Impact of Community Structure
on

lver Perf

LS

D¥rimance-

by
Zack Newshami, Vijay Ganesh?,
Sebastian Fischmeisterl, Gilles Audemard?, and Laurent Simon3
1University of Waterloo, 2University of Artois and 3University of Bordeaux

Presented at SAT 2014, Vienna, Austria
(*Won the best student paper award)

Software Engineering & SAT/SMT Solvers
An Indispensable Tactic for Any Strategy

Formal

Methods Analysis /
Synthesis

SAT/SMT

Solvers

Automatic Programming
Testing Languages

SAT/SMT Solver Research Story

A 1000x Improvement in the Last Few Years

1,000,000 Constraints

100,000 Constraints

10,000 Constraints

1,000 Constraints

Bounded MC
Program Analysis
Al

Concolic Testing™*
Equivalence Checking
Auto Configuration

Solver-based programming languages
(e.g., Scala with Z3)

Rich type systems with constraints
(e.g., Liquid Types and Liquid Haskell)

Constraint-based DSL for analysis
(e.g., Doop and muZ)

1998

2000

2004

2007

2010
3

What is a SAT/SMT Solver?
Automation of Logic

Logic
Formula SAT
(@VpV-r
SAVE Solver e

* Rich logics (Modular arithmetic, Arrays, Strings,...)

® Boolean satisfiability problem is NP-complete, Quantified Boolean
satisfiability problem is PSPACE-complete,...

® Practical, scalable, usable, automatic

® Enable novel software reliability approaches

4

Modern CDCL SAT Solver Architecture
Key Steps and Data-structures

Input SAT I‘
A4

Propagate()

Key steps

® Decide()

® Propagate() (Boolean constant
propagation)

® Conflict analysis and learning() (CDCL)
® Backjump()

® Forget()

® Restart()

CDCL: Conflict-Driven Clause-Learning

® Conflict analysis is a key step
® Results in learning a learnt clause
® Prunes the search space

Key data-structures (Solver state)
® Stack or trail of partial assignments (AT)
® Input clause database

® Conflict clause database

® Conflict graph

® Decision level (DL) of a variable

Return

Problem Statement
Why are SAT Solvers efficient for Industrial Instances

Conflict-driven clause learning (CDCL) Boolean SAT solvers are
remarkably efficient for large industrial instances

This is true for industrial instances from a diverse set of
applications

These instances may have tens of millions of variables and
clauses

This phenomenon is surprising since Boolean satisfiability is
an NP-complete problem believed to be intractable in general

Why is this so?

Scientific Motivation to Understand Why SAT Works
The Laws of SAT Solving

A scientific approach, as opposed to trial-and-error
Lead to better, and more importantly predictable solvers

Predictive model that cheaply computes solver running
time by analyzing SAT input

Complexity-theoretic understanding, a la smoothed
analysis

As yet unforeseen applications may benefit from a deeper
understanding of SAT solving (more on this later)

The Laws of SAT Solving
Sub Problems

* We break the problem statement down to smaller sub-
problems

1. On which class of instanc_es do SAT sqlvers
perform well? |.e., a precise mathematical
characterization of instances on which solvers work
well

2. An abstract algorithmic description of SAT solvers

3. A complexity-theoretic analysis that provides
meaningful asymptotic bounds

In this talk, | focus on Question 1, and briefly touch
upon some potential answers for Question 2.

Community Structure and SAT Solver Performance

Our Results and Take-home Message

* A (partial) answer to question 1

— A graph-theoretic characterization of SAT instances, as opposed to measuring
the size of instances only in terms of number of variables and clauses

— Industrial SAT instances have “good” community structure (also confirmed by
previous work by Jordi Levy et al.)

— Community structure of the graph of SAT instances strongly affect solver
performance

* Result #1: Hard random instances have low Q (0.05<Q <0.13)

* Result #2: Number of communities and Q of SAT instances are more predictive of
CDCL solver performance than other measures

« Result #3: Strong correlation between community structure and LBD (Literal Block
Distance) in Glucose solver

SAT Formulas as Graphs
Boolean Variables are Nodes, Clauses are Edges

SOURCE: mrpp example from SAT 2013 competition viewed using our SATGraf tool

Community Structure in Graphs

Definition and Applications

Community structure [GN03,CNM04,0L13] of a graph
iIs measure of “how separable or well-clustered the

graph is”

It is characterized using a metric called Q (quality
factor) that ranges from 0 to 1

Informally, if a graph has lots of small clusters that are
weakly connected (easily separable) to each other then
such a graph is said to have high Q

If a graph looks like a “giant hairy ball” then it has low Q

SOURCE: mrpp example from SAT 2013 competition viewed using our SATGraf tool

Structure in Graphs

Variable-incidence Graph of Randomly-generated Formula

Communi

SOURCE: unif-k3-r4.267-v421-c1796-S4839562527790587617 randomly-generated example from SAT 2013 competition

Modularity (Q-factor) and Communities in Graphs

Community Structure in Graphs

How to compute community structure?

