
Designing a Parallel
Programming Language

while Blogging
S. Tucker Taft

AdaCore
December, 2019

First Blog Entry -- September 25, 2009

Second Blog Entry -- September 26, 2009

So what is it like to design while blogging?

● Blogging is basically a “solo” process, but with the possibility of feedback
● A blog is somewhere between a stream of consciousness, a brainstorming

session, and an after-the-fact rationalization
● Explaining ideas helps to sharpen them, or to expose their weaknesses, or

both
● No hard “team” deadlines means hard problems can be postponed, allowing

them hopefully to soften up over time
● Eventually a solution may present itself, after enough groundwork and

context have been provided
● The design process can begin to feel more like discovery than invention

Groundwork and
Context:
start with your goals

Third Blog Entry -- September 26, 2009

ParaSail language themes and philosophy
So what will make ParaSail an interesting programming language? What is the
philosophy behind the language? … ParaSail uses a small number of concepts to
represent all of the various composition mechanisms such as records, packages,
classes, modules, templates, capsules, structures, etc. Arrays and more general
containers are treated uniformly.

On the other hand, ParaSail allows many things to proceed in parallel by default,
effectively inserting implicit parallelism everywhere. Parameter evaluation is logically
performed in parallel. … In all cases, the language disallows code that could result
in race conditions due to inadequately synchronized access to shared data, either
by using per-thread data, structured safe synchronization, or a handoff semantics ...

Goals for ParaSail
Parallel Specification and implementation language

● Goal A: Simplify writing parallel programs
○ Make it as easy for programmer to write in parallel as it is sequentially

○ Make it easy for compiler to detect data races

○ Make it easy for compiler to insert parallelism

● Goal B: Simplify writing safe, correct, and predictable code
○ Provide automatic storage management without garbage collection

○ Integrate contract-based programming annotations into language

○ Eliminate difficult-to-verify features

Establish some
basic principles

Simplify, simplify, simplify

● Eliminate global variables
○ Operation can only access or update variable state via its parameters

● Eliminate parameter aliasing
○ Use “hand-off” semantics (cf. Hermes language)

● Eliminate explicit threads, lock/unlock, signal/wait
○ Concurrent objects synchronized automatically

● Eliminate run-time exception handling
○ Can use compile-time checking and propagation of preconditions

● Eliminate pointers
○ Adopt notion of “optional” objects that can grow and shrink
○ User-defined indexing as alternative for cyclic graph structures

● Eliminate global heap and garbage collector
○ Replaced by region-based storage management (local heaps)
○ All objects conceptually live in a local stack frame

Early ideas

Later ideas

Do some initial
design

ParaSail “Simplified” Building Blocks
● Module – always parameterized, with separate interface

○ Parameterized unit with Interface part, and optionally an Implementation part
○ interface Ordered_Set <Elem_Type is Comparable> is ...
○ Can extend another module (code and data are inherited along with interface)
○ Can implement one or more module’s interfaces (only interface is inherited)

● Type – single syntax for all data type declarations
○ An instance of a Module: type T is [new] M < . . . > // “new” means use “name” equivalence
○ e.g. type String_Set is new Ordered_Set <String>
○ “T+” is polymorphic type representing any type implementing T’s interface

● Object – only “value” types, var or const
○ An instance of a Type (type can be inferred from initial value)

■ has an updatable value if declared “var”; can be null if declared “optional”
○ var Obj : T := Create(...) // ParaSail allows overloading on parameter and result types

● Operation – role of operation determined by parameters and where declared
○ Defined in a Module, and
○ Operates on one or more Objects of specified Types
○ Only operates on its explicit parameters; can update only those declared “var”

Focus in on how types are defined

● Type – single syntax for all data type declarations
○ An instance of a Module: type T is [new] M < . . . >

// “new” means use “name” equivalence
○ e.g.:

type Percent is new Integer <0 .. 100>
type Phone_Book is new
 Map <Key => String, Value => Phone_Number>
type String_Set is Ordered_Set <String>

