IBM Research

The Liquid Metal Blokus Experiment

Stephen Fink
IBM Research

© 2013 IBM Corporation
do not redistribute

. IBM Research

Liquid Metal Team (IBM T. J. Watson Research Center)

Josh Auerbach David Bacon loana Baldini

Stephen Fink Rodric Rabbah Sunil Shukla

2 © 2013 IBM Corporation
do not redistribute

. IBM Research

Goal: Make Heterogeneous Platforms Accessible for Mainstream Use

Vision: High-Level Java-Derived Language

IDE, Compiler, Debugger, Cloud SyntheS|s

%5 Debug 32 _Ts Type Hie hﬂ
T EIEE- %|ﬁ>" Name

Platform:
Hardware + Runtime

© 2013 IBM Corporation

do not redistribute

. IBM Research

Using a high-level language, can a developer design
hardware whose quality matches hardware designed
with standard tools?

© 2013 IBM Corporation
do not redistribute

An Experiment

eno g

ICFPT 2013 Design Comp
€« (&) lut.eee.u-ryukyu.ac.jp/dc13/ Q
’1\ Bug List: open LM dashboards.html {:} fpga4fun.com - FP l) Rational Jazz Team I Liquid Metal - Ligu "\ Bug List - CruiseControl Builc o Your Picks: Top 10

ICFPT2013 Design Competition

Blokus Duo: Dec.201 3, Kyoto Japan

‘ Main ‘ Rules ‘ Tools & Boards ‘ Resources ‘ ICEPT 2013 Website

ICFPT 2013 Design Competition: Blokus Duo

News

o Sep.|9: DEADLINE EXTENSION: Contest paper / abstract submission will be extended to SEP.27,2013. { Show/Hide older news)

o Sep.| |: Test & host update in Tools & Boards. Terminate code fix, etc.

 Sep.l|: We're planning a poster session on competition designs.

o Aug.22: Entry/submission is now open! The "Getting Involved" section of this page has a major update.
o Aug.l14: Test & host update in Tools & Boards. Terminate code fix, etc.

o May.|4: Test & host update in Tools & Boards. Linux/Cygwin compatibility fix.

Introduction

Following on the successful Connecté competitions, we'll compete against each other at a game called Blokus Duo with our FPGA implementations, at
ICFPT 2013.

Blokus Duo is a two-player game played on a square, 14x14 grid board. Each player has 21 different-shaped game tiles. Each new piece played must be
placed to contact at least one piece of the same color with their corner-to-corner. Edge-to-edge contact is only allowed to the other color.

IBM Research

Blokus Demo

© 2013 IBM Corporation
do not redistribute

IBM Research

The Liquid Metal Programming Language

7 © 2013 IBM Corporation
do not redistribute

. IBM Research

What is Lime?

Lime = Java + Isolation + Abstract Parallelism

Isolation: ability to move computation
local keyword

Immutable types

Abstract Parallelism: freedom to schedule
Stream programming model (task, =>)

Data parallel constructs (@ map, ! reduce)

8 © 2013 IBM Corporation
do not redistribute

© 2013 IBM Corporation
do not redistribute

. IBM Research

The Lime Development Experience

1. Prototype in standard Java
 Lime is a superset of Java
- Java-like Eclipse IDE (editors, debugger, navigation)

2.Gentle, incremental migration to parallel Lime code
Lime language constructs restrict program to safe parallel structures
« Isolation
* Immutability
« Safe Deterministic Parallelism
« Bounded Space

(Ix9uart =] Name: Holal (mIS05uart - MAC DEMO)
@ Main (9= Arguments [= JRE [Classpath ({@) Accelerations \, 5/ Source | I Envi t| £ Common |
Sour i

i = L) - =

o com 100 R S O] ——— * e] =R S
charity.watson.ibm.com: N: Nalue

. = _ E »i@ lime-tests

<

local:

gggggg

(GPU Details)
(] Native Binary () GPU(Opencl) (GPU Details & FPGA (HDL)

ccccc

. IBM Research

Implementing Blokus player in Lime

public interface Player {

ViL \
* Return some descriptive name for this Player

*/
public string getName();

—— Player is stateful object

/tt
* Reset the state of the game to g.
*/
public void reset(Game g);
/tt
* What is the next move, after the opponent makes move m?
*/
public Move nextMove(Move m); Relocation Brackets [()]
; indicate tasks that
can relocate to device
_ N _ Connect operator =>
Task graph expression specifies coarse-grain dataflow: abstracts communication

\
source() => ([task new BlokusPlayer().nextMove]) => sink()

© 2013 IBM Corporation
do not redistribute

IBM Research

Lime for a standalone (headless/no host) deployment

([task receiveMove => task move => task sendMove i)}

\ /

Entire task graph inside relocation brackets

Lime Native Interface

= import lime.lang.annotations.lni.InputPins;
import lime.lang.annotations.lni.OutputPins;

public class NativeBlokus { Implement “native” methods in

= @InputPins({"opp_move:72", "opp_rdy"}) VHDL/Verilog/etc.