The decision version of the Q maximization problem is
NP-complete [Brandes et al., 2006]

Many efficient approximate algorithms proposed, e.g.,
[CNMO04] and [OL13]

We use the above two algorithms for our experiments

Our results with both algorithms are similar

Community Structure and SAT Solver Performance

Our Results and Take-home Message

* A (partial) answer to question 1

— A graph-theoretic characterization of SAT instances, as opposed to measuring
the size of instances only in terms of number of variables and clauses

— Industrial SAT instances have “good” community structure (also confirmed by
previous work by Jordi Levy et al.)

— Community structure of the graph of SAT instances strongly affect solver
performance

* Result #1: Hard random instances have low Q (0.05<Q <0.13)

* Result #2: Number of communities and Q of SAT instances are more predictive of
CDCL solver performance than other measures

« Result #3: Strong correlation between community structure and LBD (Literal Block
Distance) in Glucose solver

Community Structure and Random Instances
Experiments #1: Hypothesis and Definitions

Hypothesis tested:

Is there a range of Q values for randomly generated
instances, that are hard for CDCL solvers; regardless

of the number of clauses/variables

Are randomly generated instances outside this
range uniformly easy

Community Structure and Random Instances
Experiments #1: Setup

Randomly generated 550,000 SAT instances for the experiment

Varied N, between 500 and 2000 in increments of 100
Varied N between 2000 and 10000 in increments of 1000
Varied target Q between 0 and 1 in increments of 0.01
Varied “Number of communities” between 20 and 400 in
increments of 20

Experiments using MiniSAT

Timeout of 900 seconds per run
Run solver on inputs in a random order
Average the running time over several runs

Community Structure and Random Instances
Experiments Performed (#1)

Plotted Q against time

Noticed significant increase in execution time
when 0.05<Q < 0.13

Also recomputed the results using a stratified
sample

Used due to high number of instances within target range

Randomly sample the data taking 250 results from each 0.1 range of Q
between 0 and 0.9

Almost the same result: 0.05<Q< 0.12

Community Structure and Random Instances
Experiments Performed (#1)

Huge increase in running time of randomly
generated instances when 0.05<Q < 0.13

Q Agersl Tove Umibore Rarebors Swrpe

o

vvvvvvvvvvvvvvvv

(a) Average Time (b) Stratified Sample (c) All instances

Community Structure and Industrial Instances
Experiments #2: Hypothesis and Definitions

Hypothesis tested:

Are the community modularity and number of
communities better correlated with the running
time of CDCL solvers than traditional metrics

Is the correlation better for industrial instances
than randomly generated or hand crafted ones

Community Structure and Industrial Instances
Experiments #2: Hypothesis and Definitions

Instances used

Approximately 800 instances from the SAT 2013 competition. For the

remaining we couldn’t compute community structure due to
resource constraints

Using OL algorithm to compute community structure for the 800
instances. Much faster and more scalable

All experimental results are for Minipure
Obtained from the SAT 2013 competition website

Used statistical tool R to perform standard
linear regression

Community Structure and Industrial Instances
Experiments Performed (#2)

Performed linear regression on the solver
running time twice

Once with community structure metrics (and variables/clauses)

Once without

Compared the adjusted R? (variability) from
both experiments

Variability measures how good the models predicted results are,
compared with the actual results

Varies from0to 1

The lower the variability (higher the R?) the
more predictive the model

Community Structure and Industrial Instances
Experiments Performed (#2)

Timeouts included
A large portion (Approximately 60%) of the instances timedout

Not ideal, but without them there isn’t enough data

log(time) used

Timeouts

Wide distribution between instances that finished and timedout

Data standardized to have mean = 0 and
standard deviation =1

Standard practice when regressors are in different scales.

Community Structure and Industrial Instances
Experiments Performed (#2)

Model #1 - R2~ 0.5

log(time) ~ |CL| * [V| *Q™* |CO| * QCOR * CLVR
* denotes interaction terms between factors

|CL| = number of clauses

|V| = number of variables

|CO| = number of communities

QCOR = ratio of Q to communities

CLVR = ratio of clauses to variables

Model #2 - RZ2~ 0.33

log(time) ~ |CL| * |V| * CLVR

Community Structure and Industrial Instances
Experiments #2: Results and Interpretation

The regressions show us that the model with the community
structure metrics is a better predictor of running time than
traditional metrics, i.e. number of clauses/variables.

