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Abstract  

Future microprocessors will have more serious memory wall 
problems since they will include more cores and threads in each 
chip. Similarly, future applications will have more serious mem-
ory bloat problems since they are more often written using object-
oriented languages and reusable frameworks. To overcome such 
problems, the language runtime environments must accurately 
and efficiently profile how programs access objects. 

We propose Barrier Profiler, a low-overhead object access 
profiler using a memory-protection-based approach called pointer 
barrierization and adaptive overhead reduction techniques. 
Unlike previous memory-protection-based techniques, pointer 
barrierization offers per-object protection by converting all of the 
pointers to a given object to corresponding barrier pointers that 
point to protected pages. Barrier Profiler achieves low overhead 
by not causing signals at object accesses that are unrelated to the 
needed profiles, based on profile feedback and a compiler analy-
sis. Our experimental results showed Barrier Profiler provided 
sufficiently accurate profiles with 1.3% on average and at most 
3.4% performance overhead for allocation-intensive benchmarks, 
while previous code-instrumentation-based techniques suffered 
from 9.2% on average and at most 12.6% overhead. The low 
overhead allows Barrier Profiler to be run continuously on pro-
duction systems. Using Barrier Profiler, we implemented two new 
online optimizations to compress write-only character arrays and 
to adjust the initial sizes of mostly non-accessed arrays. They 
resulted in speed-ups of up to 8.6% and 36%, respectively. 

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – optimization 

General Terms Algorithms, Performance, Experimentation. 

Keywords Memory protection; memory management; profiling 

1. Introduction 

Increasing numbers of cores and threads on each chip have re-
duced the per-core and per-thread caches and memory bandwidth.  
This trend results in the problem called memory wall, a long la-
tency for programs to access data in memory. Typical programs 
written in object-oriented languages such as Java exacerbate the 

memory wall because they allocate and access a large number of 
objects [31]. Such programs are called allocation-intensive pro-
grams. Allocating many objects also causes frequent GC invoca-
tions and increases the GC overhead. 

Recent research [14,29] has shown that a large fraction of 
those object allocations are wasted, since they do not involve any 
data that actually contribute to the output of the program. This 
problem is often called memory bloat. Memory bloat happens 
because more programs are written using reusable libraries and 
frameworks. Such libraries and frameworks can allocate large 
data structures for generic usage but are not optimal for particular 
use cases. Memory bloat not only interferes with the efficient use 
of memory, but also makes the memory wall even higher since 
more of the actually useful data is evicted from CPU caches. 

To reduce the effects of the memory wall and memory bloat, 
language execution environments such as Java VMs need to pro-
file the program accesses of objects and then to optimize those 
objects. Object access profiles include properties such as write-
only objects, immutable objects, and non-accessed bytes based on 
the information about which program instructions access which 
fields of which objects. Object access profiling is crucial for 
many object optimizations, including object compression 
[5,12,21], lazy allocation [5,24], field reordering [6], and object 
merging [12]. For example, if certain objects are unlikely to be 
accessed after initialization, they should be compressed.  

There are two requirements for an object access profiler. First, 
it must be lightweight so that it can be used online. Although the 
object optimizations can be done offline by hand or by a compiler, 
offline optimizations cannot capture the dynamic behavior of 
programs. Thus language execution environments should profile 
and optimize object accesses online. Second, it must be accurate 
for maximum performance, especially when using speculative 
object optimizations. Because many object optimizations are 
speculative, inaccurate profiles can result in speculation failures. 
To obtain accurate object access profiles, the profiler must track 
the entire lifetimes of objects, not small portions. For example, to 
determine immutability the profiler must confirm that all reads 
come after all writes to an object. Thus it must be able to detect 
all of the accesses to the object, or at least all of the accesses that 
affect the accuracy of the access profiles. 

In this paper, we propose Barrier Profiler, an accurate object 
access profiler with low performance overhead. It is based on per-
object memory protection combined with profile-directed adap-
tive techniques for overhead reduction. Barrier Profiler uses 
pointer barrierization, which reserves a protected region outside 
of the heap region, instead of protecting the pages containing the 
profiled objects. At object allocation time, pointer barrierization 
converts all of the pointers to a given object to corresponding 



  

barrier pointers that point to the protected region. All of the ac-
cesses via the barrier pointers cause hardware exceptions, allow-
ing the profiler in the exception handler to track the lifetime of the 
object. Since hardware exceptions occur only via the barrier 
pointers, the protection granularity is not per page but per object.  

Using pointer barrierization as a substrate, Barrier Profiler pro-
files frequently-allocated short-lived objects, because such objects 
affect the performance by polluting CPU caches and squandering 
memory bandwidth, especially in multi-core systems [31]. To 
reduce the profiling overhead, Barrier Profiler samples only a 
small number of objects at each allocation site and profiles the 
accesses to the sampled objects. Barrier Profiler further reduces 
the overhead by profile-directed adaptive object sampling and 
unbarrierization. If the target of an object access optimization is 
an immutable object, for example, what is crucial is not the accu-
rate numbers of accesses but the object accesses that affect the 
immutability. Thus Barrier Profiler can skip sampling the objects 
that are unlikely to be immutable and profiling the objects that are 
no longer immutable. Our experiments showed that these tech-
niques provided sufficiently accurate profiles with low overhead. 
Thus Barrier Profiler can run continuously in production systems. 

We implemented two new online object-access optimizations 
to demonstrate the usefulness of Barrier Profiler. One is an online 
speculative compression of character arrays. Based on the online 
feedback from Barrier Profiler, the arrays that are unlikely to be 
accessed after their initialization are compressed if they contain 
only ISO-8859 characters. The other optimization is dynamic 
adjustment of the initial sizes of container arrays. Programmers 
often over-allocate large arrays as buffers, but access only the 
first few elements. Barrier Profiler successfully identified optimal 
sizes based on the non-accessed-byte profiles and dynamically 
performed recompilation to inline the allocation contexts and to 
embed the optimal sizes as compile-time constants. 

In summary, our contributions are: 
• We propose Barrier Profiler, an accurate object access profiler 

with low performance overhead, which is suitable for continu-
ous profiling in the field. Per-object accurate profiling is en-
abled by pointer barrierization (Section 3). Barrier Profiler is 
lightweight because of its profile-directed adaptive object 
sampling and unbarrierization (Section 4). 

• We implemented Barrier Profiler in the IBM J9/TR [7], a pro-
duction-quality Java VM with a just-in-time (JIT) compiler. 
We conducted experiments on its accuracy and overhead (Sec-
tion 5), using the industry standard SPECjvm2008, 
SPECjbb2005, and DaCapo benchmarks. 

• We quantitatively compared Barrier Profiler with existing 
code-instrumentation-based techniques including Bursty Trac-
ing [1,8] (Section 5). 

• We implemented and evaluated two new online object-access 
optimizations to demonstrate the usefulness of Barrier Profiler 
(Section 6). Both of them are feasible for the first time by us-
ing the lightweight object access profiler.  

2. Related Work 

Code instrumentation [2,4,5,12,24,30] has been a standard tech-
nique for object access profiling. However, executing additional 
code at every heap access results in prohibitive overhead. Both 
memory and performance overheads were reportedly increased by 
more than a factor of 10 [12]. One way to mitigate the overhead is 
access sampling like Bursty Tracing [1,8], which enables the in-
strumentation only during a profiling phase. However, our ex-
periments showed excessive overhead even at low sampling 
frequencies. 

In addition, the access sampling approaches are inaccurate be-
cause they can only sample some fraction of the accesses to arbi-
trary objects. They cannot track the life of an object, for example 
to detect immutable fields [26] or to find last access points [22]. 
What is needed is a lightweight profiler that samples objects and 
detects all of the accesses to the sampled objects, or at least all of 
the accesses that affect the accuracy of the access profiles. 

