
Deep Reinforcement Learning for
Program Verification and Synthesis
Xujie Si, Hanjun Dai, Yuan Yang, Mukund Raghothaman, Mayur Naik, Le Song

University of Pennsylvania

Georgia Institute of Technology

The Success of Deep Reinforcement Learning

Neural Policy

P "#$%&' ($"$))

State

Reward

“fix-sized 2D

raw pixels”

Action
(move left, move right)

“automatically learned

from self-play”

The Success of Deep Reinforcement Learning

Neural Policy

P "#$%&' ($"$))

State

Reward

“fix-sized 2D

raw pixels”

Action
(move left, move right)

“automatically learned

from self-play”

DRL for program reasoning

Program

Atari

Games

raw pixels

size is fixed

Convolutional

Neural Network

Simple & Limited

number of actions

DRL for program reasoning

Program

Atari

Games

raw pixels

size is fixed

structured data

size varies

Convolutional

Neural Network

Simple & Limited

number of actions

Graph Neural
Network

Actions specified in a
Context-free Grammar

Learning loop invariant
Program Loop Invariant

Requirement:

Beyond

NP-Hard

Approach overview

!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Approach overview

!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Representation Learning ”turn a program into a collection of high dimensional vectors”

Approach overview

!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Reinforcement Learning
”reduce loop invariant generation as

a multiple step decision problem”

Representation learning for source code
while (y < 1000) {

x = x + y

y = y + 1

}

x1 = +(x0, x2)

y1 = +(y0, y2)

while (y1 < 1000) {

x2 = x1 + y

y2 = y1 + 1

}

SSA

Representation learning for source code

“turn a piece of code into

something readable by DNNs”

“broadcast (collect) embeddings to (from) neighbors

and perform non-linear transformation; repeat for L

iterations”

Reinforcement learning for invariant generation

!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Embedding of the

given program

(aka structured

memory for DNN)

Embedding of partially

generated invariant

Attention vector

(used to read the structured memory to

instantiate variables/constants in the

given grammar)

Sample a predicate according

to the given grammar

P := P and P | P or P | E

E := e <= e | e < e | …

e := var | constant | e + e | e – e

P ,-). ,-&/-"0, ,"-$%"2 %'3"-%"'$)

Here, we are essentially learning the

following distribution (which maximizes the

reward discussed next)

Experimental evaluation

• We collect 133 benchmark
programs

OOPSLA 2013, Dillig et al

POPL 2016, Garag et al

Code and data: https://github.com/petablox/code2inv

https://github.com/petablox/code2inv

Extension to program synthesis
• View a synthesis specification as a “program”

• Invariant generation is essentially program generation

• Initial results on 214 SyGuS tasks look promising

Thank you!

Q: how is the performance in term of running
time?
• The running time for each solved instance takes up to 6 hours
• All solvers have 6-hour limit (though other solvers tend to either solve an

instance within 30 minutes or time out)

• Everything is done with a single thread CPU

• There is no training, that is, each instance is solved from scratch (with
randomly initialized weights)
• View DRL as a smart search algorithm that evolves on the fly

• We do not observe much generation across the collected benchmark,
as they seem quite different from one to another.
• Thus, pre-training does not help much

• We do have a generation study (see next two slides)

Q: how about the generation (suppose you do
perform some pre-training)?

void main (int n) {
int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

void main (int n) {
int x = 0
int w = 0
int m = 0
int z = 0
while (x < n) {

z = z + 1
if (unknown()) {

m = x
z = m + 1

}
x = x + 1
w = m + x

}
if (n > 0) {

assert (m < n)
}

}

int w = 0

int z = 0

z = z + 1

w = m + x

z = m + 1

Generation study (injecting random statements)

1 confounding variable 3 confounding variables 5 confounding variables

Generation study (evaluation)

