
High-Level Executable Specifications

of Distributed Algorithms

Y. Annie Liu

Computer Science Department
State University of New York at Stony Brook

joint work with
Scott Stoller and Bo Lin

1

Specification of distributed algorithms

distributed algorithms are at the core of distributed systems.

understanding them and proving correctness remain challenging.

specification of distributed algorithms:

• pseudocode, English: high-level but lacking precise semantics

• formal specification languages: precise but often lower-level

• high-level programming languages: not sufficiently high-level

but precise and executable

e.g., distributed consensus: Paxos, simple to full, much to study

2

This work: high-level executable

specifications of distributed algorithms

use a simple and powerful language, DistAlgo: very high-level

• distributed processes as objects, sending messages

• yield points for control flow, handling of received messages

+await and synchronization conditions as queries ofmsg history

• high-level constructs for system configuration

exploit high-level abstractions of computation and control

1. high-level synchronization with explicit wait on received msgs

2. high-level assertions for when to send msgs and take actions

3. high-level queries for what to send in msgs to whom

4. collective send-actions for overall computation and control

experiment with important distributed algorithms

• including Paxos and multi-Paxos for distributed consensus

• discovered improvements to some, for correctness & efficiency
3

Not discussed in this paper

compilation, optimization to generate efficient implementations

transform expensive synchronization conditions

into efficient handlers as messages are sent and received,

by incrementalizing queries, especially logic quantifications,

via incremental aggregate ops on appropriate auxiliary values

use of message history −→ use of auxiliary values

[Liu et al OOPSLA 2012] and much prior work

4

DistAlgo: distributed procs, sending msgs

process definition

class P extends Process: class body with run

defines class P of process objects, with private fields

process creation

new P(...,s) newprocesses(n,P)

creates a new proc of class P on site s, returns the proc

sending messages

send m to p send m to ps

sends message m to process p

usually tuples or objects for messages;

first component or class indicates the kind of the message

5

DistAlgo: control flows, receiving msgs

label for yield point

-- l

defines program point l where the control flow can yield to

handling of certain messages and resume afterwards

handling messages received

receive m from p at l: stmt receive ms at ls

allows handling of message m at label l; default is at all labels

synchronization

await bexp: stmt or ... or timeout t: stmt

awaits value of bexp to be true, or time seconds have passed

high-level queries of sequences of messages received and sent

including quantifications, both existential and universal

6

DistAlgo: configurations

channel types

use fifo channel

default channel is not FIFO or reliable.

message handling

use handling all

all matching received msgs not yet handled must be handled

at each yield point. this is the default.

logical clocks

use Lamport clock

call Lamport clock() to get value of clock

7

1. Explicit wait for high-level synchronization

synchronization is at the core of distributed algorithms:

wait for conditions to become true before appropriate actions;

need to test truth value of conditions as msgs are received

principles:

1. specify waiting on conditions explicitly using await-statements

2. express the conditions using queries over received and sent

3. minimize local updates in actions

example: commander in multi-Paxos:

• spawed by a leader for each adopted (ballot num, slot num, prop)

• try having it accepted by acceptors & send replicas the decision

• in case preempted by a different ballot num, notify the leader

8

Example: Commander in multi-Paxos [vR11]

process Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever

switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

∀ρ ∈ replicas :
send(ρ, 〈decision, s, p〉);

exit();
end if;

else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end process
9

Commander in multi-Paxos, in DistAlgo

class Commander extends Process:

def setup(leader, acceptors, replicas, b, s, p): skip

def run():

send (’p2a’, b, s, p) to acceptors

await count({a: received((’p2b’, =b) from a)}) > count(acceptors)/2:

send (’decision’, s, p) to replicas

or received(’p2b’, b2) and b2!=b:

send (’preempted’, b2) to leader

no local update — synchronization condition is completely clear.

