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Abstract
While real-time garbage collection has achieved worst-case laten-
cies on the order of a millisecond, this technology is approaching
its practical limits. For tasks requiring extremely low latency, and
especially periodic tasks with frequencies above 1 KHz, Java pro-
grammers must currently resort to the NoHeapRealtimeThread
construct of the Real-Time Specification for Java. This technique
requires expensive run-time checks, can result in unpredictable
low-level exceptions, and inhibits communication with the rest of
the garbage-collected application. We present Eventrons, a pro-
gramming construct that can arbitrarily preempt the garbage col-
lector, yet guarantees safety and allows its data to be visible to the
garbage-collected heap. Eventrons are a strict subset of Java, and
require no run-time memory access checks. Safety is enforced us-
ing a data-sensitive analysis and simple run-time support with ex-
tremely low overhead. We have implemented Eventrons in IBM’s
J9 Java virtual machine, and present experimental results in which
we ran Eventrons at frequencies up to 22 KHz (a 45 μs period).
Across 10 million periods, 99.997% of the executions ran within
10 μs of their deadline, compared to 99.999% of the executions of
the equivalent program written in C.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.2 [Programming Languages]: Java; D.3.4 [Programming
Languages]: Processors—Memory management (garbage collec-
tion); D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords Scheduling, Allocation, Real-time
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1. Introduction
The complexity of real-time systems is increasing rapidly as the
isolated real-time controllers of the past give way to complex sys-
tems in which many coordinated systems interact to create an in-
tegrated multi-level real-time system, such as a car or a ship. In
the face of this huge increase in complexity, traditional real-time
methodologies based on low-level coding styles and fixed data
structures are no longer tenable.

Java’s software engineering benefits have made it a compelling
choice for modular application development: memory safety, a
standardized model of concurrency, and a host of common libraries
make it possible to develop large and complex applications in a
piecewise fashion. With the development of Metronome real-time
garbage collection technology [2] and the Real-Time Specification
for Java (RTSJ) standard [4], Java has become a viable platform
for the creation of such complex real-time systems. However, there
are many problems remaining before a dynamic, garbage collected
language like Java can provide a complete real-time solution down
to the lowest-level, highest-frequency applications.

Real-time garbage collection, as exemplified by the Metronome
system [2], is currently able to achieve worst-case latencies on the
order of a millisecond. This latency bound may scale down by
another factor of two to four as a result of improved implementation
techniques. However, latency is limited by the need for atomic
processing of certain data structures, and by the overhead of context
switching, especially since the collector tends to evict much of the
application data from the cache.

As a result, real-time Java programmers with response time re-
quirements below a millisecond are currently forced to resort to the
RTSJ’s NoHeapRealtimeThread (NHRT) construct. As its rather
verbose moniker implies, code executed by an NHRT is isolated
from the garbage-collected heap and may therefore be run concur-
rently with the collector or interrupt it arbitrarily. However, NHRTs
may only create and access objects in the manually-managed Im-
mortal and Scoped memory areas.

Unfortunately, this requires fundamental changes to the seman-
tics of the Java programming language. Scopes essentially pro-
vide region-based memory management with neither explicit re-
gion qualifiers [12] nor implicit region inference [22]. As a result,
the region restrictions of a method are not documented in its in-
terface and may vary dynamically based on its inputs. This greatly
lowers the level of abstraction of the language, requires expensive
run-time checks, and makes it difficult to reason about the behavior
of an object without understanding its implementation.
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Most perniciously, NHRTs require dynamic checks on both
reads and writes of reference fields to guarantee that region con-
straints are not violated. These dynamic checks will throw excep-
tions when they fail, while reading or writing reference fields of an
object in the heap will never throw an exception. This represents a
deep change to the language semantics and a significant obstacle to
code re-use.

In this work, we introduce Eventrons, a programming construct
for tasks that can arbitrarily preempt the garbage collector and yet
are comprised entirely of standard Java code without extra run-time
memory access checks. Eventrons are simple to design, develop,
and understand. They can also be terminated in the event of cost
over-run without causing deadlocks or data structure corruption.

Eventrons are both more and less restrictive than NHRTs and
Scopes. Allocation within Eventrons is not permitted; neither is
modification of pointers. These restrictions are enforced at vali-
dation time using a simple bytecode analysis. Once an Eventron is
validated, it will not throw any exceptions except those resulting
from normal Java semantics such as array bounds checking.

Eventrons are less restrictive than Scopes because the Even-
tron’s data structures can be accessed by normal Java threads run-
ning in the garbage collected heap. As a result, communication of
data between high-frequency Eventron tasks, and lower frequency,
garbage-collected tasks is greatly simplified.

Validation occurs at run-time, examining both the code and the
data of the Eventron, but must be performed before an Eventron
may be scheduled. By choosing this intermediate point between
fully static and fully dynamic checking, we are able to perform
a simple analysis whose restrictions are easy for programmers
to understand, and yet obtain a fairly precise call graph since it
is based on a known set of previously instantiated objects. The
separation of the program into an “initialization” and a “mission”
phase is also natural to most real-time applications.

Eventrons are well suited to tasks like sensor processing, in
which sensor data must be sampled at a very high frequency,
buffered, and then processed en masse by a lower-frequency task.
They are also well-suited to simple high-frequency control loops
that read a limited amount of data, perform some simple process-
ing (such as FFTs) and then produce actuator control values. The
ability to share data between high- and low-frequency tasks allows
the use of more complex, dynamically allocated, garbage-collected
data structures in the low-frequency tasks that make higher-level
planning decisions requiring more complex processing.

The combination of Eventrons for high-frequency tasks and
real-time garbage collection for medium- to low-frequency tasks
provides an integrated programming methodology that enables the
use of heap-allocated data structures in even the most demanding
real-time applications, and yet does not change the Java program-
ming model in any fundamental way.

2. Example: Music Generation
We begin with an example to illustrate the use of Eventrons to im-
plement an integrated real-time application. The example combines
both low- and high-frequency tasks to generate and play back mu-
sic without relying on the operating system or underlying hardware
to buffer the output. A low-frequency task performs the computa-
tion necessary to compose a musical score and generate the raw
audio data, while a high-frequency task sends the raw audio data
to the unbuffered output device, one sample at a time. To provide
seamless audio playback at the standard frequency of 22.05 KHz,
the high-frequency task must be run every 45 μs.

Implementing a Low-Frequency Task Figure 1 defines the low-
frequency task. This task uses a music composition library (not
shown here) to generate a musical score one note at a time. Each

1 class LowFrequencyTask extends Thread {
2 EventronReadChannelOfShort channel;
3 ...
4 public void run() {
5 short[] samples = new short[MAX DURATION];
6 while (composing) {
7 Note note = composer.nextNote();
8 int length = note.toSamples(samples);
9 channel.write(samples, length);

10 }
11 channel.close();
12 }
13 }

Figure 1. The low-frequency task. This task generates the next
note of a musical score, converts the note to a array of samples,
and then writes the samples to a shared channel.

