This Java version does
not compile and run as-is on a standard Java environment.

We rewrote the Java STAMP benchmarks using the HTM
intrinsics, allowing us to build and run them using our J9/TR
Java VM. Other than the HTM intrinsics, the rewritten version
relies only on the standard Java features. The critical sections
are enclosed with AtomicRegion.begin() and end() as shown in
Fig. 1. AtomicRegion.begin() uses the optimizations described
in Section IV.A at Lines 15 and 24. We implemented the same
barrier synchronization algorithm as used in the C version. We
also found and fixed several bugs in the Java version. In
addition, we modified the random number generator and the
hash code calculator so that they generated the same values as
the corresponding C routines. For reference, we developed a
global-locking version using a spin lock and a baseline
sequential version. We are planning to publicly release the
rewritten Java STAMP benchmarks.

Fig. 2 compares code excerpts from the C and Java
versions. Fig. 2 part (a) shows the C and Java code to insert an
element into a hash table. The C function takes a pointer to a
table as the first argument, whereas in Java the method is an
instance method of the Table class. The Java STAMP
benchmarks rarely use the collection classes in the standard
Java class libraries. Instead, they include their own basic
collection classes that are translated from the corresponding
data structures in the C STAMP benchmarks. As shown in Fig.
2 part (b), each access to a field of a structure in C is directly
translated to an access to a corresponding instance field of an
object in Java. In the C STAMP benchmarks, the reads and
writes to shared data are annotated with the
TM_SHARED_READ() and TM_SHARED_WRITE() macros,

 1. AtomicRegion.begin();
2. try {
3. // Critical section
4. } finally {
5. AtomicRegion.end();
6. }

7. import java.util.concurrent.atomic.AtomicBoolean;
8. class AtomicRegion {
9. private static final AtomicBoolean lock

= new AtomicBoolean(false);
10. private static final HTM.DiagnosticInfo diag

= HTM.DiagnosticInfo.create();
11. private static final int RETRY_COUNT_MAX = 16;

12. public static void begin() {
13. int retryCount = RETRY_COUNT_MAX;
14. while (true) {
15. // (A) See Section IV.
16. if (HTM.begin()) {
17. // Transaction
18. if (lock.get())
19. HTM.abort();
20. return;
21. } else {
22. // Abort
23. diag.read();
24. // (B) See Sectin IV.
25. if (! diag.isValid() ||
26. diag.abortByFootprintOverflow() ||
27. diag.abortByRestrictedInstruction() ||
28. diag.abortByNestingOverflow()) {
29. // Persistent abort
30. fallBackGlobalLock();
31. return;
32. } else {
33. // Transient abort
34. if (--retryCount > 0)
35. continue;
36. fallBackGlobalLock();
37. return true;
38. }
39. }
40. }
41. }

42. private static void fallBackGlobalLock() {
43. do {
44. while (lock.get())
45. ;
46. } while (! lock.compareAndSet(false, true));
47. }

48. public static void end() {
49. if (lock.get())
50. lock.set(false);
51. else
52. HTM.end();
53. }
54. }

Fig. 1. Code example of lock elision using the HTM intrinsics for Java.

TABLE II. STAMP BENCHMARK SUITE

Benchmark Description Default Runtime Options

bayes Learns structure of a

Bayesian network

-v32 -r4096 -n10 -p40 -i2 -

e8 -s1

genome Performs gene

sequencing

-g16384 -s64 -n16777216

intruder Detects network

intrusion

-a10 -l128 -n262144 -s1

kmeans-high -m15 -n15 -t0.05 -i

inputs/random2048-d16-

c16.txt

kmeans-low

Implement K-means

clustering

-m40 -n40 -t0.05 -i

inputs/random2048-d16-

c16.txt

labyrinth Routes paths in maze -i inputs/random-x512-

y512-z7-n512.txt

ssca2 Creates efficient graph

representation

-s20 -i1.0 -u1.0 -l3 -p3

vacation-high -n4 -q60 -u90 -r1048576 -

t4194304

vacation-low

Emulates travel

reservation system

-n2 -q90 -u98 -r1048576 -

t4194304

yada Refines a Delaunay

mesh

-a15 -i

inputs/ttimeu1000000.2

so that the STM can instrument these accesses. With the HTM,
these macros do not perform any instrumentation and simply
read and write the data.

