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Mission Statement: Advancing AI research driven by…

Grand Challenges of Social Work

 Ensure healthy development for all youth

 Close the health gap

 Stop family violence

 Advance long and productive lives

 Eradicate social isolation

 End homelessness

…
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Overview of CAIS Project Areas

AI for Assisting Low Resource Communities

 Social networks: Spread HIV information

 Maximize influence under uncertainty

 Real-world pilot tests: Big improvements

AI for Protecting Endangered Wildlife

 Machine learning/planning: Anti poaching

 Scale, boundedly rational poachers,…

 Real-world: Uganda, South Asia…

2/11/2017 4



Gangs, Substance abuse, 

Veterans mental health

 Social networks, robust optimization,…

 Behavioral models…

 Real-world: Research in progress

AI for Public Safety and Security

 Game theory: security optimization

 Solve massive “security games”

 Real-world: US Coast Guard, FAMS…

Overview of CAIS Project Areas
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Outline

 Introduction

 HIV Information among homeless youth

 Wildlife Conservation
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AI Program: HEALER
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Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 POMDP Model and algorithms

 Pilot Study
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Influence Maximization Background

 Input: 

 Graph G

 Influence Model I

 Choose K nodes per time step

 Number of time steps for influence spread T

 Output:

 K nodes per time step maximizing expected # influenced 

nodes
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Independent Cascade Model

 Propagation Probability (for each edge)
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Real World Challenges

 Uncertain network state

 Uncertainty in network structure

 Adaptive selection
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Challenge 1: Uncertain Network State

B

C
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Challenge 2: Uncertain Network Structure
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Independent Cascade Model

 Propagation Probability (for each edge)

 Existence Probability (for uncertain edges only)
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HIV Prevention Programs:
Using Social Networks to Spread HIV Information

2/11/2017 15



Challenge: Adaptive selection in Uncertain Network

K = 5

1st time step
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Challenge: Adaptive selection in Uncertain Network

K = 5

2nd time step
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Challenge 3 : Adaptive selection

K = 5

3rd time step
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NO LONGER A SINGLE SHOT 

DECISION PROBLEM



Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 POMDP Model and algorithms

 Pilot Study
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POMDP Model

 Sequential decision making under uncertainty

 Homeless shelters – sequentially select nodes

 Homeless shelters – network state not known

Action

Choose nodes

Observation: Which edges exist?

Adaptive Policy

REWARD

POMDP SOLVER

HIDDEN

World State: Actual 

node/edge state
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Real world scale: Why is it hard to solve?

2300 states
150C6 actions

Current offline and online 

POMDP solvers unable to 

scale
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Real world scale: Why is it hard to solve?
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Real world networks have community structure

Graph Partitioning
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Graph Partitioning
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HEALER : Hierarchical Ensembling

GRAPH PARTITION TOOL

. . . .

. . . .

GRAPH SAMPLER
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Intermediate

POMDP

Sampled

POMDP

Sampled

POMDP
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POMDP

HEALER

Graph 

Sampling
Graph 

Sampling

Graph 

Sampling

Intermediate

POMDP

Intermediate

POMDP
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Graph Partitioning: Why partition?

q
INTERMEDIATE 

POMDP
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Real Networks - Solution Quality
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Robustness & Parameter Uncertainty

 HEALER: fixed propagation and existence probability

 Want policies robust to different possible values of P(A,B) and U(A,B)

 Express as ranges of values, e.g., U(A,B) is in [0.4, 0.8]
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HEALER++ 
Robustness & Parameter Uncertainty

 Worst case parameters: a zero-sum game against nature

 Payoffs: (performance of algorithm)/OPT

Nature

Chooses parameters 

P(A,B) and U(A,B)

vs

Algorithm

Chooses policy in 

POMDP state-action 

space
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Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 POMDP Model and algorithms

 Pilot Study
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Pilot Tests with 170 Youth in LA Area

Recruited youths:

Preliminary network —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training

HEALER HEALER++ DEGREE CENTRALITY

62 56 55
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Results: Pilot Studies
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Results: Pilot Studies
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AI Program: HEALER
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Next Steps

 900 youth study begun at three locations in Los Angeles

 300 enrolled in HEALER/HEALER++

 300 enrolled in no condition

 300 in Degree centrality

 IRB approvals

 Presenting video updates every few months
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Outline

