

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.

Copyright © 2012 ACM 978-1-4503-0759-8/12/03…$10.00.

Continuous Object Access Profiling and Optimizations
to Overcome the Memory Wall and Bloat

Rei Odaira, Toshio Nakatani

IBM Research – Tokyo
1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan

{ odaira, nakatani } @jp.ibm.com

Abstract

Future microprocessors will have more serious memory wall
problems since they will include more cores and threads in each
chip. Similarly, future applications will have more serious mem-
ory bloat problems since they are more often written using object-
oriented languages and reusable frameworks. To overcome such
problems, the language runtime environments must accurately
and efficiently profile how programs access objects.

We propose Barrier Profiler, a low-overhead object access
profiler using a memory-protection-based approach called pointer
barrierization and adaptive overhead reduction techniques.
Unlike previous memory-protection-based techniques, pointer
barrierization offers per-object protection by converting all of the
pointers to a given object to corresponding barrier pointers that
point to protected pages. Barrier Profiler achieves low overhead
by not causing signals at object accesses that are unrelated to the
needed profiles, based on profile feedback and a compiler analy-
sis. Our experimental results showed Barrier Profiler provided
sufficiently accurate profiles with 1.3% on average and at most
3.4% performance overhead for allocation-intensive benchmarks,
while previous code-instrumentation-based techniques suffered
from 9.2% on average and at most 12.6% overhead. The low
overhead allows Barrier Profiler to be run continuously on pro-
duction systems. Using Barrier Profiler, we implemented two new
online optimizations to compress write-only character arrays and
to adjust the initial sizes of mostly non-accessed arrays. They
resulted in speed-ups of up to 8.6% and 36%, respectively.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – optimization

General Terms Algorithms, Performance, Experimentation.

Keywords Memory protection; memory management; profiling

1. Introduction

Increasing numbers of cores and threads on each chip have re-
duced the per-core and per-thread caches and memory bandwidth.
This trend results in the problem called memory wall, a long la-
tency for programs to access data in memory. Typical programs
written in object-oriented languages such as Java exacerbate the

memory wall because they allocate and access a large number of
objects [31]. Such programs are called allocation-intensive pro-
grams. Allocating many objects also causes frequent GC invoca-
tions and increases the GC overhead.

Recent research [14,29] has shown that a large fraction of
those object allocations are wasted, since they do not involve any
data that actually contribute to the output of the program. This
problem is often called memory bloat. Memory bloat happens
because more programs are written using reusable libraries and
frameworks. Such libraries and frameworks can allocate large
data structures for generic usage but are not optimal for particular
use cases. Memory bloat not only interferes with the efficient use
of memory, but also makes the memory wall even higher since
more of the actually useful data is evicted from CPU caches.

To reduce the effects of the memory wall and memory bloat,
language execution environments such as Java VMs need to pro-
file the program accesses of objects and then to optimize those
objects. Object access profiles include properties such as write-
only objects, immutable objects, and non-accessed bytes based on
the information about which program instructions access which
fields of which objects. Object access profiling is crucial for
many object optimizations, including object compression
[5,12,21], lazy allocation [5,24], field reordering [6], and object
merging [12]. For example, if certain objects are unlikely to be
accessed after initialization, they should be compressed.

There are two requirements for an object access profiler. First,
it must be lightweight so that it can be used online. Although the
object optimizations can be done offline by hand or by a compiler,
offline optimizations cannot capture the dynamic behavior of
programs. Thus language execution environments should profile
and optimize object accesses online. Second, it must be accurate
for maximum performance, especially when using speculative
object optimizations. Because many object optimizations are
speculative, inaccurate profiles can result in speculation failures.
To obtain accurate object access profiles, the profiler must track
the entire lifetimes of objects, not small portions. For example, to
determine immutability the profiler must confirm that all reads
come after all writes to an object. Thus it must be able to detect
all of the accesses to the object, or at least all of the accesses that
affect the accuracy of the access profiles.

In this paper, we propose Barrier Profiler, an accurate object
access profiler with low performance overhead. It is based on per-
object memory protection combined with profile-directed adap-
tive techniques for overhead reduction. Barrier Profiler uses
pointer barrierization, which reserves a protected region outside
of the heap region, instead of protecting the pages containing the
profiled objects. At object allocation time, pointer barrierization
converts all of the pointers to a given object to corresponding

barrier pointers that point to the protected region. All of the ac-
cesses via the barrier pointers cause hardware exceptions, allow-
ing the profiler in the exception handler to track the lifetime of the
object. Since hardware exceptions occur only via the barrier
pointers, the protection granularity is not per page but per object.

Using pointer barrierization as a substrate, Barrier Profiler pro-
files frequently-allocated short-lived objects, because such objects
affect the performance by polluting CPU caches and squandering
memory bandwidth, especially in multi-core systems [31]. To
reduce the profiling overhead, Barrier Profiler samples only a
small number of objects at each allocation site and profiles the
accesses to the sampled objects. Barrier Profiler further reduces
the overhead by profile-directed adaptive object sampling and
unbarrierization. If the target of an object access optimization is
an immutable object, for example, what is crucial is not the accu-
rate numbers of accesses but the object accesses that affect the
immutability. Thus Barrier Profiler can skip sampling the objects
that are unlikely to be immutable and profiling the objects that are
no longer immutable. Our experiments showed that these tech-
niques provided sufficiently accurate profiles with low overhead.
Thus Barrier Profiler can run continuously in production systems.

We implemented two new online object-access optimizations
to demonstrate the usefulness of Barrier Profiler. One is an online
speculative compression of character arrays. Based on the online
feedback from Barrier Profiler, the arrays that are unlikely to be
accessed after their initialization are compressed if they contain
only ISO-8859 characters. The other optimization is dynamic
adjustment of the initial sizes of container arrays. Programmers
often over-allocate large arrays as buffers, but access only the
first few elements. Barrier Profiler successfully identified optimal
sizes based on the non-accessed-byte profiles and dynamically
performed recompilation to inline the allocation contexts and to
embed the optimal sizes as compile-time constants.

In summary, our contributions are:
• We propose Barrier Profiler, an accurate object access profiler

with low performance overhead, which is suitable for continu-
ous profiling in the field. Per-object accurate profiling is en-
abled by pointer barrierization (Section 3). Barrier Profiler is
lightweight because of its profile-directed adaptive object
sampling and unbarrierization (Section 4).

• We implemented Barrier Profiler in the IBM J9/TR [7], a pro-
duction-quality Java VM with a just-in-time (JIT) compiler.
We conducted experiments on its accuracy and overhead (Sec-
tion 5), using the industry standard SPECjvm2008,
SPECjbb2005, and DaCapo benchmarks.

• We quantitatively compared Barrier Profiler with existing
code-instrumentation-based techniques including Bursty Trac-
ing [1,8] (Section 5).

• We implemented and evaluated two new online object-access
optimizations to demonstrate the usefulness of Barrier Profiler
(Section 6). Both of them are feasible for the first time by us-
ing the lightweight object access profiler.

2. Related Work

Code instrumentation [2,4,5,12,24,30] has been a standard tech-
nique for object access profiling. However, executing additional
code at every heap access results in prohibitive overhead. Both
memory and performance overheads were reportedly increased by
more than a factor of 10 [12]. One way to mitigate the overhead is
access sampling like Bursty Tracing [1,8], which enables the in-
strumentation only during a profiling phase. However, our ex-
periments showed excessive overhead even at low sampling
frequencies.

In addition, the access sampling approaches are inaccurate be-
cause they can only sample some fraction of the accesses to arbi-
trary objects. They cannot track the life of an object, for example
to detect immutable fields [26] or to find last access points [22].
What is needed is a lightweight profiler that samples objects and
detects all of the accesses to the sampled objects, or at least all of
the accesses that affect the accuracy of the access profiles.

To detect the accesses to the objects without the code instru-
mentation overhead, memory protection with signal handling has
been used in many systems [15,16,19,25,27,30]. Hound [16] and
pointer swizzling [27] simply protect the pages that contain the
target objects, as shown in Figure 1(a). However, this basic pro-
tection does not work for object access profiling because of race
conditions. For example, Hound uses the basic protection to con-
firm the staleness of the objects that are segregated at allocation
time. Once the application accesses a protected page, all of the
objects in that page become fresh and the page is unprotected. In
contrast, for more general object access profiles such as write-
only objects, immutable objects, and non-accessed bytes, the page
cannot be unprotected after just one access to an object being
profiled. However, when a thread accesses a protected object, it
must temporarily disable the protection to access its content. In
the meantime, race conditions can occur because other threads
might access that object or other objects contained in the same
page without causing hardware exceptions.