In many Java VMs, frequently executed methods are
compiled by a JIT compiler. However, because the STAMP
benchmarks run for only 3 to 30 seconds with the default
parameters, they finish before a sufficient number of methods
have been JIT-compiled. Therefore, we added a harness class
to the Java STAMP benchmarks to invoke the main() method
of a specified benchmark multiple times during a single run.
We tried different parameters to run the benchmarks longer and
found the scalability tendencies did not change, but we decided
to keep using the default parameters to insure our results are
comparable with other work using the STAMP benchmarks.

V. EXPERIMENTAL RESULTS

This section describes our experimental environment and
then compares the results of the C and Java versions of the
STAMP benchmarks.

A. Experimental Environment and Settings

We evaluated the STAMP benchmarks on zEC12 running
the mainframe z/OS 1.13 with UNIX System Services (USS).
The experimental system was divided into multiple Logical
PARtitions (LPARs), and each LPAR corresponded to a virtual
machine. Our LPAR was assigned 16 cores, each running at
5.5 GHz, and with 6 GB of main memory. Although the system

was not totally dedicated to our experiments, no other
processes were running when we collected our data.

The C versions were compiled as 64-bit programs with the
IBM XL C/C++ compiler for z/OS. The O3 optimization
option was specified. The Java version was run on 64-bit IBM
J9/TR 1.7.0 SR1 with 4 GB of Java heap and mark-and-sweep
GC. The GC time accounted for less than 5% of the execution
time for all of the benchmarks.

We ran each benchmark 4 times and took the average of
the runs. For Java, we made each run iterate a benchmark for
at least 2 minutes and averaged the execution times of the
second half of the iterations as the result for that run. This
measurement method masked the effect of the JIT compiler,
since most of the JIT compilation was done during the first
half of the iterations.

B. Comparison between C and Java

Fig. 3 compares the throughput of each sequential version
of C and Java using the default parameters shown in Table II.
The results are normalized against the C results. The purpose
of this paper is not to analyze the absolute performance of C
and Java but to compare their scalabilities. However, if their
absolute performance differed greatly, for example by an order
of magnitude, then it would be meaningless to do any detailed
scalability comparison. In Fig. 3, the performance of Java was
within 67% to 267% of that of C. This means that the absolute
performance results of C and Java were close enough for
meaningful comparisons.

Fig. 4 shows the throughput of the C and Java STAMP
benchmarks using the lock and HTM. We changed the number
of threads from 1 to 2, 4, 8, and then 16. We also show the
95% confidence intervals. The C and Java results are
normalized to their respective sequential version results, so that
we can compare the scalability of C and Java. We compare
these results with the previous report on Blue Gene/Q in
Section V.D.

The HTM versions of C and Java scaled similarly for
labyrinth, ssca2, and yada. In bayes, the C and Java versions
showed different average characteristics, but the fluctuations
were so large that we could not draw any conclusions. This
was because the running time of the multi-threaded bayes tends

1. TM_BEGIN();
2. status = TMTABLE_INSERT(startHashToConstructEntryTables[j],

(ulong_t)startHash,
(void*)constructEntryPtr);

3. TM_END();

1. AtomicRegion.begin();
2. try {
3. check = startHashToConstructEntryTables[newj]

.table_insert(startHash, constructEntryPtr);
4. } finally {
5. AtomicRegion.end();
6. }