1 class HighFrequencyTask implements Runnable {
2 final EventronReadChannelOfShort channel;
3 final RuntimeException errorStop =
4 new RuntimeException(”Write error occured”);
5 final RuntimeException normalStop =
6 new RuntimeException(”Channel closed”);
7 int missedSamples = 0;
8 ...
9 private static native boolean playSample(short sample);

10

11 public void run() {
12 short sample = channel.read();
13 if (sample == channel.CHANNEL EMPTY) {
14 missedSamples++;
15 sample = Composer.SILENCE SAMPLE;
16 } else if (sample == channel.CHANNEL CLOSED) {
17 throw normalStop;
18 }
19 if (!playSample(sample)) {
20 throw errorStop;
21 }
22 }
23 }

Figure 2. The high-frequency task. This tasks reads a single 16-bit
sample from the shared channel and plays it using an interface to
the raw audio device.

note is then converted to a set of samples and written to a shared
channel. The low-frequency task (including any libraries it uses)
may rely on a garbage collector to automatically manage memory;
the code used to implement this task is only constrained at the point
where it interacts with the high-frequency task.

In this example, that interaction is managed by an Eventron-
ReadChannelOfShort. This general purpose data structure pro-
vides a form of impedance matching between the low- and high-
frequency tasks and can be configured to hide the latency and jitter
of the low-frequency task. While the code shown above allocates an
array from which the raw audio samples are copied into the chan-
nel queue, the channel queue also provides a mechanism to avoid
this copy. Section 9 discusses the mechanisms by which low- and
high-frequency tasks may communicate in more detail.

Implementing a High-Frequency Task Figure 2 defines the high-
frequency task that is implemented using the Eventron abstraction.
During each iteration, the task reads a single 16-bit sample from
the shared channel and writes that sample out to the audio device.

We enforce a number of constraints on Eventron code during
initialization using an on-line analysis. For example, note that ref-
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1 final long AUDIO FREQ HZ = 22050L;
2 final long AUDIO PERIOD NS = 1000000000L / AUDIO FREQ HZ;
3 final long GC LATENCY NS = GarbageCollector.maximumLatency();
4 final int BUFFER SIZE = (int) (GC LATENCY NS/AUDIO PERIOD NS);
5 final int BUFFERS = 3;
6 final int PRELOAD SAMPLES = BUFFER SIZE ∗ (BUFFERS−1);
7

8 public void playMusic(Composer composer) {
9 FileOutputStream soundDevice = composer.openSoundDevice();

10

11 EventronReadChannelOfShort channel =
12 new EventronReadChannelOfShort(BUFFER SIZE, BUFFERS);
13 channel.write(Composer.SILENCE SAMPLE, PRELOAD SAMPLES);
14

15 Runnable runnable = new HighFrequencyTask(channel, soundDevice);
16 Eventron player = Eventron.validate(runnable);
17

18 Thread synthesizer = new LowFrequencyTask(channel);
19 synthesizer.start();
20

21 player.schedulePeriodic(AUDIO PERIOD NS);
22 ...
23 player.unschedule();
24 Throwable status = player.getExceptionState();
25 }

Figure 3. Task Integration. The two tasks are instantiated, initial-
ized with a shared channel queue, and the high frequency task is
validated before being passed to the scheduler.

erence fields are declared final on lines 2-6. We have found that the
use of final is a natural and familiar way to ensure that the Eventron
data structure remains fixed over time. Our analysis is described in
Section 5.

The high-frequency task uses the non-blocking interface of the
EventronChannel to read individual samples. This operation re-
turns either a sample or a value indicating that the channel is empty
or closed. Alternatively, programmers can avoid reserving special
indicator values and instead use exceptions. However, all excep-
tions must be preallocated, as also illustrated in the example.

This task also uses a native method (lines 9 and 19) to commu-
nicate with the audio playback device. Many applications of Even-
trons may require native methods to communicate with hardware.
The Eventron run-time takes steps to ensure the relative safety
of JNI code that is invoked by an Eventron, as discussed in Sec-
tion 5.3.2.

Notice that the high-frequency task contains no looping con-
struct. Instead, the scheduler will invoke this task periodically as
indicated during initialization. The Eventron will continue to be in-
voked until it is explicitly removed from the scheduling queue (by
some other thread), or when an exception is thrown from the Even-
tron run() method.

Integrating Tasks Figure 3 shows the integration of the low- and
high-frequency tasks. On line 11, the programmer instantiates a
shared data structure which is the sole mechanism for interaction
between the low- and high-frequency tasks. The low-frequency task
is scheduled on lines 18 and 19 by instantiating an ordinary Java
thread.

Before the high-frequency task can be executed, it must first be
validated (line 16) to ensure that it can safely preempt the collec-
tor. While validation may fail and cause a checked exception to be
thrown in the main() method, no memory access checks are per-
formed while executing the Eventron. Thus errors will occur dur-
ing the initialization phase of the application instead of during the
execution of the Eventron itself. This is a natural time to detect
any problems in the configuration of the Eventron, as the applica-

EventronTask
O bject

HEAPSTACK GLOBAL

Buffer 1 Buffer 2

Eventron

Figure 4. Interaction of Eventrons with the heap. Objects associ-
ated with an Eventron (gray objects) reside in the garbage-collected
heap but are pinned for the life of the Eventron. They may be refer-
enced by other heap objects, and will be subject to garbage collec-
tion once the Eventron terminates.

tion must also ensure that any required hardware is properly config-
ured and that sufficient resources are available to run the Eventron
(though we have elided these checks in our example).

Validation also causes the run-time system to pin down any
data structures accessible by the Eventron: these objects will not
be collected or even moved to another location in the heap while
the Eventron is active. However, once the Eventron is disabled,
these objects can be moved and, if they are otherwise unreachable,
reclaimed.

3. The Life and Times of an Eventron
An Eventron is defined by a set of Java methods that will be exe-
cuted as a high-frequency task, the data structures manipulated by
those methods, and a thread that will execute them. We guarantee
that Eventrons can safely preempt the virtual machine, and in par-
ticular the garbage collector, at any point by eliminating any syn-
chronization between Eventrons and the collector. First, we ensure
that Eventrons cannot change the reachability of any object man-
aged by the collector. While this condition might be enforced by
additional run-time checks, we instead impose constraints on the
code and data structures defining an Eventron that can be verified
before the Eventron is executed. These constraints ensure that the
set of objects accessible to an Eventron is fixed for the duration of
its execution, while allowing objects used by an Eventron to be ac-
cessed by ordinary Java threads. We enforce these constraints using
a run-time static analysis: we perform an analysis of the Eventron
bytecode while the program is executing, but before the Eventron
itself is invoked. This allows an efficient and precise analysis.

Secondly, we eliminate the need for synchronization between
the collector and an Eventron by precluding any collector opera-
tions that, if preempted by an Eventron, might expose the heap in
an inconsistent state. Specifically, we pin every object accessible
to an Eventron. Thus the collector will never be interrupted while
moving one of the Eventron’s objects.