To avoid the race conditions, Memalyze [25], Archipelago
[15], and other systems [19,30] use mirror pages that map the
physical pages of the protected virtual pages to other virtual ad-
dresses, as shown in Figure 1(b), allowing the signal handler to
access the data of the protected object without unprotecting the
page that contains it. However, these techniques still suffer from
too much performance overhead to use online. First, the signal
handling by an OS can result in more than a 50% performance
overhead in allocation-intensive programs [16]. It is important to
reduce the number of hardware exceptions without compromising
the profile accuracy. Second, the page-level protection is too
coarse-grained. Accesses to objects that are not being profiled but
that reside in the protected page suffer from hardware exceptions.
The granularity problem can be mitigated by segregating the pro-
filed objects into the protected pages [16,30]. However, this re-
quires a new memory allocator specialized for those protected
pages, complicating the system design.

Protected regionJava heap

Virtual address space

Original pointer Barrier pointer

Add offset

Subtract offset

Same size(a) (c)

Java heap

Pointer to a profiled object

Protected page (b)

Java heap

Pointer to a

profiled object

Protected page

Add offset

Mirror page

Figure 1. (a) Basic memory protection causes a race condition. (b) Mirror pages still suffer from coarse-grain page-level protection.
(c) Pointer barrierization provides per-object protection.

Pointer barrierization enables per-object protection by enhanc-
ing the mirror page approach. It does not protect the pages con-
taining the profiled objects but instead reserves a protected region
outside of the heap region, as shown in Figure 1(c). Chen et al. [5]
presented a very basic form of pointer barrierization to detect
accesses to compressed objects. After compressing objects during
GC, their approach sets the highest order bit of each pointer to 1
for each compressed object, based on the assumption that an em-
bedded system will not use a virtual address space larger than
2GB. Their original technique uses code instrumentation, and as
an enhancement, they described a technique to use hardware
memory protection. However, they did not explain the details of
their algorithm. Li et al. [11] used a similar technique to detect
accesses to aliased stack slots. In fact, pointer barrierization will
not work correctly on objects in the heap if internal pointers and
atomic instructions are ignored. These details are addressed for
the first time in our work. Also, we show that pointer barrieriza-
tion is useful for object access profiling when combined with the
overhead reduction techniques.

QVM [2] detects defects in production systems using tech-
niques similar to Barrier Profiler. It continuously monitors ac-
cesses and method invocations on the objects that are sampled
adaptively. However, because it uses code instrumentation, users
of QVM need to specify which program points to instrument to
avoid the large overhead of instrumenting every point. Also, its
adaptive object sampling is based only on system overhead, while
ours is profile-directed and thus is more suitable for insuring the
accuracy of the collected object access profiles.

There have been many other research proposals to overcome
memory bloat. Xu et al. proposed a static analysis [28] and a pro-
filing method [29] to reduce memory bloat in Java. However, they
were designed for offline code rewriting. The runtime slowdown
by the profiling was more than 10-fold. Sartor et al. [21] esti-
mated potential space savings by various existing object compres-
sion algorithms, but they did not focus on how to implement them
online. In contrast, Barrier Profiler is a novel infrastructure for
online reduction of memory bloat. Discontiguous arrays with lazy
allocation [5,20] can dynamically reduce memory bloat in large
arrays. However, even when using highly optimized z-rays [20],
performance degradation was more than 10% on average. Our
dynamic adjustment of initial array sizes using Barrier Profiler
has the same effect as using discontiguous arrays for certain array
usage patterns, but has much lower overhead than z-rays. Chame-
leon [23] can also find similar opportunities through code instru-
mentation, but its performance overhead is 6 times at maximum.

3. Pointer Barrierization

In this section, we describe a pointer barrierization algorithm and
what needs to be considered in code generation and GC. Pointer
barrierization enables per-object access detection and is compati-
ble with all types of memory allocator. Throughout this paper, we
assume Java is our target environment, but pointer barrierization
and Barrier Profiler could be adapted to the environments of other
languages and be effective on both 32-bit and 64-bit architectures.

3.1 Basic pointer barrierization

The easiest pointer barrierization is to add to a pointer the offset
between the Java heap region and a read-write-protected region
whose size matches the heap region. Figure 1(c) shows a memory
layout. Note that the protected region does not require the as-
signment of real memory.

Pointer barrierization can be performed at allocation or GC
time. For pointer barrierization to work correctly, it is important

to barrierize all of the pointers that point to a target object. Since
only one pointer in a register points to an allocated object imme-
diately after allocation, it suffices to barrierize that register in the
generated JIT code or in a modified interpreter. GC can do pointer
barrierization when traversing all of the pointers to the object.

3.2 Virtual-memory-efficient pointer barrierization

The basic pointer barrierization requires a protected region whose
size is not smaller than the Java heap region. In a 32-bit environ-
ment, however, the virtual address space is a limited resource. It
is best to make the protected region as small as possible.

For a smaller protected region, Java VM can take advantage of
the fact that all Java objects are aligned on a 4- or 8-byte bound-
ary. This is true for production-quality Java VMs [7][17]. Since
the last 2 or 3 bits of each object pointer are zero, it can be shifted
right by 2 or 3 bits without losing any information. Thus the size
of the protected region can be 1/4 or 1/8 that of the Java heap
region. A difficulty in this approach is that an access through a
barrier pointer can point outside of the protected region. Thus
when barrierizing the pointers to an object, the sum of the barrier
pointer and the object size must not exceed the top address of the
protected region. If this condition fails, barrierization cannot be
used, but this is a rare case.

In some CPU architectures, unaligned accesses via a pointer
whose last bits are set cause a bus error. However, pointer barrier-
ization cannot take advantage of this mechanism in general, be-
cause byte accesses through such a pointer do not cause the error.

To further reduce the size of the protected region, a Java VM
can use an OS-protected region. For example, by default the
Linux and Windows OS [13] occupies the highest 1/4 or 1/2 of a
virtual address space, and cannot be accessed by users. In this
case, pointer barrierization can shift a pointer right by at least 2
bits and set the topmost 2 bits. The Java VM does not need to
reserve any protected region in the user space.

3.3 Signal handling

Accesses through barrier pointers always cause hardware memory
exceptions, which are converted to signals by the OS. Figure 2
shows the signal-handling algorithm implemented in a Java VM.

Restoring a header pointer

The handler first checks whether the excepting data address is
within the protected region by address comparison (Line 2). If so,
the handler must restore the pointer to the head of the accessed
object, which we call a header pointer. A pointer to the middle of
the object, which we call an internal pointer, is not sufficient
because an object access profiler must identify which object is
being accessed to detect, for example, the immutability of the
object (Line 11). Generally, unbarrierizing the excepting data
address only produces an internal pointer.

We propose two approaches to restore the header pointer. One
is to use an ordered set, normally a balanced tree. At pointer bar-
rierization time, the barrier pointer, which corresponds to a header
pointer to an object, is stored in the ordered set. To restore the
header pointer, the highest barrier pointer that is lower than the
excepting data address is looked up in the ordered set (Line 5).
This search requires synchronized tree traversal and can result in
a bottleneck in multithreaded execution.

The other approach is to restrict the format of the instructions
that access objects. This means one of the register arguments of a
memory reference must be a header pointer. For example, in a
memory reference of the form [base_reg, off-

set_reg/immediate], base_reg must be a header pointer.

Then the barrierized header pointer can be obtained by decoding
the instruction and loading the content of base_reg from the
signal context (Lines 3-4). We believe that these restrictions are
usually satisfied in existing Java VMs and JIT compilers.

However, the restrictions may be violated when accessing
large objects, especially arrays, due to the results of loop induc-
tion variable optimization. For those instructions that use internal
pointers, JIT-generated code maintains a header pointer in a regis-
ter or in a stack slot of the method. Many JIT compilers already
support this function to help the GC mark or move the objects
pointed to by internal pointers. In addition, the JIT compiler
maintains a hash table to associate each instruction that uses an
internal pointer with a register number or a stack offset that holds
the header pointer. This allows the signal handler to obtain the
header pointer from the excepting code address (Lines 6-7). Since
most of the object access instructions do not use internal pointers,
the data structure for the association will not grow excessively.

The second approach is more lightweight in general, but we
used the first approach because our preliminary experiments
showed that its overhead was small enough, thanks to the low
object sampling frequency of our Barrier Profiler.

Handling atomic instructions

After unbarrierizing the header pointer (Line 10), the handler
records the access (Line 11) and emulates the execution of the
excepting instruction (Line 18). For example, emulating a load
means executing a load on behalf of the excepting load instruction
and then writing the loaded value to the target register in the sig-
nal context. Note that the handler is not allowed in general to
write the unbarrierized pointer to the base register and return to
the excepting instruction to execute it again. This approach could
change the semantics of a program because the same object is
represented by two different pointer values, causing a pointer
equality operation to return false even when the two pointers do
refer to the same object. After the emulation, the handler returns
to the next instruction (Line 19).