(a-1) C / sequencer_run() in genome

(a-2) Java / Sequencer.run() in genome

1. TM_BEGIN();
2. float globalBaseLogLikelihood =

TM_SHARED_READ_F(learnerPtr->baseLogLikelihood);
3. TM_SHARED_WRITE_F(learnerPtr->baseLogLikelihood,

(baseLogLikelihood + globalBaseLogLikelihood));
4. TM_END();

1. AtomicRegion.begin();
2. try {
3. float globalBaseLogLikelihood =

learnerPtr.baseLogLikelihood;
4. learnerPtr.baseLogLikelihood =

(baseLogLikelihood + globalBaseLogLikelihood);
5. } finally {
6. AtomicRegion.end();
7. }

(b-1) C / checkTaskList() in bayes

(b-2) Java / Learner.checkTastList() in bayes

Fig. 2. Comparison of code excerpts from the C and Java versions of the

STAMP benchmarks.

H
ig
h
e
r is

 b
e
tte
r

0

50

100

150

200

250

300

ba
ye
s

ge
no
m
e

in
tru
de
r

km
ea
ns
-h
ig
h

km
ea
ns
-lo
w

la
by
rin
th

ss
ca
2

va
ca
tio
n-
hi
gh

va
ca
tio
n-
lo
w

ya
daT

h
ro
u
g
h
p
u
t
%
 (
1
0
0
=
C
/s
e
q
u
e
n
ti
a
l)

C / sequential

Java / sequential

Fig. 3. Comparison of the throughput of sequential execution in C and

Java. The 95% confidence intervals are also shown.

to vary depending on the insertion order of the edges into the
Bayesian network. In genome, intruder, vacation-high, and
vacation-low, Java was more scalable than C, while in kmeans-
high and kmeans-low C outperformed Java. In the remainder of
this section, we explain the causes of these scalability
differences and suggest ways to address them.

1) Thread-local memory allocator
The lower scalability of C in genome, intruder, vacation-

high, and vacation-low was caused by excessive transaction
conflicts in the malloc() memory allocator. These benchmarks
allocate many objects within the transactions. A naïve
implementation of a memory allocator allocates an object from
global free lists. This mechanism obviously causes conflicts in

multi-threaded execution. In contrast, the J9/TR Java VM and
most of the other high-performance Java VMs allocate objects
on a thread-local basis to avoid conflicts. The HotSpot Java
VM uses Thread-Local Allocation Buffers (TLABs) [16]. Each
application thread allocates objects from its own TLAB. If the
TLAB becomes empty, another TLAB is allocated from the
global Java heap and assigned to the thread. The J9/TR Java
VM also uses a similar mechanism.

To avoid the conflicts at the memory allocator, the C
version of the STAMP benchmarks includes a simple but
incomplete thread-local memory allocator. This resembles the
TLAB in the HotSpot Java VM, but it does not support the
release of objects. Since this incomplete allocator can run the C

 bayes

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

genome

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

intruder

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

kmeans-high

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

kmeans-low

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

labyrinth

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

ssca2

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

vacation-high

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

vacation-low

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

H
ig
h
e
r is

 b
e
tte
r

Fig. 4. Throughput of the C and Java STAMP benchmarks when running with the default benchmark parameters, using a single global lock and HTM. The C

and Java results are normalized to their respective sequential versions’ results. The 95% confidence intervals are also shown.

STAMP benchmarks without any errors, we replaced the
invocations of malloc() with calls to the thread-local memory
allocator. These measurement results appear in the next section.
We could instead use an efficient multi-threaded memory
allocator, such as TCMalloc [20], but its performance on the
HTM is still unknown and studying it is future work.

2) Padding to avoid false sharing
C was more scalable than Java in kmeans-high and

kmeans-low, because the C version inserts padding between
frequently updated fields to avoid false sharing. If each of the
fields that is frequently updated by different threads were
placed into the same cache line, they would cause excessive
conflicts due to false sharing. Inserting padding among such
fields to place them in different cache lines is a widely used
programming technique. In kmeans, the data structures of a
cluster consist of an integer and an array of floating-point
numbers, as shown in Fig. 5(a). Because each transaction
updates one cluster at a time, the data structures of a cluster are
all located in a contiguous memory region. In contrast, the data
structures of different clusters are separated by padding, so that
different transactions updating different clusters do not conflict
with one another.