The lifetime of an Eventron is split into five phases. First, an
Eventron is initialized in the same way an ordinary Java structure is
constructed. During the second phase, validation, we verify that the
Eventron code can safely preempt the collector and simultaneously
discover the set of objects that must be pinned. The third phase
is instantiation, in which the Eventron’s data structure is pinned
and an executable thread is created. The fourth phase is execution,
during which the Eventron is invoked one or more times, either
at specific times, with a predetermined period, or in response to
certain external events. Finally, an Eventron may be destroyed,
at which point the objects in its data structure are unpinned and
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Bytecode Illegal Unless. . .
new, newarray
anewarray, multianewarray

monitorenter, monitorexit
invokevirtual non-synchronized method
invokestatic non-synchronized method
invokespecial non-synchronized method
invokeinterface non-synchronized method
putfield, putstatic Primitive type
getfield, getstatic Primitive type or final
aaload From FinalArray
aastore

(a) Bytecodes that are illegal in Eventron code

Class Illegal Methods
java.lang.Object clone, wait, notify, notifyAll
java.lang.Class newInstance
java.lang.reflect.Constructor newInstance
java.lang.reflect.Field get, set
java.lang.reflect.Array newInstance, set, get
java.lang.reflect.Method invoke

(b) Methods that are illegal in Eventron code

Figure 5. Operations that are illegal in Eventron code. The first
table includes illegal bytecodes and the second table lists illegal
method invocations.

eventually garbage collected, unless they are reachable from the
heap or other Eventrons.

4. Initialization
To create an Eventron, the programmer constructs an instance of a
class that implements the standard Java Runnable interface. This
object forms the root of the Eventron data structure, and its run()
method forms the entrypoint for the execution of the Eventron.

The programmer also builds the data structures necessary to
support communication and synchronization between the Eventron
and low-frequency threads. Typically this involves the use of one
or more channels as demonstrated in the example in Section 2 and
described in detail in Section 9.

5. Validation
During the validation phase, we ensure that an Eventron may be
safely executed without synchronizing with the collector. Valida-
tion takes place while the application is running but before the
Eventron is invoked. This allows the validation process to take ad-
vantage of information that is present at run-time and to detect po-
tentially misbehaving code while the task is being set up rather than
during the execution of the Eventron itself.

Validation must ensure three features of the Eventron code:
first, that it does not allocate any memory, second, that it does not
perform any blocking operations, and third, that the extent of the
heap that it accesses remains fixed.

These restrictions are enforced by creating a data-specific call
graph for the particular Eventron being validated, and performing
a set of checks on the bytecodes of the resulting methods. This
process can be viewed as a kind of partial evaluation.

5.1 Enforcement of Restrictions

We will begin by assuming that we have created the call graph, and
describe the enforcement of the restrictions, and then describe how
the call graph is constructed.

Operations that are illegal within an Eventron are summarized
in Figure 5. When any of these operations are encountered, an
EventronValidationException is thrown reporting the source code
location of the offending instruction.

As shown in Figure 5(a), all bytecodes that perform allocation
are prohibited, as well as bytecodes that perform synchronization
either explicitly (via monitor bytecodes) or implicitly (via synchro-
nized methods). As further shown in Figure 5(b), reflective access
to such operations is also prohibited, as is the use of the wait and
notify methods of Object (which would necessarily generate ex-
ceptions since the Eventron thread is never able to enter a monitor).

The last group of restrictions in Figure 5(a) ensures that Even-
trons neither read nor update mutable heap references. Writes to
object fields, static variables, and array elements are only permit-
ted for primitive types. Reads are permitted for non-primitive types,
but only if the field is declared final.

There are two complications with respect to final fields: first,
Java does not provide any mechanism to specify the immutability
of array elements. To this end we have provided a special class,
ImmutableArray<T>, which stores an array of immutable refer-
ences to objects of class T.

An ImmutableArray is initialized by passing it an array of ref-
erences, which is copied into a private instance array of the Im-
mutableArray object. The only methods provided are get(index)
and length(). Since the finality of the array elements within an Im-
mutableArray is enforced programmatically, the validator allows
their use within an Eventron.

The reflective analogues get and set of the proscribed pointer-
accessing bytecodes are also prohibited. Note that unlike the byte-
code operations, the reflective operations are more restricted, since
we do not know at validation time which fields or methods are be-
ing accessed. In particular, neither reflective access to final pointer
fields nor reflective method invocation is permitted within an Even-
tron.

The second complication with respect to finality has to do with
exposure of incompletely constructed objects. We solve this prob-
lem using a simple run-time assisted mechanism described in Sec-
tion 5.3.1.

In practice, we found that rejecting all methods that perform al-
location inhibits the reuse of some existing library methods inside
Eventrons. This is often due to the common Java idiom of allo-
cating exception objects (“throw new FooException”). In many
cases, the programmer knows that the offending code will never
be executed but the validator conservatively assumes otherwise. An
optional feature of the validator allows programmers to exempt cer-
tain methods from the normal check for allocating bytecodes. To
keep this feature from compromising safety, the run-time allocator
throws an immediate OutOfMemoryError whenever an allocation
occurs on an Eventron thread.

5.2 Data-Sensitive Call Graph Analysis

The validator’s analysis explores the set of reachable methods and
the set of reachable objects simultaneously, letting each set inform
the other. Rather than build a complete call graph, the validator an-
alyzes only those methods that could be invoked given the set of
objects reachable by the Eventron. In the course of its analysis, the
validator will conservatively determine sets of objects O, field sig-
natures F , methods M , and virtual method signatures V reachable
to the Eventron. These are the structures which may be accessed by
the Eventron during its execution.
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Initially, O contains only the object implementing the Runnable
interface, and the only method in M is its run() method. For each
method added to the call graph, the validator considers each byte-
code instruction of that method in turn. Note that each method is
analyzed at most one time, and therefore the validator will termi-
nate in time linear in the size of the program and the size of the
heap.

• getfield – The signature of target field f is added to the valida-
tion set F . In addition, the validator considers every object in
O that defines a field matching that signature. For every such
object, the validator uses reflection to determine the referent of
its field f ; this referent is then added to O.

As objects are added to O, each one must be inspected for fields
that are already found in F , and the referents of these fields must be
added to O. Therefore, in the course of processing a single getfield
instruction, only one field signature will be added to F , but many
objects may be added to O.

• getstatic – The validator immediately adds the referent of the
static field to O. Any fields of the referent that appear in F are
considered as above.

• invokestatic, invokespecial – For method invocations whose
targets can be statically determined, the validator adds the target
method to M .

• invokeinterface, invokevirtual – For virtual method invoca-
tions, the signature of the target method is added to V . The
validator then considers each object in O implementing that sig-
nature. For each such object, its implementation is added to M
and subsequently validated.

Just as the fields of objects added to O must be compared to the
signatures in F , the methods of those objects must be compared to
the signatures in V . That is, for each object added to O, and for
each method m of that object, if m matches a signature in V , then
m must be added to M .