There is a subtle problem in handling atomic instructions
(Lines 12, 15-16). The signal handler can correctly emulate a
compare-and-swap (CAS) instruction. However, for a load-linked
(LL) instruction, even if the handler executes an LL, that reserva-
tion is likely be lost before the execution reaches a corresponding
store-conditional (SC) instruction. This is because the OS can
execute another LL/SC pair after the signal handler and before the

SC. We solve this problem by executing the LL again with an
unbarrierized register, as shown in Figure 3. To avoid the problem
of incorrect pointer equality, the base register is copied to another
register immediately before the LL, and the LL uses that register.
Thus the original base register still contains a barrier pointer. In
addition, the following SC must also use the copied register. Oth-
erwise, another hardware exception would occur at the SC, and
the reservation might be lost. In Java, LL/SC pairs can be per-
formed on objects only for monitor entrances and exits, so it is
easy to modify a JIT compiler or Java VM to use LL/SC in the
required way. The conditions in Lines 13 and 14 reduce the over-
head and are explained in Section 4.2.

3.4 GC

With pointer barrierization, most GC implementations need only
minor changes to run correctly. An efficient marking GC uses a
marking table outside of the Java heap region. It finds the corre-
sponding mark bit of an object by bit-operations on the pointer to
the object. Thus, before marking, the GC must check whether or
not the pointer is a barrier pointer. If so, it must obtain the origi-
nal pointer by unbarrierization. The same operation is needed for
marking a card table for generational or concurrent GC.

In the GC algorithms that move objects, each pointer field is
modified so that it points to the new location of the pointed-to
object. If the original pointer is a barrier pointer, the new pointer
must be one, too. Thus GC needs a check at each pointer traversal,
and it must perform unbarrierization and barrierization as needed.

4. Barrier Profiler

Barrier Profiler is a lightweight object-access profiler using
pointer barrierization. It is focused on frequently allocated short-
lived objects, because such objects often affect the performance in
multi-core systems [31]. Pointer barrierization could also be used
for profiling long-lived objects. This is left for future work.

4.1 Basic algorithm

To profile the frequently allocated objects, the interpreter and JIT
compiler were modified to use pointer barrierization at all alloca-
tion sites. To reduce the profiling overhead, Barrier Profiler ap-
plies pointer barrierization to only a small fraction of the objects
at each allocation site. This object sampling should be based not
on the allocated number of objects but on the allocated bytes,
because cache pressure, memory bandwidth usage, GC frequency,
and memory bloat are all related to the allocated bytes.

Figure 4 shows the pseudocode at an allocation site. After al-
locating an object (Line 1), the addresses of the head and tail of
the object are XORed and ANDed with a mask to check whether
the object is allocated across an aligned boundary (Line 3). The
per-allocation-site mask is of the form 11…100…0. For example,

 01: handle_signal(code_addr, data_addr, context) {{{{
02: ifififif (is_in_protected_region(data_addr)) {{{{
03: base_reg_num = decode_instruction(code_addr);
04: base_reg = get_reg_contents(base_reg_num, context);

#if USE_ORDERED_SET#if USE_ORDERED_SET#if USE_ORDERED_SET#if USE_ORDERED_SET
05: bar_object_head = search_ordered_set(data_addr);

#else#else#else#else
06: ifififif (is_internal_pointer_access(code_addr))
07: bar_object_head = get_array_head(code_addr);
08: elseelseelseelse
09: bar_object_head = base_reg;

####endifendifendifendif
10: orig_object_head = unbarrierize(bar_object_head);
11: record_access(code_addr, orig_object_head);
12: ifififif (is_LL(code_addr) ||
13: is_uninteresting(orig_object_head) &&
14: safe_to_unbarrierize_at(code_addr)) {{{{
15: write_to_context(context, base_reg_num,

base_reg + orig_object_head – bar_object_head);
16: return_to(code_addr);
17: }}}}
18: do_load_or_store(code_addr, orig_object_head, context);
19: return_to_next_instruction(code_addr);
20: }}}}
21: ...

Figure 2. Signal handling algorithm.

 (a)

LL reg_old,[reg_head,imm]
...
SC reg_new,[reg_head,imm]

handle_signal(...){
...

16: return_to
(code_addr);

...
}

(b)

move reg_copy,reg_head
LL reg_old,[reg_copy,imm]
...
SC reg_new,[reg_copy,imm]
/* End of the live range

of reg_copy */

Figure 3. (a) Original code sequence for LL/SC in JIT or inter-
preter code. (b) With barrier pointers, a base register is copied to
another register (reg_copy), and LL/SC use that register. If the
LL causes an exception, the signal handler modifies reg_copy
to an unbarrierized pointer, and the LL is executed again.

if the number of zeros is 20, Barrier Profiler samples the objects
that extend across 1-MB-aligned boundaries at this allocation site.
More zeros in the mask mean lower overhead but larger errors in
the profiles. If the masked results are not all zero, then the alloca-
tion is recorded (Line 4) and the pointer is barrierized (Line 5).
The mask can be updated as needed (Line 6).

Barrier Profiler records the per-object access profiles in object
information structures. One object information structure corre-
sponds to one sampled object. It is created outside of the Java
heap at the allocation time of the sampled object (Line 4) and
contains the ID of the allocation site. In addition, the allocation
context is obtained by stack walking, and the ID assigned to the
context is stored in the information structure. When a sampled
object is accessed (Line 11 of Figure 2), the corresponding infor-
mation structure is fetched via a hash table using the object head
address as a key. Alternatively, if the ordered set is used to restore
a header pointer, the set can also be used as a map to store and to
fetch the information structures in addition to header pointers.
Per-object access profiles such as the number of reads and writes,
whether the object is write-only or not, etc. are recorded in the
object information structure. At the end of each GC, every object
information structure is visited to check whether or not its corre-
sponding object is dead. If it is dead, the per-object access pro-
files are accumulated into the per-allocation-site and per-
allocation-context information structures that correspond to the
allocation site and context, respectively, of the dead object. The
object information structure is then reclaimed.

4.2 Performance overhead reduction

We devised six techniques to reduce the performance overhead of
Barrier Profiler by decreasing the number of hardware exceptions:
three that lower the frequency of object sampling and three that
unbarrierize some of the objects being profiled. A key constraint
is to avoid compromising the accuracy of the profiles.

Adaptive object sampling

There are three cases where the sampling frequency can be de-
creased without increasing the profile errors too much. First, Bar-
rier Profiler can reduce the sampling frequency at uninteresting
allocation sites based on the object access optimizations. For ex-
ample, if a target optimization is to lazily allocate non-accessed
objects, the objects allocated at a site that has allocated some or
many non-accessed objects should be sampled frequently to care-
fully assess whether or not it is worth delaying object creation at
this site. In contrast, the objects allocated at a site that has always
allocated accessed objects can be sampled less frequently, al-
though the sampling should not be completely disabled to adapt to
dynamic behavior changes. Based on the feedback from the per-
allocation-site profiles, our implementation lowers the sampling
frequency at the allocation sites whose ratios in bytes of write-
only objects, immutable objects, and non-accessed bytes to all of
the objects sampled at the sites are all less than 1%.

Second, we found a few small objects received quite a large
number of accesses in some benchmark programs. Such a small
number of small objects have little effect on the memory wall or

bloat problems. If they happen to be sampled, however, perform-
ance degradation is significant. Based on the per-allocation-site
profile, Barrier Profiler decreases the sampling frequency at the
allocation sites (1) whose sampled objects account for only a
small portion (less than 0.5% in bytes, in our implementation) of
all sampled objects, and (2) that have ever allocated an object
whose ratio of the number of accesses to its size exceeded a
threshold (50, in our implementation).

Finally, Barrier Profiler should sample large objects less fre-
quently than small ones because the algorithm in Figure 4 can
sample too many large objects, especially in scientific applica-
tions. Preliminary experiments show that we should treat objects
from 1 KB and up as large objects.

Adaptive unbarrierization
Barrier Profiler stops profiling particular objects in three cases:
two at GC time and one during the execution of the program. To
disable the profiling of an object, all of the barrier pointers to the
object must be unbarrierized. Otherwise, partial unbarrierization
could cause incorrect pointer equality as described in Section 3.3.

First, if an object being profiled no longer satisfies the prop-
erty of the profiles being collected, such as immutability, profil-
ing of accesses to the object can be stopped. After Barrier Profiler
records an access to an object, it checks whether the object is still
worth profiling. If not, it sets a flag in the corresponding object
information structure, indicating the object is no longer interesting.
Barrier Profiler performs the unbarrierization of the uninteresting
object during stop-the-world GC, when all of the pointers to the
object are traversed.