To detect the accesses to the objects without the code instru-
mentation overhead, memory protection with signal handling has 
been used in many systems [15,16,19,25,27,30]. Hound [16] and 
pointer swizzling [27] simply protect the pages that contain the 
target objects, as shown in Figure 1(a). However, this basic pro-
tection does not work for object access profiling because of race 
conditions. For example, Hound uses the basic protection to con-
firm the staleness of the objects that are segregated at allocation 
time. Once the application accesses a protected page, all of the 
objects in that page become fresh and the page is unprotected. In 
contrast, for more general object access profiles such as write-
only objects, immutable objects, and non-accessed bytes, the page 
cannot be unprotected after just one access to an object being 
profiled. However, when a thread accesses a protected object, it 
must temporarily disable the protection to access its content. In 
the meantime, race conditions can occur because other threads 
might access that object or other objects contained in the same 
page without causing hardware exceptions. 

To avoid the race conditions, Memalyze [25], Archipelago 
[15], and other systems [19,30] use mirror pages that map the 
physical pages of the protected virtual pages to other virtual ad-
dresses, as shown in Figure 1(b), allowing the signal handler to 
access the data of the protected object without unprotecting the 
page that contains it. However, these techniques still suffer from 
too much performance overhead to use online. First, the signal 
handling by an OS can result in more than a 50% performance 
overhead in allocation-intensive programs [16]. It is important to 
reduce the number of hardware exceptions without compromising 
the profile accuracy. Second, the page-level protection is too 
coarse-grained. Accesses to objects that are not being profiled but 
that reside in the protected page suffer from hardware exceptions. 
The granularity problem can be mitigated by segregating the pro-
filed objects into the protected pages [16,30]. However, this re-
quires a new memory allocator specialized for those protected 
pages, complicating the system design. 
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Figure 1. (a) Basic memory protection causes a race condition. (b) Mirror pages still suffer from coarse-grain page-level protection.  
(c) Pointer barrierization provides per-object protection. 



  

Pointer barrierization enables per-object protection by enhanc-
ing the mirror page approach. It does not protect the pages con-
taining the profiled objects but instead reserves a protected region 
outside of the heap region, as shown in Figure 1(c). Chen et al. [5] 
presented a very basic form of pointer barrierization to detect 
accesses to compressed objects. After compressing objects during 
GC, their approach sets the highest order bit of each pointer to 1 
for each compressed object, based on the assumption that an em-
bedded system will not use a virtual address space larger than 
2GB. Their original technique uses code instrumentation, and as 
an enhancement, they described a technique to use hardware 
memory protection. However, they did not explain the details of 
their algorithm. Li et al. [11] used a similar technique to detect 
accesses to aliased stack slots. In fact, pointer barrierization will 
not work correctly on objects in the heap if internal pointers and 
atomic instructions are ignored. These details are addressed for 
the first time in our work. Also, we show that pointer barrieriza-
tion is useful for object access profiling when combined with the 
overhead reduction techniques. 

QVM [2] detects defects in production systems using tech-
niques similar to Barrier Profiler. It continuously monitors ac-
cesses and method invocations on the objects that are sampled 
adaptively. However, because it uses code instrumentation, users 
of QVM need to specify which program points to instrument to 
avoid the large overhead of instrumenting every point. Also, its 
adaptive object sampling is based only on system overhead, while 
ours is profile-directed and thus is more suitable for insuring the 
accuracy of the collected object access profiles. 

There have been many other research proposals to overcome 
memory bloat. Xu et al. proposed a static analysis [28] and a pro-
filing method [29] to reduce memory bloat in Java. However, they 
were designed for offline code rewriting. The runtime slowdown 
by the profiling was more than 10-fold. Sartor et al. [21] esti-
mated potential space savings by various existing object compres-
sion algorithms, but they did not focus on how to implement them 
online. In contrast, Barrier Profiler is a novel infrastructure for 
online reduction of memory bloat. Discontiguous arrays with lazy 
allocation [5,20] can dynamically reduce memory bloat in large 
arrays. However, even when using highly optimized z-rays [20], 
performance degradation was more than 10% on average. Our 
dynamic adjustment of initial array sizes using Barrier Profiler 
has the same effect as using discontiguous arrays for certain array 
usage patterns, but has much lower overhead than z-rays. Chame-
leon [23] can also find similar opportunities through code instru-
mentation, but its performance overhead is 6 times at maximum. 

3. Pointer Barrierization 

In this section, we describe a pointer barrierization algorithm and 
what needs to be considered in code generation and GC. Pointer 
barrierization enables per-object access detection and is compati-
ble with all types of memory allocator. Throughout this paper, we 
assume Java is our target environment, but pointer barrierization 
and Barrier Profiler could be adapted to the environments of other 
languages and be effective on both 32-bit and 64-bit architectures.  

3.1 Basic pointer barrierization 

The easiest pointer barrierization is to add to a pointer the offset 
between the Java heap region and a read-write-protected region 
whose size matches the heap region. Figure 1(c) shows a memory 
layout. Note that the protected region does not require the as-
signment of real memory.  

Pointer barrierization can be performed at allocation or GC 
time. For pointer barrierization to work correctly, it is important 

to barrierize all of the pointers that point to a target object. Since 
only one pointer in a register points to an allocated object imme-
diately after allocation, it suffices to barrierize that register in the 
generated JIT code or in a modified interpreter. GC can do pointer 
barrierization when traversing all of the pointers to the object. 

3.2 Virtual-memory-efficient pointer barrierization 

The basic pointer barrierization requires a protected region whose 
size is not smaller than the Java heap region. In a 32-bit environ-
ment, however, the virtual address space is a limited resource. It 
is best to make the protected region as small as possible. 

For a smaller protected region, Java VM can take advantage of 
the fact that all Java objects are aligned on a 4- or 8-byte bound-
ary. This is true for production-quality Java VMs [7][17]. Since 
the last 2 or 3 bits of each object pointer are zero, it can be shifted 
right by 2 or 3 bits without losing any information. Thus the size 
of the protected region can be 1/4 or 1/8 that of the Java heap 
region. A difficulty in this approach is that an access through a 
barrier pointer can point outside of the protected region. Thus 
when barrierizing the pointers to an object, the sum of the barrier 
pointer and the object size must not exceed the top address of the 
protected region. If this condition fails, barrierization cannot be 
used, but this is a rare case. 

In some CPU architectures, unaligned accesses via a pointer 
whose last bits are set cause a bus error. However, pointer barrier-
ization cannot take advantage of this mechanism in general, be-
cause byte accesses through such a pointer do not cause the error. 

To further reduce the size of the protected region, a Java VM 
can use an OS-protected region. For example, by default the 
Linux and Windows OS [13] occupies the highest 1/4 or 1/2 of a 
virtual address space, and cannot be accessed by users. In this 
case, pointer barrierization can shift a pointer right by at least 2 
bits and set the topmost 2 bits. The Java VM does not need to 
reserve any protected region in the user space. 

3.3 Signal handling 

Accesses through barrier pointers always cause hardware memory 
exceptions, which are converted to signals by the OS. Figure 2 
shows the signal-handling algorithm implemented in a Java VM. 
 
Restoring a header pointer 

The handler first checks whether the excepting data address is 
within the protected region by address comparison (Line 2). If so, 
the handler must restore the pointer to the head of the accessed 
object, which we call a header pointer. A pointer to the middle of 
the object, which we call an internal pointer, is not sufficient 
because an object access profiler must identify which object is 
being accessed to detect, for example, the immutability of the 
object (Line 11). Generally, unbarrierizing the excepting data 
address only produces an internal pointer. 

We propose two approaches to restore the header pointer. One 
is to use an ordered set, normally a balanced tree. At pointer bar-
rierization time, the barrier pointer, which corresponds to a header 
pointer to an object, is stored in the ordered set. To restore the 
header pointer, the highest barrier pointer that is lower than the 
excepting data address is looked up in the ordered set (Line 5). 
This search requires synchronized tree traversal and can result in 
a bottleneck in multithreaded execution.  

