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DRL for program reasoning
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Learning loop invariant
Program Loop Invariant

Requirement:

Beyond 

NP-Hard



Approach overview
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Representation Learning ”turn a program into a collection of high dimensional vectors”
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Reinforcement Learning
”reduce loop invariant generation as 

a multiple step decision problem”



Representation learning for source code
while (y < 1000) {

x = x + y

y = y + 1

}

x1 = +(x0, x2)

y1 = +(y0, y2)

while (y1 < 1000) {

x2 = x1 + y

y2 = y1 + 1

}

SSA



Representation learning for source code

“turn a piece of code into 

something readable by DNNs”

“broadcast (collect) embeddings to (from) neighbors

and perform non-linear transformation; repeat for L 

iterations”



Reinforcement learning for invariant generation 
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Embedding of the 

given program

(aka structured 

memory for DNN)

Embedding of partially 

generated invariant

Attention vector

(used to read the structured memory to 

instantiate variables/constants in the 

given grammar)

Sample a predicate according 

to the given grammar

P := P and P | P or P | E

E := e <= e | e < e | …

e := var | constant | e + e | e – e 

P ,-). ,-&/-"0, ,"-$%"2 %'3"-%"'$)

Here, we are essentially learning the 

following distribution (which maximizes the 

reward discussed next)





Experimental evaluation

• We collect 133 benchmark 
programs

OOPSLA 2013, Dillig et al

POPL 2016, Garag et al

Code and data: https://github.com/petablox/code2inv

https://github.com/petablox/code2inv


Extension to program synthesis
• View a synthesis specification as a “program”

• Invariant generation is essentially program generation

• Initial results on 214 SyGuS tasks look promising



Thank you!



Q: how is the performance in term of running 
time?
• The running time for each solved instance takes up to 6 hours
• All solvers have 6-hour limit (though other solvers tend to either solve an 

instance within 30 minutes or time out)

• Everything is done with a single thread CPU

• There is no training, that is, each instance is solved from scratch (with 
randomly initialized weights)
• View DRL as a smart search algorithm that evolves on the fly



• We do not observe much generation across the collected benchmark, 
as they seem quite different from one to another.
• Thus, pre-training does not help much

• We do have a generation study (see next two slides)

Q: how about the generation (suppose you do 
perform some pre-training)?



void main (int n) {
int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

void main (int n) {
int x = 0
int w = 0
int m = 0
int z = 0
while (x < n) {

z = z + 1
if (unknown()) {

m = x
z = m + 1

}
x = x + 1
w = m + x

}
if (n > 0) {

assert (m < n)
}

}

int w = 0

int z = 0

z = z + 1

w = m + x

z = m + 1

Generation study (injecting random statements)



1 confounding variable 3 confounding variables 5 confounding variables

Generation study (evaluation)


