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Platform:  
Hardware + Runtime 

High-Level Java-Derived Language 

IDE, Compiler, Debugger, Cloud Synthesis 

Goal: Make Heterogeneous Platforms Accessible for Mainstream Use 

Lime

Vision: 
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Is High-Level Synthesis (using Lime) viable? 

Using a high-level language, can a developer design 
hardware whose quality matches hardware designed 
with standard tools? 
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Lime FPGA 

YES! NO! 
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An Experiment 
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Blokus Demo 
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Lime 
 

The Liquid Metal Programming Language 
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What is Lime? 

Lime = Java + Isolation + Abstract Parallelism 

Isolation: ability to move computation 

local keyword 

Immutable types 

Abstract Parallelism: freedom to schedule  

Stream programming model (task, =>) 

Data parallel constructs (@ map, ! reduce) 
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The Lime Development Experience 
 
1.  Prototype in standard Java 

•  Lime is a superset of Java 
•  Java-like Eclipse IDE (editors, debugger, navigation) 
 

2. Gentle, incremental migration to parallel Lime code 
Lime language constructs restrict program to safe parallel structures 

•  Isolation 
•  Immutability 
•  Safe Deterministic Parallelism 
•  Bounded Space 
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Implementing Blokus player in Lime 

Player is stateful object 

Task graph expression specifies coarse-grain dataflow: 

CPU CPU FPGA CPU 

Connect operator => 
abstracts communication 

source() => ([ task new BlokusPlayer().nextMove ]) =>  sink()!

Relocation Brackets [( )] 
indicate tasks that  

can relocate to device 
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Lime Native Interface 

CPU CPU 

Lime for a standalone (headless/no host) deployment 

Entire task graph inside relocation brackets 

Implement “native” methods in 
VHDL/Verilog/etc. 
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Minimax tree search 
•  Based on board evaluation function 
 
Fixed budget (1 sec response) 
•  Iteratively deepen tree until budget exhausted 
 
Maximum bounded tree size 
•  Statically allocated data structures – no dynamic memory allocation 

Relatively simple algorithm for software AI players 
•  Relatively complicated data structures for hardware implementation 
 

Blokus AI Algorithm 
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.... 

Minimax Step 1: Enumerate all possible moves 
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.... 

100 700 600 300 800 

Minimax Step 2: Score each move with evaluation function 
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700 600 800 

Minimax Step 3: Pick best k moves and add to search tree 
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Minimax Step 3: Iterate until budget exhausted 
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Minimax Final Step: Choose best move via minimax reduction 

75 500 50 700 800 200 50 100 350 

500 350 800 
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Territory-Based Evaluation Function 
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Inner loop of evaluation function in Lime 

bounded, immutable arrays 

value classes 
(programmable 

primitives) 

Lime type system invariants allow efficient translation 
inner loop – potentially one cycle 

local qualifier 
guarantees 

isolation 

bounded 
integers 
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Implementation 
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ML505 / Xilinx-Virtex 5 LX50T 
7200 slices 
48 DSP48E 

2160 kB BRAM 

Design Stats 

Lime Lines of Code 4231 

Lines of Verilog generated 24,657 

Lines of hand-written 
Verilog 

186 

Frequency 85 MHz 

LUTs 15,917 (55.3%) 

Flip Flops 11,050 (38.4%) 

18kB BRAMs 64 (54.2%) 

DSPs 14 (29.2%) 
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Lessons Learned So Far 
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AI Search: Ideal domain for high-level synthesis 
•  Algorithmic tuning  
•  Iterative development cycle 
•  High computation/communication ratio 

 
 
 
Lime development cycle rocks 
 
 
 
 
 
Software engineer can implement complex 
hardware in Lime 
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Using a high-level language, can a developer design hardware whose 
quality matches hardware designed with standard tools? 
 

YES! NO! 

 
Can the Lime team design a Blokus player in Lime that can win the 2013 
ICFPT Design Competition? 

Tune in early December! 
 
 


