
Asynchronous Functional

Reactive Processes

Daniel Winograd-Cort
Paul Hudak

Department of Computer Science

Yale University

IBM PL Day

Yorktown Heights, NY

Tuesday, November 18, 2014

The Context:

Functional Reactive Programming

 Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

 Previously used in:
◦ Yampa:

◦ Nettle:

◦ Euterpea:

robotics, vision, animation

networking

sound synthesis and audio processing

 𝑦 ← 𝑠𝑖𝑔𝑓𝑢𝑛 −≺ 𝑥

equivalent arrow syntax in Haskell signal processing diagram

y x
signal

function

Fundamental Abstraction

 Signal functions process infinitely fast,

infinitely often

◦ Within the signal function, there is no notion

of time.

◦ The data itself governs the passage of time.

 Clear, commutative design

 Synchronization as a given

Standard Arrow Operators

arr f

f

first sf

sf

sf1 >>> sf2

sf1 sf2

sf1 ||| sf2

Left

Right

sf1

sf2

Adding Effects

 Typically, effects are sequenced by the

structure of the program

◦ Consider the following program:

When the program completes, x will be 4 and

we will have printed 3.

x := 3;
print x;
x := 4;

Adding Effects

 In FRP, the data controls the flow of time

rather than the program structure.

◦ It does not make sense to assign a variable in

more than one place.

What should the value of x be?

What value should be printed?

x :=

x :=

3

4

print read x

Adding Effects

 To make effects safe, we must limit how

we use effectful signal functions.

◦ If an effect is used, it can only be used in one

place.

 We achieve this by tagging signal functions

at the type level with resource types and

restricting their composition.

Resource Typed Arrow Operators

arr f

f

first sf

 sf

sf1 >>> sf2

 sf1 sf2

sf1 ||| sf2

Left

Right

 sf1

 sf2

∅ R
R

R1 R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

𝑅1 ∩ 𝑅2 = ∅

R1

R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

Asynchrony

 In some cases, our synchronous

assumption is too strong.

 Perhaps the processing rates of two

functions would be better off different.

◦ Memory reads running synchronously with

hard drive seeks

◦ A GUI that should be run at ~60 FPS along

with sound generation at 44.1 KHz

◦ Packet routing together with network map

updating

Asynchrony

 Packets are used to make new routing maps,

which are then used to route the packets

 Making maps is slow, but routing must be

fast

 What if we allow the relaxation that we do

not always need the newest map?

makeMap

routePacket

Asynchrony

 Let us allow multiple processes, each with

its own notion of time.

◦ Each will individually retain the fundamental

abstraction (“infinitely fast, infinitely often”).

◦ Each will still respect the others’ resources.

◦ However, they will no longer synchronize.

 Now we can make maps asynchronously.

 But what are those dashed lines?

Asynchrony

routePacket

makeMap

Inter-process Communication

 We need a way to communicate data
from one time stream to another.

 Data needs to get time dilated – either
stretched or compressed

 Wormholes!

◦ Wormholes have a blackhole for writing to
and a whitehole for reading from.

◦ Wormhole access is made safe with resource
types.

◦ Wormholes automatically dilate their data.

wormhole w b sf

 sf
b w

New Operators

R
 𝑅′

𝑅′ = 𝑅 ∪ 𝑟𝑏, 𝑟𝑤

 𝑟𝑤 𝑟𝑏

fork sf

 sf

R R

Maintaining Effect Safety

 Are effects still safe in the presence of

asynchrony?

sf

Left

Right

sf

 𝑅

 𝑅

Asynchronous Choice

 Remember that the data controls time.

◦ When a signal function has no incoming data,

it must freeze.

◦ Likewise, if a fork has no incoming data, it

freezes its forked process.

fork sf

 sf

Asynchronous Choice

 Remember that the data controls time.

◦ When a signal function has no incoming data,

it must freeze.

◦ Likewise, if a fork has no incoming data, it

freezes its forked process.

 We achieve this while guaranteeing safety

with our fundamental abstraction of FRP

◦ Treat every moment in time as a transaction.

◦ Freezing only occurs between transactions.

Parallelizing Signal Functions

 Forking and wormholes allow us to create

asynchronous, concurrent behavior, but

what about parallel behavior?

◦ For instance, we may fork multiple processes

but then want to wait for their results before

continuing.

◦ “Waiting” is nonsensical in FRP

 We can achieve the same idea with event

streams.

Thank you!

 There is a prototype of this work

available at: github.com/dwincort/CFRP

 I would be happy to take questions