The other approach is to restrict the format of the instructions 
that access objects. This means one of the register arguments of a 
memory reference must be a header pointer. For example, in a 
memory reference of the form [base_reg, off-

set_reg/immediate], base_reg must be a header pointer. 



  

Then the barrierized header pointer can be obtained by decoding 
the instruction and loading the content of base_reg from the 
signal context (Lines 3-4). We believe that these restrictions are 
usually satisfied in existing Java VMs and JIT compilers.  

However, the restrictions may be violated when accessing 
large objects, especially arrays, due to the results of loop induc-
tion variable optimization. For those instructions that use internal 
pointers, JIT-generated code maintains a header pointer in a regis-
ter or in a stack slot of the method. Many JIT compilers already 
support this function to help the GC mark or move the objects 
pointed to by internal pointers. In addition, the JIT compiler 
maintains a hash table to associate each instruction that uses an 
internal pointer with a register number or a stack offset that holds 
the header pointer. This allows the signal handler to obtain the 
header pointer from the excepting code address (Lines 6-7). Since 
most of the object access instructions do not use internal pointers, 
the data structure for the association will not grow excessively. 

The second approach is more lightweight in general, but we 
used the first approach because our preliminary experiments 
showed that its overhead was small enough, thanks to the low 
object sampling frequency of our Barrier Profiler. 

 
Handling atomic instructions 

After unbarrierizing the header pointer (Line 10), the handler 
records the access (Line 11) and emulates the execution of the 
excepting instruction (Line 18). For example, emulating a load 
means executing a load on behalf of the excepting load instruction 
and then writing the loaded value to the target register in the sig-
nal context. Note that the handler is not allowed in general to 
write the unbarrierized pointer to the base register and return to 
the excepting instruction to execute it again. This approach could 
change the semantics of a program because the same object is 
represented by two different pointer values, causing a pointer 
equality operation to return false even when the two pointers do 
refer to the same object. After the emulation, the handler returns 
to the next instruction (Line 19).  

There is a subtle problem in handling atomic instructions 
(Lines 12, 15-16). The signal handler can correctly emulate a 
compare-and-swap (CAS) instruction. However, for a load-linked 
(LL) instruction, even if the handler executes an LL, that reserva-
tion is likely be lost before the execution reaches a corresponding 
store-conditional (SC) instruction. This is because the OS can 
execute another LL/SC pair after the signal handler and before the 

SC. We solve this problem by executing the LL again with an 
unbarrierized register, as shown in Figure 3. To avoid the problem 
of incorrect pointer equality, the base register is copied to another 
register immediately before the LL, and the LL uses that register. 
Thus the original base register still contains a barrier pointer. In 
addition, the following SC must also use the copied register. Oth-
erwise, another hardware exception would occur at the SC, and 
the reservation might be lost. In Java, LL/SC pairs can be per-
formed on objects only for monitor entrances and exits, so it is 
easy to modify a JIT compiler or Java VM to use LL/SC in the 
required way. The conditions in Lines 13 and 14 reduce the over-
head and are explained in Section 4.2. 

3.4 GC 

With pointer barrierization, most GC implementations need only 
minor changes to run correctly. An efficient marking GC uses a 
marking table outside of the Java heap region. It finds the corre-
sponding mark bit of an object by bit-operations on the pointer to 
the object. Thus, before marking, the GC must check whether or 
not the pointer is a barrier pointer. If so, it must obtain the origi-
nal pointer by unbarrierization. The same operation is needed for 
marking a card table for generational or concurrent GC. 

In the GC algorithms that move objects, each pointer field is 
modified so that it points to the new location of the pointed-to 
object. If the original pointer is a barrier pointer, the new pointer 
must be one, too. Thus GC needs a check at each pointer traversal, 
and it must perform unbarrierization and barrierization as needed. 

4. Barrier Profiler 

Barrier Profiler is a lightweight object-access profiler using 
pointer barrierization. It is focused on frequently allocated short-
lived objects, because such objects often affect the performance in 
multi-core systems [31]. Pointer barrierization could also be used 
for profiling long-lived objects. This is left for future work. 

4.1 Basic algorithm 

To profile the frequently allocated objects, the interpreter and JIT 
compiler were modified to use pointer barrierization at all alloca-
tion sites. To reduce the profiling overhead, Barrier Profiler ap-
plies pointer barrierization to only a small fraction of the objects 
at each allocation site. This object sampling should be based not 
on the allocated number of objects but on the allocated bytes, 
because cache pressure, memory bandwidth usage, GC frequency, 
and memory bloat are all related to the allocated bytes. 

Figure 4 shows the pseudocode at an allocation site. After al-
locating an object (Line 1), the addresses of the head and tail of 
the object are XORed and ANDed with a mask to check whether 
the object is allocated across an aligned boundary (Line 3). The 
per-allocation-site mask is of the form 11…100…0. For example, 

 01: handle_signal(code_addr, data_addr, context) {{{{
02:   ifififif (is_in_protected_region(data_addr)) {{{{
03:     base_reg_num = decode_instruction(code_addr);
04:     base_reg = get_reg_contents(base_reg_num, context);

#if USE_ORDERED_SET#if USE_ORDERED_SET#if USE_ORDERED_SET#if USE_ORDERED_SET
05:     bar_object_head = search_ordered_set(data_addr);

#else#else#else#else
06:     ifififif (is_internal_pointer_access(code_addr))
07:       bar_object_head = get_array_head(code_addr);
08:     elseelseelseelse
09:       bar_object_head = base_reg;

####endifendifendifendif
10:     orig_object_head = unbarrierize(bar_object_head);
11:     record_access(code_addr, orig_object_head);
12:     ifififif (is_LL(code_addr) ||
13:         is_uninteresting(orig_object_head) &&
14:           safe_to_unbarrierize_at(code_addr)) {{{{
15:       write_to_context(context, base_reg_num,

base_reg + orig_object_head – bar_object_head);
16:       return_to(code_addr);
17:     }}}}
18:     do_load_or_store(code_addr, orig_object_head, context);
19:     return_to_next_instruction(code_addr);
20:   }}}}
21:   ...  

Figure 2. Signal handling algorithm. 

 (a)

LL reg_old,[reg_head,imm]
...
SC reg_new,[reg_head,imm]

handle_signal(...){
...

16: return_to
(code_addr);

...
}

(b)

move reg_copy,reg_head
LL reg_old,[reg_copy,imm]
...
SC reg_new,[reg_copy,imm]
/* End of the live range

of reg_copy */  
 

Figure 3. (a) Original code sequence for LL/SC in JIT or inter-
preter code. (b) With barrier pointers, a base register is copied to 
another register (reg_copy), and LL/SC use that register. If the 
LL causes an exception, the signal handler modifies reg_copy 
to an unbarrierized pointer, and the LL is executed again. 



  

if the number of zeros is 20, Barrier Profiler samples the objects 
that extend across 1-MB-aligned boundaries at this allocation site. 
More zeros in the mask mean lower overhead but larger errors in 
the profiles. If the masked results are not all zero, then the alloca-
tion is recorded (Line 4) and the pointer is barrierized (Line 5). 
The mask can be updated as needed (Line 6).  

Barrier Profiler records the per-object access profiles in object 
information structures. One object information structure corre-
sponds to one sampled object. It is created outside of the Java 
heap at the allocation time of the sampled object (Line 4) and 
contains the ID of the allocation site. In addition, the allocation 
context is obtained by stack walking, and the ID assigned to the 
context is stored in the information structure. When a sampled 
object is accessed (Line 11 of Figure 2), the corresponding infor-
mation structure is fetched via a hash table using the object head 
address as a key. Alternatively, if the ordered set is used to restore 
a header pointer, the set can also be used as a map to store and to 
fetch the information structures in addition to header pointers. 
Per-object access profiles such as the number of reads and writes, 
whether the object is write-only or not, etc. are recorded in the 
object information structure. At the end of each GC, every object 
information structure is visited to check whether or not its corre-
sponding object is dead. If it is dead, the per-object access pro-
files are accumulated into the per-allocation-site and per-
allocation-context information structures that correspond to the 
allocation site and context, respectively, of the dead object. The 
object information structure is then reclaimed. 