 Introduction

 HIV Information among homeless youth

 Wildlife Conservation
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Uganda Wildlife Authority & Wildlife Conservation Society

Protecting Wildlife in Uganda
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Predicting Poaching from Past Crime Data

PAWS: Applying AI for protecting wildlife

Poacher Behavior Prediction
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Queen Elizabeth National Park, Uganda

Poacher behavior prediction

1300 targets, 12 years of patrol data

How likely is an  

attack on

a grid Square

Ranger patrol

frequency

Animal density

Distance to 

rivers / roads 

Area habitat

Area slope

…
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Initial Attempt Using Dynamic Bayes Net:
Time Dependency & Imperfect Observation

Attacking probability

Detection probability

Ranger observation

Ranger patrol

Animal density

Distance to rivers / 

roads / villages

Area habitat

Area slope

…
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Poacher Behavior Prediction

Poacher behavior prediction

Classifier 1 Classifier 2 Classifier 3

0 1 1

Aggregation Rule

1

Majority

1

Ensemble of Decision Trees
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Poacher Behavior Prediction

Poacher attack prediction

Results from 2015
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Real-world Deployment: Results

 Two 3 sq km patrol areas: Predicted hot spots with infrequent patrols

 Trespassing: 19 signs of litter etc

 Snaring: 1 active snare

 Poached Animals: Poached elephant

 Snaring: 1 elephant snare roll

 Snaring: 10 Antelope snares

 Hit rates (per month)

 Ours outperforms 91% of months

Historical Base Hit 

Rate
Our Hit Rate

Average: 0.73 3
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On-Going Experiments:
Queen Elizabeth National Park

• Red: Group 1 (highest attack prediction rate)

• Yellow: Group 2

• Green: Group 3
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On-Going Experiments:
Queen Elizabeth National Park

• Rangers followed poachers’ trail; ambushed camp

 Arrested one (of 7) poachers 

 Confiscated 10 wire snares, cooking pot, hippo 

meat, timber harvesting tools. 

• Indirect poaching signs; pursuit of poachers

• Signs of road building, fires, illegal fishing
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Learn from 
crime data

Game Theory 
calculate 

randomized 
patrols

Patrollers 
execute 
patrols

Poachers 
attack targets

Predicting Poaching from Past Crime Data

PAWS: Applying AI for protecting wildlife

Game Theory + Poacher Behavior Prediction



Towards the Future

 Significant potential: AI for low resource communities, emerging markets

 Direction of AI research in our hands

 Not just applications; novel research challenges:

 Fundamental computational challenges from use-inspired research

 Designing AI systems in society:

• Interpretability

• Maintaining human autonomy

 Methodological challenges:

 Encourage interdisciplinary research: measures impact in society
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AI for Social Good
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THANK YOU



BACKUP



POMDP Model: Challenges

 Number of states (node & edge uncertainty): ~ 2300

 Number of actions (N-choose-K): > 1,000,000,000

 Number of observations (Edges exist or not):  Exponential
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Action

Choose nodes

Observation: Which edges exist?

Adaptive Policy

REWARD

POMDP SOLVER

HIDDEN

World State: Actual 

node/edge state



Mission Statement: Advancing AI research driven by…
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Divide and Conquer

 Main idea:

 Divide POMDP into smaller POMDPs

 Combine solutions of smaller POMDPs

 Two different ways of dividing POMDPs

 Using uncertain edges: PSINET

 Using graph partitioning and sampling: HEALER
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…And the Past

“…prize every invention of

science made for the

benefit of all”
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Intermediate POMDP

Sampled

POMDP

Sampled

POMDP

Sampled

POMDP

.

.
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Intermediate POMDP

Sampled

POMDP

Sampled

POMDP

Sampled

POMDP

.

.
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Params #1 Params #2

Policy #1 0.8, -0.8 0.3, -0.3

Policy #2 0.7, -0.7 0.5, -0.5

HEALER++ Algorithm

 Computes an equilibrium strategy for this game

 Exponentially large strategy space: incremental generation, double oracle

 Under some conditions, provably converges to approx. equilibrium

Params #1 Params #2

Policy #1 0.8, -0.8 0.3, -0.3

Policy #2 0.7, -0.7 0.5, -0.5

Nature’s oracle

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Influencer’s oracle

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7
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Real networks - robustness
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