Coloring-based Coalescing #
for Graph Coloring Register AIIocat|

Rei Odaira, Takuya Nakaike, :
Tatsushi Inagaki, Hideaki Komatsu,
Toshio Nakatani

IBM Research - Tokyo

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Register Allocation

= Goal: Reduce register spills!

Compilation phase

Live-range Register coalescin '
splitting g g Graph coloring .
S S

Finer
allocation
unit

Physical
registers
allocated

Allocation
unit tuned

2 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Our Approach:
Use Graph Coloring in Register Coalescing

= Goal: Reduce more register spills!

Compilation phase

Register coalescing

Live-range
splitting

Graph coloring> Graph coloring

~_/

Same algorithm

3 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Outline

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Running Example

= Assign 3 variables to
2 physical registers.

—A,B,and C
—R1 and R2

= Need to spill one of

the variables.

CGO 2010 | April 27, 2010

while (true) {
C=..
LEAEL
LL=C+ ...
if (...){
A=..
B=C+ ..
} else {
if (B) {
A=..
=B+ ...
} else {
if (A > 0) break

© 2010 IBM Corporation

IBM Research - Tokyo

Register Allocation as
Graph Vertex Coloring

= Simple and powerful
abstraction

—[Chaitin et al., '81]

= Color = physical
register
= Interference graph

— Node = live range of
a variable

— Edge = interference
between live ranges

6 CGO 2010 | April 27, 2010

B=..
while (true) {
C=..
LA+
LL=C+ ..
if (...){
A= ..
B=C+..
} else {
if (B) {
A= ..
..=B+ ..
} else {
if (A > 0) break

Which node to spill?

© 2010 IBM Corporation

IBM Research - Tokyo

Calculating Spill Costs and Interference Degrees

= Assume optimistic heuristics [Briggs, '94].

A= ... = Cost = frequency of accesses to a variable.
B=.. = Degree = how much a node restricts the
Wh(':'ez("“e){ coloring of its neighbors.
LA+
i];'(z_ (): {+ Cost Degree | Cost/ - R2
A= .. Degree
B=C+..
}else { A 30 2 15
o B 30 |2 15
=B+
} else { C 20 2 10
if (A > 0) break
}
} L]
g‘ - g‘ : Benefit of register allocation.
}
7 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Simplifying Interference Graph

= Push the least beneficial node to a coloring stack.

Cost Degree | Cost/
Degree
A 30 1 30
B 30 1 30
| @ | C 20 2 10

Coloring stack

8 CGO 2010 | April 27, 2010

Ril R
() ¢

© 2010 IBM Corporation

IBM Research - Tokyo

Simplifying Interference Graph

= Finished simplifying the graph.

Cost Degree | Cost/

Degree
° A 30 1 30
e B 30 |1 30
| G | C 20 2 10

9 CGO 2010 | April 27, 2010

© 2010 IBM Corporation

IBM Research - Tokyo

Selecting Colors

= Pop a node.
= Select a color that is not assigned to its neighbors.

Ril R2

10 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Selecting Colors

= If no color is available, the node is marked for spilling.

Ril R2

Spill

11 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

: i ' R1=...
Problem: Spill Everywhere is Costly. |*!=-
while (true) {
_ . _ C=..
= Live range can be either: Store C to stack
— Assigned to a single register, or -=R1+ ..
Load C from stack
— Entirely spilled to the stack. _-];-(= <)3{+
Im (...
l R1=...
Load C from stack
= Spill can be further reduced: }e_lzi {= ©r
— By assigning only a part of a live TR2)
range to a register, or _=R2+
— By assigning different parts to }?ﬁ%ﬁ > 0) break
different registers. }
}
R1=R1+ ...
- Live-range splitting } R2=R2+..

12 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Outline

Live-range
splitting

L]

13 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Al=..
B1=..
Live-range Splitting while (true) {
L=AT+ L
= [Briggs, '92], [Kolte et al., '94], A2 = A1
. ’ .=C1+ ..
[Nakaike et al., '06], etc. Gy e
el
= Split live ranges into shorter B> = o4
sub-ranges: A1, A2, A3, etc. } else {
. B2 = B3 = B1
— Split sub-ranges are if (B1) {
copy-related. A3 =B ;
= Graph coloring can assign B2=B3
different colors to different } else {
A3 = A2
sub-ranges. if (A2 > 0) break
}
}
A1=A3+ ..
B1=B2+ ...
}

CGO 2010 | April 27, 2010 w zu v 1ol Corporation

15

IBM Research - Tokyo

In Reality, It's Not That Easy.

