Safe Policy Migrations

John Renner

UC San Diego

2016 - Introducing Todos!

Todos Search
Todo 12 Done 32
Project v Author v Type v Action v

GitLab.com / blog-posts

@ Dmitriy Zaporozhets mentioned you on issue #153 - 18 minutes ago
| think @nearlythere is right. Just make an overview of css structure but mostly focus on how to make easy change and contribute back

GitLab.com / www-gitlab-com

) Chad Malchow assigned you merge request /1624 - about 19 hours ago
‘¥ WIP: 2016-03-15-GitLab-Enterprise-Edition-Price-Change

‘a lvan Nemytchenko assigned you merge request !1617 - a day ago

e + &

Mark all as done

Done

Done

Done

2019 - Leak discovered in Todos

‘ | subscribe > TECHCORP Organization
-~

@hackerxx
Ej Ej Ej Repositories

Private

0' djrenren directly addressed you on issue #1|"Secret issue. Don't Leak"
3 " at tech-corp /|secret-project|- 19 hours ago Done

@hackerxx seems like a shady character

Buggy permissions check

todo_service.rb

def reject_users_without_access(users, parent, target)
if target.is_a?(Note) && target.for_issuable?
target = target.noteable
end

if target.is_a?(Issuable)
select_users(users, :"read_#{target.to_ability_name}", target)
else
select_users(users, :read_project, parent)
end
end

Buggy permissions check

todo_service.rb

select_users(users, :"read_#{target.to_ability_name}", target)

What went wrong?

Update induced leakage

Models

repo comment issue
policy policy policy
Repo Comment Issue

Service

Update induced leakage

Models

repo comment issue todo
policy policy policy policy
Repo Comment Issue Todo

Service

Update induced leakage

Models

repo comment issue todo
policy policy policy policy
Repo Comment Issue Todo

Service

New feature required reimplementation of security checks

New checks were subtly incomplete

How can we prevent update-induced leakage?

Find & fix bugs Teach good practices

- Escape all HTML, SQL, ..

- Check all return values

- Don't miss access checks
-/Only use libraries you trust

vulnerability

(e

patch

How can we prevent update-induced leakage?

Doesn’t work!

Decrease the amount of code we have to trust

model.er svc_1.er svc_2.er

\ J
|

TCB

Decrease the amount of code we have to trust

(J
f

TCB

svc_1.rb J

svc_2.er

Decrease the amount of code we have to trust

model.er

svc_1.rb J

svc_2.er i>

J

!

TCB

model.er

svc_1.rb J

svc_2.er

Single statement of policy for each resource

Maintains security in the presence of most bugs

Policy Description Languages - Not a new idea

)kHails @SQL ¥ Firebase

Security Policy Row-level Security Security Rules

How it would fix this GitLab Example

Data repo comment issue

policy policy policy

Service Repo Comment Issue

How it would fix this GitLab Example

Data repo comment issue

policy policy policy

Service Repo Comment Issue

How it would fix this GitLab Example

Data repo comment issue todo
policy policy policy policy
Service Repo Comment Issue Todo

New app code can’t leak old data!

Runtime protection is not enough

Runtime protection is not enough - Example

'8

djrenren

@djrenren - Member since December 04, 2019

Hey this is my bio, and | think it's super neat.

Let’s add a bio to GitLab profiles

Migrations can also leak

'8

djrenren

@djrenren - Member since December 04, 2019

Hi, I'm djrenren. Email mejjohn@jrenner.net

We leaked user emails!

We need a unified approach

A DSL to:
- Define the data model
- Specify policies on that model

- Express & reason about changes to both

What do data models and policies look like

User {
name: String {

read: anyone,

edit: u -> u.id {1 Policyforfield edits

|

}
} | Policy function. Returns a list of ids

What do migrations look like

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “, Email me: ” + u.email);

What do migrations look like

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “, Email me: ” + u.email);

All Operations

.addField addCollection
.removeField removeCollection
.changeField renameCollection
.forEach

.Create

.update

Maintaining policies across migrations

Migrations don’t run as single users

Enforcing policies mid-migration would be difficult

Allow all migrations, generate an “at least as strict” policy

Information flow in migrations

User.addField(“bio”, String, u ->

“Hi, I’m ” + u.name + “, Email me: ” + u.email);

Sources Sink

name | read: anyone

bio u -> anyone N u.1id

email | read: u -> u.1id

Automating policy updates from migrations

Field renamed

Rename “contact” to “email”

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Automating policy updates from migrations

- Replace references with new name

Data relocated

Move “email” to a Profile which is 1:1 with User

Automating policy updates from migrations

- Replace references with new name

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Data modified

Increase User .permission_rank by 1

Automating policy updates from migrations

Field renamed - Replace references with new name

Rename “contact” to “email”

Data relocated - Replace references with traversals

Move “email” to a Profile which is 1:1 with User

Data modified - Replace references with inverse operation

Increase User .permission_rank by 1

Preventing leaks due to policy refactoring

Old Policy

New Policy

SMT Solver

NS N\
0«0

New policy is
“at least as strict”

Where are we now?

Done To-do
MVP of policy specification Expand policy language
Verifying policy changes w/ SMT Migration flow analysis

A few simple migrations

Summary

Explicit policy descriptions prevent leaks in app code

We also need to prevent leaks due to migrations

Our DSL addresses both problems