Bump into some
road blocks:
Enumeration types

How do enumeration types fit into this syntax?
● Jensen and Wirth popularized enumeration types in Pascal
● Wirth then dropped enumeration types from Oberon

○ “Enumeration types appear to be a simple enough feature to be uncontroversial. However, they
defy extensibility over module boundaries. Either a facility to extend given enumeration types
has to be introduced, or they have to be dropped. …” (From Modula to Oberon, 1988)

● Bertrand Meyer did not include them in Eiffel
○ “Introducing Pascal-ilke enumeration types would be a conceptual disaster in Eiffel: they

would conflict with the type system of the language, which is otherwise simple (the four
simple types on the one hand, and the class types on the other). It does not seem feasible to
combine this notion elegantly with inheritance.” (Object-Oriented S/W Construction, 1988)

● James Gosling did not include them in original Java
○ “Enumerations were left out of the Java spec not because I think they're a bad idea, but

because I couldn't converge on a design that made sense. …” (JavaWorld, June 1, 1998)

What is so hard about enumeration types?

● The enumeration literals
○ They do not seem to work like numeric or string literals
○ Each type has its own set of literals, which are defined as a side effect of defining the type

● Where do the literals “live” in the program’s lexical scopes?
● Do they allow overloading -- can two enumeration types have the same

literals?
● When you “import” a type do you automatically import all of its literals?
● Can an extension add more enumeration literals? How does that work?
● In ParaSail: How can you fit the need to define a bunch of new enumeration

literals into the syntax of an instantiation of some pre-existing module?

How do numeric and string literals work?
● They already exist before the declaration of any types
● Something about the type determines what sort of literals you can use with it

○ An integral type can use integer literals
○ A floating point type can use floating point literals
○ A string type can use string literals

● In ParaSail
○ If a type has “from_univ” routine from a “Univ” type it can use the corresponding literals

Universal Type Syntax of Literals

Univ_Integer 42

Univ_Real 3.141592653589793

Univ_String “Hello, world!”

Univ_Character ‘@’

Example of Integer module in ParaSail
interface Integer <Range : Interval<Univ_Integer>> is
 op “+” (Left, Right : Integer) -> Integer
 op “-” (Left, Right : Integer) -> Integer
 ...
 op “from_univ” (Univ: Univ_Integer) {Univ in Range} -> Integer

// Can use Univ_Integer literals that satisfy precondition
 op “to_univ” (Integer) -> Result : Univ_Integer {Result in Range}

// Reverse conversion for output, result satisfies postcondition
 …
end interface Integer

Can we fit enum
types into this
pattern?
Yes, just have to let it
gestate for nine months
...

Blog entry -- May 15, 2010

ParaSail enumeration types
We haven't talked about enumeration types in ParaSail yet. One challenge is how to define an
enumeration type by using the normal syntax for instantiating a module, which is the normal way a
type is defined in ParaSail. …

In ParaSail we propose the following model: We define a special syntax for enumerals
(enumeration literals), of the form #name (e.g. #true, #false, #red, #green). We define a universal
type for enumerals, Univ_Enumeration. We allow a type to provide conversion routines from/to
Univ_Enumeration, identified by op "from_univ" and op "to_univ". If a type has a
from_univ operator that converts from Univ_Enumeration, then that type is effectively an
enumeration type, analogous to the notion that a type that has a from_univ that converts from
Univ_Integer is essentially an integer type. ...

Basic trick:
pre-create a
Univ_Enumeration type
with all enumeration
literals imaginable,
analogous to
Univ_Integer

An Enum module to define enumeration types
interface Enum<Enumerals : Vector<Univ_Enumeration>> is
 op "from_univ" (Univ : Univ_Enumeration) {for some E of Enumerals => Univ == E} -> Enum

// can use any literal of type Univ_Enumeration that satisfies the precondition
 op "to_univ"(Val : Enum) -> Result: Univ_Enumeration {for some E of Enumerals => Result == E}

// reverse conversion for output will satisfy postcondition
 ...
end interface Enum;
...
type Color is Enum<[#red,#green,#blue]>
var X : Color := #red // implicit call on from_univ

Here we presume the class associated with the Enum interface implements "from_univ", and "to_univ" by using the
Enumerals vector to create a mapping from Univ_Enumeration to the appropriate value of the Enum type, presuming the enumerals
map to sequential integers starting at zero. A more complex interface for creating enumeration types might take such a mapping
directly, allowing the associated values to be other than the sequential integers starting at zero. The built-in type Boolean is
presumed to be essentially Enum<[#false,#true]>.

