
Hyojin Sung, Tong Chen, and Zehra Sura

Automatic Copying of 
Pointer-based Data Structures for 
Distributed Memories



Heterogeneous	Systems

Popular	for	performance	and	power	efficiency
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Programming	for	Heterogeneous	Systems
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Programming	for	Heterogeneous	Systems
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Challenge:	Moving	data efficiently	between	different	memories
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Pragma-based	Programming	for	Heterogeneous	Systems
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#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}
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(Scalar)	Data	Mapping	in	Pragma-based	Programs
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int k;
…
#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

k:	12345

Allocate

Copy	contents
k:	12345
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Pointer-based	Data	Mapping	in	Pragma-based	Programs
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int *a;
a	=	malloc(sizeof(int)*1000);
…
#pragma	omp target	map(to:a,k)	map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

Allocate

Copy	address a:	0xf123a:	0x4567

DEVICE	MEMORY HOST	MEMORY



Pointer-based	Data	Mapping	in	Pragma-based	Programs
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int *a;
a	=	malloc(sizeof(int)*1000);
…
#pragma	omp target	map(to:a[0:1000],k)	
map(from:b)
for	(int i=0;i<1000;i++)	{
b[i]	=	a[i]	*	k;
}

Allocate

Copy	address
a:	0xf123a:	0x4567 101
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“deep	copy”	of	pointer-based	data	is	required
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Goal:	Automatic	copying	of	pointer-based	data

• Currently,	data	transfer	pragmas	are	limited	
• Manual	”deep	copy”	is	tedious	and	error-prone

• Functionality:	handles	general	data	structures
• Support	arbitrary	data	structures:	multiple	levels	of	pointers,	recursive	data	types
• Map	all	the	memory	objects	reachable	from	the	mapped	variable	(top-level)



§Need	information	about	the	pointers,	such	as	size and	type

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects

Challenges:	Automatic	copying	of	pointer-based	data



§Need	information	about	the	pointers,	such	as	size and	type
• ”allocatable”	arrays	and	pointers	used	for	dynamically	allocated	data	structures	in	Fortran
• Dope	vectors,	not	just	raw	pointers,	are	used	to	represent	them
• Dope	vector	contains	meta	data:
§ Status	of	pointer:	allocated	or	not
§ Address	of	pointed	object
§ Size	and	shape	of	pointed	object

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects

Opportunities:	Automatic	copying	for	Fortran

No	extra	work	from	users!



§Need	information	about	the	pointers,	such	as	size and	type
• ”allocatable”	arrays	and	pointers	used	for	dynamically	allocated	data	structures	in	Fortran
• Dope	vectors,	not	just	raw	pointers,	are	used	to	represent	them
• Dope	vector	contains	meta	data:
§ Status	of	pointer:	allocated	or	not
§ Address	of	pointed	object
§ Size	and	shape	of	pointed	object

§Need	to	maintain	the	mapping	information	at	runtime
• Finer-grained	address	mapping	between	host	and	device
• Reference	count	on	device	copy	of	memory	objects
§ Compiler	and	runtime	support	for	OpenMP device	offloading	(part	of	CORAL	project)	

Opportunities:	Automatic	copying	for	Fortran

No	extra	work	from	users!



§ Compiler	collects	type	information
• For	each	pointer	field	in	the	user-defined	type
§Offset	
§ scalar	or	array
§ type	of	the	pointee

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

User-defined	type	for	linked	list	nodes Compiler-generated	info	(from	dope	vector)



§ Compiler	creates	deep	copy	constructor	and	destructor	for	each	type
• A	general	implementation	parameterized	with	type	info

§OpenMP runtime	library	calls	constructor	and	destructor	at	data	map	boundary

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

type(elemtype)	::	a,b

!$omp target map(to:a)	(from:b)
...
…
!$omp end	target

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

Deep	copy	constructor	for	elemtype

Deep	copy	destructor	for	elemtype



§ Traverse	all	the	reachable	memory	objects	from	the	mapped	pointer
• Recursively	call	the	constructor/destructor	for	each	dope	vector	contained	

§ Spanning	tree	algorithm	to	ensure	each	memory	object	is	handled	exactly	once

Overview:	how	to	handle	deep	copy	in	Fortran

Type	elemtype
integer	::	mydata1(16)
type(elemtype),	pointer ::	nextnode
integer	::	mydata2(N)

end	type	elemtype

type(elemtype)	::	a,b

!$omp target map(to:a)	(from:b)
...
…
!$omp end	target

1	pointer	in	type	elemtype:
Offset:	16*sizeof(int)
Scalar
Type	of	pointee:	elemtype

Deep	copy	constructor	for	elemtype

Deep	copy	destructor	for	elemtype



§ BASE
• Copy	pointer	and	data	separately:	different	addresses	on	host	and	device

§ Optimizations
• Reduce	#	of	transfers
• TCPY,	PCPY:	temporary	copies	on	CPU
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Experimental	Results
§ Kernels	that	recursively	access	linked	lists	and	tree	
§ Comparison	to	CUDA	version	with	data	transfers	only

• No	OpenMP overhead
• No	management	overhead	for	mapped	data
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§ Automatic	copying	of	arbitrary	data	structures	between	CPU	and	GPU
• Take	advantage	of	language	feature:	dope	vector	in	Fortran
• No	extra	burden	on	users

§We	will	further	improve	the	functionality	and	reduce	the	overhead
• Asynchronous	data	transfer
• Compiler	analysis/user	pragma	to	reduce	the	amount	of	data	to	be	transferred
• Increased	parallelism	with	deep	copying
• Mutable	data	structure

§ Expand	the	work	to	languages	other	than	Fortran
• introduce	smart	pointer	abstraction	in	C/C++	systems
• Library	framework	or	template	classes	for	metadata	representation	
• Transparent	enablement	with	errors/warnings	when	automatic	system	cannot	handle

Conclusions	and	Future	Work



Thank	you!	


