
IBM Research 

© 2013 IBM Corporation 
do not redistribute  

The Liquid Metal Blokus Experiment 

 

Stephen Fink 

IBM Research 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

2 

Liquid Metal Team (IBM T. J. Watson Research Center) 

Josh Auerbach David Bacon Ioana Baldini 

Perry Cheng Sunil Shukla Stephen Fink Rodric Rabbah 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

3 

CPU FPGA GPU 

Li
m

e 
To

ol
ch

ai
n 

Platform:  
Hardware + Runtime 

High-Level Java-Derived Language 

IDE, Compiler, Debugger, Cloud Synthesis 

Goal: Make Heterogeneous Platforms Accessible for Mainstream Use 

Lime

Vision: 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Is High-Level Synthesis (using Lime) viable? 

Using a high-level language, can a developer design 
hardware whose quality matches hardware designed 
with standard tools? 

4 

Lime FPGA 

YES! NO! 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

An Experiment 

5 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Blokus Demo 

6 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

7 

Lime 
 

The Liquid Metal Programming Language 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

8 

What is Lime? 

Lime = Java + Isolation + Abstract Parallelism 

Isolation: ability to move computation 

local keyword 

Immutable types 

Abstract Parallelism: freedom to schedule  

Stream programming model (task, =>) 

Data parallel constructs (@ map, ! reduce) 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

The Lime Development Experience 
 
1.  Prototype in standard Java 

•  Lime is a superset of Java 
•  Java-like Eclipse IDE (editors, debugger, navigation) 
 

2. Gentle, incremental migration to parallel Lime code 
Lime language constructs restrict program to safe parallel structures 

•  Isolation 
•  Immutability 
•  Safe Deterministic Parallelism 
•  Bounded Space 

 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Implementing Blokus player in Lime 

Player is stateful object 

Task graph expression specifies coarse-grain dataflow: 

CPU CPU FPGA CPU 

Connect operator => 
abstracts communication 

source() => ([ task new BlokusPlayer().nextMove ]) =>  sink()!

Relocation Brackets [( )] 
indicate tasks that  

can relocate to device 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Lime Native Interface 

CPU CPU 

Lime for a standalone (headless/no host) deployment 

Entire task graph inside relocation brackets 

Implement “native” methods in 
VHDL/Verilog/etc. 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

12 

Minimax tree search 
•  Based on board evaluation function 
 
Fixed budget (1 sec response) 
•  Iteratively deepen tree until budget exhausted 
 
Maximum bounded tree size 
•  Statically allocated data structures – no dynamic memory allocation 

Relatively simple algorithm for software AI players 
•  Relatively complicated data structures for hardware implementation 
 

Blokus AI Algorithm 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

13 

.... 

Minimax Step 1: Enumerate all possible moves 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

14 

.... 

100 700 600 300 800 

Minimax Step 2: Score each move with evaluation function 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

15 

700 600 800 

Minimax Step 3: Pick best k moves and add to search tree 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

16 

Minimax Step 3: Iterate until budget exhausted 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

17 

Minimax Final Step: Choose best move via minimax reduction 

75 500 50 700 800 200 50 100 350 

500 350 800 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

18 

Territory-Based Evaluation Function 

���� ��



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

19 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

20 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

21 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

22 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

23 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

24 

Inner loop of evaluation function in Lime 

bounded, immutable arrays 

value classes 
(programmable 

primitives) 

Lime type system invariants allow efficient translation 
inner loop – potentially one cycle 

local qualifier 
guarantees 

isolation 

bounded 
integers 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Implementation 

25 

ML505 / Xilinx-Virtex 5 LX50T 
7200 slices 
48 DSP48E 

2160 kB BRAM 

Design Stats 

Lime Lines of Code 4231 

Lines of Verilog generated 24,657 

Lines of hand-written 
Verilog 

186 

Frequency 85 MHz 

LUTs 15,917 (55.3%) 

Flip Flops 11,050 (38.4%) 

18kB BRAMs 64 (54.2%) 

DSPs 14 (29.2%) 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

Lessons Learned So Far 

26 

AI Search: Ideal domain for high-level synthesis 
•  Algorithmic tuning  
•  Iterative development cycle 
•  High computation/communication ratio 

 
 
 
Lime development cycle rocks 
 
 
 
 
 
Software engineer can implement complex 
hardware in Lime 
 
 
 
 



IBM Research 

© 2013 IBM Corporation 
do not redistribute  

27 

Using a high-level language, can a developer design hardware whose 
quality matches hardware designed with standard tools? 
 

YES! NO! 

 
Can the Lime team design a Blokus player in Lime that can win the 2013 
ICFPT Design Competition? 

Tune in early December! 
 
 