4.2 Performance overhead reduction 

We devised six techniques to reduce the performance overhead of 
Barrier Profiler by decreasing the number of hardware exceptions: 
three that lower the frequency of object sampling and three that 
unbarrierize some of the objects being profiled. A key constraint 
is to avoid compromising the accuracy of the profiles. 
 
Adaptive object sampling 

There are three cases where the sampling frequency can be de-
creased without increasing the profile errors too much. First, Bar-
rier Profiler can reduce the sampling frequency at uninteresting 
allocation sites based on the object access optimizations. For ex-
ample, if a target optimization is to lazily allocate non-accessed 
objects, the objects allocated at a site that has allocated some or 
many non-accessed objects should be sampled frequently to care-
fully assess whether or not it is worth delaying object creation at 
this site. In contrast, the objects allocated at a site that has always 
allocated accessed objects can be sampled less frequently, al-
though the sampling should not be completely disabled to adapt to 
dynamic behavior changes. Based on the feedback from the per-
allocation-site profiles, our implementation lowers the sampling 
frequency at the allocation sites whose ratios in bytes of write-
only objects, immutable objects, and non-accessed bytes to all of 
the objects sampled at the sites are all less than 1%. 

Second, we found a few small objects received quite a large 
number of accesses in some benchmark programs. Such a small 
number of small objects have little effect on the memory wall or 

bloat problems. If they happen to be sampled, however, perform-
ance degradation is significant. Based on the per-allocation-site 
profile, Barrier Profiler decreases the sampling frequency at the 
allocation sites (1) whose sampled objects account for only a 
small portion (less than 0.5% in bytes, in our implementation) of 
all sampled objects, and (2) that have ever allocated an object 
whose ratio of the number of accesses to its size exceeded a 
threshold (50, in our implementation). 

Finally, Barrier Profiler should sample large objects less fre-
quently than small ones because the algorithm in Figure 4 can 
sample too many large objects, especially in scientific applica-
tions. Preliminary experiments show that we should treat objects 
from 1 KB and up as large objects. 
 
Adaptive unbarrierization 
Barrier Profiler stops profiling particular objects in three cases: 
two at GC time and one during the execution of the program. To 
disable the profiling of an object, all of the barrier pointers to the 
object must be unbarrierized. Otherwise, partial unbarrierization 
could cause incorrect pointer equality as described in Section 3.3. 

First, if an object being profiled no longer satisfies the prop-
erty of the profiles being collected, such as immutability, profil-
ing of accesses to the object can be stopped. After Barrier Profiler 
records an access to an object, it checks whether the object is still 
worth profiling. If not, it sets a flag in the corresponding object 
information structure, indicating the object is no longer interesting. 
Barrier Profiler performs the unbarrierization of the uninteresting 
object during stop-the-world GC, when all of the pointers to the 
object are traversed. 

Second, Barrier Profiler also does temporary unbarrierization 
during the execution of the program, so that the uninteresting 
object does not continue to be profiled until the next GC. In the 
signal handler, a barrier pointer in the base register can be unbar-
rierized and written back, as shown in Line 15 of Figure 2. As a 
result, the following accesses using this base register do not cause 
hardware exceptions. To avoid the problem of incorrect pointer 
equality, a compiler analysis insures that this base register will 
not be used as an operand of any pointer comparison instructions. 
Because our implementation does not use alias or inter-method 
analysis, the base register also must not be used as an argument of 
method invocations, a method return value, or for data to be 
stored in the heap. If the base register satisfies these conditions, 
the address of the instruction is registered in a global hash table. 
In the signal handler, if the object is uninteresting and the except-
ing address is registered in the table (Lines 13-14 of Figure 2), the 
base register is unbarrierized. 

Finally, many long-lived objects receive a large number of 
accesses without changing their object access properties such as 
immutability. Thus Barrier Profiler stops profiling long-lived 
objects based on how many times they survive GC. Each time an 
object survives GC, its age is incremented in its object informa-
tion structure. After its age exceeds a predefined threshold (8, in 
our implementation), it is unbarrierized at the next GC. 
 
Discussion 

Some of the overhead reduction techniques cannot be used when 
collecting certain types of object access profiles. For example, 
profiling the last access points of objects is useful for inserting 
cache-flush instructions. However, there is no known time when 
an object becomes “uninteresting” in terms of its last access point. 
Thus sampled objects should not be unbarrierized. 

 1: object = allocate_object(class);
2: object_tail = object + object_size;
3: ifififif (((object ^ object_tail) & mask[site_id]) != 0) {{{{
4:   record_allocation(site_id, object);
5:   object = barrierize(object);
6:   mask[site_id] = get_next_mask(site_id);
7: }}}}  

Figure 4. Code at an allocation site in Barrier Profiler. 



  

5. Experimental Results 

This section describes our implementation of Barrier Profiler. 
Then our experimental results are presented to assess the accuracy 
and overhead of Barrier Profiler. 

5.1 Implementation 

We implemented Barrier Profiler in a development version of 
the 32-bit IBM J9/TR [7] 1.6.0 SR6 for the Power architecture 
[18]. We used the basic pointer barrierization described in Section 
3.1. We allocated 1 GB for the Java heap and also reserved 1 GB 
for the protected region. We used mark-and-sweep GC that in-
voked occasional compaction when the fragmentation became 
excessive. We measured the effects of the six overhead reduction 
techniques described in Section 4.2 by enabling and disabling all 
of them, which we call Opt and NoOpt, respectively. 

We modified the interpreter to execute the pointer barrieriza-
tion code in Figure 4 and the JIT compiler to insert the code into 
all of the allocation sites in the JIT-compiled methods. J9/TR first 
executes Java methods with the interpreter, and if a method is 
frequently invoked, then it is JIT-compiled. We inserted the 
pointer barrierization code immediately after the initialization of 
the object header fields and the zero-clearing of the non-header 
fields. This means these initialization-related writes did not ap-
pear in the collected profiles. 

For the mask value in Figure 4, we used a fixed value during 
each run of a benchmark, except for the optimizations in the Opt 
configuration. We tried five mask values, with 17, 20, 23, 26, and 
29 zeros. This corresponds to sampling one object per each allo-
cated 128 KB up to each 512 MB. In this section, we use these 
numbers of sampling intervals to denote each configuration. In 
the JIT-compiled code, the mask is embedded as an immediate 
value in the AND instruction at Line 3 of Figure 4. The mask 
value can be updated by code patching. In the Opt configuration, 
we increased the number of masking zeros by three when decreas-
ing the sampling frequency. For object allocation in the inter-
preter, our implementation uses a global fixed mask value. 

The total real memory requirement of Barrier Profile was less 
than 8 MB even at the most frequent sampling interval of 128 KB. 
More than 90% of the memory was for the information structures 
described in Section 4.1. Note that these data structures are not 
Barrier-Profiler-specific. They are needed for code-
instrumentation-based object access profilers too. 

5.2 Code instrumentation techniques 

We implemented two code instrumentation techniques in J9/TR 
for comparison. The first one is full instrumentation to simulate 
Bursty Tracing [8]. Bursty Tracing is based on the Arnold-Ryder 
framework [1] and aims for temporal profiling similar to Barrier 
Profiler. It duplicates the JIT-compiled code for every method. 
One is a checking version and the other is an instrumented version. 
Most of the time, the checking version is executed, but the execu-
tion occasionally switches to the instrumented version. The 
checking version contains only checks at method entries and loop 
back-edges that decrement a counter and jump to the instrumented 
version if it reaches zero. The instrumented version also contains 
the same checking code for the other counter to jump back to the 
checking version. Although we did not implement all of the parts 
of Bursty Tracing, we can estimate its overhead by the sampling 
rate and by the overhead of the instrumented code, as explained in 
[8]. To that end, we implemented full instrumentation that inserts 
profiling code at every heap access. 