Finally, we enforce the restrictions described above as we pro-
cess each method. If a prohibited bytecode instruction or method
invocation appears in an analyzed method body, the analysis termi-
nates immediately, throwing an exception that indicates where the
offending code can be found.

If the validation succeeds, the objects in O are those that may
be accessed by the Eventron and therefore must be pinned.

Recall that any reference field (instance or static) accessed by
an Eventron must be declared final. This restriction is used not
only to ensure that synchronization with the collector can be safely
omitted, it is also necessary for the soundness of the above analysis.
Without this restriction, the validator cannot safely assume which
objects may occupy a given field or which implementations of a
given method signature might be invoked.

Because we require only those fields that might be referenced
by an Eventron to be declared final, some reference fields in the
Eventron data structure may not be final. As a result, pinned objects
may hold (mutable) references to unpinned objects, as shown in
Figure 4. This is safe since our analysis has shown that these fields
will not be accessed by the Eventron.

5.2.1 Data-Sensitive Analysis versus Other Analyses

Note that our analysis is neither flow-sensitive nor context-sensitive.
It is, however, data-sensitive: the call graph is being constructed for
the invocation of the run() method of a particular concrete Even-
tron instance. In general, flow- and context-sensitivity can increase
the precision of call graph analysis [13]. However, even fairly ag-
gressive algorithms still make some conservative approximations,
especially about the contents of instance fields, which can induce
imprecision in the call graph.

JIT compilers often compensate for the imprecision of static
call graph construction algorithms by exploiting profile data, on-
line class hierarchy analysis, and other optimistic and speculative
optimizations [1]. This often works well in practice, but if the
assumption turns out to be invalid, the code must be recompiled
(an operation that does not mesh well with real-time execution).

In principle, a data-sensitive analysis may be more or less pre-
cise than any of the above techniques, depending on the particular
class hierarchies, call graphs, and execution orders. However, we
believe that a data-sensitive analysis will often yield the most pre-
cise result in practice.

Regardless of the precision, however, there is a more compelling
reason to use data-sensitive analysis: it is simple enough that it can
be easily described to a programmer. More complex analyses are
easily perturbed by small changes in the code, and a seemingly
trivial change can cause two variables to become possibly aliased.
Our analysis avoids this form of speculation and relies on two
forms of information specified directly by the user: the object
graph and the use of final fields. In contrast to other analyses, our
data-sensitive analysis uses mechanisms that are familiar to Java
programmers and yields an induced call graph that is quite stable
in the face of changes to the program.

5.2.2 Implementation

We implemented our validation phase using a combination of stan-
dard Java reflection (to explore the graph of reachable objects) and
specialized VM-specific code to consult the bytecodes and con-
stant pool of already loaded and validated classes (validation must
run against the in-memory classes to prevent security attacks that
change the class files). It is straightforward to implement the same
validation algorithm using a class file inspection package, with or
without a static analysis framework (for example, an earlier proto-
type used the Domo program analysis library [11]). However, such
a validator would only be safe to use for development-time explo-
ration of Eventron validity. A run-time validator must ensure that it
is working with the actual bytecodes that have been loaded into the
running VM.

5.3 Preventing Violations of Finality

To ensure complete safety of Eventron execution, some additional
checks are required for code that executes outside of the Eventron
threads.

5.3.1 Exposure of Incompletely Constructed Objects

Unfortunately, simply using final does not guarantee that heap
structures will be immutable. A constructor may expose its this
pointer before its fields are completely initialized, for instance by
storing this into a static field. If a partially constructed object is
present in an Eventron data structure, the validator may see a final
field as null even though it will be subsequently initialized to a non-
null value. In this case, the validator will have based its analysis on
incomplete information, and the safety of the Eventron could be
compromised.

Attempts to prevent such operations via static analyses tend to
be grossly over-conservative because the targets of virtual calls are
not available.

Our solution is to add a “fully constructed” flag to the header of
every object. The interpreter sets this flag as a constructor returns
(the return of any constructor for a given class is sufficient to
guarantee that final fields of that class and its superclasses are
initialized). We provide a run-time interface allowing the flag to
be queried, and the validator throws an exception whenever it
encounters an object for which this flag is not set. This results
in a simple programming model and an efficient implementation.
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The specification to the programmer is simple: all Eventron objects
must be completely constructed.

5.3.2 Reflection and JNI

It is also possible to undermine the restrictions of final using reflec-
tion. The method invocation restrictions on Eventron code (Fig-
ure 5(b)) already rule out any reflective access to pointers in the
Eventron data structure from the Eventron itself. However, other
threads have full access to reflection, and in Java 1.5, reflection
even allows the modification of final fields (!) after a call to setAc-
cessible(). According to the specification, this functionality is only
intended to be used during deserialization and other uses may have
“unpredictable effects.” However, any violation of finality would
render Eventrons unsafe, which we do not consider to be an ac-
ceptable “unpredictable effect,” so this must be prevented.

Our preferred approach to this problem is to modify the Field.set()
implementation of java.lang.reflect to check whether the field be-
ing set is a final field of an object pinned by an Eventron. In that
case, a run-time exception is thrown. Similarly, Array.set() can be
modified to prevent reflective modification of pointers inside the
arrays that implement the ImmutableArray class.

Restrictions on reflective field access should not cause run-
time exceptions in code that uses the interface as intended, since
Eventron data structures are constructed before validation, and so
by definition are not being de-serialized.

Similar to reflection, JNI code can circumvent Eventron restric-
tions and violate validation assumptions. For example, native code
can execute Java methods that were not part of the validation-time
call graph, read and write reference fields that the validator did not
know were to be read or written, enter monitors, or allocate objects.
Despite this, many Eventrons must use native code to interface with
hardware devices. One could argue that JNI code is inherently un-
safe since it is capable of directly modifying any word in memory
(indeed, no JNI access control restrictions are enforced in the Java
programming language [18] as a deliberate design decision). How-
ever, we judged that JNI code that was completely safe to execute
in other contexts ought not to produce arbitrary results simply be-
cause it was invoked by an Eventron.

We currently catch native code violations with inexpensive dy-
namic checks in those JNI helper functions that should not be called
by Eventrons. Each helper function that would be unsafe to execute
on an Eventron thread will immediately throw an exception if ex-
ecuted on an Eventron thread. This allows problems to be caught
early in the testing phase (albeit not at validation time).

6. Instantiation
Once an Eventron has been validated, it must be instantiated. This
requires either creating an executable thread that will invoke the
Eventron repeatedly at high frequency, or associating the Eventron
with an interrupt handler (though the latter mode of instantiation
has not yet been fully implemented or studied). In either case, the
run-time system must also track the set of objects accessible to the
Eventron and pin these objects so that they are not moved by the
garbage collector.

The set of Eventron-reachable objects is created during the
validation phase (to avoid redundant object traversals) and is now
installed into the run-time data structures. This set is external to the
Eventron itself and persists until the Eventron is destroyed.