similar for Scout process in multi-Paxos
10

2. Direct high-level assertions

determining state is key to taking actions:

can assert state in many ways; need to test truth value of

assertions as messages are sent and received

principles:

1. express assertions using queries over received and sent,

as for synchronization conditions

2. use quantifications directly, vs loops and low-level updates

3. use quantifications directly, vs comprehensions and aggregates

example: conditions in Lamport’s distributed mutex:

• request by self is before each other request in q

• an ack msg from each other proc is received after own request

11

Example: Lamport’s distributed mutex

using quantifications directly:

each (’request’,c2,p2) in q | (c2,p2)!=(c,self) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’, c2, =p2) | c2 > c

using loops or updates: much more work, tedious and error-prone

using aggregates: (c,self) < min({(c2,p2) in q})

often incorrect and needs boundary values such as maxint,

even inefficient since min needs O(log n) update time,

but efficient incremental computation needs only O(1) time.

12

3. Straightforward high-level computations

computations are needed to achieve goals:

computations depend on messages sent and received;

need to compute results as messages are sent and received

principles:

1. compute aggregate values using aggregates over received/sent

2. compute set values using comprehensions over received/sent

3. specify repeated comps straightforwardly where results are used

example: acceptor in multi-Paxos:

• respond to p1a msgs from scouts with p1b msgs in phase 1

• respond to p2a msgs from commanders with p2b msgs in phase 2

13

Example: Acceptor in multi-Paxos [vR11]

process Acceptor()
var ballot num := ⊥, accepted := ∅;

for ever

switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case

case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if

send(λ, 〈p2b, self(), ballot num〉);
end case

end switch

end for

end process

14

Acceptor in multi-Paxos, in DistAlgo

class Acceptor extends Process:

def setup(): self.accepted = {}

def run(): await false

receive m:

self.ballot_num = max({b: received(’p1a’,b)}+{b: received(’p2a’,b,_,_)} or {(-1,-1)})

receive (’p1a’, _) from scout:

send (’p1b’, ballot_num, accepted) to scout

receive (’p2a’, b, s, p) from commander:

if b == ballot_num: accepted.add((b,s,p))

send (’p2b’, ballot_num) to commander

invariant for ballot num is completely clear. 15

4. Collective send-actions

sending collections of msgs is generally needed to achieve goals:

algorithms should be viewed as driven by send-actions,

as opposed to by handling of individual received messages

method:

1. identify the kinds of messages to be sent

2. for each kind, collect all situations where the msgs are sent

3. express situations collectively using loops, favoring for-loops

example: replica in multi-Paxos:

• for each request received, send proposal to leaders until accepted

• for each acceptance, apply it to state and send result to client

16

Example: Replica in multi-Paxos [vR11]

process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;

function propose(p)
if 6 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N
+ ∧

6 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};
proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if

end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then

slot num := slot num + 1;
else

〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic

send(κ, 〈response, cid, result〉);
end if

end function

for ever

switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p

′ : 〈slot num, p
′〉 ∈ decisions do

if ∃p
′′ : 〈slot num, p

′′〉 ∈ proposals ∧
p
′′ 6= p

′ then

propose(p′′);
end if

perform(p′);
end while;

end switch

end for

end process
17

Replica in multi-Paxos, in DistAlgo

class Replica extends Process:

def setup(leaders, initial_state):

self.state = initial_state

self.slot_num = 1

def run():

while true:

-- propose

for (’request’,p) in received:

if each (’propose’,s,=p) in sent | some received(’decision’,=s,p2) | p2!=p:

s = min({s in 1.. max({s: sent(’propose’,s,_)}+{s: received(’decision’,s,_)})+1
| not (sent(’propose’,s,_) or received(’decision’,s,_))})

send (’propose’, s, p) to leaders

-- perform

while some (’decision’, =slot_num, p) in received:

if not some (’decision’, s, =p) in received | s < slot_num:

client, cmd_id, op = p

state, result = op(state)

send (’respond’, cmd_id, result) to client

slot_num += 1

conditions for send-actions are completely clear.

invariant for slot num is completely clear.