We also implemented another code instrumentation technique 
based on the idea of Barrier Profiler. We call it Instrumented Bar-
rier Profiler.  It performs pointer barrierization at allocation sites 
as in Barrier Profiler, but instead of relying on hardware excep-
tions, it inserts check instructions at every heap access. It uses the 
basic pointer barrierization in Section 3.1, although we did not 
need to actually reserve the protected region. To make the check 
simple, we guaranteed that the lower 16 bits of the bottom address 
of the protected region were all zero. The check consists of three 
instructions: The first instruction logically shifts a pointer right by 
16 bits. The second instruction uses a 16-bit immediate compari-
son instruction to compare the shifted value with the constant that 
is the higher 16 bits of the bottom address of the protected region. 
The third instruction is a branch instruction based on the result of 
the comparison. If the pointer is equal to or larger than the bottom 
address, the execution jumps to a profiling snippet, which is basi-
cally the same as the signal handler in Figure 2. We also imple-
mented a compiler optimization to merge instrumentations for the 
same object within a basic block, combined with temporary un-
barrierization in the snippet. Instrumented Barrier Profiler can 
also benefit from the optimizations in Section 4.2. To obtain the 
same profiling accuracy as Barrier Profiler, Instrumented Barrier 
Profiler must always be enabled. 

5.3 Benchmarks and evaluation environment 

To evaluate the accuracy and overhead of Barrier Profiler, we 
used SPECjvm2008, the DaCapo Benchmarks 9.12, and 
SPECjbb2005. We ran the benchmarks six times, restarting the 
JVM each time, and took the averages during the steady state. We 
ran the benchmarks on a 4-core 2-way-SMT 4.0-GHz POWER6 
[10] machine with 32 GB of main memory running Linux 2.6.18. 
For SPECjvm2008, we ran a 2-minute warm-up and a 4-minute 
measurement iteration. We used small data sets for the 
“scimark“ benchmarks in SPECjvm2008. For DaCapo, we used 
the largest data sets for each benchmark. We ran each benchmark 
for 6 minutes and used the last 4 minutes as a measurement period. 
We excluded eclipse, tradebeans, and tradesoap from DaCapo, 
because they did not run correctly on the development version of 
the JVM we used, even without Barrier Profiler. For 
SPECjbb2005, we used a single JVM, which ran a 3.5-minute 
warm-up and a 4-minute measurement run with 8 warehouses. 

The main targets of Barrier Profiler are allocation-intensive 
programs that allocate and use large numbers of objects, causing 
memory wall and memory bloat problems. Zhao et al. [31] cate-
gorized the SPECjvm2008 programs into allocation-intensive and 
non-allocation-intensive programs and pointed out that the alloca-
tion-intensive ones suffered from serious scalability issues on 
multi-core systems. Table 1 shows the per-hardware-thread allo-
cation rates of the benchmarks we used. The rates are normalized 
to scimark.montecarlo as 1. The left side is allocation-intensive, 
while the right side is non-allocation-intensive. In SPECjvm2008, 
compiler.compiler, derby, serial, sunflow, xml.transform, 
xml.validation, and compiler.sunflow are allocation-intensive. 
These results match Zhao et al.’s categorization. 

5.4 Collected object access profiles 

Using Barrier Profiler, we collected three kinds of object access 
profiles: write-only objects, immutable objects, and non-accessed 
bytes. In our experiments, we collected all of the three profiles at 
the same time. Write-only objects are those objects for which 
none of the non-header fields are read. These objects are useless 
for the executed paths of the benchmarks, making them candi-
dates for object optimizations such as allocation-time compres-



  

sion or lazy allocation [5,24]. Barrier Profiler can estimate how 
frequently each allocation site allocates write-only objects. If an 
allocation site always or mostly allocates write-only objects, then 
that site should be a target for the object optimizations.  

The second object access profile we collected is for immutable 
objects. These are the objects for which all of the writes to their 
non-header fields precede all of the reads from their non-header 
fields. They can be considered as runtime constant objects, and 
thus they can be exploited for lazy allocation, or more specifically, 
for copy-on-write. Note that this kind of object access profiling 
cannot be collected by using access-sampling-based methods, 
because such methods cannot track the entire life of a particular 
object. In our definition, all of the write-only objects are also 
immutable objects.  

The last object access profile is the non-accessed-byte profile. 
A non-accessed byte in an object is a non-header byte for which 
there is no read or write after the header initialization and zero-
filling. Such a byte only wastes space and should be eliminated. 
Note that this is a per-byte property, while the previous two pro-
files are per-object properties. 

5.5 Accuracy of profiling 

To evaluate the accuracy of object access profiling, we need to 
have perfect reference profiles, which we also obtained with a 
modified form of Barrier Profiler. We added to Barrier Profiler a 
mechanism to enable or disable the profiling. Pointer barrieriza-
tion code at allocation sites was skipped by branch instructions 
during start-up. After the program reached a steady state, the pro-
filing was enabled by patching the branch instructions to no-ops. 
This profiling was different from that in Figure 4 in that it sam-
pled all of the allocated objects. After the patching, the program 
continued execution to the end, profiling all of the accesses to the 
objects. We call these results the “full trace”. For evaluation, we 
also counted how many bytes of the objects were actually allo-
cated at each allocation site in the steady state. We call this the 
actual allocated bytes of the allocation site. 

Here is how we evaluated the accuracy of object access pro-
files such as for the write-only objects. For each allocation site, 
we computed an estimated write-only ratio by dividing the total 
bytes of the sampled write-only objects allocated at the site by the 
total bytes of all of the sampled objects allocated at the site. If no 
object was sampled at an allocation site, we assumed the esti-
mated write-only ratio of the site to be zero. We also calculated 
an actual write-only ratio for each allocation site, using the full 
trace results. The estimation error in the allocated bytes of write-
only objects is the total of the actual allocated bytes of each allo-
cation site multiplied by the absolute difference between its esti-
mated and actual write-only ratios. In other words, the estimation 
error is the average of the absolute differences weighted by the 
actual allocated bytes. We computed estimation errors for immu-
table objects and non-accessed bytes in the same way.  

Since Barrier Profiler is sampling-based, long-term profiling 
will eventually reach the correct values. However, it should return 
the correct values even from short-term profiling, so that it can 
react quickly to dynamic behavior changes. Thus for the experi-
ments in Section 5.5 and 5.7, we report the profiling results ob-
tained during the measurement period of each benchmark, as 
described in Section 5.3. The profiling is always enabled, but all 
of the profiles collected during the warm-up period are discarded 
before the measurement period. Investigating the sensitivity of the 
accuracy to the profiling length is left for future work. 

Figure 5 shows the estimation errors for write-only objects, 
relative to the total actual allocated bytes in compiler.compiler, 
derby, xml.transform, and xml.validation. Here we show only the 

results of the 4 representative allocation-intensive benchmarks, 
and we omit the results for immutable objects and non-accessed 
bytes. The estimation error ratios mostly decreased as the sam-
pling interval was reduced except in derby, where the error ratios 
were always less than 2%. At 8-MB/Opt, the estimation error 
ratios in the allocation-intensive benchmarks were within 10%, 
16%, and 6% for the write-only objects, immutable objects, and 
non-accessed bytes, respectively. The estimation error ratios of 
immutable objects were larger than those of write-only objects 
and non-accessed bytes, because the immutable objects accounted 
for more than 50% of the total actual allocated bytes in most 
benchmarks, while the write-only objects and non-accessed bytes 
rarely exceeded 20%.  

When comparing Opt with NoOpt, the estimation error ratios 
were almost always worse, but within 5% difference. Further 
investigation revealed that most of the inaccuracy in Opt resulted 
from lowered sampling frequencies at uninteresting allocation 
sites. Surprisingly, Opt sometimes resulted in smaller estimation 
error ratios than NoOpt, as shown in compiler.compiler and 
xml.validation of Figure 5. This was because NoOpt was so slow 
that it could not sample enough number of objects during the 
measurement period. 