6.1 Pinning of Eventron Objects

For Eventrons to work properly in conjunction with a collector that
moves objects (whether or not the collector is incremental), the
objects must be pinned before the Eventron is allowed to execute.

There are various collector architectures that move objects,
among them page-based defragmenting collectors [3], generational

1 class EventronSupport
2 {
3 static native void pinObjects(Object[] o);
4 static native void unpinObjects(Object[] o);
5 static native void becomeEventronThread();
6 static native void becomeOrdinaryThread();
7 }

Figure 6. Interfaces to run-time support operations added to the
virtual machine to support Eventrons

collectors [23], and semi-space copying collectors [7], as well as
their concurrent variants. There are also various approaches to pin-
ning objects suited to the different kinds of collector architectures.
For instance, in a generational collector, objects should not be
pinned in the nursery, so a nursery evacuation should be forced
as part of the Eventron instantiation procedure.

In this paper we will confine ourselves to describing the de-
sign used in our actual implementation that runs together with the
Metronome [2] collector, a real-time incremental collector that or-
ganizes memory into page-based segregated free lists. Defragmen-
tation is performed on an as-needed basis and compacts objects
within a size class.

To minimize changes to the Java run-time system, we chose to
implement the run-time support for Eventrons in Java whenever
possible. One exception is support for pinning objects. We extend
the interface to the run-time system with the functions shown in
Figure 6.

Invoking pinObjects prevents the objects from being moved
by the collector. Invoking unpinObjects reverts this state change.
Only the Eventron run-time support code has access to the pinning
and unpinning methods. The native support is wrapped by Java
code that aggregates pinning information from multiple Eventrons.
These native methods are only called with collections of objects
the first time those objects are used by an Eventron or once all
Eventrons using those objects have terminated.

This interface is similar to the Create/DestroyGlobalRef func-
tions found in the Java Native Interface [18]. While those func-
tions ensure that a given object will not be freed, they do not
guarantee that the referent will not be relocated by the collector.
Though no standard support for pinned objects exists in Java, sev-
eral other languages already provide similar functionality. For ex-
ample, the above interface can be easily implemented using exist-
ing run-time support in either the Common Language Runtime [19]
or the Haskell Foreign Function Interface [14].

Since Metronome uses a page-based memory architecture, our
implementation of pinning maintains a count of the number of pin
operations applied to the objects of each page. At instantiation time,
pinObjects() is invoked with the set of objects that are accessible
to the Eventron but that are not already pinned. Since pinning is
atomic with respect to interleavings with the garbage collector,
once the entire data structure has been pinned, we are guaranteed
that the collector will not move any of the objects.

6.1.1 Compensating for Races with Compaction

However, this does not yet guarantee collector independence: there
may be pointers among the objects that were pinned early in this
stage that refer to objects that were later pinned but moved by the
collector in the intervening time. Thus there may be stale pointers
in the Eventron data structure. For the garbage-collected heap,
this is not a problem since those pointers will be fixed during the
subsequent tracing phase of the collector before the old versions of
objects are reaped.

Unlike ordinary Java threads, the Eventron’s stack is not scanned
to identify roots or fix stale pointers once it begins execution. Thus
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an Eventron could potentially load a stale pointer into a stack vari-
able and dereference it after the old object (with its forwarding
pointer) had been reaped by the collector and re-allocated.

This problem is addressed by performing a second iteration over
the Eventron objects after pinning is completed. The two-phase na-
ture of object pinning and forwarding is part of the implementation
of pinObjects. The second iteration checks whether any pointers in
the object are stale and immediately updates them to the forwarded
copy of the referent.

This second pass guarantees that no stale pointers remain in any
Eventron object. After this point, no Eventron object will be moved
by the collector nor will any Eventron object contain pointers that
will be modified by the collector. Therefore, the Eventron stack will
never contain stale references and does not need to be examined,
and at no point in the Eventron’s execution must it synchronize
with the collector.

Once all Eventron objects are pinned and their pointers are for-
warded, an Eventron thread may be created. The run-time ensures
that becomeEventronThread is invoked for each Eventron thread
so that it may be distinguished from ordinary Java threads. This
distinction is discussed in the following section.

7. Execution
7.1 Thread Priorities

Once an Eventron is released, it may arbitrarily preempt the
garbage collector. Eventrons by default are created with a prior-
ity just higher than the thread that schedules the garbage collector
(which itself runs at a priority just higher than the collector threads
themselves).

Eventron priorities may be set to any value allowed by the
underlying system. Eventrons co-exist with RTSJ NoHeapReal-
TimeThreads, and their relative scheduling is handled by the op-
erating system based on their respective priorities.

7.2 Distinguishing Eventron Threads

Eventron threads must not yield to garbage collection threads at
the beginning of each collector quantum. Therefore, we distinguish
Eventron threads using a flag in a thread-specific data structure.
This flag is used by the run-time scheduler to determine which
threads must reach a safe point before a collection quantum can
begin. In addition, as the collector is scanning the stack of each
application thread, it must ignore the stacks of Eventron threads
since these threads are not necessarily at safe points.

Because the stacks of Eventron threads are not scanned during
collection, we must ensure that any object accessible to an Eventron
is also reachable from some other root. The set of pinned objects
associated with each Eventron serves to maintain this invariant:
each set of pinned objects is added to a global table for the duration
of the execution of the Eventron.

Eventron threads share some characteristics with NoHeapReal-
timeThreads, for example, neither is suspended during the execu-
tion of the collector. However, we distinguish these two types of
threads as Eventrons are not subject to the same checks on heap
access.

7.3 Run-Time Exceptions

While our analysis has ruled out any allocation that may occur be-
cause of code intentionally written by the programmer, we have
allowed the programmer to relax this restriction for code included
from libraries, meaning that unanticipated allocations may occur,
causing an immediate OutOfMemoryError. In addition, the system
may perform allocation while handling an exceptional condition
that arises during normal execution (e.g., NullPointerException).
We found it impractical to change all of the code paths involved,

and typically the run-time does much more than allocate an excep-
tion object (e.g., it also allocates a string of message text). In our
implementation, these allocations also cause an immediate Out-
OfMemoryError. Despite this, our implementation ensures that all
such exceptions contain valid traceback information, which simpli-
fies debugging.

Exceptions may be caught by an Eventron, including both those
exceptions that are preallocated and those that arise from alloca-
tion. Unhandled exceptions result in the termination of the execu-
tion phase. The Eventron will not be re-run until it is explicitly
rescheduled.

8. Termination
Finally, once a Eventron has run its course, either after it has been
disabled by a call from another thread, or because it threw or
failed to catch an exception, its data structures are unpinned and
the Eventron thread reverts to the ordinary state for a brief interval
before terminating. During this brief interval, the Eventron thread
may store into reference fields, and this explains how exceptions
thrown during the execution phase are preserved for inspection by
other threads.

When a Eventron is destroyed, the destruction routine unpins
the associated data structure, so that Eventron objects that remain
live due to pointers from the mutable heap are no longer pinned,
and there is no “pinning leak.”