= Too large degrees and too small
costs confuse the coloring heuristics.

Rl R2

= ® Copy-related
o' A1

S

:AZ —s 4@

|
//
~

(62 483

Qygggun*

- We need coalescing!

CGO 2010 | April 27, 2010

Al=_..
Store A1 to stack
R1=..
while (true) {
R2 = ...
Load A1 from stack

L=AT+
=DP2 4

No spill reduction by splitting.

>

R2=R2+ ...
} else {

R2 = R1

if (R1) {
R1=..
=R2+ ...

} else {
Load A2 from stack
R1=A2
if (R1 > 0) break

}

}
A1=R1+ ..

Store A1 to stack
R1=R2+ ...

© 2010 IBM Corporation

IBM Research - Tokyo

Outline

splitting

CGO 2010 | April 27, 2010

© 2010 IBM Corporation

IBM Research - Tokyo

Outline

List splitting
point candidates.

Select good splitting
points from the
candidates.

Live-range

Regqister coalescin i
splitting g g Graph coloring

1

17 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Register Coalescing

= Merge copy-related sub-ranges into a = = Copy-related
longer sub-range.

— [Chaitin, '82], [Briggs, '94],
[George et al., '96], [Park et al, "98] °
— Originally proposed to reduce copies. ‘
To reduce spills, it has pros and cons. @ - @
= Pros: Coalesced node can become
* m :'3 ‘

colorable.
— Due to increased cost.
18 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

= Cons: Coalesced node can become
uncolorable.

— Due to increased degree.

= Depend on the number of common
neighbors.

IBM Research - Tokyo

You Should Coalesce Those Nodes That Have
Many Common Neighbors.

= As long as the coalesced nodes do not become uncolorable.
= No good criteria are known.

Coalesce those nodes that Coalesce those nodes that
have 3 common neighbors. have 2 common neighbors.
= Minimum spills - Revert to the original graph.
in this graph.
@

\J

\\@ @ C1,2
\
1 store, 1 store,
B1--- @ 1 load 2 loads
\ 4

YSaggun®
19 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Our Approach

Live-range
splitting

Same algorithm

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Our Rationale

Coloring results reflect the structure of a graph.

= Common neighbors
< Likely the same color by trial coloring.

— Common neighbors impose the same coloring restrictions.

= Can become uncolorable by coalescing
< Likely different colors by trial coloring.

— Interference prevents them from being assigned
the same color.

21 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Coloring-based Coalescing

22

1.

B W

Do trial coloring.

Coalesce copy-related nodes that are assigned
the same color.

Clear the colors.
Do actual coloring for register allocation.

Live-range
splitting

Register coalescing

Coloring

Coalescing

Clearing>

CGO 2010 | April 27, 2010

Graph coloring

© 2010 IBM Corporation

IBM Research - Tokyo

Trial Coloring, Coalescing, and Actual Coloring

= |[ncrease the number of colors on demand to color all nodes.

C1,2

| | . Actual coloring
Trial coloring Coalescing (minimum spills

in this graph)

23 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo
Two Key Points to Obtain Good Coalescing

1. Coalesce A1 and A2.

— Because neighbors of A1 totally included in those of A2.
Trial coloring successfully assigns A1 and A2 the same color.

— B1, B2, and C1 impose the same coloring on A1 and A2.

Coloring
stack

24 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Two Key Points to Obtain Good Coalescing

2. Do not coalesce B1 with B2.

— Because it could create a triangle, which is not 2-colorable.
Trial coloring successfully assigns them different colors.

— Due to the 2-coloring of the chain of B1-C2-A3-B2.

Coloring

stack

© 2010 IBM Corporation

25 CGO 2010 | April 27, 2010

IBM Research - Tokyo

Existing Algorithms are Too Conservative or Too Aggressive.