In the Java version, since it is not possible to allocate the
integer and the array of floating-point numbers in a contiguous
area, they are represented as different arrays, as shown in Fig.
5(b). This representation obviously causes conflicts due to false
sharing because the data belonging to different clusters can be
placed into the same cache line. We modified the original Java
version by inserting padding around each integer and each
array of floating-point numbers, as shown in Fig. 5(c). We
show the results later. This implementation is less memory-
efficient than the C version. In particular, on the mainframe
platform, each integer occupies a 256-byte cache line. Note
that each array in Java has a hidden field at the head to hold the
length of the array, and padding is necessary between the

length field and the first element. Because the length field is
read in every transaction for array bound checking, without the
padding, conflicts happen when transactions modify the first
element. Depending on the Java VM, the length field is not
necessarily at the head of its array, so this padding method is
Java VM-dependent.

The difference in padding between C and Java is not
specific to kmeans. For example, the C version of bayes uses
the data structure shown in Fig. 5(d), which has padding
among the frequently-updated fields. This type of padding
cannot be implemented in the Java language because arrays
cannot be embedded into an object and the field order within
an object is not necessarily the same as the order written in the
source code. Therefore the corresponding data structure in the
Java version of bayes does not include any padding.

In general, the Java language has difficulties in handling
data structures with padding, as shown in these examples.
More sophisticated VM support is desired in Java, such as a
feedback-directed mechanism to automatically co-locate the
data structures accessed within the same transaction and to
separate frequently updated fields.

3) Java VM services
In vacation-high and vacation-low, although Java was more

scalable than C, we found that Java VM services invoked
during the transactions reduced the scalability. Specifically,
JIT-compiled code with profiling instrumentation was executed
during the transactions, and the profiling code caused severe
conflicts. Our J9/TR Java VM performs multi-level JIT
compilation, where methods are first executed by the
interpreter, and then frequently executed methods are JIT-
compiled at a lower optimization level. If a JIT-compiled
method is more frequently executed, then it is JIT-compiled
again with profiling instrumentation. The instrumented JIT-
compiled code is executed for a short period and finally the

 (a) C version of kmeans

int float float float Padding int float float float PaddingPadding

int *new_centers_len[] float *new_centers[]

Cluster Cluster

(b) Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

(c) Modified Java version of kmeans

int int intint new_centers_len[]

float new_centers[][]

float float floatfloat float float

Padding Padding Padding

Padding Padding

(d) Code excerpt from the C version of bayes
typedef struct learner {
adtree_t* adtreePtr;
net_t* netPtr;
float* localBaseLogLikelihoods;
char pad1[CACHE_LINE_SIZE - sizeof(float*)];
float baseLogLikelihood;
char pad2[CACHE_LINE_SIZE - sizeof(float)];
learner_task_t* tasks;
char pad3[CACHE_LINE_SIZE - sizeof(learner_task_t*)];
list_t* taskListPtr;
char pad4[CACHE_LINE_SIZE - sizeof(list_t*)];
long numTotalParent;
char pad5[CACHE_LINE_SIZE - sizeof(long)];

} learner_t;

len

len len len len

Paddinglen

Fig. 5. Data structures used in the C and Java versions of kmeans and bayes. (a) The C version of kmeans inserts padding within the sets of an integer and

floating-point numbers representing clusters. (b) The original Java version of kmeans does not insert any padding. The “len” fields contain the lengths of the

arrays for array bound checking. (c) The modified Java version separates the data belonging to different clusters with padding, but this uses more memory than

in the C version. (d) The C version of bayes also inserts padding.

method is JIT-compiled again at a higher optimization level
with the collected profile. A similar mechanism is also
implemented in other Java VMs. The profiling is controlled by
global data structures, which are where the contentions
occurred. In most of the benchmarks, the profiling was done
before the measurement period (the last minute of the 2-minute
execution period), but in vacation-high and vacation-low, the
profiling code for a method was executed during the
measurement period. We avoided these contentions by
disabling the profiling for the specific method that caused the
contentions in vacation-high and vacation-low. A more
fundamental solution would be to implement a profiling
mechanism that accesses fewer global data structures.

