Towards a
Self-Certifying Compiler for
WebAssembly

Anton Xue (University of Pennsylvania)
Kedar Namjoshi (Nokia Bell Labs)

IBM PL Day 2019
2019 December 09 NDKIA Bell Labs

P //,,/‘/
enn &
Ry ‘s

What is WebAssembly?

A binary instruction set for a stack-based virtual machine

44 Posted by ujfuniy_vodka 5 years ag
759 Web Development With Assembly

A widely adopted browser-native language ————

yourself right now

I _ Web Development
A compilation target for your favorite language With Assembly

A language designed with formal semantics

Bob Johnson
O'REILLY* with His Therapist

https://www.reddit.com/r/ProgrammerHumor/comme
nts/1lykdi6/web_development_with_assembly/

A new compile target ... so what?

Compiled code that runs in the browser
... with relatively new technology (released in 2017)
... and a lot of deployed and unverified C/C++ code

= Potential bugs in the compiler toolchain

Even (reliable) compilers like GCC have bugs

GCC Bugzilla - Bug List

Home | New | Browse | Search | ||| NN [?] | Reports | Help | New Account | Log In | Forgot Password

Mon Dec 9 2019 07:13:21 UTC
Don't drink and derive.

Hide Search Description

Status: UNCONFIRMED, NEW, ASSIGNED, SUSPENDED, WAITING, REOPENED Product: gcc

This result was limited to 500 bugs. See all search results for this query.
ID Product Comp Assignee Status Resolution Summary Changed

v

92863 gcc fortran unassigned UNCO --- ICE in gfc_typename 06:37:30
92862 gcc tree-opt unassigned UNCO --- Suspicious codes in tree-ssa-loop-niter.c and predict.c 06:35:49
29997 gcc target unassigned UNCO --- [meta-bug] various targets: GCC fails to encode epilogues in unwind-info 05:23:42
12955 gce other eager ASSI - Incorrect rounding_of soft float denorm mul/div 05:09:27
92859 gcc ct+ unassigned NEW --- compiler treats enum type as an integer during overload resolution when a bit-field of this enum is considered 04:41:53
60035 gcc libgomp unassigned UNCO --- [PATCH] make it possible to use OMP on both sides of a fork (without violating_standard) 03:12:56
92822 gcc target unassigned NEW --- [10 Regression] testsuite failures on aarch64 after r278938 01:26:10
92851 gcc ct+ unassigned WAIT - Lambda capture of *this with mutable is not mutable 00:48:44
92853 gcc libstdc+ redi ASSI - std::filesystem::path::operator+=(std::filesystem::path const&) corrupts the heap 23:25:36
30617 gcc libfortr unassigned REOP --- Implement a run time diagnostic for invalid recursive 1/0 22:48:24
65424 gcc tree-opt unassigned NEW - gcc does not recognize byte swaps implemented as loop. 20:12:43

https://gcc.gnu.org/bugzilla/buglist.cgir?bug_status=__open__&no_redirect=1&order=changeddate%20DESC%2Cpriority%
2Cbug_severity&product=gcc&query_format=specific

How does one write “correct” software?

Unit tests

Assert statements
Bugs = features
Continuous integration

Code review

How does one write CORRECT software?

FORMAL logic
FORMAL specification
FORMAL proofs

FORMAL verification

)

(** Soundness proof *)

Lemma type_def_incr:
forall te x ty e e', type_def e x ty = OK e' -> satisf te e' -> satisf te e.
Proof.
unfold type_def; intros. destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
destruct (T.sub_dec ty hi); try discriminate.
destruct (T.eq lo (T.lub lo ty)); monadInv H.
subst e'; auto.
destruct HO as [P Q]; split; auto; intros.
destruct (peq x x0).
+ subst x0@. rewrite E in H; inv H.
exploit (P x); simpl. rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.lub 1lo@ ty); auto. eapply T.lub_left; eauto.
+ eapply P; simpl. rewrite PTree.gso; eauto.
inv H. destruct HO as [P Q]; split; auto; intros.
eapply P; simpl. rewrite PTree.gso; eauto. congruence.
Qed.

https://github.com/AbsInt/CompCert/blob/ec49c7b8bd450
2c380b88c78baa674000db109fd/common/Subtyping.v#L393

|s Classical Verification Easily Adoptable?

Requires user expertise in formal logic and theorem proving
Learning curve is a deterrence to adoption

But what if we’re willing to trade expressive power for ease-of-use?

|dea: Self-Certified Compilers

Source Code

Compiler
Optimization

Equiv Proof

| Optimized Code

(Somewhat)
Generic Checker

SMT Queries

SAT / UNSAT

SMT Solver /
Theorem Prover

Accept / Reject
Optimization

Example: Dead Code Elimination

(local.set 1 (i32.const 617))

(local.set 2 (i32.const 212))

(local.set 3 (i32.const 781))

(local.set 2 (i32.const 267))

(add (local.get 1)
(add (local.get 2)
(local.get 3)))

(local.set 1 (i32.const 617))

;5 (local.set 2 (i32.const 212))

(local.set 3 (i32.const 781))

(local.set 2 (i32.const 267))

(add (local.get 1)
(add (local.get 2)
(local.get 3)))

Source Code

Compiler
Optimization

Equiv Proof

| Optimized Code

(Somewhat)
Generic Checker

SMT Queries

SAT / UNSAT

Accept / Reject
Optimization

SMT / Logic
Solvers

Self-Certified Compiler Optimizations: The Vision

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

!]

