
Asynchronous Functional

Reactive Processes

Daniel Winograd-Cort
Paul Hudak

Department of Computer Science

Yale University

IBM PL Day

Yorktown Heights, NY

Tuesday, November 18, 2014

The Context:

Functional Reactive Programming

 Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

 Previously used in:
◦ Yampa:

◦ Nettle:

◦ Euterpea:

robotics, vision, animation

networking

sound synthesis and audio processing

 𝑦 ← 𝑠𝑖𝑔𝑓𝑢𝑛 −≺ 𝑥

equivalent arrow syntax in Haskell signal processing diagram

y x
signal

function

Fundamental Abstraction

 Signal functions process infinitely fast,

infinitely often

◦ Within the signal function, there is no notion

of time.

◦ The data itself governs the passage of time.

 Clear, commutative design

 Synchronization as a given

Standard Arrow Operators

arr f

f

first sf

sf

sf1 >>> sf2

sf1 sf2

sf1 ||| sf2

Left

Right

sf1

sf2

Adding Effects

 Typically, effects are sequenced by the

structure of the program

◦ Consider the following program:

When the program completes, x will be 4 and

we will have printed 3.

x := 3;
print x;
x := 4;

Adding Effects

 In FRP, the data controls the flow of time

rather than the program structure.

◦ It does not make sense to assign a variable in

more than one place.

What should the value of x be?

What value should be printed?

x :=

x :=

3

4

print read x

Adding Effects

 To make effects safe, we must limit how

we use effectful signal functions.

◦ If an effect is used, it can only be used in one

place.

 We achieve this by tagging signal functions

at the type level with resource types and

restricting their composition.

Resource Typed Arrow Operators

arr f

f

first sf

 sf

sf1 >>> sf2

 sf1 sf2

sf1 ||| sf2

Left

Right

 sf1

 sf2

∅ R
R

R1 R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

𝑅1 ∩ 𝑅2 = ∅

R1

R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

Asynchrony

 In some cases, our synchronous

assumption is too strong.

 Perhaps the processing rates of two

functions would be better off different.

◦ Memory reads running synchronously with

hard drive seeks

◦ A GUI that should be run at ~60 FPS along

with sound generation at 44.1 KHz

◦ Packet routing together with network map

updating

Asynchrony

 Packets are used to make new routing maps,

which are then used to route the packets

 Making maps is slow, but routing must be

fast

 What if we allow the relaxation that we do

not always need the newest map?

makeMap

routePacket

Asynchrony

 Let us allow multiple processes, each with

its own notion of time.

◦ Each will individually retain the fundamental

abstraction (“infinitely fast, infinitely often”).

◦ Each will still respect the others’ resources.

◦ However, they will no longer synchronize.

 Now we can make maps asynchronously.

 But what are those dashed lines?

Asynchrony

routePacket

makeMap

Inter-process Communication

 We need a way to communicate data
from one time stream to another.

 Data needs to get time dilated – either
stretched or compressed

 Wormholes!

◦ Wormholes have a blackhole for writing to
and a whitehole for reading from.

◦ Wormhole access is made safe with resource
types.

◦ Wormholes automatically dilate their data.

wormhole w b sf

 sf
b w

New Operators

R
 𝑅′

𝑅′ = 𝑅 ∪ 𝑟𝑏, 𝑟𝑤

 𝑟𝑤 𝑟𝑏

fork sf

 sf

R R

Maintaining Effect Safety

 Are effects still safe in the presence of

asynchrony?

sf

Left

Right

sf

 𝑅

 𝑅

Asynchronous Choice

 Remember that the data controls time.

◦ When a signal function has no incoming data,

it must freeze.

◦ Likewise, if a fork has no incoming data, it

freezes its forked process.

fork sf

 sf

Asynchronous Choice

 Remember that the data controls time.

◦ When a signal function has no incoming data,

it must freeze.

◦ Likewise, if a fork has no incoming data, it

freezes its forked process.

 We achieve this while guaranteeing safety

with our fundamental abstraction of FRP

◦ Treat every moment in time as a transaction.

◦ Freezing only occurs between transactions.

Parallelizing Signal Functions

 Forking and wormholes allow us to create

asynchronous, concurrent behavior, but

what about parallel behavior?

◦ For instance, we may fork multiple processes

but then want to wait for their results before

continuing.

◦ “Waiting” is nonsensical in FRP

 We can achieve the same idea with event

streams.

Thank you!

 There is a prototype of this work

available at: github.com/dwincort/CFRP

 I would be happy to take questions