The profiling mechanism for the JIT compilation is not the
only Java VM service that can cause many aborts. For example,
a JIT compiler can cause transaction overflows if it is invoked
during a transaction. Another example is code patching, which
is not allowed in most of the HTM implementations. Therefore,
to get better scalability in Java, Java VMs must be aware of
HTM and make their services HTM-friendly.

C. Comparison between C and Java after Modification

Fig 6 shows the scalabilities of the C and Java versions of
the STAMP benchmarks with the modifications described in
the previous section. Compared with Fig. 4, the thread-local

 bayes

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

genome

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

intruder

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

kmeans-high

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

kmeans-low

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

labyrinth

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

ssca2

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

vacation-high

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

vacation-low

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

yada

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Number of threads

S
p
e
e
d
-u
p
 o
v
e
r
s
e
q
u
e
n
ti
a
l

C/Lock

C/HTM

Java/Lock

Java/HTM

H
ig
h
e
r is

 b
e
tte
r

Fig. 6. Throughput of the C and Java STAMP benchmarks after modifing the three points described in Section V.B. Overall, C/HTM and Java/HTM scaled

similarly. When compared with Fig. 4, the throughput of the C version was improved by the thread-local memory allocator, especially in intruder, vacation-

high, and vacation-low. The Java version scaled better in kmeans-high and kmeans-low because of the inserted padding and in vacation-high and vacation-low

by avoiding profiling code exection during the transactions.

memory allocator in the C/HTM improved the scalability of
intruder, vacation-high, and vacation-low. The C version of
bayes was improved too, but the fluctuations were still large.
The Java versions scaled better in kmeans-high and kmeans-
low when the appropriate padding was inserted. The Java
versions of vacation-high and vacation-low were improved by
avoiding the execution of profiling code during the transactions.

Table III shows the serialization ratios and abort ratios. A
serialization ratio is the percentage of committed transactions
that were executed with the global lock being acquired. An
abort ratio is the percentage of executed transactions that were
aborted. In ssca2, the C version suffered from more aborts than
the Java version, but they did not affect the scalability because
the transaction coverage is small. Although not shown in the
table, persistent aborts accounted for less than 20% of all of the
aborts with 2 to 16 threads. Genome, vacation-high, and
labyrinth suffered from relatively high persistent abort ratios,
due to read-set overflows (for genome and vacation-high) and
write-set overflows (for labyrinth). Most of the transient aborts
were caused by conflicts. Table III also presents the average
number of retries. The numbers can be more than 16, which is
the maximum number of retries specified in Line 11 of Fig. 1,
because the transactions can retry not only for transient aborts
but also for the acquired global lock (Line 24 of Fig. 1).

Overall, after the modifications described in Section V.B
were applied, the scalability differences between C and Java
became smaller than before. There are still gaps in vacation-
high and vacation-low with 16 threads. This investigation is
also for future research.

D. Comparison against Blue Gene/Q

We compared the results of the C STAMP benchmarks on
zEC12 (Fig. 6) with those on another HTM implementation in
Blue Gene/Q (BG/Q) [23]. In bayes, although the fluctuations
were large, BG/Q scaled slightly better than zEC12. BG/Q
achieved a 3-fold speed-up with 16 threads. Our zEC12

suffered from many conflicts. In genome, the scalability gap
between BG/Q and zEC12 was even larger. The abort ratio on
BG/Q was 13% with 16 threads, while that on zEC12 was 68%,
as shown in Table III. Intruder and labyrinth showed similar
scalability characteristics on BG/Q and zEC12. The zEC12 was
more scalable than BG/Q for kmeans-high, kmeans-low, and
ssca2, while vacation-high, vacation-low, and yada were less
scalable on the zEC12. These benchmarks suffered from
frequent conflicts on the zEC12.