18

Experiments with important algorithms

algorithms with interesting results and their sizes in DistAlgo:

Algorithm Description Spec size Incr size
La mutex Lamport’s distributed mutual exclusion 32 43
2P commit Two-phase commit 44 67
La Paxos Lamport’s Paxos for distributed consensus 43 59
CL Paxos Castro-Liskov’s Byzantine Paxos 63 81
vR Paxos van Renesse’s pseudocode for multi-Paxos 86 160

sizes are in number of lines excluding comments and empty lines.

Incr indicates specs containing low-level incremental updates;

for multi-Paxos, Incr size is for following pseudocode in [vR11].

compare with other languages:

La Paxos: 43 DistAlgo, 83 PlusCal, 145 IOA, 230 Overlog, 157 Bloom

vR Paxos: 86 DistAlgo, 130 pseudocode, ∼3000 a Python implementation

19

Results for correctness & efficiency

La mutex:

algorithm simplified to not enqueue/dequeue own requests.

data structure for maintaining min request in O(log n) removed

2P commit:

succinct spec of coordinator: 2 awaits, 1 assertion, 1 set query

easy to see it is safe to add timeout to 1st wait, not 2nd wait

La Paxos and CR Paxos:

direct use of quantifications match English description.

our earlier uses of aggregates were incorrect or needed maxint.

vR Paxos:

for commander and scout, if / returns int, orig algo is incorrect.

for replica, re-proposals are delayed unnecessarily.

20

Generated implementations

size of Python implementations generated from DistAlgo specs:

Algorithm Spec size Generated size
La mutex 32 1395
La mutex incr 43 1424
2P commit 44 1432
2P commit incr 67 1437
La Paxos 43 1428
La Paxos incr 59 1498
CL Paxos 63 1480
CL Paxos incr 81 1530
vR Paxos 86 1555
vR Paxos incr 160 1606

“incr” indicates specs containing low-level incremental updates.

compilation times are between 13 and 44 seconds.

21

Performance of generated implementation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 25 50 75 100 125 150

T
im

e
(s

)

Total number of cohorts

Original(Commit)
Original(Abort)

Incrementalized(Commit)
Incrementalized(Abort)

for two-phase commit, for failure rates of 0 (Commit) and 100

(Abort), averaged over 50 rounds and 15 independent runs.

22

Grad and undergrad projects in DistAlgo

Project Description Notes

Leader ring, randomized; arbitrary net 3 algorithms

Narada overlay multicast system

Chord distributed hash table (DHT)

Kademlia DHT

Pastry DHT

Tapestry DHT

HDFS Hadoop distributed file system part

UpRight cluster services part

AODV wireless mesh network routing python

OLSR optimized link state routing python

part: omitted replication, but done in our impl. of vR Paxos

python: in Python, but knew it would be easier in DistAlgo

each is about 300-600 lines, took about half a semester. 23

Summary and conclusion

use a simple and powerful language, DistAlgo: very high-level

• distributed processes as objects, sending messages

• yield points for control flow, handling of received messages

+await and synchronization conditions as queries ofmsg history

• high-level constructs for system configuration

exploit high-level abstractions of computation and control

1. high-level synchronization with explicit wait on received msgs

2. high-level assertions for when to send msgs and take actions

3. high-level queries for what to send in msgs to whom

4. collective send-actions for overall computation and control

experiment with important distributed algorithms

• including Paxos and multi-Paxos for distributed consensus

• discovered improvements to some, for correctness & efficiency

Future work

formal verification of higher-level algorithm specifications

by translating to PlusCal and other languages of verifiers

generating implementations in lower-level languages

C, Java, Erlang, ...

many additional, improved analyses and optimizations:

type analysis, deadcode analysis, cost analysis, ...

deriving optimized distributed algorithms

reducing message complexity and round complexity

25