Source WASM

CFG-to-CFG
Optimizations

Proof of equivalence
Proof of equivalence

4

> Optimized WASM

Proof Checker:
(1) Extract source semantics
(2) Extract optimized semantics

(3) Valid proof of equivalence?

Self-Certified Compiler Optimizations: The Vision

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

!]

Source WASM

CFG-to-CFG
Optimizations

Proof of equivalence
Proof of equivalence

Proof Checker:
(1) Extract source semantics

(2) Extract optimized semantics

4

> Optimized WASM

User’s responsibility

(3) Valid proof of equivalence?

Our responsibility

Self-Certification and Classical Verification

Self-certification: proves correctness per every execution
Classical verification: proves correctness once before shipping

Self-certification: requires the user to annotate code
Classical verification: requires the Coq expert to theoremize and prove

Self-certification: should be designed with ease of use
Classical verification: requires more expertise and power tools

Self-certification is complementary to classical verification!

What needs to be done?

(our/back-end) analyzing source and optimized WASM for equivalence
Challenge 1: encoding execution semantics into logical formulas

(user/front-end) generating proofs of behavioral equivalence
Challenge 2: what should a proof of equivalence look like?

putting everything together
Challenge 3: engineering and more engineering

Self-Certified Compiler Optimizations: The Vision

SMT Solvers:
SAT / UNSAT on formulaic
encoding of proofs

!]

Source WASM

CFG-to-CFG
Optimizations

Proof Checker:

Proof of equivalence
Proof of equivalence

(1) Extract source semantics

(2) Extract optimized semantics

4

> Optimized WASM

(3) Valid proof of equivalence?

Goal 1: WebAssembly Execution Semantics

type instr = instr' Source.phrase

and

instr' =

Unreachable
Nop

Drop

Select

* trap unconditionally *)

do nothing *)

forget a value *)

* branchless conditional *)

Block of stack_type

*

Loop of stack_type

If of stack_type * instr list

instr

instr

list

list

(
(
(
(
(

(

* execute in sequence *)

* loop header *)

instr list (* conditional *)

I

|

|

|

|

|

|

| Br of var (* break to n-th surrounding label *)
| BrIf of var (* conditional break *)

| BrTable of var list * var (* indexed break *)

| Return (* break from function body *)

| call of var (* call function *)

| CallIndirect of var (* call function through table *)
| LocalGet of var (* read local variable *)

| LocalSet of var (* write local variable *)

| LocalTee of var (* write local variable and keep value *)
| GlobalGet of var (* read global variable *)

| GlobalSet of var (* write global variable *

| Load of loadop (* read memory at address *)

| Store of storeop (* write memory at address *)

| MemorySize (* size of linear memory *)

| MemoryGrow (* grow linear memory *)

| Const of literal (* constant *)

| Test of testop (* numeric test *)

| Compare of relop (* numeric comparison *)

| Unary of unop (* unary numeric operator *)

| Binary of binop (* binary numeric operator *

| Convert of cvtop (* conversion *)

https://github.com/WebAssembly/spec/bl
ob/master/interpreter/syntax/ast.ml

WebAssembly Execution Semantics

type value = Values are one of 4 types
int32 | int64 | float32 | floate4

type state = States tell us the program’s variable values
{ id : int32;
values : values stack; ... and identify values / locals / globals / memory
locals : int32 -> value;
globals : int32 -> value;
memory : int32 -> value }
type instr = state -> state Instructions map states to states
type step = (state * instr * state) Step is a triple (state@, instr, statel)

type formula of step = step -> formula Formulas in theory of arrays and bit vectors

Goal 2: Equivalence Proofs of Program Traces

Source WASM

CFG-to-CFG
Optimizations

Optimized WASM

The user is responsible for:
+ Instrumenting their own code to generate proofs

+ Deciding what equivalences on CFGs to prove

Proofs should:
+ Identify in the source and target CFGs

+ Identify on source and target states

Goal 3: Engineering

Where are we now?

+ Much of the backend proof checker component is written

+ Can validate simple optimizations like local CFG block merging
TODO:

+ Handle more optimizations

+ Generating WASM code (a few difficulties in the type system)

+ Instrumenting existing optimizations

Summary

Self-certification as an approach to writing correct software
+ Complementary to classical formal verification
Self-certified compiler optimizations for WASM
+ Extract execution semantics to theory of arrays and bit vectors

+ Optimization proofs identify CFG path pairings and equivalence relations used

FIN