In summary, the zEC12 was more scalable than BG/Q in 3
and less scalable in 5 of the 10 C STAMP benchmarks. Except
for kmeans-high and kmeans-low, the abort ratios of zEC12 in
Table III were higher than the corresponding results in Table 3
of the BG/Q paper [23]. Most of the aborts on the zEC12 were
caused by transaction conflicts. We believe that the zEC12’s
256-byte cache line size, which is longer than BG/Q’s 64-byte
L1 and 128-byte L2 cache line sizes, adversely affected the
scalability, due to false sharing.

VI. RELATED WORK

Rolett evaluated the C++ and Java versions of micro-
benchmarks on the Rochester Software Transactional Memory
system [17]. Experimental results showed that the C++ version
outperformed the Java version. The lower performance of the
Java version was caused by indirect accesses to objects. Since
the Java version wrapped all of the shared objects so that the
objects were accessed only through getter and setter methods,
it always went through the wrapper objects to access the shared
objects. The indirect object accesses were also necessary for
atomic operations such as compare-and-swap, because the
implementation of atomic operations was boxed in the
java.util.concurrent package classes. These types of overhead
do not occur in an HTM because they are caused by the
operations to implement the STM.

Wu et al. measured C/C++ and Java applications on an
STM runtime system which was implemented in C [24]. The

TABLE III. PERCENTAGE OF SERIALIZED TRANSACTIONS AND ABORTED TRANSACTIONS, AND AVERAGE NUMBER OF RETRIES

Serialization ratio (# threads) Abort ratio (# threads) Average # of retries (# threads) Benchmark