Second, Barrier Profiler also does temporary unbarrierization
during the execution of the program, so that the uninteresting
object does not continue to be profiled until the next GC. In the
signal handler, a barrier pointer in the base register can be unbar-
rierized and written back, as shown in Line 15 of Figure 2. As a
result, the following accesses using this base register do not cause
hardware exceptions. To avoid the problem of incorrect pointer
equality, a compiler analysis insures that this base register will
not be used as an operand of any pointer comparison instructions.
Because our implementation does not use alias or inter-method
analysis, the base register also must not be used as an argument of
method invocations, a method return value, or for data to be
stored in the heap. If the base register satisfies these conditions,
the address of the instruction is registered in a global hash table.
In the signal handler, if the object is uninteresting and the except-
ing address is registered in the table (Lines 13-14 of Figure 2), the
base register is unbarrierized.

Finally, many long-lived objects receive a large number of
accesses without changing their object access properties such as
immutability. Thus Barrier Profiler stops profiling long-lived
objects based on how many times they survive GC. Each time an
object survives GC, its age is incremented in its object informa-
tion structure. After its age exceeds a predefined threshold (8, in
our implementation), it is unbarrierized at the next GC.

Discussion

Some of the overhead reduction techniques cannot be used when
collecting certain types of object access profiles. For example,
profiling the last access points of objects is useful for inserting
cache-flush instructions. However, there is no known time when
an object becomes “uninteresting” in terms of its last access point.
Thus sampled objects should not be unbarrierized.

 1: object = allocate_object(class);
2: object_tail = object + object_size;
3: ifififif (((object ^ object_tail) & mask[site_id]) != 0) {{{{
4: record_allocation(site_id, object);
5: object = barrierize(object);
6: mask[site_id] = get_next_mask(site_id);
7: }}}}

Figure 4. Code at an allocation site in Barrier Profiler.

5. Experimental Results

This section describes our implementation of Barrier Profiler.
Then our experimental results are presented to assess the accuracy
and overhead of Barrier Profiler.

5.1 Implementation

We implemented Barrier Profiler in a development version of
the 32-bit IBM J9/TR [7] 1.6.0 SR6 for the Power architecture
[18]. We used the basic pointer barrierization described in Section
3.1. We allocated 1 GB for the Java heap and also reserved 1 GB
for the protected region. We used mark-and-sweep GC that in-
voked occasional compaction when the fragmentation became
excessive. We measured the effects of the six overhead reduction
techniques described in Section 4.2 by enabling and disabling all
of them, which we call Opt and NoOpt, respectively.

We modified the interpreter to execute the pointer barrieriza-
tion code in Figure 4 and the JIT compiler to insert the code into
all of the allocation sites in the JIT-compiled methods. J9/TR first
executes Java methods with the interpreter, and if a method is
frequently invoked, then it is JIT-compiled. We inserted the
pointer barrierization code immediately after the initialization of
the object header fields and the zero-clearing of the non-header
fields. This means these initialization-related writes did not ap-
pear in the collected profiles.

For the mask value in Figure 4, we used a fixed value during
each run of a benchmark, except for the optimizations in the Opt
configuration. We tried five mask values, with 17, 20, 23, 26, and
29 zeros. This corresponds to sampling one object per each allo-
cated 128 KB up to each 512 MB. In this section, we use these
numbers of sampling intervals to denote each configuration. In
the JIT-compiled code, the mask is embedded as an immediate
value in the AND instruction at Line 3 of Figure 4. The mask
value can be updated by code patching. In the Opt configuration,
we increased the number of masking zeros by three when decreas-
ing the sampling frequency. For object allocation in the inter-
preter, our implementation uses a global fixed mask value.

The total real memory requirement of Barrier Profile was less
than 8 MB even at the most frequent sampling interval of 128 KB.
More than 90% of the memory was for the information structures
described in Section 4.1. Note that these data structures are not
Barrier-Profiler-specific. They are needed for code-
instrumentation-based object access profilers too.

5.2 Code instrumentation techniques

We implemented two code instrumentation techniques in J9/TR
for comparison. The first one is full instrumentation to simulate
Bursty Tracing [8]. Bursty Tracing is based on the Arnold-Ryder
framework [1] and aims for temporal profiling similar to Barrier
Profiler. It duplicates the JIT-compiled code for every method.
One is a checking version and the other is an instrumented version.
Most of the time, the checking version is executed, but the execu-
tion occasionally switches to the instrumented version. The
checking version contains only checks at method entries and loop
back-edges that decrement a counter and jump to the instrumented
version if it reaches zero. The instrumented version also contains
the same checking code for the other counter to jump back to the
checking version. Although we did not implement all of the parts
of Bursty Tracing, we can estimate its overhead by the sampling
rate and by the overhead of the instrumented code, as explained in
[8]. To that end, we implemented full instrumentation that inserts
profiling code at every heap access.

We also implemented another code instrumentation technique
based on the idea of Barrier Profiler. We call it Instrumented Bar-
rier Profiler. It performs pointer barrierization at allocation sites
as in Barrier Profiler, but instead of relying on hardware excep-
tions, it inserts check instructions at every heap access. It uses the
basic pointer barrierization in Section 3.1, although we did not
need to actually reserve the protected region. To make the check
simple, we guaranteed that the lower 16 bits of the bottom address
of the protected region were all zero. The check consists of three
instructions: The first instruction logically shifts a pointer right by
16 bits. The second instruction uses a 16-bit immediate compari-
son instruction to compare the shifted value with the constant that
is the higher 16 bits of the bottom address of the protected region.
The third instruction is a branch instruction based on the result of
the comparison. If the pointer is equal to or larger than the bottom
address, the execution jumps to a profiling snippet, which is basi-
cally the same as the signal handler in Figure 2. We also imple-
mented a compiler optimization to merge instrumentations for the
same object within a basic block, combined with temporary un-
barrierization in the snippet. Instrumented Barrier Profiler can
also benefit from the optimizations in Section 4.2. To obtain the
same profiling accuracy as Barrier Profiler, Instrumented Barrier
Profiler must always be enabled.

5.3 Benchmarks and evaluation environment

To evaluate the accuracy and overhead of Barrier Profiler, we
used SPECjvm2008, the DaCapo Benchmarks 9.12, and
SPECjbb2005. We ran the benchmarks six times, restarting the
JVM each time, and took the averages during the steady state. We
ran the benchmarks on a 4-core 2-way-SMT 4.0-GHz POWER6
[10] machine with 32 GB of main memory running Linux 2.6.18.
For SPECjvm2008, we ran a 2-minute warm-up and a 4-minute
measurement iteration. We used small data sets for the
“scimark“ benchmarks in SPECjvm2008. For DaCapo, we used
the largest data sets for each benchmark. We ran each benchmark
for 6 minutes and used the last 4 minutes as a measurement period.
We excluded eclipse, tradebeans, and tradesoap from DaCapo,
because they did not run correctly on the development version of
the JVM we used, even without Barrier Profiler. For
SPECjbb2005, we used a single JVM, which ran a 3.5-minute
warm-up and a 4-minute measurement run with 8 warehouses.

The main targets of Barrier Profiler are allocation-intensive
programs that allocate and use large numbers of objects, causing
memory wall and memory bloat problems. Zhao et al. [31] cate-
gorized the SPECjvm2008 programs into allocation-intensive and
non-allocation-intensive programs and pointed out that the alloca-
tion-intensive ones suffered from serious scalability issues on
multi-core systems. Table 1 shows the per-hardware-thread allo-
cation rates of the benchmarks we used. The rates are normalized
to scimark.montecarlo as 1. The left side is allocation-intensive,
while the right side is non-allocation-intensive. In SPECjvm2008,
compiler.compiler, derby, serial, sunflow, xml.transform,
xml.validation, and compiler.sunflow are allocation-intensive.
These results match Zhao et al.’s categorization.

5.4 Collected object access profiles

Using Barrier Profiler, we collected three kinds of object access
profiles: write-only objects, immutable objects, and non-accessed
bytes. In our experiments, we collected all of the three profiles at
the same time. Write-only objects are those objects for which
none of the non-header fields are read. These objects are useless
for the executed paths of the benchmarks, making them candi-
dates for object optimizations such as allocation-time compres-

sion or lazy allocation [5,24]. Barrier Profiler can estimate how
frequently each allocation site allocates write-only objects. If an
allocation site always or mostly allocates write-only objects, then
that site should be a target for the object optimizations.

The second object access profile we collected is for immutable
objects. These are the objects for which all of the writes to their
non-header fields precede all of the reads from their non-header
fields. They can be considered as runtime constant objects, and
thus they can be exploited for lazy allocation, or more specifically,
for copy-on-write. Note that this kind of object access profiling
cannot be collected by using access-sampling-based methods,
because such methods cannot track the entire life of a particular
object. In our definition, all of the write-only objects are also
immutable objects.

The last object access profile is the non-accessed-byte profile.
A non-accessed byte in an object is a non-header byte for which
there is no read or write after the header initialization and zero-
filling. Such a byte only wastes space and should be eliminated.
Note that this is a per-byte property, while the previous two pro-
files are per-object properties.