Factor Estimate | Std. Error |t value | Pr(> |t[) | Sig
CO -1.237e+00 | 3.202e-01 | -3.864 | 0.000121 | ***
CL®Q®QCOR -4.226e+02 | 1.207e+02 | -3.500 | 0.000492 | ***
CLI®Q -2.137e+02 | 6.136e+01 | -3.483 | 0.000523 | ***
CLI®QO|CO|®QCOR®VCLR -1.177e+03 | 3.461e+02 | -3.402 | 0.000702 | ***
CLI®Q®|CO| -6.024e+02 | 1.774e+02 | -3.396 | 0.000719 | ***
Q ®QCOR 3.415e+02 | 1.023e+02 | 3.339 | 0.000881 | ***
Q 1.726e+02 | 5.200e+01 | 3.318 | 0.000947 | ***
_.QOICOIQQCOR 94ble+02]2.927e+02 | 3.229| 0.001292 | **

Literal Block Distance (LBD) and Communities
Experiment #3: Hypothesis and Definitions

Hypothesis tested

The number of communities in a conflict clause correlates strongly with its
LBD measure

What is LBD? (Glucose solver [AS09])

LBD measure M of a learnt clause C is a rank based on the number
N of distinct decision levels the vars in C belong to

The lower the value of N the better the clause Cis

LBD is a powerful measure of the utility of a conflict clause

Literal Block Distance (LBD) and Communities
Experiment #3: Hypothesis and Definitions

LBD and Clause deletion

Integral to the efficiency of modern solvers
Without clause deletion, conflict clause production quickly consumes

available memory
LBD is a useful in determining which clauses to delete

Which clauses to delete? LBD to the rescue

Periodically delete conflict clauses with bad LBD rank
As we will see, clauses with bad LBD rank are shared by many communities

Literal Block Distance (LBD) and Communities

Experiment #3: Intuition

The number of communities in a conflict clause

The number of communities N in a conflict clause C is the number of distinct
communities the variables in C belong to

Intuition behind the hypothesis

High quality conflict clauses tend to span very few communities, i.e. N is small
High quality conflict clauses are likely to cause more propagation per decision
variable, and hence are likely to have low LBD

LBD picks out high quality conflict clauses

Literal Block Distance (LBD) and Communities

Experiment #3: Setup

Instances considered

189 SAT 2013 industrial category instances out of 300
We were only able to compute communities for these 189
The rest caused memory-out errors

Step 1

For each of the 189 instances, compute:
Community structure
The number of communities a learnt clause spans
LBD of every learnt clause (only for the first 20,000 due to resource
constraints)

Literal Block Distance (LBD) and Communities
Experiments Performed (#3)

Step 2

LBD of every learnt clause considered, was correlated with the number of
communities it spans
Thousands of data points over the 189 instances

Correlate LBD and number of communities
using heatmaps

Heatmap of LBD and communities of learnt clauses
Difficult to correlate thousands of data points over hundreds of instances
One heatmap per SAT instance

Literal Block Distance (LBD) and Communities
Experiments #3: Results and Interpretation

® Result

o Most industrial instances have a very strong correlation between LBD and
communities

Impact of Community Structure and Solver Running Time
Scope for Improvement

Consider different regression techniques

The non-normality of the data stops us from estimating confidence intervals

Try experiments on more solvers

Glucose, MiniSAT and Minipure were the solvers we considered so far
Compare different random generation techniques, and different graph
representation for SAT instances

Make the community-structure based model more robust by adding other
features of SAT instances

Compare against other models proposed based on backdoors and graph-width

Construct a predictive model

The Laws of SAT Solving
We Provided an Answer to Question 1

* We break the problem statement down to smaller sub-
problems

1. On which class of instanc_es do SAT sqlvers
perform well? |.e., a precise mathematical
characterization of instances on which solvers work
well

2. An abstract algorithmic description of SAT solvers

3. A complexity-theoretic analysis that provides
meaningful asymptotic bounds

In this talk, | focus on Question 1, and briefly touch
upon some potential answers for Question 2.

A Model for CDCL Solvers
CDCL Solvers: Induction and Deduction with Feedback

Partial assignments
(Long conflict clause)

Input

Shorter conflict clauses

Output:
SAT/UNSAT

Community Structure and SAT Solver Performance

Conclusions and Take-home Message

* A (partial) answer to question 1

— A graph-theoretic characterization of SAT instances, as opposed to measuring
the size of instances only in terms of number of variables and clauses

— Industrial SAT instances have “good” community structure (also confirmed by
previous work by Jordi Levy et al.)

— Community structure of the graph of SAT instances strongly affect solver
performance

* Result #1: Hard random instances have low Q (0.05<Q <0.13)

* Result #2: Number of communities and Q of SAT instances are more predictive of
CDCL solver performance than other measures (for the Minipure solver)

« Result #3: Strong correlation between community structure and LBD (Literal Block
Distance) in Glucose solver

Structure in Graphs

Questions

Communi