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

C 32% 48% 52% 59% 68% 39% 94% 96% 97% 98% 0.1 7.6 10.2 13.7 18.7 bayes

Java 30% 38% 45% 56% 58% 35% 89% 94% 97% 97% 0.1 4.4 8.1 12.6 15.0

C 13% 13% 12% 11% 10% 16% 41% 52% 59% 68% 0.0 0.5 0.9 1.2 1.8 genome

Java 11% 9% 9% 10% 10% 14% 30% 41% 54% 69% 0.0 0.3 0.5 1.0 1.9

C 1% 2% 2% 4% 4% 2% 26% 42% 59% 69% 0.0 0.3 0.7 1.3 2.1 intruder

Java 1% 2% 6% 10% 12% 1% 31% 69% 80% 81% 0.0 0.4 2.1 3.6 3.6

C 0% 0% 1% 7% 0% 0% 15% 39% 76% 27% 0.0 0.2 0.6 2.9 0.4 kmeans-

high Java 0% 0% 2% 0% 1% 0% 9% 52% 31% 40% 0.0 0.1 1.0 0.4 0.7

C 0% 0% 1% 0% 0% 0% 5% 14% 6% 19% 0.0 0.1 0.2 0.1 0.2 kmeans-

low Java 0% 0% 0% 0% 0% 0% 3% 4% 20% 18% 0.0 0.0 0.0 0.2 0.2

C 50% 50% 50% 55% 50% 51% 74% 86% 95% 94% 0.0 0.9 2.6 8.8 7.0 labyrinth

Java 50% 51% 51% 55% 84% 53% 75% 86% 96% 99% 0.1 0.9 2.5 9.9 19.2

C 0% 0% 0% 0% 0% 0% 11% 29% 32% 29% 0.0 0.1 0.4 0.5 0.4 ssca2

Java 0% 0% 0% 0% 0% 1% 1% 1% 2% 4% 0.0 0.0 0.0 0.0 0.0

C 15% 13% 13% 12% 12% 20% 46% 56% 69% 79% 0.1 0.6 1.0 1.8 3.3 vacation-

high Java 15% 15% 15% 17% 13% 19% 56% 67% 80% 80% 0.0 1.0 1.5 3.0 3.4

C 7% 5% 5% 6% 5% 12% 24% 36% 49% 60% 0.1 0.2 0.5 0.8 1.4 vacation-
low Java 6% 6% 6% 5% 6% 9% 39% 44% 55% 68% 0.0 0.5 0.7 1.1 2.0

C 17% 18% 18% 18% 19% 23% 76% 79% 83% 87% 0.1 2.4 3.1 4.0 5.5 yada

Java 19% 19% 19% 25% 25% 21% 68% 74% 89% 90% 0.0 1.5 2.1 4.8 6.5

compilers for C/C++ and Java generated the instrumentation
code that called the same STM runtime library functions to
manage transactions. The C/C++ applications had higher
instrumentation overhead than the Java applications. This was
because stack variables can be shared among multiple threads
through pointers, and thus they needed to be instrumented in
C/C++. The instrumentation for stack variables was not needed
in Java because local variables were guaranteed to be isolated.
This difference is not observed in an HTM system because all
of the accesses to the variables in memory during the
transactions are tracked in the same way by the hardware for
both C/C++ and Java.

There are few reports that evaluate Java applications on a
real HTM implementation. Only some micro-benchmarks were
evaluated on the HTM of a pre-release Rock processor [5].
Since the Rock processor implemented much simpler HTM,
the results might not apply to more recent HTM
implementations. Although a large Java application was
evaluated on the Azul HTM system, no detailed analysis was
presented [3]. Therefore our paper is the first to evaluate the
Java version of the STAMP benchmarks on a real HTM system
and to provide a detailed performance analysis.

Wang et al. [23] evaluated the C version of the STAMP
benchmarks on the HTM implementation of Blue Gene/Q and
clarified the advantages and disadvantages of the HTM by
comparing it with TinySTM [21]. We evaluated the same
benchmarks on the HTM implementation of zEC12 and
provided additional data that may help in designing future
HTM systems.

VII. CONCLUSION

This paper investigates how programming language choice
affects application performance on Hardware Transactional
Memory (HTM). We compared the C and Java versions of the
STAMP benchmarks. We developed new HTM intrinsics for
Java, so that Java programs can call the HTM operations and
the JIT compiler can embed the corresponding HTM
instructions in the JIT-compiled code. We ran our test on a
commercial HTM implementation on an IBM mainframe
zEnterprise EC12. We found that in 4 of the 10 STAMP
benchmarks Java was more scalable than C. The biggest factor
in this higher scalability was the efficient thread-local memory
allocator in a Java VM. In two of the STAMP benchmarks C
was more scalable because in C padding can be inserted
efficiently among frequently updated fields to avoid false
sharing. We also found that Java VM services could cause
many aborts. By using a thread-local memory allocator,
inserting padding, and avoiding invoking the Java VM services
during the transactions, we confirmed that C and Java had
similar scalability on HTM in the STAMP benchmarks.

ACKNOWLEDGMENT

We would like to thank the members of the Commercial
Systems group in IBM Research – Tokyo for helpful
discussions. We are also grateful to the authors of the C and
Java versions of the STAMP benchmarks.

REFERENCES

[1] Boehm, H., Gottschlich, J., Luchangco, V., Michael, M., Moir, M.,
Nelson, C., Riegel, T., Shpeisman, and T., Wong, M., “Transactional
language constructs for C++,” N3341=12-0031, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf, 2012.

[2] Chaudhry, S., Cypher, R., Ekman, M., Karlsson, M., Landin, A., Yip, S.,
Zeffer, H., and Tremblay, M., "Rock: A high-performance SPARC CMT
processor," IEEE Micro, 29(2), pp. 6-16, 2009.