5.5 Accuracy of profiling

To evaluate the accuracy of object access profiling, we need to
have perfect reference profiles, which we also obtained with a
modified form of Barrier Profiler. We added to Barrier Profiler a
mechanism to enable or disable the profiling. Pointer barrieriza-
tion code at allocation sites was skipped by branch instructions
during start-up. After the program reached a steady state, the pro-
filing was enabled by patching the branch instructions to no-ops.
This profiling was different from that in Figure 4 in that it sam-
pled all of the allocated objects. After the patching, the program
continued execution to the end, profiling all of the accesses to the
objects. We call these results the “full trace”. For evaluation, we
also counted how many bytes of the objects were actually allo-
cated at each allocation site in the steady state. We call this the
actual allocated bytes of the allocation site.

Here is how we evaluated the accuracy of object access pro-
files such as for the write-only objects. For each allocation site,
we computed an estimated write-only ratio by dividing the total
bytes of the sampled write-only objects allocated at the site by the
total bytes of all of the sampled objects allocated at the site. If no
object was sampled at an allocation site, we assumed the esti-
mated write-only ratio of the site to be zero. We also calculated
an actual write-only ratio for each allocation site, using the full
trace results. The estimation error in the allocated bytes of write-
only objects is the total of the actual allocated bytes of each allo-
cation site multiplied by the absolute difference between its esti-
mated and actual write-only ratios. In other words, the estimation
error is the average of the absolute differences weighted by the
actual allocated bytes. We computed estimation errors for immu-
table objects and non-accessed bytes in the same way.

Since Barrier Profiler is sampling-based, long-term profiling
will eventually reach the correct values. However, it should return
the correct values even from short-term profiling, so that it can
react quickly to dynamic behavior changes. Thus for the experi-
ments in Section 5.5 and 5.7, we report the profiling results ob-
tained during the measurement period of each benchmark, as
described in Section 5.3. The profiling is always enabled, but all
of the profiles collected during the warm-up period are discarded
before the measurement period. Investigating the sensitivity of the
accuracy to the profiling length is left for future work.

Figure 5 shows the estimation errors for write-only objects,
relative to the total actual allocated bytes in compiler.compiler,
derby, xml.transform, and xml.validation. Here we show only the

results of the 4 representative allocation-intensive benchmarks,
and we omit the results for immutable objects and non-accessed
bytes. The estimation error ratios mostly decreased as the sam-
pling interval was reduced except in derby, where the error ratios
were always less than 2%. At 8-MB/Opt, the estimation error
ratios in the allocation-intensive benchmarks were within 10%,
16%, and 6% for the write-only objects, immutable objects, and
non-accessed bytes, respectively. The estimation error ratios of
immutable objects were larger than those of write-only objects
and non-accessed bytes, because the immutable objects accounted
for more than 50% of the total actual allocated bytes in most
benchmarks, while the write-only objects and non-accessed bytes
rarely exceeded 20%.

When comparing Opt with NoOpt, the estimation error ratios
were almost always worse, but within 5% difference. Further
investigation revealed that most of the inaccuracy in Opt resulted
from lowered sampling frequencies at uninteresting allocation
sites. Surprisingly, Opt sometimes resulted in smaller estimation
error ratios than NoOpt, as shown in compiler.compiler and
xml.validation of Figure 5. This was because NoOpt was so slow
that it could not sample enough number of objects during the
measurement period.

5.6 Performance overhead of profiling

How accurate object access profiling should be depends on how
much overhead the profiling incurs and how sensitive an object
access optimization is to the errors in the profiles. Figure 6 pre-
sents the relative performance overheads of all of the Barrier Pro-
filer configurations in the 4 representative allocation-intensive
benchmarks, compared with the baseline without Barrier Profiler.
The sampling intervals of 1 MB or less suffered from significant
overhead. For example, in compiler.compiler, 512MB/Opt caused
1.5 * 104 profiled accesses per minute, 8MB/Opt did 1.5 * 106,
and 128KB/Opt did 2.2 * 107. Based on these results, we chose 8-
MB as the best to balance accuracy with overhead.

When comparing Opt with NoOpt, their differences were sta-
tistically significant at the 8-MB-or-shorter intervals in most
benchmarks. At the 8-MB interval, the adaptive object sampling
contributed to most of the overhead reduction. The GC-time un-
barrierization rarely occurred at the 8MB-or-longer intervals. As

Allocation-

intensive

benchmarks

Norm.

alloca-

tion rate

Non-allocation-

intensive

benchmarks

Norm.

alloca-

tion rate

compiler.compiler 15.8 compress 1.3

derby 39.3 crypto.aes 11.7

serial 20.5 crypto.rsa 1.3

sunflow 16.4 crypto.signverify 3.7

xml.transform 21.5 mpegaudio 2.1

xml.validation 24.8 scimark.fft 4.2

compiler.sunflow 15.4 scimark.lu 6.4

fop 33.2 scimark.sor 6.5

jython 40.7 scimark.sparse 1.0

lusearch 850.3 scimark.montecarlo 1.0

pmd 27.8 avrora 1.3

sunflow (DaCapo) 119.8 batik 5.0

tomcat 71.6 h2 6.1

xalan 128.1 luindex 3.6

SPECjbb2005 16.8

Table 1. Normalized per-hardware-thread allocation rates of

the benchmarks (bytes/second). The rates are normalized to

scimark.motecarlo as 1. The targets of Barrier Profiler are the

allocation-intensive benchmarks on the left side.

the interval became shorter, the adaptive unbarrierization had
larger effect on the performance.

With the 8-MB/Opt configuration, an object access optimiza-
tion needs to tolerate at most 10% errors in the write-only ratios at
each allocation site, as described in Section 5.5. Suppose we use a
speculative optimization that compresses the objects allocated at
sites whose sampled objects have been 100% write-only. In the
xml.transform benchmark, for example, the estimation error ratio
of 8-MB/Opt is 3.3% for write-only objects, as shown in Figure 5.
Therefore, that speculative optimization should provide a benefit
even when 3.3% of the objects allocated at the sites are actually
not write-only.

5.7 Comparison with previous techniques

Figure 7 is for the comparison between simulated Bursty Tracing,
Instrumented Barrier Profiler (8-MB/Opt), Barrier Profiler (8-
MB/NoOpt), and Barrier Profiler (8-MB/Opt) for the estimation
error ratios of write-only objects. The geometric means for the
profiles of immutable objects and non-accessed bytes are shown
on the right side. The upper graph presents the results of the allo-
cation-intensive benchmarks, and the lower graph is the non-
allocation intensive benchmarks.

It is difficult to precisely measure the estimation errors of
Bursty Tracing without fully implementing it. We took advantage
of the mechanism to collect the full traces described in Section
5.5. We still sampled all of the allocated objects, but instead of
always profiling all of the accesses to the sampled objects, we
collected the profiles only during the instrumented period. More-
over, we only profiled the accesses to the objects sampled during
the instrumented period. Instead of counting method entries and
loop back-edges as the original Bursty Tracing does, we counted
the number of accesses to any of the sampled objects. We as-
sumed a sampling rate of 1/201, which is the least frequent rate
tested in [8]. We tried 20000:100, 200000:1000, 2000000:10000,
and 20000000:100000 as the ratios between the checking and
instrumented period, and found 2000000:10000 to be the most
accurate.

The accuracy of Instrumented Barrier Profiler is the same as
that of Barrier Profiler if their sampling intervals and Opt/NoOpt
choices are the same. To fairly compare their performance over-
heads, we used 8-MB/Opt for Instrumented Barrier Profiler too.

As shown in Figure 7, Bursty Tracing is not useful as an object
access profiler. The large errors were due to profiling only a sub-
set of the accesses to a sampled object. Increasing the instru-
mented period did not necessarily mean reducing the errors,
because it also increased the checking period and failed in sam-
pling at important allocation sites. Barrier Profiler (8-MB/Opt)
was close to Barrier Profiler (8-MB/NoOpt). Its estimation error
ratios were worse by 0.1%, 0.6%, and 0.3% in write-only objects,
immutable objects, and non-accessed bytes, respectively, on the
average of the allocation-intensive benchmarks. We believe these
levels of errors are acceptable for object access optimizations. In
some non-allocation-intensive benchmarks, the error ratios were
almost zero, because they allocated few write-only objects.

Figure 8 compares the relative overheads of simulated Bursty
Tracing, Instrumented Barrier Profiler (8-MB/Opt), and Barrier
Profiler (8-MB/NoOpt and 8-MB/Opt). To estimate the overhead
of Bursty Tracing, as explained in Section 5.2, we measured the
overhead of the full instrumentation that inserted profiling code at
every heap access. The full instrumentation was 6-10 times
slower than the baseline. We assumed a sampling rate of 1/201
and the basic checking overhead of 4.9% reported in [1], and
calculated the overhead of Bursty Tracing using Equation 4 in [8].