Defining an enum type with a specified “rep”
interface PSL::Core::Enum_With_Rep
 <Rep_Type is Imageable<>; Rep_Map : Two_Way_Map<Univ_Enumeration, Rep_Type>> is

// An enumeration type specified using a map from literal to value
// of an underlying representation type.
op "from_univ"(Univ : Univ_Enumeration)

 {for some [Lit => Val] of Rep_Map => Lit == Univ}
 -> Enum_With_Rep
…
end interface PSL::Core::Enum_With_Rep
...
type Day_Of_Week is Enum_With_Rep <Modular<2**7>,
 [#Monday => 1<<0, #Tuesday => 1<<1, #Wednesday => 1<<2,
 #Thursday => 1<<3, #Friday => 1<<4,
 #Saturday => 1<<5, #Sunday => 1<<6]>

Univ_Enumeration -- Invented or Discovered?

● Once we had established the general approach for allowing user types to
make use of literals, the Univ_Enumeration solution was just out there
waiting to be found

● Inspired in part by #t and #f of Scheme, ‘abc syntax for symbols in Lisp
● Seems to address extensibility concerns expressed by Wirth and Meyer

○ “from_univ” operator in extension can have a “weaker” precondition -- support more literals

● Preserved ParaSail’s “uniform syntax” goal for type as an instance of a
module

● Benefited from deadline-free, blogging approach to design

Lessons learned
“... in contrast to a more systematic design-team-based or committee-based
process, the blog-based process has allowed us to jump from one aspect of
the language to another, allowing the author to go through more of a discovery
process than an invention process. That is, rather than systematically tackling
particular design problems and attempting to force a solution, problems were
allowed to percolate in the background while effort focused on parts of the
language where solutions were more immediately apparent. At some point, as
part of experimenting or ruminating, a solution for one of the background
problems suddenly emerged, as though it was always there but just was not yet
visible.This has allowed the author to stay very close to the original design
principles, rather than being forced into compromises to satisfy a schedule or
other external requirements for steady progress….”

●
●

ParaSail Website and Documents

● ParaSail blog: https://parasail-programming-language.blogspot.com/
● ParaSail web site: http://parasail-lang.org

○ Programming Journal Issue 3.3, February 2019, ParaSail: A Pointer-Free
Pervasively-Parallel Language for Irregular Computations

○ Embedded.com, ParaSail: Less is More with Multicore
○ Designing ParaSail while Blogging
○ Embedded.com: Go, Rust, and ParaSail: Alternatives to C/C++ for Systems

Programming in a Distributed Multicore World
○ Talk at Microsoft Research, October 2012, ParaSail: A Pointer-Free Path to

Object-Oriented Parallel Programming
○ CotsJournalOnline.com: Parallel Programming Languages Enable Safer Systems

https://parasail-programming-language.blogspot.com/
http://parasail-lang.org

History of ParaSail
● 2009 – Started design of ParaSail, on a blog

○ My friends were too busy – drowned my sorrows in a blog
● 2011 – ParaSail interpreter completed
● 2013 – Refactored to support multiple parsers, same AST

○ Javallel, Parython, Sparkel – to address surface syntax preferences
● 2014 – LLVM-based code generator built

○ Parallelism is only interesting if it makes the program faster
○ Written in interpreted ParaSail using reflection (by a summer intern)

● 2015 – Abstract-interpretation-based static analysis tool built:
○ ParaScope: ParaSail Static Catcher of Programming Errors
○ Written in interpreted ParaSail using reflection

● 2017-8 – Refactored LLVM-based code generator
○ Use register model rather than stack model for temps and parameters in LLVM
○ Inline more of the run-time support