[3] Click, C., “Azul’s Experiences with Hardware Transactional Memory,”
2009 Transactional Memory Workshop.

[4] Clojure, http://clojure.org/.

[5] Dice, D., Lev, Y., Moir, M., and Nussbaum, D., “Early experience with
a commercial hardware transactional memory implementation,” In
Architectural Support for Programming Languages and Operating
Systems, Mar. 2009.

[6] Grcevski, N., Kilstra, A., Stoodley, K., Stoodley, M., and Sundaresan, V,
“Java just-in-time compiler and virtual machine improvements for server
and middleware applications,” in Proceedings of the 3rd Virtual
Machine Research and Technology Symposium, pp. 151-162, 2004.

[7] Haring, R. A., Ohmacht, M., Fox, T. W., Gschwind, M. K., Satterfield,
D. L., Sugavanam, K., Coteus, P. W., Heidelberger, P., Blumrich, M. A.,
Wisniewski, R.W., Gara, A., Chiu, G. L.-T., Boyle, P.A., Chist, N.H.,
and Kim, C., "The IBM Blue Gene/Q compute chip," IEEE Micro, 32(2),
pp. 48-60, 2012.

[8] Herlihy, M., Luchangco, V., and Moir, M., “A flexible framework for
implementing software transactional memory,” in OOPSLA, pp. 253-
262, 2006.

[9] IBM, “Power ISA Transactional Memory,” Power.org, 2012.

[10] IBM, "z/Architecture Principles of Operation Tenth Edition (Septem-ber,
2012)," http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf

[11] Intel Corporation, "Intel Architecture Instruction Set Extensions
Programming Reference," 319433-012a edition, 2012.

[12] Jacobi, C., Slegel, T., and Greinder, D., "Transactional memory archi-
tecture and implementation for IBM System z," in MICRO45, 2012.

[13] Java STAMP Benchmark Suite Version 0.5,
http://demsky.eecs.uci.edu/software.php .

[14] Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K, “STAMP:
Stanford Transactional Applications for Multi-processing,” in IISWC,
pp. 35-46, 2008.

[15] Mitran, M., and Vokhshoori, V., “IBM XL C/C++ compiler maximizes
zEC12’s transactional execution capabilities,” IBM Systems Magazine,
2012

[16] Oracle, “Tuning the Java runtime system,”
http://docs.oracle.com/cd/E19644-01/817-5051/pt_tuningjava.html

[17] Rolett, A., “A Java Implementation of the Rochester Software
Transactional Memory Library,” Thesis --University of Rochester. Dept.
of Computer Science, 2008.

[18] Shum, C.-L., "IBM zNext: the 3rd generation high frequency micro-
processor chip," in HotChips 24, 2012.

[19] STM package for Haskell, http://hackage.haskell.org/package/stm .

[20] TCMalloc, http://goog-perftools.sourceforge.net/doc/tcmalloc.html .

[21] TinySTM, http://www.tmware.org/tinystm.

[22] TIOBE Programming Community Index,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html .

[23] Wang, A., Gaudet, M., Wu, P., Amaral, J. N., Ohmacht, M., Barton, C.,
Silvera, R., and Michael, M., “Evaluation of Blue Gene/Q Hardware
Support for Transactional Memories,” Proceedings of the 21st
international conference on Parallel architectures and compilation
techniques, 2012.

[24] Wu, P., Michael, M. M., Praun, C., Nakaike, T., Bordawekar, R., Cain,
H. W., Cascaval, C., Chatterjee, S., Chiras, S., Hou, R., Mergen, M.,
Shen, X., Spear, M. F., Wang, H. Y., and Wang, K., “Compiler and
runtime techniques for software transactional memory optimization,”
Concurrency and Computation: Practice & Experience - Compilers for
Parallel Computers 2007 Workshop. pp. 7-23, Vol. 21, 2009.