As shown in Figure 8, Barrier Profiler with 8-MB/Opt incurred
at most 3.4% runtime overhead in compiler.sunflow among the
allocation-intensive benchmarks. Compiler.sunflow caused the
largest number of profiled accesses, which resulted in the largest
runtime overhead. The average performance overhead of 8-
MB/Opt was 1.3% in the allocation-intensive benchmarks, while
that of 8-MB/NoOpt was 75.2%. The large performance differ-
ences in SPECjvm2008 and some non-allocation-intensive bench-
marks were due to decreasing the sampling frequency for large
objects. These results show the effectiveness of the overhead re-
duction techniques.

0

2

4

6

8

10

12

512MB 64MB 8MB 1MB 128KB

Sampling interval

E
rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Opt

NoOpt

0

2

4

6

8

10

12

512MB 64MB 8MB 1MB 128KB

Sampling interval

E
rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Opt

NoOpt

0

2

4

6

8

10

12

512MB 64MB 8MB 1MB 128KB

Sampling interval

E
rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Opt

NoOpt

0

2

4

6

8

10

12

512MB 64MB 8MB 1MB 128KB

Sampling interval

E
rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Opt

NoOpt

compiler.compiler derby xml.validation
L
o
w
e
r
is
 b
e
tt
e
r

xml.transform

Figure 5. Accuracy: estimation error ratios in the allocated bytes of write-only objects for 4 representative allocation-intensive bench-

marks, comparing the 10 combinations of 512-MB/64-MB/8-MB/1-MB/128-KB and Opt/NoOpt (= with/without the overhead reduction

techniques in Section 4.2). Black arrows point to 8-MB/Opt, which we chose as the best configuration to balance accuracy with overhead.

-10

0

10

20

30

40

50

60

70

80

90

100

Baseline 512MB 64MB 8MB 1MB 128KB

Sampling interval

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Opt

NoOpt

202168 14642
26183

-10

0

10

20

30

40

50

60

70

80

90

100

Baseline 512MB 64MB 8MB 1MB 128KB

Sampling interval

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Opt

NoOpt

146 1569

-10
0

10
20

30
40

50
60

70
80

90
100

Baseline 512MB 64MB 8MB 1MB 128KB

Sampling interval

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Opt

NoOpt

1137 177
16983

-10

0
10

20
30

40
50

60
70

80
90

100

Baseline 512MB 64MB 8MB 1MB 128KB

Sampling interval

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Opt

NoOpt

576 13615311 334

compiler.compiler derby xml.validation

L
o
w
e
r
is
 b
e
tt
e
r

xml.transform

Figure 6. Performance overhead: relative overheads in the 4 benchmarks with 90% confidence intervals, comparing the 10 configura-

tions. Black arrows point to 8-MB/Opt, which was the best configuration to balance accuracy with overhead.

 The overhead of the code instrumentation techniques was lar-
ger than that of Barrier Profiler (8-MB/Opt). Bursty Tracing suf-
fered from at most 12.6% and on average 9.2% performance
overhead in the allocation-intensive benchmarks, which matches
the results in [1]. Even with the Opt configuration, the overhead
of Instrumented Barrier Profiler (8-MB/Opt) was 12.4% on aver-
age and up to 22.6%. This is 6-9% larger than the instrumentation
overhead presented in [3,4], and even larger than that reported in
[5]. This is because the instrumentation in [3,4] is inserted only at
reference loads. One reason for the difference between [5] and our
results may be that the implementation in [5] was done in an em-
bedded JVM, which performs less aggressive JIT optimizations
than J9/TR. By removing unnecessary computations, the overhead
of the instrumentation is more visible. Another reason appears to
be that the instrumentation in [5] was to detect accesses to com-
pressed objects and to decompress them. If one instrumentation
dominates the other instrumentation code for the same object in
the control flow, then that code can be eliminated. However, for
accurate object access profiling, the instrumentation code can
only be merged within a basic block.

In the non-allocation-intensive benchmarks, all of the profiling
methods suffered from lager runtime overheads than in the alloca-
tion-intensive benchmarks because of frequent array accesses. On
average, the runtime overhead was 14%, 36%, 666%, and 14%
with simulated Bursty Tracing, Instrumented Barrier Profiler (8-
MB/Opt), and Barrier Profiler (8-MB/NoOpt and 8-MB/Opt),
respectively. Although the 14% overhead is excessive for online
profiling, Barrier Profiler is still useful as one of the lowest over-
head offline profilers.

In summary, Barrier Profiler achieved sufficiently accurate
profiling with low overhead for the allocation-intensive programs,
which allows it to be used continuously in the field.

5.8 Results of profiling

So far, we have discussed the accuracy of the profiling, but the
profiling results themselves revealed interesting characteristics in
the Java benchmarks. First, quite a large number of objects were
write-only in some programs. In SPECjbb2005, 99% of the write-
only objects were String objects and their associated character
arrays. These objects were created for logging, which actually
was not enabled during the benchmark run. They are good candi-
dates for removal or compression.

Second, except for xml.validation, more than half of the allo-
cated bytes were immutable objects in the allocation-intensive
benchmarks. This matches the report in [26] that many fields in
Java object can be considered final. Not all of the immutable
objects were instances of the classes that are defined as immuta-
ble in Java, such as String. For 90% of the immutable objects in
compiler.compiler and 42% in xml.transform, they were not in-
stances of those known immutable classes. Since the immutable
objects cannot be modified, a program should not copy the values
of such objects to other objects. Instead, the objects should be
shared with a copy-on-write mechanism.

Third, among the allocation-intensive benchmarks more than
20% of the total allocated bytes were never accessed in serial,
xml.transform, xml.validation, lusearch, tomcat, and xalan. More
than half of the non-accessed bytes were in arrays. Those arrays
were buffers allocated with large initial sizes, but only small por-
tions were actually used. Barrier Profiler is useful for tuning the
initial sizes to avoid such memory bloat.

6. Online Object Access Optimizations

We demonstrated the usefulness of Barrier Profiler by implement-
ing two new online object access optimizations. One is specula-
tive compression of character arrays, which also uses pointer

0

10

20

30

40

co
m
pi
le
r.c
om
pi
le
r

de
rb
y

se
ria
l

su
nf
lo
w

xm
l.t
ra
ns
fo
rm

xm
l.v
al
id
at
io
n

co
m
pi
le
r.s
un
flo
w

fo
p

jy
th
on

lu
se
ar
ch

pm
d

su
nf
lo
w
 (D
aC
ap
o)

to
m
ca
t

xa
la
n

SP
EC
jb
b2
00
5

G
eo
. m
ea
n

Im
m
ut
ab
le
 o
bj
ec
ts

N
on
-a
cc
es
se
d
by
te
sE

rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Bursty Tracing
Barrier Profiler (8-MB/NoOpt)
Barrier Profiler (8-MB/Opt) and Instrumented Bar. Prof. (8-MB/Opt)

Allocation-intensive benchmarks51.4
L
o
w
e
r
is
 b
e
tt
e
r

L
o
w
e
r
is
 b
e
tt
e
r

0

10

20

30

40

co
m
pr
es
s

cr
yp
to
.a
es

cr
yp
to
.rs
a

cr
yp
to
.s
ig
nv
er
ify

m
pe
ga
ud
io

sc
im
ar
k.
fft

sc
im
ar
k.
lu

sc
im
ar
k.
so
r

sc
im
ar
k.
sp
ar
se

sc
im
ar
k.
m
on
te
_c
ar
lo

av
ro
ra

ba
tik h2

lu
in
de
x

G
eo
. m
ea
n

Im
m
ut
ab
le
 o
bj
ec
ts

N
on
-a
cc
es
se
d
by
te
s

E
rr
o
r
in
 a
llo
c
a
te
d
 b
y
te
s
 (
%
)

Non-allocation-intensive benchmarks65.3

Figure 7. Accuracy: estimation error ratios in the allocated bytes of write-only objects for Bursty Tracing, Instrumented Barrier Pro-

filer (8-MB/Opt), and Barrier Profiler (8-MB/NoOpt and 8-MB/Opt), with 90% confidence intervals. Note that Barrier Profiler (8-

MB/Opt) and Instrumented Barrier Profiler (8-MB/Opt) are the same in terms of the accuracy of the profiles.

barrierization as a recovery mechanism, and the other is dynamic
adjustment of initial array sizes.

6.1 Speculative online compression of character arrays

As shown in Section 5, many objects were found to be write-only
by Barrier Profiler. In SPECjbb2005, character arrays associated
with String objects account for most of the write-only objects.
These arrays are created by a String constructor java/lang/
String.<init>([C)V, which allocates a new character array
and copies the contents of its parameter array into the new array.
Barrier Profiler revealed that there was no write or read to the
character arrays outside of the constructor. Therefore, these arrays
are good candidates for initialization-time compression.