8.1 Killing, Restarting, and Cost Enforcement

Since Eventrons do not modify pointer structures and do not hold
locks (because all operations must be non-blocking), it should
be possible to terminate an Eventron at any instruction without
negative effects on the rest of the system.

This avoids another major problem with other approaches to
high-frequency tasks in Java, namely that they may hold resources
which make the semantics of early termination poorly defined.

The only circumstance under which killing Eventrons is unsafe
is when the program is using a custom synchronization protocol
in which the Eventron might expose partially updated state non-
atomically. However, as long as our channel abstractions are used
this will not happen.

This capability can be used to implement either asynchronous
termination of the entire Eventron or of one particular execution.
This meshes well with cost enforcement, since it allows the early
termination of an iteration that misses its deadline, and immediately
resets it to a state in which it can handle the next event in a timely
fashion.

9. Eventron Channels
To aid programmers in transferring data between tasks of differ-
ent priorities and frequencies, we provide an implementation of
wait-free, allocation-free channels. These channels allow data to
be streamed to and from Eventron tasks. Though we intend Even-
tronChannels to be common utility classes, they are still checked
by the validation process described above. We also provide the
lower level Notifier object (discussed below as part of the im-
plementation of EventronChannels). The Notifier, along with the
properties of the Java memory model and/or the facilities of the
java.util.concurrent.atomic package, can be used to implement
other wait-free utilities.

EventronChannels must be wait-free to avoid priority inver-
sion. We provide two versions of our channel abstraction: one that
provides wait-free access to the reader and a blocking interface to
the writer (called an EventronReadChannel) and another that pro-
vides a symmetric interface (EventronWriteChannel). (We also
provide wait-free access for the low-priority half of these chan-
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nels.) This allows for relatively straightforward implementations
of both high- and low-frequency tasks: high-frequency tasks are
driven by the scheduler, and if they avoid looping and use only
wait-free structures such as EventronChannels, they should have
predictable execution times. Low-frequency tasks can be designed
to produce or process data as quickly as possible and can rely on
the channel to throttle their execution.

Channels must also be free of allocation and pointer mutation
to avoid synchronization with the collector. Like other Eventron
data structures, they must perform all allocation during initializa-
tion. We specialize EventronChannels for the single reader/single
writer case to allow efficient implementation in the context of these
constraints.

Each EventronChannel provides a wait-free communication
mechanism by implementing a circular queue or ring of primitive
values. These values may be grouped together into buffers to pro-
vide more efficient access. EventronChannels come in seven “fla-
vors,” one for each of the each of the primitive Java types.

9.1 Programming Interface

At their core, EventronChannels are similar to input and output
streams, providing methods to read and write individual elements
and arrays of them. In the most basic interface, reading (respec-
tively, writing) an array of values causes the elements of the array
to be copied from (respectively, to) the internal data structure.

However, we also offer a slightly more complex, but lower
overhead, alternative. A reader or writer may also acquire access to
the internal buffer array. This allows data to be transfered directly
between tasks without any additional copies. Programmers must
be careful to relinquish all references to a buffer once it has been
released for use by the other task. Failure to do so may lead to
unexpected values being read from the channel.

In many applications, when a channel overrun or underrun oc-
curs, the high-frequency task must continue to execute either by
discarding data (in the former case) or using a default value (in the
latter), while the error itself should be handled by some other task.
EventronChannels provide a mechanism to automatically commu-
nicate these exceptional conditions back to the low-frequency task:
a subsequent write (read) performed by the low-frequency task will
throw an UnderrunException (OverrunException).

9.2 Configuration

The two most important channel configuration parameters are the
number of buffers and the size of each buffer. By dividing the
channel storage into a fixed set of buffers, we allow the programmer
to control the rate of synchronization between the reader and the
writer. Each buffer is owned by at most one of the two processes,
allowing efficient access in the common case. Only when moving
from one buffer to the next are atomic memory accesses (e.g.,
compare-and-swap) required. The size and number of buffers must
be determined given the relative jitter of the two tasks. The size of
each buffer determines the minimum latency between when values
are written to and read from the channel, and the number of buffers
determines the maximum such latency.

In the audio playback example, the primary source of latency
for the low-frequency task is the garbage collector. Suppose in
this example that we are able to guarantee a maximum pause time
of 5 ms and a minimum mutator utilization of 50% over any 10
ms window. Then the proper configuration is three buffers each
containing 5 ms of data or, equivalently, 111 samples (recall that
our example uses 22.05 kHz audio). Initially the (low-frequency)
writer will be 10 ms ahead of the reader, but due to interruptions
by the garbage collector, it may lag behind to the point where it is
only 5 ms ahead. Such a scenario will only occur if the collector has
consumed a significant portion of the previous scheduling quanta:

by our minimum utilization guarantee, the collector will consume
less of the subsequent quanta and allow the synthesizer to speed
ahead once again.

The EventronWriteChannel has one additional configuration
parameter. In the case of an overrun, some data will be lost: ei-
ther the oldest data must be overwritten, or the newest must be dis-
carded. Our implementation supports both, leaving the programmer
to determine which is most appropriate for a given application.

9.3 Implementation

Each EventronChannel is implemented using an ImmutableAr-
ray of BufferState objects, where each such object encapsulates
a buffer and an integer state variable. The state of each buffer de-
termines both the state of the content (whether the buffer contains
data or not) and who owns the buffer. For example, each buffer in
an EventronReadChannel may be empty, full, reading, or writing,
the last two indicating ownership by the reader or writer, respec-
tively. There are two additional states, underrun and closed, that
are used to communicate changes in the status of the channel as a
whole. When an underrun occurs, the reader wrests ownership of
the current buffer from the writer, setting its state to underrun. The
next access by the writer will discover the state change and throw
the an exception. Analogously, the writer may indicate the end of
the data stream by setting the state of its current buffer to closed.

EventronChannels depend on atomic operations provided by
the java.util.concurrent.atomic package. Atomic compare-and-
swap operations are used to update the state of each buffer. For
example, an underrun may occur at the same moment that the writer
finishes writing to a buffer. Both tasks will attempt to update the
state of this buffer (to underrun and full, respectively). An atomic
update ensures that both tasks agree on the winner of the race.

Finally, the implementation of channels requires a mechanism
to allow the high-frequency task to notify the low-frequency one
when a buffer becomes available. The standard Java lock-notify-
unlock is obviously unsuitable and while the implementation of
locks in java.util.concurrent.locks includes tryLock and signal
operations that avoid synchronization, they do perform allocation
and pointer mutation, rendering them unusable by Eventrons. (This
is partly because these locks support an unbounded number of
waiters.) Instead, we provide a Notifier class that wraps any Object.
It provides a notifyIfWaiting method, implemented internally to
the virtual machine, which notifies threads (if any) waiting on the
wrapped object’s lock without blocking, allocating, or updating any
reference field.

10. Evaluation
We have tested the performance of both validation and execution of
Eventrons, in particular comparing them to equivalent C programs
and evcaluating the interference from other (garbage collected)
JVM threads.