5.6 Performance overhead of profiling 

How accurate object access profiling should be depends on how 
much overhead the profiling incurs and how sensitive an object 
access optimization is to the errors in the profiles. Figure 6 pre-
sents the relative performance overheads of all of the Barrier Pro-
filer configurations in the 4 representative allocation-intensive 
benchmarks, compared with the baseline without Barrier Profiler. 
The sampling intervals of 1 MB or less suffered from significant 
overhead. For example, in compiler.compiler, 512MB/Opt caused 
1.5 * 104 profiled accesses per minute, 8MB/Opt did 1.5 * 106, 
and 128KB/Opt did 2.2 * 107. Based on these results, we chose 8-
MB as the best to balance accuracy with overhead. 

When comparing Opt with NoOpt, their differences were sta-
tistically significant at the 8-MB-or-shorter intervals in most 
benchmarks. At the 8-MB interval, the adaptive object sampling 
contributed to most of the overhead reduction. The GC-time un-
barrierization rarely occurred at the 8MB-or-longer intervals. As 

Allocation-

intensive  

benchmarks 

Norm. 

alloca-

tion rate 

Non-allocation-

intensive  

benchmarks 

Norm. 

alloca-

tion rate 

compiler.compiler 15.8 compress 1.3 

derby 39.3 crypto.aes 11.7 

serial 20.5 crypto.rsa 1.3 

sunflow 16.4 crypto.signverify 3.7 

xml.transform 21.5 mpegaudio 2.1 

xml.validation 24.8 scimark.fft 4.2 

compiler.sunflow 15.4 scimark.lu 6.4 

fop 33.2 scimark.sor 6.5 

jython 40.7 scimark.sparse 1.0 

lusearch 850.3 scimark.montecarlo 1.0 

pmd 27.8 avrora 1.3 

sunflow (DaCapo) 119.8 batik 5.0 

tomcat  71.6 h2 6.1 

xalan 128.1 luindex 3.6 

SPECjbb2005 16.8   

 

Table 1. Normalized per-hardware-thread allocation rates of 

the benchmarks (bytes/second). The rates are normalized to 

scimark.motecarlo as 1. The targets of Barrier Profiler are the 

allocation-intensive benchmarks on the left side. 



  

the interval became shorter, the adaptive unbarrierization had 
larger effect on the performance.  

With the 8-MB/Opt configuration, an object access optimiza-
tion needs to tolerate at most 10% errors in the write-only ratios at 
each allocation site, as described in Section 5.5. Suppose we use a 
speculative optimization that compresses the objects allocated at 
sites whose sampled objects have been 100% write-only. In the 
xml.transform benchmark, for example, the estimation error ratio 
of 8-MB/Opt is 3.3% for write-only objects, as shown in Figure 5. 
Therefore, that speculative optimization should provide a benefit 
even when 3.3% of the objects allocated at the sites are actually 
not write-only. 

5.7 Comparison with previous techniques 

Figure 7 is for the comparison between simulated Bursty Tracing, 
Instrumented Barrier Profiler (8-MB/Opt), Barrier Profiler (8-
MB/NoOpt), and Barrier Profiler (8-MB/Opt) for the estimation 
error ratios of write-only objects. The geometric means for the 
profiles of immutable objects and non-accessed bytes are shown 
on the right side. The upper graph presents the results of the allo-
cation-intensive benchmarks, and the lower graph is the non-
allocation intensive benchmarks. 

It is difficult to precisely measure the estimation errors of 
Bursty Tracing without fully implementing it. We took advantage 
of the mechanism to collect the full traces described in Section 
5.5. We still sampled all of the allocated objects, but instead of 
always profiling all of the accesses to the sampled objects, we 
collected the profiles only during the instrumented period. More-
over, we only profiled the accesses to the objects sampled during 
the instrumented period. Instead of counting method entries and 
loop back-edges as the original Bursty Tracing does, we counted 
the number of accesses to any of the sampled objects. We as-
sumed a sampling rate of 1/201, which is the least frequent rate 
tested in [8]. We tried 20000:100, 200000:1000, 2000000:10000, 
and 20000000:100000 as the ratios between the checking and 
instrumented period, and found 2000000:10000 to be the most 
accurate. 

The accuracy of Instrumented Barrier Profiler is the same as 
that of Barrier Profiler if their sampling intervals and Opt/NoOpt 
choices are the same. To fairly compare their performance over-
heads, we used 8-MB/Opt for Instrumented Barrier Profiler too. 

As shown in Figure 7, Bursty Tracing is not useful as an object 
access profiler. The large errors were due to profiling only a sub-
set of the accesses to a sampled object. Increasing the instru-
mented period did not necessarily mean reducing the errors, 
because it also increased the checking period and failed in sam-
pling at important allocation sites. Barrier Profiler (8-MB/Opt) 
was close to Barrier Profiler (8-MB/NoOpt). Its estimation error 
ratios were worse by 0.1%, 0.6%, and 0.3% in write-only objects, 
immutable objects, and non-accessed bytes, respectively, on the 
average of the allocation-intensive benchmarks. We believe these 
levels of errors are acceptable for object access optimizations. In 
some non-allocation-intensive benchmarks, the error ratios were 
almost zero, because they allocated few write-only objects. 

Figure 8 compares the relative overheads of simulated Bursty 
Tracing, Instrumented Barrier Profiler (8-MB/Opt), and Barrier 
Profiler (8-MB/NoOpt and 8-MB/Opt). To estimate the overhead 
of Bursty Tracing, as explained in Section 5.2, we measured the 
overhead of the full instrumentation that inserted profiling code at 
every heap access. The full instrumentation was 6-10 times 
slower than the baseline. We assumed a sampling rate of 1/201 
and the basic checking overhead of 4.9% reported in [1], and 
calculated the overhead of Bursty Tracing using Equation 4 in [8]. 

As shown in Figure 8, Barrier Profiler with 8-MB/Opt incurred 
at most 3.4% runtime overhead in compiler.sunflow among the 
allocation-intensive benchmarks. Compiler.sunflow caused the 
largest number of profiled accesses, which resulted in the largest 
runtime overhead. The average performance overhead of 8-
MB/Opt was 1.3% in the allocation-intensive benchmarks, while 
that of 8-MB/NoOpt was 75.2%. The large performance differ-
ences in SPECjvm2008 and some non-allocation-intensive bench-
marks were due to decreasing the sampling frequency for large 
objects. These results show the effectiveness of the overhead re-
duction techniques. 
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Figure 5. Accuracy: estimation error ratios in the allocated bytes of write-only objects for 4 representative allocation-intensive bench-

marks, comparing the 10 combinations of 512-MB/64-MB/8-MB/1-MB/128-KB and Opt/NoOpt (= with/without the overhead reduction 

techniques in Section 4.2). Black arrows point to 8-MB/Opt, which we chose as the best configuration to balance accuracy with overhead. 
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Figure 6. Performance overhead: relative overheads in the 4 benchmarks with 90% confidence intervals, comparing the 10 configura-

tions. Black arrows point to 8-MB/Opt, which was the best configuration to balance accuracy with overhead. 



  

 The overhead of the code instrumentation techniques was lar-
ger than that of Barrier Profiler (8-MB/Opt). Bursty Tracing suf-
fered from at most 12.6% and on average 9.2% performance 
overhead in the allocation-intensive benchmarks, which matches 
the results in [1]. Even with the Opt configuration, the overhead 
of Instrumented Barrier Profiler (8-MB/Opt) was 12.4% on aver-
age and up to 22.6%. This is 6-9% larger than the instrumentation 
overhead presented in [3,4], and even larger than that reported in 
[5]. This is because the instrumentation in [3,4] is inserted only at 
reference loads. One reason for the difference between [5] and our 
results may be that the implementation in [5] was done in an em-
bedded JVM, which performs less aggressive JIT optimizations 
than J9/TR. By removing unnecessary computations, the overhead 
of the instrumentation is more visible. Another reason appears to 
be that the instrumentation in [5] was to detect accesses to com-
pressed objects and to decompress them. If one instrumentation 
dominates the other instrumentation code for the same object in 
the control flow, then that code can be eliminated. However, for 
accurate object access profiling, the instrumentation code can 
only be merged within a basic block.  