A 16-bit Unicode character in Java can be compressed by half
if it contains an 8-bit ISO-8859 character. A previous compres-
sion algorithm [32] that takes advantage of this fact allows direct
read and write accesses to a compressed character array by halv-
ing the access indices. However, this approach comes at a cost of
restricting the format of the compressed character array, so that it
can be directly accessed with low overhead. In contrast, since we
now expect that the character array will rarely be accessed, the
compressed format can be more flexible.

Figure 9 shows the compression algorithm. Figure 9(a) is a
simplified version of the original java/lang/String.<init>
([C)V. We modified the JIT compiler to generate the code in
Figure 9(b) for particular allocation sites that always allocate
write-only character arrays according to the online feedback from
Barrier Profiler. When allocating a character array at Line 1, the
JIT code allocates only a half-sized array. A particular bit in the
header of the array is set to indicate that it is a compressed char-
acter array. The JIT code stores a barrier pointer to the String

object (Lines 2 and 3) to protect accesses to the compressed array.
It then copies the array contents with compression (Line 4). If the
compression fails due to a non-ISO-8859 character, it uses the
original code (Lines 5-9). Figure 9(c) illustrates the copying-with-
compression algorithm. Each gray box represents a byte, and a
pair denotes a Unicode character. Taking advantage of 8-byte
load and store instructions, the algorithm handles 8 characters at a
time. The first 8 bytes of data[] are shifted left by 1 byte, ORed
with the second 8 bytes, and stored into array[]. At the same
time, these two 8 bytes are ORed and masked to check their high
order bytes. When an access to the compressed array is detected
by a hardware memory exception, the signal handler decom-
presses the array in the same way as in previous work [5][32].
That is done by allocating another character array of the original
size, decompressing the characters into the new array, and storing
a forward pointer in the header of the old array.

We implemented the initialization-time compression of char-
acter arrays on top of the pointer barrierization framework de-
scribed in Section 5.1. We observed an 8.6% speed-up in
SPECjbb2005. Since the target character arrays are never ac-
cessed, we incurred no overhead due to the signal handling. We
found that reduced GC time contributed to about 4.5% improve-
ment. The memory allocation rate was reduced by 17%. The other
benchmark programs were not improved, but the overhead was
not larger than that of Barrier Profiler in Figure 8.

6.2 Dynamic adjustment of initial array sizes

Programmers often over-allocate large arrays as buffers [20,23].
An example is BufferedReader in the Java standard library. It
allocates an 8-K-element character array in the constructor, but a
short input stream will use only the first few dozen elements.

L
o
w
e
r
is
 b
e
tt
e
r

L
o
w
e
r
is
 b
e
tt
e
r

-5

0

5

10

15

20

25

30

35

40

co
m
pi
le
r.c
om
pi
le
r

de
rb
y

se
ria
l

su
nf
lo
w

xm
l.t
ra
ns
fo
rm

xm
l.v
al
id
at
io
n

co
m
pi
le
r.s
un
flo
w

fo
p

jy
th
on

lu
se
ar
ch

pm
d

su
nf
lo
w
 (D
aC
ap
o)

to
m
ca
t

xa
la
n

S
PE
C
jb
b2
00
5

G
eo
. m
ea
n

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Baseline (error bars only) Bursty Tracing
Instrumented Bar. Prof. (8-MB/Opt) Barrier Profiler (8-MB/NoOpt)
Barrier Profiler (8-MB/Opt)

67.2 Allocation-intensive benchmarks169.0 2706 62.2 141 75.2334

-20

0

20

40

60

80

100

120

140

co
m
pr
es
s

cr
yp
to
.a
es

cr
yp
to
.rs
a

cr
yp
to
.s
ig
nv
er
ify

m
pe
ga
ud
io

sc
im
ar
k.
fft

sc
im
ar
k.
lu

sc
im
ar
k.
so
r

sc
im
ar
k.
sp
ar
se

sc
im
ar
k.
m
on
te
_c
ar
lo

av
ro
ra

ba
tik h2

lu
in
de
x

G
eo
. m
ea
n

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
) 48479 6960 1226 343 14162 249 1312 666

Non-allocation-intensive benchmarks

354 2148

Figure 8. Performance overhead: relative overheads of Bursty Tracing, Instrumented Barrier Profiler(8-MB/Opt), and Barrier Profiler

(8-MB/NoOpt and 8-MB/Opt), with 90% confidence intervals. The leftmost error bar of each benchmark is for the baseline.

Another example is StringBuilder, which initially allocates a
short fixed-length array and extends it as needed. However, even
the initial short length can be too long for very small input, and to
make matters worse, some programs allocate millions of such
wasteful container objects. Those objects are all short-lived, and
thus the GC-time truncation of trailing zeros [5] cannot be used.
These programming patterns prevail not only in the standard li-
brary but also in user-written programs.

Note that it is always safe to specify shorter initial sizes in
these programming patterns, though it could be inefficient. Even
if the initial sizes are too short, BufferedReader just needs to
read from its underlying input stream more often, and String-
Builder just needs to extend the arrays more times. Although all
of the example classes provide programmers with constructors to
specify the initial sizes, such interfaces are often not used to sim-
plify the programming. In addition, it is difficult to estimate the
best initial sizes statically, because they depend on the input data
and the calling contexts of the constructors. To the best of our
knowledge, no system has ever efficiently offered dynamic ad-
justment of the initial array sizes, probably because of a lack of
the key technology, a lightweight object access profiler.

We are proposing a new system that combines Barrier Profiler
with a new API and a JIT compiler. Rather than using a complex
compiler analysis to find the programming patterns in programs,
we will provide programmers with a new API to specify the allo-
cation sites of the arrays whose sizes are to be adjusted. The new
API will have a set of static methods added to a standard class, in
our prototype, java.lang.System. Each method receives a
default size as a parameter and returns an array of the default size
or an adjusted size. For all of the primitive array types such as
byte[], char[], …, and Object[], corresponding methods are
provided. Figure 10 shows a new method for character arrays,
getCharArrayOfBestSize(), and its usage in Buffere-
dReader. The only change required is to wrap the allocation of
the character array with the new API (Line 7). The users of
BufferedReader do not need to change their code.

The default implementation of the new API is just to return an
array of the requested size (Lines 1-3), but this implementation is
hidden from the programmers and cannot be relied on. Using the
non-accessed-byte profile, Barrier Profiler records the offsets of
the last accessed bytes of the sampled arrays allocated in the new
API. The records are summarized on a per-allocation-context
basis. When a context records a sufficient number (10, in our
prototype) of samples and the maximum recorded offset is smaller
than the default size, the JIT compiler is invoked to inline the
allocation context and to embed the maximum offset as a constant
in the allocation site, instead of the default size.

We modified BufferedReader and StringBuilder, and
two classes in lusearch and three in xalan to use our new API. All
of the modified classes in lusearch and xalan have the same pro-
gramming pattern as StringBuilder. The second column in
Table 2 summarizes the reductions in allocation rates for the allo-
cation-intensive benchmarks. The third column shows the per-
formance improvements when running with twice the minimum
Java heap that can run each benchmark. The fourth column is for
a 1-GB Java heap, which is used by the experiments in Section 5.
The maximum improvement was in lusearch: 36.3% with the 1-
GB heap, since it allocates many character arrays of 16-K ele-
ments, but never uses more than the first 100 elements. Xalan was
also improved, especially in the memory-constrained environment.
The performance improvement was mainly because of the reduc-

 public String(char[] data) {{{{
array = new char[data.length];
this.value = array;
System.arraycopy(data, 0, array, 0, data.length);

}}}}

high0 low0 high1 low1 high2 low2 high3 low3

high4 low4 high5 low5 high6 low6 high7 low7

low0 low1 low2 low3low4 low5 low6 low7

0xFF 0x00

OR

AND If not zero,

do normal arraycopy.

array[]

data[]

String this

value

barrier pointer

Logically points to

0xFF 0x00 0xFF 0x00 0xFF 0x00

Mask

(a)

public String(char[] data) {{{{
1: array = new compressed_char[data.length / 2];
2: bar_array = barrierize(array);
3: this.value = bar_array;
4: ifififif (arraycopy_compress(data, 0, array, 0, data.length)
5: == FAILURE) {{{{
6: array = new char[data.length];
7: this.value = array;
8: System.arraycopy(data, 0, array, 0, data.length);
9: }}}}

}}}}

(b)

(c)

Figure 9. Initialization-time compression of a character array.
(a) Original java/lang/String.<init>([C)V . (b) Code
generated by our JIT compiler. (c) Word-by-word copying with
compression.

 public final classclassclassclass System {{{{
1: public static char[] getCharArrayOfBestSize(int defaultSize) {{{{
2: returnreturnreturnreturn new char[defaultSize];
3: }}}}

...
}}}}
public classclassclassclass BufferedReader {{{{

4: public BufferedReader(Reader in) {{{{
5: this.in = in;
6: //this.cb = new char[8192]; // Original implementation
7: this.cb = System.getCharArrayOfBestSize(8192);
8: this.length = this.cb.length;
9: }}}}

...
}}}}

Figure 10. A new API for the dynamic adjustment of initial array
sizes and its usage in BufferedReader.