Iterated coalescing Optimistic coalescing
[George et al., '96]: [Park et al., '98]:
Must keep the colorability of After aggressive coalescing,
coalesced nodes. split again if uncolorable.
(AT — But a colored node
* cannot be split again.

@,
N

.
A2
~
'///j;;7%<:>
N
l B1,2,3 C1

Qg ggunt*

l..

26 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

More lterations Can Produce Better Results.

27

= But too many iterations can be harmful.
— Increased spills.

— Increased compilation time.
- Need experiments.

Live-range
splitting

Register coalescing

Coloring)Coalescing Clearing>

CGO 2010 | April 27, 2010

Graph coloring

© 2010 IBM Corporation

IBM Research - Tokyo

Experiments

= Environment
— IBM J9/TR 2.4 JIT compiler

* Implemented a graph coloring register allocator and the coalescing algorithms.
* Implemented SSA-and-reverse-SSA-based live-range splitting [Briggs, '92].

— IBM System z9 2094 / 4x 64-bit CPUs / 8GB memory / Linux 2.6.16

+ 16 integer and 16 floating-point registers.
Benchmarks

— SPECjvm98 and 2 larger benchmarks from DaCapo
Spill cost calculation

— Static number of uses and definitions, weighted by 10 in a loop
Baseline

— Graph coloring register allocator with iterated coalescing (no splitting)
Compared approaches
— Splitting + iterated coalescing

— Splitting + optimistic coalescing
— Splitting + coloring-based coalescing (once)
— Splitting + coloring-based coalescing (twice)

28 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Static Spill Costs (100% = w/o Splitting)

= 6% reduction on average by coloring-based coalescing once.

— 18% reduction by twice.
= More than 20% increase on average by the existing algorithms.

O Splitting + iterated coalescing
250 M Splitting + optimistic coalescing -

;\? @ Splitting + coloring-based coalescing (once)

w 200 Splitting + coloring-based coalescing (twice) |- | §
2 I :
3 150 @
=)
= d
= 100 o}
O =
— Q)
E 50 =
/9]

0

29 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Execution Time (100% = w/o Splitting)

= JIT compilation time not included.
= Up to 15% and on average 3% speed-up.
= Up to 12% and on average 1% speed-up by the existing algorithms.

O Splitting + iterated coalescing
@ Splitting + optimistic coalescing
120 @ Splitting + coloring-based coalescing (once)

— @ Splitting + coloring-based coalescing (twice)
§ 115 -
'c —n
g 110 chD_
w 105 _.
0>> 77
= 100 o
S ©
& 95 B
90 1 1
) D
g <
&
S

30 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Compilation Time (100% = w/o Splitting)
= Increase mostly due to live-range splitting.
— ~50% increase on average by coloring-based coalescing.

— 32% increase by iterated coalescing, while 78% by optimistic
coalescing.

O Splitting + iterated coalescing
@ Splitting + optimistic coalescing
300 @ Splitting + coloring-based coalescing (once)

Q [@ Splitting + coloring-based coalescing (twice)
o —
— 250 o)
2 =2
£ 200 @
S 150 °
5 100 H o
g_ 100 §
o 90
o

0 L] 1 1

31 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Conclusions

Coloring-based coalescing effectively reduces spills.

= Simple
— Just iterate an existing coloring algorithm.
= Powerful
— Inspect the structure of an interference graph by trial coloring.

= 6% reduction on average in static spill costs.
—20% increase on average by the existing algorithms.
= Up to 15% and on average 3% speed-up

—Up to 12% and on average 1% speed-up by the existing
algorithms.

Ky CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Thank you!

* Questions?

33 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

CGO 2010 | April 27, 2010 © 2010 IBM Corporation

IBM Research - Tokyo

Static Copy Costs (100% = w/o Splitting)

= 13% reduction compared with iterated coalescing.
= 15% increase compared with optimistic coalescing.

O Splitting + iterated coalescing
@ Splitting + optimistic coalescing

@ Splitting + coloring-based coalescing (once)
%gg | @ Splitting + coloring-based coalescing (twice)

160 B
140
120 H
100 -

Static copy costs (%)

NBO O
(== = = Y e}
|

35 CGO 2010 | April 27, 2010 © 2010 IBM Corporation