In the non-allocation-intensive benchmarks, all of the profiling 
methods suffered from lager runtime overheads than in the alloca-
tion-intensive benchmarks because of frequent array accesses. On 
average, the runtime overhead was 14%, 36%, 666%, and 14% 
with simulated Bursty Tracing, Instrumented Barrier Profiler (8-
MB/Opt), and Barrier Profiler (8-MB/NoOpt and 8-MB/Opt), 
respectively. Although the 14% overhead is excessive for online 
profiling, Barrier Profiler is still useful as one of the lowest over-
head offline profilers.  

In summary, Barrier Profiler achieved sufficiently accurate 
profiling with low overhead for the allocation-intensive programs, 
which allows it to be used continuously in the field.  

5.8 Results of profiling 

So far, we have discussed the accuracy of the profiling, but the 
profiling results themselves revealed interesting characteristics in 
the Java benchmarks. First, quite a large number of objects were 
write-only in some programs. In SPECjbb2005, 99% of the write-
only objects were String objects and their associated character 
arrays. These objects were created for logging, which actually 
was not enabled during the benchmark run. They are good candi-
dates for removal or compression.  

Second, except for xml.validation, more than half of the allo-
cated bytes were immutable objects in the allocation-intensive 
benchmarks. This matches the report in [26] that many fields in 
Java object can be considered final. Not all of the immutable 
objects were instances of the classes that are defined as immuta-
ble in Java, such as String. For 90% of the immutable objects in 
compiler.compiler and 42% in xml.transform, they were not in-
stances of those known immutable classes. Since the immutable 
objects cannot be modified, a program should not copy the values 
of such objects to other objects. Instead, the objects should be 
shared with a copy-on-write mechanism.  

Third, among the allocation-intensive benchmarks more than 
20% of the total allocated bytes were never accessed in serial, 
xml.transform, xml.validation, lusearch, tomcat, and xalan. More 
than half of the non-accessed bytes were in arrays. Those arrays 
were buffers allocated with large initial sizes, but only small por-
tions were actually used. Barrier Profiler is useful for tuning the 
initial sizes to avoid such memory bloat.  

6. Online Object Access Optimizations 

We demonstrated the usefulness of Barrier Profiler by implement-
ing two new online object access optimizations. One is specula-
tive compression of character arrays, which also uses pointer 
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Figure 7. Accuracy: estimation error ratios in the allocated bytes of write-only objects for Bursty Tracing, Instrumented Barrier Pro-

filer (8-MB/Opt), and Barrier Profiler (8-MB/NoOpt and 8-MB/Opt), with 90% confidence intervals. Note that Barrier Profiler (8-

MB/Opt) and Instrumented Barrier Profiler (8-MB/Opt) are the same in terms of the accuracy of the profiles. 



  

barrierization as a recovery mechanism, and the other is dynamic 
adjustment of initial array sizes.  

6.1 Speculative online compression of character arrays 

As shown in Section 5, many objects were found to be write-only 
by Barrier Profiler. In SPECjbb2005, character arrays associated 
with String objects account for most of the write-only objects. 
These arrays are created by a String constructor java/lang/ 
String.<init>([C)V, which allocates a new character array 
and copies the contents of its parameter array into the new array. 
Barrier Profiler revealed that there was no write or read to the 
character arrays outside of the constructor. Therefore, these arrays 
are good candidates for initialization-time compression.  

A 16-bit Unicode character in Java can be compressed by half 
if it contains an 8-bit ISO-8859 character. A previous compres-
sion algorithm [32] that takes advantage of this fact allows direct 
read and write accesses to a compressed character array by halv-
ing the access indices. However, this approach comes at a cost of 
restricting the format of the compressed character array, so that it 
can be directly accessed with low overhead. In contrast, since we 
now expect that the character array will rarely be accessed, the 
compressed format can be more flexible. 

Figure 9 shows the compression algorithm. Figure 9(a) is a 
simplified version of the original java/lang/String.<init> 
([C)V. We modified the JIT compiler to generate the code in 
Figure 9(b) for particular allocation sites that always allocate 
write-only character arrays according to the online feedback from 
Barrier Profiler. When allocating a character array at Line 1, the 
JIT code allocates only a half-sized array. A particular bit in the 
header of the array is set to indicate that it is a compressed char-
acter array. The JIT code stores a barrier pointer to the String 

object (Lines 2 and 3) to protect accesses to the compressed array. 
It then copies the array contents with compression (Line 4). If the 
compression fails due to a non-ISO-8859 character, it uses the 
original code (Lines 5-9). Figure 9(c) illustrates the copying-with-
compression algorithm. Each gray box represents a byte, and a 
pair denotes a Unicode character. Taking advantage of 8-byte 
load and store instructions, the algorithm handles 8 characters at a 
time. The first 8 bytes of data[] are shifted left by 1 byte, ORed 
with the second 8 bytes, and stored into array[]. At the same 
time, these two 8 bytes are ORed and masked to check their high 
order bytes. When an access to the compressed array is detected 
by a hardware memory exception, the signal handler decom-
presses the array in the same way as in previous work [5][32]. 
That is done by allocating another character array of the original 
size, decompressing the characters into the new array, and storing 
a forward pointer in the header of the old array.  

We implemented the initialization-time compression of char-
acter arrays on top of the pointer barrierization framework de-
scribed in Section 5.1. We observed an 8.6% speed-up in 
SPECjbb2005. Since the target character arrays are never ac-
cessed, we incurred no overhead due to the signal handling. We 
found that reduced GC time contributed to about 4.5% improve-
ment. The memory allocation rate was reduced by 17%. The other 
benchmark programs were not improved, but the overhead was 
not larger than that of Barrier Profiler in Figure 8. 

6.2 Dynamic adjustment of initial array sizes 

Programmers often over-allocate large arrays as buffers [20,23]. 
An example is BufferedReader in the Java standard library. It 
allocates an 8-K-element character array in the constructor, but a 
short input stream will use only the first few dozen elements. 

 
L
o
w
e
r 
is
 b
e
tt
e
r

L
o
w
e
r 
is
 b
e
tt
e
r

-5

0

5

10

15

20

25

30

35

40

co
m
pi
le
r.c
om
pi
le
r

de
rb
y

se
ria
l

su
nf
lo
w

xm
l.t
ra
ns
fo
rm

xm
l.v
al
id
at
io
n

co
m
pi
le
r.s
un
flo
w

fo
p

jy
th
on

lu
se
ar
ch

pm
d

su
nf
lo
w
 (D
aC
ap
o)

to
m
ca
t

xa
la
n

S
PE
C
jb
b2
00
5

G
eo
. m
ea
n

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
)

Baseline (error bars only) Bursty Tracing
Instrumented Bar. Prof. (8-MB/Opt) Barrier Profiler (8-MB/NoOpt)
Barrier Profiler (8-MB/Opt)

67.2 Allocation-intensive benchmarks169.0 2706 62.2 141 75.2334

-20

0

20

40

60

80

100

120

140

co
m
pr
es
s

cr
yp
to
.a
es

cr
yp
to
.rs
a

cr
yp
to
.s
ig
nv
er
ify

m
pe
ga
ud
io

sc
im
ar
k.
fft

sc
im
ar
k.
lu

sc
im
ar
k.
so
r

sc
im
ar
k.
sp
ar
se

sc
im
ar
k.
m
on
te
_c
ar
lo

av
ro
ra

ba
tik h2

lu
in
de
x

G
eo
. m
ea
n

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
) 48479 6960 1226 343 14162 249 1312 666

Non-allocation-intensive benchmarks

354 2148

 
Figure 8. Performance overhead: relative overheads of Bursty Tracing, Instrumented Barrier Profiler(8-MB/Opt), and Barrier Profiler 

(8-MB/NoOpt and 8-MB/Opt), with 90% confidence intervals. The leftmost error bar of each benchmark is for the baseline. 