Allocation-

intensive

benchmarks

Reduction

in alloc.

rate (%)

Speed-up

with 2x the

min heap (%)

Speed-up

with 1-GB

heap (%)

compiler.compiler -1.2 -5.9 -2.9

derby 5.9 -3.8 -2.0

serial 9.0 -1.8 -1.3

sunflow -2.1 -3.2 -2.2

xml.transform -0.3 -6.2 -1.7

xml.validation -0.7 -3.3 -2.1

compiler.sunflow -1.8 -7.4 -2.8

fop -1.2 -3.0 -1.5

jython 5.5 -2.7 -1.4

lusearch 90.6 298.2 36.3

pmd 3.9 -3.4 1.4

sunflow (DaCapo) -0.8 -3.5 -0.4

tomcat 6.4 -1.0 -0.5

xalan 27.2 17.3 5.9

SPECjbb2005 2.6 -0.3 -0.3

Geo. mean 17.8 7.4 1.3

Table 2. Effectiveness of the dynamic adjustment of initial

array sizes. It sped up lusearch and xalan. Overheads in other

benchmarks were due to Barrier Profiler.

tion in GC frequency. We did not observe performance degrada-
tion except for the overhead of Barrier Profiler itself, showing the
accuracy of profiling by Barrier Profiler.

7. Conclusion and Future Work

In this paper, we propose a novel low-overhead object access
profiler called Barrier Profiler, which uses pointer barrierization
and adaptive overhead reduction techniques. Pointer barrierization
converts all of the pointers to certain objects to corresponding
barrier pointers that point to read-write-protected pages. Unlike
previous memory-protection-based profilers, it enables per-object
profiling. Barrier Profiler samples objects at allocation sites, per-
forms pointer barrierization, and detects accesses to the sampled
objects. It reduces the number of heavy hardware exceptions by
using profile-directed adaptive sampling and unbarrierization. Our
experimental results showed that in allocation-intensive bench-
marks Barrier Profiler provided sufficiently accurate profiles of
write-only, immutable, and non-accessed data with 1.3% on aver-
age and at most 3.4% runtime overhead. In contrast, code-
instrumentation-based approaches suffered from overhead of
9.2% up to 12.6%. Barrier Profiler is the first low-overhead object
access profiler that can be run continuously on production sys-
tems. Using Barrier Profiler, we implemented two new online
optimizations to compress write-only character arrays and to ad-
just the initial sizes of mostly non-accessed arrays. Both of them
are feasible for the first time by using lightweight Barrier Profiler.
They resulted in speed-ups of up to 8.6% and 36%, respectively.

In the future, we plan to use Barrier Profiler for detecting last
access points and dead stores. We are also interested in investigat-
ing the effectiveness of Barrier Profiler on large-scale server-side
applications.

Acknowledgments

We would like to thank Peter F. Sweeney and other members in
IBM Research – Tokyo and Watson Research Center for helpful
discussions. We are also grateful to anonymous reviewers for
providing us with helpful comments.

References

[1] Arnold, M. and Ryder, B. G. A framework for reducing the cost of
instrumented code. In PLDI, pp. 168-179, 2001.

[2] Arnold, M., Vechev, M., and Yahav, E. QVM: An efficient runtime
for detecting defects in deployed systems. In OOPSLA, pp. 143-162,
2008.

[3] Blackburn, S. M. and Hosking, A. L. Barriers: friend or foe? In
ISMM, pp. 143-151, 2004.

[4] Bond, M. D. and McKinley, K. S. Leak pruning. In ASPLOS, pp.
277-288, 2009.

[5] Chen, G., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., Mathiske,
B., and Wolczko, M. Heap compression for memory-constrained Java
environments. In OOPSLA, pp. 282-301, 2003.

[6] Chilimbi, T. M., Davidson, B., and Larus, J. R. Cache-conscious
structure definition. In PLDI, pp. 13-24, 1999.

[7] Grcevski, N., Kilstra, A., Stoodley, K., Stoodley, M., and Sundaresan,
V. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In Proceedings of the 3rd Vir-
tual Machine Research and Technology Symposium, pp. 151-162,
2004.

[8] Hirzel, M. and Chilimbi, T. M. Bursty tracing: a framework for low-
overhead temporal profiling. In Proceedings of the 4th Workshop on
Feedback-Directed and Dynamic Optimization, pp. 117-126, 2001.

[9] Java SE 6 API Specification. http://java.sun.com/ javase/6/docs/api/ .

[10] Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q.,
Ronchetti, B. J., Sauer, W. M., Schwarz, E. M., and Vaden, M. T.
IBM POWER6 microarchitecture, IBM Journal of Research and De-
velopment, Vol. 51 (6), pp. 639–662, 2007.

[11] Li, J, Wu, C., and Hsu W. Dynamic register promotion of stack vari-
ables. In CGO, pp. 21-31, 2011.

[12] Marinov, D. and O'Callahan, R. Object equality profiling. In OOP-
SLA, pp. 313-325, 2003.

[13] Microsoft. Process Address Space. http://technet.microsoft.com/en-
us/library/ms189334.aspx .

[14] Mitchell, N. and Sevitsky, G. The causes of bloat, the limits of health.
In OOPSLA, pp. 245-260, 2007.

[15] Novark, G. Hardening software against memory errors and attacks.
Dissertation. University of Massachusetts - Amherst, 2011.

[16] Novark, G., Berger, E. D., and Zorn, B. G. Efficiently and precisely
locating memory leaks and bloat. In PLDI, pp. 397-407, 2009.

[17] Oracle. HotSpot VM. http://www.oracle.com/technetwork/
java/javase/overview/index.html .

[18] Power.org. http://www.power.org/ .

[19] Rehr, M. and Vinter, B. The user-level remote swap library. In Pro-
ceedings of the 2010 IEEE 12th International Conference on High
Performance Computing and Communications, pp. 164-171, 2010.

[20] Sartor, J. B., Blackburn, S. M., Frampton, D., Hirzel, M., and
McKinley, K. S. Z-rays: divide arrays and conquer speed and flexi-
bility. In PLDI , pp. 471-482, 2010.

[21] Sartor, J. B., Hirzel, M., and McKinley, K. S. No bit left behind: the
limits of heap data compression. In ISMM, pp. 111-120, 2008.

[22] Sartor, J. B., Venkiteswaran, S., McKinley, K. S. and Wang, Z. Co-
operative caching with Keep-Me and Evict-Me. In Proceedings of
the 9th Annual Workshop on Interaction between Compilers and
Computer Architectures, pp. 45-57, 2005.

[23] Shacham, O., Vechev, M., and Yahav, E. Chameleon: adaptive selec-
tion of collections. In PLDI, pp. 408-418, 2009.

[24] Shaham, R., Kolodner, E. K., and Sagiv, M. Heap profiling for space-
efficient Java. In PLDI, pp. 104-113, 2001.

[25] Skape. Memalyze: Dynamic analysis of memory access behavior in
software. Uninformed Journal, Vol. 7, http://uninformed.org/?v=7,
2007.

[26] Unkel, C. and Lam, M. S. Automatic inference of stationary fields: a
generalization of java's final fields. In POPL, pp. 183–195, 2008.

[27] Wilson P. R. Pointer swizzling at page fault time: efficiently support-
ing huge address spaces on standard hardware. University of Illinois
at Chicago Technical Report UIC-EECS-90-6, 1990.

[28] Xu, G. and Rountev, A. Detecting inefficiently-used containers to
avoid bloat. In PLDI, pp. 160-173, 2010.

[29] Xu, G., Arnold, M., Mitchell, N., Rountev, A., and Sevitsky, G. Go
with the flow: profiling copies to find runtime bloat. In PLDI, pp.
419-430, 2009.

[30] Zhao, Q., Rabbah, R. M., Amarasinghe, S. P., Rudolph, L., and
Wong, W. How to do a million watchpoints: efficient debugging us-
ing dynamic instrumentation. In Proceedings of the 17th Interna-
tional Conference on Compiler Construction, pp. 147-162, 2008.

[31] Zhao, Y., Shi, J., Zheng, K., Wang, H., Lin, H., and Shao, L. Alloca-
tion wall: a limiting factor of Java applications on emerging multi-
core platforms. In OOPSLA, pp. 361-376, 2009.

[32] Zilles, C. Accordion arrays: selective compression of Unicode arrays
in Java. In ISMM, pp. 55-66, 2007.

