
Hyojin Sung, Tong Chen, and Zehra Sura

Automatic Copying of
Pointer-based Data Structures for
Distributed Memories

Heterogeneous	Systems

Popular	for	performance	and	power	efficiency

HOST	CPU
GPU

FPGA

……

HOST	MEMORYGPU	MEMORY
FPGA	

MEMORY

Programming	for	Heterogeneous	Systems

HOST	CPU
GPU

HOST	MEMORYDEVICE	MEMORY

execute

Host	offloads	computation	to	devices	

Programming	for	Heterogeneous	Systems

HOST	CPU
GPU

HOST	MEMORYDEVICE	MEMORY

Challenge:	Moving	data efficiently	between	different	memories

execute

Pragma-based	Programming	for	Heterogeneous	Systems

HOST	CPU

GPU

HOST	MEMORYDEVICE	MEMORY
a

b

#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

k

Programming	productivity	and	code	portability	

FPGA

MEMORY

(Scalar)	Data	Mapping	in	Pragma-based	Programs

HOST	CPU

GPU

int k;
…
#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

k:	12345

Allocate

Copy	contents
k:	12345

DEVICE	MEMORY HOST	MEMORY

Pointer-based	Data	Mapping	in	Pragma-based	Programs

HOST	CPU

GPU

int *a;
a	=	malloc(sizeof(int)*1000);
…
#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

Allocate

Copy	address a:	0xf123a:	0x4567

DEVICE	MEMORY HOST	MEMORY

Pointer-based	Data	Mapping	in	Pragma-based	Programs

HOST	CPU

GPU

MEMORY

int *a;
a	=	malloc(sizeof(int)*1000);
…
#pragma	omp target	map(to:a[0:1000],k)	
map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

Allocate

Copy	address
a:	0xf123a:	0x4567 101

7
54

Allocate

Copy	contents

“deep	copy”	of	pointer-based	data	is	required

DEVICE	MEMORY HOST	MEMORY

Goal:	Automatic	copying	of	pointer-based	data

• Currently,	data	transfer	pragmas	are	limited	
• Manual	”deep	copy”	is	tedious	and	error-prone

• Functionality:	handles	general	data	structures
• Support	arbitrary	data	structures:	multiple	levels	of	pointers,	recursive	data	types
• Map	all	the	memory	objects	reachable	from	the	mapped	variable	(top-level)

§Need	information	about	the	pointers,	such	as	size and	type

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects

Challenges:	Automatic	copying	of	pointer-based	data

§Need	information	about	the	pointers,	such	as	size and	type
• ”allocatable”	arrays	and	pointers	used	for	dynamically	allocated	data	structures	in	Fortran
• Dope	vectors,	not	just	raw	pointers,	are	used	to	represent	them
• Dope	vector	contains	meta	data:
§ Status	of	pointer:	allocated	or	not
§ Address	of	pointed	object
§ Size	and	shape	of	pointed	object

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects

Opportunities:	Automatic	copying	for	Fortran

No	extra	work	from	users!

§Need	information	about	the	pointers,	such	as	size and	type
• ”allocatable”	arrays	and	pointers	used	for	dynamically	allocated	data	structures	in	Fortran
• Dope	vectors,	not	just	raw	pointers,	are	used	to	represent	them
• Dope	vector	contains	meta	data:
§ Status	of	pointer:	allocated	or	not
§ Address	of	pointed	object
§ Size	and	shape	of	pointed	object

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects
§ Compiler	and	runtime	support	for	OpenMP device	offloading	(part	of	CORAL	project)	

Opportunities:	Automatic	copying	for	Fortran

No	extra	work	from	users!

§ Compiler	collects	type	information
• For	each	pointer	field	in	the	user-defined	type
§Offset	
§ scalar	or	array
§ type	of	the	pointee

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

User-defined	type	for	linked	list	nodes Compiler-generated	info	(from	dope	vector)

§ Compiler	creates	deep	copy	constructor	and	destructor	for	each	type
• A	general	implementation	parameterized	with	type	info

§OpenMP runtime	library	calls	constructor	and	destructor	at	data	map	boundary

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

type(elemtype)	::	a,b

!$omp target map(to:a)	(from:b)
...
…
!$omp end	target

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

Deep	copy	constructor	for	elemtype

Deep	copy	destructor	for	elemtype

§ Traverse	all	the	reachable	memory	objects	from	the	mapped	pointer
• Recursively	call	the	constructor/destructor	for	each	dope	vector	contained	

§ Spanning	tree	algorithm	to	ensure	each	memory	object	is	handled	exactly	once

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

type(elemtype)	::	a,b

!$omp target map(to:a)	(from:b)
...
…
!$omp end	target

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

Deep	copy	constructor	for	elemtype

Deep	copy	destructor	for	elemtype

§ BASE
• Copy	pointer	and	data	separately:	different	addresses	on	host	and	device

§ Optimizations
• Reduce	#	of	transfers
• TCPY,	PCPY:	temporary	copies	on	CPU

Perform	Node	Copy

p X

COPY	TO
HOST GPU

pg X pg Xg p Xgp X

COPY	FROM
GPU HOST

p X pg Xg p Xgpg X

p X pg X pg Xg

p X pg X pg Xg pg Xgpg X p Xg

p p

pg

1

2

1

1
2 3 1 2

4 2 3 1
2

BASE

TCPY

BASE

TCPY

PCPY PCPY
Initial/Final	
Host	Data

Initial/Final	
GPU	Data

Temporary/
Intermediate

Transfer	
Operation

Copy	
Operation

1

Experimental	Results
§ Kernels	that	recursively	access	linked	lists	and	tree	
§ Comparison	to	CUDA	version	with	data	transfers	only

• No	OpenMP overhead
• No	management	overhead	for	mapped	data

(a) (c) (b)

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"
100"

list" splitlist" tree"

%
"B
an

dw
id
th
"A
ch
ie
ve
d"

Node"Size"1MB"

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"
100"

list" splitlist" tree"

Node"Size"1KB"

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"

list" splitlist" tree"

Node"Size"128"Bytes"

List	 Split	list	 Tree

§ Automatic	copying	of	arbitrary	data	structures	between	CPU	and	GPU
• Take	advantage	of	language	feature:	dope	vector	in	Fortran
• No	extra	burden	on	users

§We	will	further	improve	the	functionality	and	reduce	the	overhead
• Asynchronous	data	transfer
• Compiler	analysis/user	pragma	to	reduce	the	amount	of	data	to	be	transferred
• Increased	parallelism	with	deep	copying
• Mutable	data	structure

§ Expand	the	work	to	languages	other	than	Fortran
• introduce	smart	pointer	abstraction	in	C/C++	systems
• Library	framework	or	template	classes	for	metadata	representation	
• Transparent	enablement	with	errors/warnings	when	automatic	system	cannot	handle

Conclusions	and	Future	Work

Thank	you!	