  

Another example is StringBuilder, which initially allocates a 
short fixed-length array and extends it as needed. However, even 
the initial short length can be too long for very small input, and to 
make matters worse, some programs allocate millions of such 
wasteful container objects. Those objects are all short-lived, and 
thus the GC-time truncation of trailing zeros [5] cannot be used. 
These programming patterns prevail not only in the standard li-
brary but also in user-written programs. 

Note that it is always safe to specify shorter initial sizes in 
these programming patterns, though it could be inefficient. Even 
if the initial sizes are too short, BufferedReader just needs to 
read from its underlying input stream more often, and String-
Builder just needs to extend the arrays more times. Although all 
of the example classes provide programmers with constructors to 
specify the initial sizes, such interfaces are often not used to sim-
plify the programming. In addition, it is difficult to estimate the 
best initial sizes statically, because they depend on the input data 
and the calling contexts of the constructors. To the best of our 
knowledge, no system has ever efficiently offered dynamic ad-
justment of the initial array sizes, probably because of a lack of 
the key technology, a lightweight object access profiler. 

We are proposing a new system that combines Barrier Profiler 
with a new API and a JIT compiler. Rather than using a complex 
compiler analysis to find the programming patterns in programs, 
we will provide programmers with a new API to specify the allo-
cation sites of the arrays whose sizes are to be adjusted. The new 
API will have a set of static methods added to a standard class, in 
our prototype, java.lang.System. Each method receives a 
default size as a parameter and returns an array of the default size 
or an adjusted size. For all of the primitive array types such as 
byte[], char[], …, and Object[], corresponding methods are 
provided. Figure 10 shows a new method for character arrays, 
getCharArrayOfBestSize(), and its usage in Buffere-
dReader. The only change required is to wrap the allocation of 
the character array with the new API (Line 7). The users of 
BufferedReader do not need to change their code. 

The default implementation of the new API is just to return an 
array of the requested size (Lines 1-3), but this implementation is 
hidden from the programmers and cannot be relied on. Using the 
non-accessed-byte profile, Barrier Profiler records the offsets of 
the last accessed bytes of the sampled arrays allocated in the new 
API. The records are summarized on a per-allocation-context 
basis. When a context records a sufficient number (10, in our 
prototype) of samples and the maximum recorded offset is smaller 
than the default size, the JIT compiler is invoked to inline the 
allocation context and to embed the maximum offset as a constant 
in the allocation site, instead of the default size. 

We modified BufferedReader and StringBuilder, and 
two classes in lusearch and three in xalan to use our new API. All 
of the modified classes in lusearch and xalan have the same pro-
gramming pattern as StringBuilder. The second column in 
Table 2 summarizes the reductions in allocation rates for the allo-
cation-intensive benchmarks. The third column shows the per-
formance improvements when running with twice the minimum 
Java heap that can run each benchmark. The fourth column is for 
a 1-GB Java heap, which is used by the experiments in Section 5. 
The maximum improvement was in lusearch: 36.3% with the 1-
GB heap, since it allocates many character arrays of 16-K ele-
ments, but never uses more than the first 100 elements. Xalan was 
also improved, especially in the memory-constrained environment. 
The performance improvement was mainly because of the reduc-

 public String(char[] data) {{{{
array = new char[data.length];
this.value = array;
System.arraycopy(data, 0, array, 0, data.length);

}}}}
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public String(char[] data) {{{{
1:   array = new compressed_char[data.length / 2];
2:   bar_array = barrierize(array);
3:   this.value = bar_array;
4:   ifififif (arraycopy_compress(data, 0, array, 0, data.length)
5:       == FAILURE) {{{{
6:     array = new char[data.length];
7:     this.value = array;
8:     System.arraycopy(data, 0, array, 0, data.length);
9:   }}}}

}}}}

(b)

(c)

 
 
Figure 9. Initialization-time compression of a character array. 
(a) Original java/lang/String.<init>([C)V . (b) Code 
generated by our JIT compiler. (c) Word-by-word copying with 
compression. 

 public final classclassclassclass System {{{{
1: public static char[] getCharArrayOfBestSize(int defaultSize) {{{{
2:   returnreturnreturnreturn new char[defaultSize];
3: }}}}

...
}}}}
public classclassclassclass BufferedReader {{{{

4: public BufferedReader(Reader in) {{{{
5:   this.in = in;
6:   //this.cb = new char[8192];  // Original implementation
7:   this.cb = System.getCharArrayOfBestSize(8192);
8:   this.length = this.cb.length;
9: }}}}

...
}}}}  

 

Figure 10. A new API for the dynamic adjustment of initial array 
sizes and its usage in BufferedReader. 

Allocation-

intensive 

benchmarks 

Reduction 

in alloc. 

rate (%) 

Speed-up 

with 2x the 

min heap (%) 

Speed-up 

with 1-GB 

heap (%) 

compiler.compiler -1.2 -5.9 -2.9 

derby 5.9 -3.8 -2.0 

serial 9.0 -1.8 -1.3 

sunflow -2.1 -3.2 -2.2 

xml.transform -0.3 -6.2 -1.7 

xml.validation -0.7 -3.3 -2.1 

compiler.sunflow -1.8 -7.4 -2.8 

fop -1.2 -3.0 -1.5 

jython 5.5 -2.7 -1.4 

lusearch 90.6 298.2 36.3 

pmd 3.9 -3.4 1.4 

sunflow (DaCapo) -0.8 -3.5 -0.4 

tomcat  6.4 -1.0 -0.5 

xalan 27.2 17.3 5.9 

SPECjbb2005 2.6 -0.3 -0.3 

Geo. mean 17.8 7.4 1.3 

 

Table 2. Effectiveness of the dynamic adjustment of initial 

array sizes. It sped up lusearch and xalan. Overheads in other 

benchmarks were due to Barrier Profiler. 



  

tion in GC frequency. We did not observe performance degrada-
tion except for the overhead of Barrier Profiler itself, showing the 
accuracy of profiling by Barrier Profiler. 

7. Conclusion and Future Work 

In this paper, we propose a novel low-overhead object access 
profiler called Barrier Profiler, which uses pointer barrierization 
and adaptive overhead reduction techniques. Pointer barrierization 
converts all of the pointers to certain objects to corresponding 
barrier pointers that point to read-write-protected pages. Unlike 
previous memory-protection-based profilers, it enables per-object 
profiling. Barrier Profiler samples objects at allocation sites, per-
forms pointer barrierization, and detects accesses to the sampled 
objects. It reduces the number of heavy hardware exceptions by 
using profile-directed adaptive sampling and unbarrierization. Our 
experimental results showed that in allocation-intensive bench-
marks Barrier Profiler provided sufficiently accurate profiles of 
write-only, immutable, and non-accessed data with 1.3% on aver-
age and at most 3.4% runtime overhead. In contrast, code-
instrumentation-based approaches suffered from overhead of 
9.2% up to 12.6%. Barrier Profiler is the first low-overhead object 
access profiler that can be run continuously on production sys-
tems. Using Barrier Profiler, we implemented two new online 
optimizations to compress write-only character arrays and to ad-
just the initial sizes of mostly non-accessed arrays. Both of them 
are feasible for the first time by using lightweight Barrier Profiler. 
They resulted in speed-ups of up to 8.6% and 36%, respectively. 

In the future, we plan to use Barrier Profiler for detecting last 
access points and dead stores. We are also interested in investigat-
ing the effectiveness of Barrier Profiler on large-scale server-side 
applications. 
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