All experiments were run on an IBM Intellistation Z Pro with
2 Pentium 4 Xeon processors (at 2.4 GHz and with 2-way hy-
perthreading) and 2 GB of physical memory. The operating sys-
tem is Linux with the 2.6.14 kernel. Additionally, various patches
to improve real-time performance were applied including high-
resolution timers (HRT) [17] and robust mutexes for priority in-
heritance.

The base for the implementation is IBM’s Real-Time edition
of the J9 virtual machine, which includes the Metronome garbage
collector, RTSJ, and an ahead-of-time compiler. The language level
is 1.5 (with generics) using the J2SE libraries.

Our prototype implementation of Eventrons included the “fully
constructed” check (Section 5.3.1) and safety checks for reflective
field updates (Section 5.3.2). However, we have not finished inte-
grating those aspects of the Eventron prototype into the production
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Name Methods LOC Validation Time (ms)
Null 1 1 0.11
Audible 4 87 4.16
FFT 8 139 4.58

Table 1. Validation Times for Several Eventrons. The Null Even-
tron has a trivial run() method, Audible is our music generation
example, and FFT computes a fast Fourier transform.

VM used to gather the results reported below. But, based on our
earlier experiments with the prototype implementation, we do not
believe this materially impacts the results reported below.

All Eventrons were run at 22.05 KHz (a 45.35 μs period), a stan-
dard frequency for digital audio. Tests were run until 10,000,000
samples were obtained. These runs were sufficiently large to en-
compass periodic operating system activity which could perturb
the results and to provide a statistically meaningful comparison.
For example, the operating system flushes data to the disk every 30
seconds and performs timer interrupts every 1 millisecond.

10.1 Validation

We have measured the time required to validate a small set of
examples. Table 1 shows the size of these examples and the time
required to validate them. Each example includes any library code
that may be executed by the Eventron, for example, some methods
of EventronReadChannelOfShort in the Audible example. While
these validation times are much longer than the execution of the
Eventrons themselves, validation must only be performed once per
instantiation of an Eventron.

10.2 Base Performance: Eventrons versus C

To establish the base timeliness results of Eventrons, we imple-
mented a C program which uses the same OS function calls to es-
tablish a periodic task of the same 22.05 KHz frequency. Other than
computation to establish the scheduling behavior, neither version
performs any work. We measure the timeliness of both versions
by measuring the interarrival times of the Eventron and C handler.
Noting that the y-axis is logarithmic, figure 7 shows that nearly
all of the data is centered tightly around the target period time of
45.3μs. More precisely, 99.64% of the samples lie within 5 μs of
the target time. Within 10 μs of the target time, Eventrons include
99.997% of the data while C includes 99.999% of the samples.

Both the C version and the Eventron versions have nearly the
same distribution, both in terms of the extent and count of both
the outlier clusters and the main region. This curve represents the
degree to which this particular version of Linux is real-time and
represents the best we can achieve from user-level code.

In this graph, the histogram’s x-axis ends at 120 μs although
there is one additional group of outliers centered at 4.0 ms. In fact,
all runs, regardless of whether it is C or Eventrons, which version of
Eventrons, and the load under which it is run, suffer from the same
effect. Thus, we believe that the effect stems from the operating
system effect such as sync-ing the disk. In this particular figure,
the C version has 12 outliers ranging from 3.93 to 4.06 ms while
the Eventron version has 7 outliers ranging from 3.99 to 4.05 ms.
Because this 4.0 ms effect is pervasive and stems from the operating
system, we will not show nor discuss these outliers in the remaining
sections.

10.3 Timeliness in the presence of GC

Having established that Eventrons can potentially achieve latency
similar to that of a C application, we now test the main design
feature of Eventrons by measuring the effect that garbage collec-
tion has on Eventron interarrival times. To do this, the Eventron is
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Figure 7. Histogram of interarrival times for a null Eventron
scheduled every 45 μs and for a simple C program running at the
same period. The Eventron and the C program run 99.997% and
99.999% of their executions within 10 μs of the target times, re-
spectively.
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Figure 8. The effect of garbage collection on the interarrival times
of an Eventron scheduled every 45 μs. Running a garbage collector
increases the number of outliers between 10 and 25 μs from the
target time but otherwise does not impact the shape of the distribu-
tion.

run together with a lower-priority Java thread that continually allo-
cates, thus triggering periodic garbage collections. The Eventron’s
scheduling is potentially affected by both the mutator thread and
the garbage collection thread. As we can see in figure 8, these two
effects combine to slightly worsen the behavior of the Eventron.
The distribution is not as tight as before so that at 10 μs, 99.990%
of the data is included. However, nearly all of the distribution lies
within 25 μs of the target time. In fact, the tail of the distribution is
better when the mutator thread and the garbage collection threads
are enabled.

To demonstrate the effectiveness with which Eventrons address
the latency problem, we replace the Eventron with an equivalent
Java version which runs at high priority. Figure 9 shows that the
interarrival times of a regular Java thread are far worse than that of
an Eventron. In fact, the outliers are so distant that we extended the
x-axis from 130 μs to 1 ms. The number of outliers increases by a
factor of 20, and these outliers are centered around 550 μs which is
slightly greater than the time the garbage collection thread typically
runs for. For non-realtime garbage collectors, the interarrival times
would be even worse.
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Figure 9. Histogram of interarrival times of the null Eventron
and a null non-Eventron both scheduled every 45 μs. The non-
Eventron, despite running at a higher priority, cannot preempt the
garbage collector and is often interrupted for periods of approxi-
mately 550 μs.

10.4 Performance Under Load: Eventrons with CPU-bound
Threads

After having established that the base performance of Eventrons is
similar to that of a similar C application, we test the performance
of Eventrons when run in conjunction with regular Java threads in a
single Java VM. To stress the system, we choose four benchmarks
from the SPECjvm98 suite (db, jack, javac, and mpegaudio)
which are CPU-bound batch applications so that the threads are
almost always eligible to run.

As Figure 10 shows, the Eventrons are slightly less timely
when the system is under load and the deviation is dependent
on the load. With db, the deviation is small, and 99.990% of
the data falls within a 10 μs window. On the other hand, javac
causes greater perturbations, and a 10 μs window includes only
99.986% of the samples. While these numbers are still very high,
the differences are significant and show that other threads do cause
definite perturbations. Because this version of Linux does not have
the pre-emption patches (which at the time were too unstable),
various system calls can cause the kernel to enter critical sections
in which it will not yield. For example, a lower-priority thread can
request a non-blocking I/O operation which nonetheless will block
an unrelated Eventron thread.

Figure 11 shows the passage of time as a series of strips or
“scan lines” moving from left to right and then top to bottom.
An Eventron (dark gray) is executed every 45 μs. The width of
oscilloscope view is exactly four times the period of the Eventron,
thus the Eventron executions line up vertically. The alarm task (part
of the GC scheduler) is shown in black and runs with a period of
200 μs, slightly longer than the width of the view, resulting in the
staggering effect. Finally the GC execution is shown in light gray.
Note that the Eventron continues to run at fixed intervals despite
the execution of the other tasks.

