
Safe Policy Migrations
John Renner, Alex Sanchez-Stern, Sorin Lerner, Deian Stefan

2016 - Introducing Todos!

2019 - Leak discovered in Todos

Organization

Repositories

Private

@hackerxx

TECHCORPsubscribe

todo_service.rb

Buggy permissions check

todo_service.rb

Buggy permissions check

What went wrong?

Update induced leakage

Repo

Models

Service Comment Issue

repo comment issue

policy policy policy

Update induced leakage

Repo

Models

Service Comment Issue Todo

repo comment issue todo

policy policy policy policy

Update induced leakage

Repo

Models

Service Comment Issue Todo

repo comment issue todo

policy policy policy policy

New feature required reimplementation of security checks

New checks were subtly incomplete

How can we prevent update-induced leakage?

How can we prevent update-induced leakage?

Doesn’t work!

Decrease the amount of code we have to trust

model.rb svc_1.rb svc_2.rb

TCB

Decrease the amount of code we have to trust

model.rb svc_1.rb svc_2.rb model.rb svc_1.rb svc_2.rb ...

TCB

Decrease the amount of code we have to trust

model.rb svc_1.rb svc_2.rb model.rb svc_1.rb svc_2.rb ...

TCB

Single statement of policy for each resource

Maintains security in the presence of most bugs

Policy Description Languages - Not a new idea

Security Rules

Hails
Security Policy Row-level Security

How it would fix this GitLab Example

Repo

Data

Service Comment Issue

repo comment issue

policy policy policy

How it would fix this GitLab Example

Repo

Data

Service Comment Issue

repo comment issue
policy policy policy

How it would fix this GitLab Example

Repo

Data

Service Comment Issue

repo comment issue
policy policy policy

Todo

todo
policy

New app code can’t leak old data!

Runtime protection is not enough

Runtime protection is not enough - Example

Let’s add a bio to GitLab profiles

ALTER TABLE User
 ADD bio TEXT;

Migrations can also leak

UPDATE User
 SET bio =
 CONCAT(‘Hi, I’m ’, username,
 ‘. Email me: ’, email)

We leaked user emails!

We need a unified approach

A DSL to:

- Define the data model

- Specify policies on that model

- Express & reason about changes to both

What do data models and policies look like

User {

name: String {

read: anyone,

edit: u -> u.id

}
}

Datatype name (Table)

Field name and type

Policy for field reads

Policy for field edits

Policy function. Returns a list of ids

What do migrations look like

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “. Email me: ” + u.email);

What do migrations look like

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “. Email me: ” + u.email);

All Operations
.addField addCollection
.removeField removeCollection
.changeField renameCollection
.forEach
.create
.update

Maintaining policies across migrations

Migrations don’t run as single users

Enforcing policies mid-migration would be difficult

Allow all migrations, generate an “at least as strict” policy

Information flow in migrations

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “. Email me: ” + u.email);

name read: anyone

email read: u -> u.id

Sources

bio u -> anyone ∩ u.id

Sink

Automating policy updates from migrations

Field renamed

Rename “contact” to “email”

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated

Move “email” to a Profile which is 1:1 with User

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Data modified

Increase User.permission_rank by 1

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Data modified - Replace references with inverse operation

Increase User.permission_rank by 1

Preventing leaks due to policy refactoring

Old Policy New Policy

SMT Solver

P1 P2implies

New policy is
 “at least as strict”

Where are we now?

Done

MVP of policy specification

Verifying policy changes w/ SMT

A few simple migrations

To-do

Expand policy language

Migration flow analysis

Summary

Explicit policy descriptions prevent leaks in app code

We also need to prevent leaks due to migrations

Our DSL addresses both problems

