
Towards a
Self-Certifying Compiler for
WebAssembly

Anton Xue (University of Pennsylvania)
Kedar Namjoshi (Nokia Bell Labs)

IBM PL Day 2019
2019 December 09

What is WebAssembly?

A binary instruction set for a stack-based virtual machine

A widely adopted browser-native language

A compilation target for your favorite language

A language designed with formal semantics

https://www.reddit.com/r/ProgrammerHumor/comme
nts/1ykdi6/web_development_with_assembly/

Compiled code that runs in the browser

… with relatively new technology (released in 2017)

… and a lot of deployed and unverified C/C++ code

= Potential bugs in the compiler toolchain

A new compile target ... so what?

Even (reliable) compilers like GCC have bugs

https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=__open__&no_redirect=1&order=changeddate%20DESC%2Cpriority%
2Cbug_severity&product=gcc&query_format=specific

How does one write “correct” software?

Unit tests

Assert statements

Bugs = features

Continuous integration

Code review

FORMAL logic

FORMAL specification

FORMAL proofs

FORMAL verification

How does one write CORRECT software?

https://github.com/AbsInt/CompCert/blob/ec49c7b8bd450
2c380b88c78baa674000db109fd/common/Subtyping.v#L393

Is Classical Verification Easily Adoptable?

Requires user expertise in formal logic and theorem proving

Learning curve is a deterrence to adoption

But what if we’re willing to trade expressive power for ease-of-use?

Idea: Self-Certified Compilers

Compiler
Optimization

(Somewhat)
Generic Checker

Equiv Proof

Source Code

Optimized Code

SMT Solver /
Theorem Prover

SAT / UNSAT

SMT Queries

Accept / Reject
Optimization

(local.set 1 (i32.const 617))

;; (local.set 2 (i32.const 212))

(local.set 3 (i32.const 781))

(local.set 2 (i32.const 267))

(add (local.get 1)
 (add (local.get 2)
 (local.get 3)))

(local.set 1 (i32.const 617))

(local.set 2 (i32.const 212))

(local.set 3 (i32.const 781))

(local.set 2 (i32.const 267))

(add (local.get 1)
 (add (local.get 2)
 (local.get 3)))

Example: Dead Code Elimination

Loc[1] == Loc'[1]
Loc[3] == Loc'[3]
Loc[2] == Loc'[2]

Loc[1] == Loc'[1]
Loc[3] == Loc'[3]

Loc[1] == Loc'[1]

Compiler
Optimization

(Somewhat)
Generic Checker

Equiv Proof

Source Code

Optimized Code

SMT / Logic
Solvers

SAT / UNSAT

SMT Queries

Accept / Reject
Optimization

CFG-to-CFG
Optimizations

Self-Certified Compiler Optimizations: The Vision

Source WASM

Optimized WASM

Proof of equivalence
Proof of equivalence

Proof Checker:

(1) Extract source semantics

(2) Extract optimized semantics

(3) Valid proof of equivalence?

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

CFG-to-CFG
Optimizations

Self-Certified Compiler Optimizations: The Vision

Source WASM

Optimized WASM

Proof of equivalence
Proof of equivalence

Proof Checker:

(1) Extract source semantics

(2) Extract optimized semantics

(3) Valid proof of equivalence?

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

User’s responsibility Our responsibility

Self-Certification and Classical Verification

Self-certification: proves correctness per every execution
Classical verification: proves correctness once before shipping

Self-certification: requires the user to annotate code
Classical verification: requires the Coq expert to theoremize and prove

Self-certification: should be designed with ease of use
Classical verification: requires more expertise and power tools

Self-certification is complementary to classical verification!

What needs to be done?

Goal 1: (our/back-end) analyzing source and optimized WASM for equivalence
Challenge 1: encoding execution semantics into logical formulas

Goal 2: (user/front-end) generating proofs of behavioral equivalence
Challenge 2: what should a proof of equivalence look like?

Goal 3: putting everything together
Challenge 3: engineering and more engineering

CFG-to-CFG
Optimizations

Self-Certified Compiler Optimizations: The Vision

Source WASM

Optimized WASM

Proof of equivalence
Proof of equivalence

Proof Checker:

(1) Extract source semantics

(2) Extract optimized semantics

(3) Valid proof of equivalence?

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

Goal 1: WebAssembly Execution Semantics

https://github.com/WebAssembly/spec/bl
ob/master/interpreter/syntax/ast.ml

WebAssembly Execution Semantics
type value =
 int32 | int64 | float32 | float64

type state =
 { id : int32;
 values : values stack;
 locals : int32 -> value;
 globals : int32 -> value;
 memory : int32 -> value }

type instr = state -> state

type step = (state * instr * state)

type formula_of_step = step -> formula

Values are one of 4 types

States tell us the program’s variable values

… and identify values / locals / globals / memory

Instructions map states to states

Step is a triple (state0, instr, state1)

Formulas in theory of arrays and bit vectors

Goal 2: Equivalence Proofs of Program Traces

The user is responsible for:

 + Instrumenting their own code to generate proofs

 + Deciding what equivalences on CFGs to prove

Proofs should:

 + Identify path pairs in the source and target CFGs

 + Identify equivalences on source and target states

Source WASM

CFG-to-CFG
Optimizations

Optimized WASM

Goal 3: Engineering
Where are we now?

 + Much of the backend proof checker component is written

 + Can validate simple optimizations like local CFG block merging

TODO:

 + Handle more optimizations

 + Generating WASM code (a few difficulties in the type system)

 + Instrumenting existing optimizations

Summary

Self-certification as an approach to writing correct software

 + Complementary to classical formal verification

Self-certified compiler optimizations for WASM

 + Extract execution semantics to theory of arrays and bit vectors

 + Optimization proofs identify CFG path pairings and equivalence relations used

FIN