10.5 Interaction with Low-Frequency Tasks: Audible
Eventrons

Finally, we test the performance of the audible Eventron that was
described in section 2. In addition to showing perturbation from
the lower-priority low-frequency task, this example demonstrates
that the wait-free channels perform as described. Since the audible
Eventron writes to /dev/dsp, timing anomalies may arise from op-
erating system interactions. In fact, despite using non-blocking I/O,
the system call write periodically takes quite a while. Because this
anomaly is not central to the Eventron design but deals with lower-
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Figure 10. Histogram of interarrival times for an Eventrons sched-
uled every 45 μs in a virtual machine running one of several ap-
plications taken from the SPECjvm98 benchmark suite. Increasing
the load within the virtual machine has small effects on Eventron
performance, probably due to contention in the scheduler or unin-
terruptible kernel calls.
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Figure 11. Oscilloscope view of an Eventron running every 45μs.
Time moves from left to right and top to bottom. Notice that
the Eventron (dark gray) continues to run concurrently with the
collector (light gray). The “Alarm Run” (black) points denote the
execution of the GC scheduler task.

level aspects of specific devices, we first present performance result
without the write in Figure 12. There are no significant changes to
the tail of the distribution although the central portion of the distri-
bution grows slightly wider similar to effect of garbage collection in
Figure 8. The similarity suggests that the operating system does not
always promptly schedule high-priority threads even when there is
no interaction (via mutexes, for example) between the high- and
low-priority threads.

Finally, we show the pronounced effect of including the call to
write in the audible Eventron in Figure 13. There is clearly a cluster
of data centering around 200 μs. Examination of the raw data shows
that every 93 ms, the call to write takes up to 220 μs instead of
the usual 2 μs. The audio card performs double buffering and each
buffer is 2048 samples in size. At 22050 Hz, this corresponds to 93
ms so we believe that, despite opening /dev/dsp with non-blocking
I/O (which did improve matters), certain calls are still affected by
buffering operations within the kernel.
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Figure 12. Histogram of interarrival times of the audible Even-
trons without the write scheduled every 45 μs compared to a null
Eventron running at the same frequency. Running in parallel with
the low-frequency task has only a small impact on performance.
This effect similar to that of the collector, indicating that it is an
artifact of the OS scheduling algorithm and not the interaction be-
tween tasks.

11. Related Work
Eventron validation involves constructing a call graph and analyz-
ing it to detect violations of the programming model. A wide range
of call graph construction algorithms are described by Grove and
Chambers [13]. Static analyses have also been adapted to operate
on-line and handle Java language features such as reflection, dy-
namic class loading, and JNI. For example, Hirzel et al. [16] de-
scribe a pointer analysis that supports the full Java programming
language. Similarly, Qian and Hendren [21] augment a standard
call graph construction algorithm to support dynamic class load-
ing. Unlike all of this previous work, our Eventron validator ana-
lyzes the code in the context of the exact object instances on which
it will operate. This significantly simplifies analysis since the actual
object instance can be reflectively examined to determine the types
and contents of its fields.

The Real-Time Specification for Java (RTSJ) is a standard that
defines a number of extensions and changes to the virtual machine
and standard Java libraries to support real-time application devel-
opment. The RTSJ defines NoHeapRealtimeThreads (NHRTs) as
the proper high frequency tasks. NHRTs are forbidden from ac-
cessing any object allocated in the garbage-collected heap. Instead,
NHRTs may allocate from either the ImmortalMemoryArea or one
of the ScopedMemoryAreas. Objects allocated in the former will
be preserved for the remainder of the life of the virtual machine;
thus the ImmortalMemoryArea is suitable for only those objects
that are allocated during the initialization phase of an application.

Programming effectively and safely with RTSJ scoped memory
is widely recognized as being quite challenging. Pizlo et al. [20]
present a collection of programming idioms and design patterns
for using scoped memory. Bollella et al. [5] describe the use of
restricted memory pools and scoped memory scratchpads as key
design patterns in their use of RTSJ to control loops in the Golden
Gate/Mission Data System project. They advocate the use of a
framework based on these patterns to insulate most programmers
from the complexities of directly using RTSJ scoped memory.

Deters and Cytron [10] describe a dynamic analysis to facilitate
the conversion of a standard Java program to one that uses RTSJ
scoped memory. By instrumenting the program to observe object
lifetimes and referencing patterns, their system can suggest where
to place scoped memory regions. However, the system’s sugges-
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Figure 13. Histogram of interarrival times of the audible Eventron
without the write and the audible Eventron with the write with both
scheduled every 45 μs. Buffering by the audio driver (during a call
to write) causes outliers to occur every 2048 samples or 93 ms.

tions may be unsound since they are based on a particular program
execution.

The runtime checks required by RTSJ’s scoped memory can
be quite expensive. Higuera-Toledano and Issarny [15] quantify
these overheads and analyze some solutions to reduce their impact.
Corsaro and Cytron [8] present efficient algorithms for managing
scoped memory and performing the required dynamic checks in
addition to an empirical evaluation.

Static type systems have been proposed to make it easier to write
correct programs using RTSJ’s scoped memory abstractions. In
these systems, correctly typed programs cannot cause memory ac-
cess violations, therefore all of the RTSJ mandated dynamic mem-
ory checks can be eliminated. Boyapati et al. [6] describe one such
system based on ownership types. Zhao et al. [24] develop a sim-
pler, but more restrictive system which they prove sound. In effect,
both of these type systems statically partition heap connectivity, but
allow real time tasks to dynamically allocate memory (using RTSJ
scoped memory) within their heap partition. In our Eventron pro-
gramming model, heap connectivity is not restricted but dynamic
memory allocation by the Eventron is forbidden.

Corsaro and Schmidt [9] report on a detailed performance com-
parison of their jRate RTSJ implementation and the RTSJ reference
implementation (RI) from TimeSys. One relevant data point from
their experiments is that they observed that the RTSJ RI Periodic
Thread implementation was only able to achieve predictable be-
havior for tasks with periods greater than or equal to 30 ms. Higher
frequency tasks suffered significant jitter. In contrast, our Eventron
implementation is capable of achieving highly predictable behavior
for tasks with periods as small as 45 μs.

12. Conclusion
Eventrons provide a simple and elegant means of writing tasks re-
quiring extremely low latency while co-existing with a garbage-
collected language. By taking advantage of Java’s existing final
mechanism, augmented with some run-time support to eliminate
loopholes that could compromise safety, a simple data-sensitive
analysis is able to guarantee safety before Eventrons begin exe-
cuting. Eventrons are simpler to program, simpler to implement,
more reliable, and more efficient than other approaches like scoped
memory.

Eventrons make it feasible to program almost any real-time
system entirely in pure Java code. We are currently investigating the
use of Eventrons to directly generate CD-quality audio waveforms
and to write device drivers. We believe that Eventrons will make it
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possible to replace even the lowest levels of system software with
safe code in a managed run-time system.
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