@QutputPins({"opp_ack"})
public static native local byte[[9]] receiveMove();

3 @InputPins({"lime_ack"})

@0utputPins({"lime_move:32", "lime_rdy"})
public static native local void sendMove(byte[[4]] b);

© 2013 IBM Corporation
do not redistribute

IBM Research

Blokus Al Algorithm

Minimax tree search
* Based on board evaluation function

Fixed budget (1 sec response)
* lteratively deepen tree until budget exhausted

Maximum bounded tree size
« Statically allocated data structures — no dynamic memory allocation

Relatively simple algorithm for software Al players
* Relatively complicated data structures for hardware implementation

12 © 2013 IBM Corporation
do not redistribute

\ IBM Research

|||

IHH

Minimax Step 1: Enumerate all possible moves

ad
3
b
%
K]

13

© 2013 IBM Corporation
do not redistribute

\ IBM Research

Minimax Step 2: Score each move with evaluation function

100 700 600 300 800

14 © 2013 IBM Corporation
do not redistribute

\ IBM Research

Minimax Step 3: Pick best k moves and add to search tree

700 600 800

15 © 2013 IBM Corporation
do not redistribute

\ IBM Research

Minimax Step 3: lterate until budget exhausted

© 2013 IBM Corporation
do not redistribute

\ IBM Research

Minimax Final Step: Choose best move via minimax reduction

800 700 200 100 50 350

© 2013 IBM Corporation

do not redistribute

IBM Research

Territory-Based Evaluation Function

11

18 © 2013 IBM Corporation
do not redistribute

|||
II“l

|

IBM Research

T

T © 2013 IBM Corporation
do not redistribute

IBM Research

I
T
df

20 © 2013 IBM Corporation
do not redistribute

IBM Research

21 © 2013 IBM Corporation
do not redistribute

| ||

i
||”

iy

IBM Research

22 © 2013 IBM Corporation
do not redistribute

| ||
!
1]

I
il
1

IBM Research

23 © 2013 IBM Corporation
do not redistribute

24

. IBM Research

[Jrun]}
R

Inner loop of evaluation function in Lime
value classes

local qualifier (programmable
gL_JarIar:_tees primitives)
isolation —

~
public static local Row[[14]] manhattanNeighbors(Row[[14]] g) {

Row[14] r = new Row[14];

Row upper = 0; bounded, immutable arrays
Row mid = g[@];

for (int<l4> 1){
Row lower = (i == 13) ? (Row)®@n : (Row)g[i+1];
bounded
integers // manhattan propagation.
rl(i] = (Row)(upper | lower | (mid << 1) | (mid >>> 1));

// update rows.
upper = mid;
mid - lower;

}

return new Row[[14{]1(r);
Lime type system invariants allow efficient translation

inner loop — potentially one cycle

© 2013 IBM Corporation
do not redistribute

. IBM Research

Implementation

Lime Lines of Code
Lines of Verilog generated

Lines of hand-written

Verilog
Frequency
LUTs
. Flip Flops
ML505/ XiIinx-V?rtex 5 LX50T 18kB BRAMSs
7200 slices
48 DSP48E DSPs

2160 kB BRAM

25

Design Stats

4231
24,657

186

85 MHz

15,917 (55.3%)
11,050 (38.4%)
64 (54.2%)

14 (29.2%)

© 2013 IBM Corporation
do not redistribute

. IBM Research

Lessons Learned So Far

Al Search: Ideal domain for high-level synthesis
 Algorithmic tuning

Iterative development cycle
High computation/communication ratio

Lime development cycle rocks

Software engineer can implement complex
hardware in Lime

© 2013 IBM Corporation
do not redistribute

l IBM Research

Using a high-level language, can a developer design hardware whose
quality matches hardware designed with standard tools?

Can the Lime team design a Blokus player in Lime that can win the 2013
ICFPT Design Competition?
Tune in early December!

TUNE IN TOMORROW,

SAME 'BAT TIME ..

SAME BAT- CHANNEL

\
AT YOUR OWN RISK. .

© 2013 IBM Corporation
do not redistribute

